xref: /linux/arch/arm64/lib/strlen.S (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (c) 2013-2021, Arm Limited.
4 *
5 * Adapted from the original at:
6 * https://github.com/ARM-software/optimized-routines/blob/98e4d6a5c13c8e54/string/aarch64/strlen.S
7 */
8
9#include <linux/linkage.h>
10#include <asm/assembler.h>
11#include <asm/mte-def.h>
12
13/* Assumptions:
14 *
15 * ARMv8-a, AArch64, unaligned accesses, min page size 4k.
16 */
17
18#define L(label) .L ## label
19
20/* Arguments and results.  */
21#define srcin		x0
22#define len		x0
23
24/* Locals and temporaries.  */
25#define src		x1
26#define data1		x2
27#define data2		x3
28#define has_nul1	x4
29#define has_nul2	x5
30#define tmp1		x4
31#define tmp2		x5
32#define tmp3		x6
33#define tmp4		x7
34#define zeroones	x8
35
36	/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
37	   (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
38	   can be done in parallel across the entire word. A faster check
39	   (X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives
40	   false hits for characters 129..255.	*/
41
42#define REP8_01 0x0101010101010101
43#define REP8_7f 0x7f7f7f7f7f7f7f7f
44#define REP8_80 0x8080808080808080
45
46/*
47 * When KASAN_HW_TAGS is in use, memory is checked at MTE_GRANULE_SIZE
48 * (16-byte) granularity, and we must ensure that no access straddles this
49 * alignment boundary.
50 */
51#ifdef CONFIG_KASAN_HW_TAGS
52#define MIN_PAGE_SIZE MTE_GRANULE_SIZE
53#else
54#define MIN_PAGE_SIZE 4096
55#endif
56
57	/* Since strings are short on average, we check the first 16 bytes
58	   of the string for a NUL character.  In order to do an unaligned ldp
59	   safely we have to do a page cross check first.  If there is a NUL
60	   byte we calculate the length from the 2 8-byte words using
61	   conditional select to reduce branch mispredictions (it is unlikely
62	   strlen will be repeatedly called on strings with the same length).
63
64	   If the string is longer than 16 bytes, we align src so don't need
65	   further page cross checks, and process 32 bytes per iteration
66	   using the fast NUL check.  If we encounter non-ASCII characters,
67	   fallback to a second loop using the full NUL check.
68
69	   If the page cross check fails, we read 16 bytes from an aligned
70	   address, remove any characters before the string, and continue
71	   in the main loop using aligned loads.  Since strings crossing a
72	   page in the first 16 bytes are rare (probability of
73	   16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
74
75	   AArch64 systems have a minimum page size of 4k.  We don't bother
76	   checking for larger page sizes - the cost of setting up the correct
77	   page size is just not worth the extra gain from a small reduction in
78	   the cases taking the slow path.  Note that we only care about
79	   whether the first fetch, which may be misaligned, crosses a page
80	   boundary.  */
81
82SYM_FUNC_START(__pi_strlen)
83	and	tmp1, srcin, MIN_PAGE_SIZE - 1
84	mov	zeroones, REP8_01
85	cmp	tmp1, MIN_PAGE_SIZE - 16
86	b.gt	L(page_cross)
87	ldp	data1, data2, [srcin]
88#ifdef __AARCH64EB__
89	/* For big-endian, carry propagation (if the final byte in the
90	   string is 0x01) means we cannot use has_nul1/2 directly.
91	   Since we expect strings to be small and early-exit,
92	   byte-swap the data now so has_null1/2 will be correct.  */
93	rev	data1, data1
94	rev	data2, data2
95#endif
96	sub	tmp1, data1, zeroones
97	orr	tmp2, data1, REP8_7f
98	sub	tmp3, data2, zeroones
99	orr	tmp4, data2, REP8_7f
100	bics	has_nul1, tmp1, tmp2
101	bic	has_nul2, tmp3, tmp4
102	ccmp	has_nul2, 0, 0, eq
103	beq	L(main_loop_entry)
104
105	/* Enter with C = has_nul1 == 0.  */
106	csel	has_nul1, has_nul1, has_nul2, cc
107	mov	len, 8
108	rev	has_nul1, has_nul1
109	clz	tmp1, has_nul1
110	csel	len, xzr, len, cc
111	add	len, len, tmp1, lsr 3
112	ret
113
114	/* The inner loop processes 32 bytes per iteration and uses the fast
115	   NUL check.  If we encounter non-ASCII characters, use a second
116	   loop with the accurate NUL check.  */
117	.p2align 4
118L(main_loop_entry):
119	bic	src, srcin, 15
120	sub	src, src, 16
121L(main_loop):
122	ldp	data1, data2, [src, 32]!
123L(page_cross_entry):
124	sub	tmp1, data1, zeroones
125	sub	tmp3, data2, zeroones
126	orr	tmp2, tmp1, tmp3
127	tst	tmp2, zeroones, lsl 7
128	bne	1f
129	ldp	data1, data2, [src, 16]
130	sub	tmp1, data1, zeroones
131	sub	tmp3, data2, zeroones
132	orr	tmp2, tmp1, tmp3
133	tst	tmp2, zeroones, lsl 7
134	beq	L(main_loop)
135	add	src, src, 16
1361:
137	/* The fast check failed, so do the slower, accurate NUL check.	 */
138	orr	tmp2, data1, REP8_7f
139	orr	tmp4, data2, REP8_7f
140	bics	has_nul1, tmp1, tmp2
141	bic	has_nul2, tmp3, tmp4
142	ccmp	has_nul2, 0, 0, eq
143	beq	L(nonascii_loop)
144
145	/* Enter with C = has_nul1 == 0.  */
146L(tail):
147#ifdef __AARCH64EB__
148	/* For big-endian, carry propagation (if the final byte in the
149	   string is 0x01) means we cannot use has_nul1/2 directly.  The
150	   easiest way to get the correct byte is to byte-swap the data
151	   and calculate the syndrome a second time.  */
152	csel	data1, data1, data2, cc
153	rev	data1, data1
154	sub	tmp1, data1, zeroones
155	orr	tmp2, data1, REP8_7f
156	bic	has_nul1, tmp1, tmp2
157#else
158	csel	has_nul1, has_nul1, has_nul2, cc
159#endif
160	sub	len, src, srcin
161	rev	has_nul1, has_nul1
162	add	tmp2, len, 8
163	clz	tmp1, has_nul1
164	csel	len, len, tmp2, cc
165	add	len, len, tmp1, lsr 3
166	ret
167
168L(nonascii_loop):
169	ldp	data1, data2, [src, 16]!
170	sub	tmp1, data1, zeroones
171	orr	tmp2, data1, REP8_7f
172	sub	tmp3, data2, zeroones
173	orr	tmp4, data2, REP8_7f
174	bics	has_nul1, tmp1, tmp2
175	bic	has_nul2, tmp3, tmp4
176	ccmp	has_nul2, 0, 0, eq
177	bne	L(tail)
178	ldp	data1, data2, [src, 16]!
179	sub	tmp1, data1, zeroones
180	orr	tmp2, data1, REP8_7f
181	sub	tmp3, data2, zeroones
182	orr	tmp4, data2, REP8_7f
183	bics	has_nul1, tmp1, tmp2
184	bic	has_nul2, tmp3, tmp4
185	ccmp	has_nul2, 0, 0, eq
186	beq	L(nonascii_loop)
187	b	L(tail)
188
189	/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
190	   srcin to 0x7f, so we ignore any NUL bytes before the string.
191	   Then continue in the aligned loop.  */
192L(page_cross):
193	bic	src, srcin, 15
194	ldp	data1, data2, [src]
195	lsl	tmp1, srcin, 3
196	mov	tmp4, -1
197#ifdef __AARCH64EB__
198	/* Big-endian.	Early bytes are at MSB.	 */
199	lsr	tmp1, tmp4, tmp1	/* Shift (tmp1 & 63).  */
200#else
201	/* Little-endian.  Early bytes are at LSB.  */
202	lsl	tmp1, tmp4, tmp1	/* Shift (tmp1 & 63).  */
203#endif
204	orr	tmp1, tmp1, REP8_80
205	orn	data1, data1, tmp1
206	orn	tmp2, data2, tmp1
207	tst	srcin, 8
208	csel	data1, data1, tmp4, eq
209	csel	data2, data2, tmp2, eq
210	b	L(page_cross_entry)
211SYM_FUNC_END(__pi_strlen)
212SYM_FUNC_ALIAS_WEAK(strlen, __pi_strlen)
213EXPORT_SYMBOL_NOKASAN(strlen)
214