xref: /linux/arch/arm64/kvm/vgic/vgic.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/kvm_hyp.h>
14 
15 #include "vgic.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19 
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23 
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   vcpu->mutex (mutex)
28  *     kvm->arch.config_lock (mutex)
29  *       its->cmd_lock (mutex)
30  *         its->its_lock (mutex)
31  *           vgic_cpu->ap_list_lock		must be taken with IRQs disabled
32  *             kvm->lpi_list_lock		must be taken with IRQs disabled
33  *               vgic_dist->lpi_xa.xa_lock	must be taken with IRQs disabled
34  *                 vgic_irq->irq_lock		must be taken with IRQs disabled
35  *
36  * As the ap_list_lock might be taken from the timer interrupt handler,
37  * we have to disable IRQs before taking this lock and everything lower
38  * than it.
39  *
40  * If you need to take multiple locks, always take the upper lock first,
41  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
42  * If you are already holding a lock and need to take a higher one, you
43  * have to drop the lower ranking lock first and re-acquire it after having
44  * taken the upper one.
45  *
46  * When taking more than one ap_list_lock at the same time, always take the
47  * lowest numbered VCPU's ap_list_lock first, so:
48  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
49  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
50  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
51  *
52  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
53  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
54  * spinlocks for any lock that may be taken while injecting an interrupt.
55  */
56 
57 /*
58  * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
59  * structure. The caller is expected to call vgic_put_irq() later once it's
60  * finished with the IRQ.
61  */
62 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
63 {
64 	struct vgic_dist *dist = &kvm->arch.vgic;
65 	struct vgic_irq *irq = NULL;
66 
67 	rcu_read_lock();
68 
69 	irq = xa_load(&dist->lpi_xa, intid);
70 	if (!vgic_try_get_irq_kref(irq))
71 		irq = NULL;
72 
73 	rcu_read_unlock();
74 
75 	return irq;
76 }
77 
78 /*
79  * This looks up the virtual interrupt ID to get the corresponding
80  * struct vgic_irq. It also increases the refcount, so any caller is expected
81  * to call vgic_put_irq() once it's finished with this IRQ.
82  */
83 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
84 			      u32 intid)
85 {
86 	/* SGIs and PPIs */
87 	if (intid <= VGIC_MAX_PRIVATE) {
88 		intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
89 		return &vcpu->arch.vgic_cpu.private_irqs[intid];
90 	}
91 
92 	/* SPIs */
93 	if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
94 		intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
95 		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
96 	}
97 
98 	/* LPIs */
99 	if (intid >= VGIC_MIN_LPI)
100 		return vgic_get_lpi(kvm, intid);
101 
102 	return NULL;
103 }
104 
105 /*
106  * We can't do anything in here, because we lack the kvm pointer to
107  * lock and remove the item from the lpi_list. So we keep this function
108  * empty and use the return value of kref_put() to trigger the freeing.
109  */
110 static void vgic_irq_release(struct kref *ref)
111 {
112 }
113 
114 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
115 {
116 	struct vgic_dist *dist = &kvm->arch.vgic;
117 	unsigned long flags;
118 
119 	if (irq->intid < VGIC_MIN_LPI)
120 		return;
121 
122 	if (!kref_put(&irq->refcount, vgic_irq_release))
123 		return;
124 
125 	xa_lock_irqsave(&dist->lpi_xa, flags);
126 	__xa_erase(&dist->lpi_xa, irq->intid);
127 	xa_unlock_irqrestore(&dist->lpi_xa, flags);
128 
129 	atomic_dec(&dist->lpi_count);
130 	kfree_rcu(irq, rcu);
131 }
132 
133 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
134 {
135 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
136 	struct vgic_irq *irq, *tmp;
137 	unsigned long flags;
138 
139 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
140 
141 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
142 		if (irq->intid >= VGIC_MIN_LPI) {
143 			raw_spin_lock(&irq->irq_lock);
144 			list_del(&irq->ap_list);
145 			irq->vcpu = NULL;
146 			raw_spin_unlock(&irq->irq_lock);
147 			vgic_put_irq(vcpu->kvm, irq);
148 		}
149 	}
150 
151 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
152 }
153 
154 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
155 {
156 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
157 				      IRQCHIP_STATE_PENDING,
158 				      pending));
159 }
160 
161 bool vgic_get_phys_line_level(struct vgic_irq *irq)
162 {
163 	bool line_level;
164 
165 	BUG_ON(!irq->hw);
166 
167 	if (irq->ops && irq->ops->get_input_level)
168 		return irq->ops->get_input_level(irq->intid);
169 
170 	WARN_ON(irq_get_irqchip_state(irq->host_irq,
171 				      IRQCHIP_STATE_PENDING,
172 				      &line_level));
173 	return line_level;
174 }
175 
176 /* Set/Clear the physical active state */
177 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
178 {
179 
180 	BUG_ON(!irq->hw);
181 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
182 				      IRQCHIP_STATE_ACTIVE,
183 				      active));
184 }
185 
186 /**
187  * vgic_target_oracle - compute the target vcpu for an irq
188  *
189  * @irq:	The irq to route. Must be already locked.
190  *
191  * Based on the current state of the interrupt (enabled, pending,
192  * active, vcpu and target_vcpu), compute the next vcpu this should be
193  * given to. Return NULL if this shouldn't be injected at all.
194  *
195  * Requires the IRQ lock to be held.
196  */
197 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
198 {
199 	lockdep_assert_held(&irq->irq_lock);
200 
201 	/* If the interrupt is active, it must stay on the current vcpu */
202 	if (irq->active)
203 		return irq->vcpu ? : irq->target_vcpu;
204 
205 	/*
206 	 * If the IRQ is not active but enabled and pending, we should direct
207 	 * it to its configured target VCPU.
208 	 * If the distributor is disabled, pending interrupts shouldn't be
209 	 * forwarded.
210 	 */
211 	if (irq->enabled && irq_is_pending(irq)) {
212 		if (unlikely(irq->target_vcpu &&
213 			     !irq->target_vcpu->kvm->arch.vgic.enabled))
214 			return NULL;
215 
216 		return irq->target_vcpu;
217 	}
218 
219 	/* If neither active nor pending and enabled, then this IRQ should not
220 	 * be queued to any VCPU.
221 	 */
222 	return NULL;
223 }
224 
225 /*
226  * The order of items in the ap_lists defines how we'll pack things in LRs as
227  * well, the first items in the list being the first things populated in the
228  * LRs.
229  *
230  * A hard rule is that active interrupts can never be pushed out of the LRs
231  * (and therefore take priority) since we cannot reliably trap on deactivation
232  * of IRQs and therefore they have to be present in the LRs.
233  *
234  * Otherwise things should be sorted by the priority field and the GIC
235  * hardware support will take care of preemption of priority groups etc.
236  *
237  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
238  * to sort "b" before "a".
239  */
240 static int vgic_irq_cmp(void *priv, const struct list_head *a,
241 			const struct list_head *b)
242 {
243 	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
244 	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
245 	bool penda, pendb;
246 	int ret;
247 
248 	/*
249 	 * list_sort may call this function with the same element when
250 	 * the list is fairly long.
251 	 */
252 	if (unlikely(irqa == irqb))
253 		return 0;
254 
255 	raw_spin_lock(&irqa->irq_lock);
256 	raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
257 
258 	if (irqa->active || irqb->active) {
259 		ret = (int)irqb->active - (int)irqa->active;
260 		goto out;
261 	}
262 
263 	penda = irqa->enabled && irq_is_pending(irqa);
264 	pendb = irqb->enabled && irq_is_pending(irqb);
265 
266 	if (!penda || !pendb) {
267 		ret = (int)pendb - (int)penda;
268 		goto out;
269 	}
270 
271 	/* Both pending and enabled, sort by priority */
272 	ret = irqa->priority - irqb->priority;
273 out:
274 	raw_spin_unlock(&irqb->irq_lock);
275 	raw_spin_unlock(&irqa->irq_lock);
276 	return ret;
277 }
278 
279 /* Must be called with the ap_list_lock held */
280 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
281 {
282 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
283 
284 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
285 
286 	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
287 }
288 
289 /*
290  * Only valid injection if changing level for level-triggered IRQs or for a
291  * rising edge, and in-kernel connected IRQ lines can only be controlled by
292  * their owner.
293  */
294 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
295 {
296 	if (irq->owner != owner)
297 		return false;
298 
299 	switch (irq->config) {
300 	case VGIC_CONFIG_LEVEL:
301 		return irq->line_level != level;
302 	case VGIC_CONFIG_EDGE:
303 		return level;
304 	}
305 
306 	return false;
307 }
308 
309 /*
310  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
311  * Do the queuing if necessary, taking the right locks in the right order.
312  * Returns true when the IRQ was queued, false otherwise.
313  *
314  * Needs to be entered with the IRQ lock already held, but will return
315  * with all locks dropped.
316  */
317 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
318 			   unsigned long flags)
319 {
320 	struct kvm_vcpu *vcpu;
321 
322 	lockdep_assert_held(&irq->irq_lock);
323 
324 retry:
325 	vcpu = vgic_target_oracle(irq);
326 	if (irq->vcpu || !vcpu) {
327 		/*
328 		 * If this IRQ is already on a VCPU's ap_list, then it
329 		 * cannot be moved or modified and there is no more work for
330 		 * us to do.
331 		 *
332 		 * Otherwise, if the irq is not pending and enabled, it does
333 		 * not need to be inserted into an ap_list and there is also
334 		 * no more work for us to do.
335 		 */
336 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
337 
338 		/*
339 		 * We have to kick the VCPU here, because we could be
340 		 * queueing an edge-triggered interrupt for which we
341 		 * get no EOI maintenance interrupt. In that case,
342 		 * while the IRQ is already on the VCPU's AP list, the
343 		 * VCPU could have EOI'ed the original interrupt and
344 		 * won't see this one until it exits for some other
345 		 * reason.
346 		 */
347 		if (vcpu) {
348 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
349 			kvm_vcpu_kick(vcpu);
350 		}
351 		return false;
352 	}
353 
354 	/*
355 	 * We must unlock the irq lock to take the ap_list_lock where
356 	 * we are going to insert this new pending interrupt.
357 	 */
358 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
359 
360 	/* someone can do stuff here, which we re-check below */
361 
362 	raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
363 	raw_spin_lock(&irq->irq_lock);
364 
365 	/*
366 	 * Did something change behind our backs?
367 	 *
368 	 * There are two cases:
369 	 * 1) The irq lost its pending state or was disabled behind our
370 	 *    backs and/or it was queued to another VCPU's ap_list.
371 	 * 2) Someone changed the affinity on this irq behind our
372 	 *    backs and we are now holding the wrong ap_list_lock.
373 	 *
374 	 * In both cases, drop the locks and retry.
375 	 */
376 
377 	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
378 		raw_spin_unlock(&irq->irq_lock);
379 		raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
380 					   flags);
381 
382 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
383 		goto retry;
384 	}
385 
386 	/*
387 	 * Grab a reference to the irq to reflect the fact that it is
388 	 * now in the ap_list. This is safe as the caller must already hold a
389 	 * reference on the irq.
390 	 */
391 	vgic_get_irq_kref(irq);
392 	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
393 	irq->vcpu = vcpu;
394 
395 	raw_spin_unlock(&irq->irq_lock);
396 	raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
397 
398 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
399 	kvm_vcpu_kick(vcpu);
400 
401 	return true;
402 }
403 
404 /**
405  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
406  * @kvm:     The VM structure pointer
407  * @vcpu:    The CPU for PPIs or NULL for global interrupts
408  * @intid:   The INTID to inject a new state to.
409  * @level:   Edge-triggered:  true:  to trigger the interrupt
410  *			      false: to ignore the call
411  *	     Level-sensitive  true:  raise the input signal
412  *			      false: lower the input signal
413  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
414  *           that the caller is allowed to inject this IRQ.  Userspace
415  *           injections will have owner == NULL.
416  *
417  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
418  * level-sensitive interrupts.  You can think of the level parameter as 1
419  * being HIGH and 0 being LOW and all devices being active-HIGH.
420  */
421 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
422 			unsigned int intid, bool level, void *owner)
423 {
424 	struct vgic_irq *irq;
425 	unsigned long flags;
426 	int ret;
427 
428 	ret = vgic_lazy_init(kvm);
429 	if (ret)
430 		return ret;
431 
432 	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
433 		return -EINVAL;
434 
435 	trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
436 
437 	irq = vgic_get_irq(kvm, vcpu, intid);
438 	if (!irq)
439 		return -EINVAL;
440 
441 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
442 
443 	if (!vgic_validate_injection(irq, level, owner)) {
444 		/* Nothing to see here, move along... */
445 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
446 		vgic_put_irq(kvm, irq);
447 		return 0;
448 	}
449 
450 	if (irq->config == VGIC_CONFIG_LEVEL)
451 		irq->line_level = level;
452 	else
453 		irq->pending_latch = true;
454 
455 	vgic_queue_irq_unlock(kvm, irq, flags);
456 	vgic_put_irq(kvm, irq);
457 
458 	return 0;
459 }
460 
461 /* @irq->irq_lock must be held */
462 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
463 			    unsigned int host_irq,
464 			    struct irq_ops *ops)
465 {
466 	struct irq_desc *desc;
467 	struct irq_data *data;
468 
469 	/*
470 	 * Find the physical IRQ number corresponding to @host_irq
471 	 */
472 	desc = irq_to_desc(host_irq);
473 	if (!desc) {
474 		kvm_err("%s: no interrupt descriptor\n", __func__);
475 		return -EINVAL;
476 	}
477 	data = irq_desc_get_irq_data(desc);
478 	while (data->parent_data)
479 		data = data->parent_data;
480 
481 	irq->hw = true;
482 	irq->host_irq = host_irq;
483 	irq->hwintid = data->hwirq;
484 	irq->ops = ops;
485 	return 0;
486 }
487 
488 /* @irq->irq_lock must be held */
489 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
490 {
491 	irq->hw = false;
492 	irq->hwintid = 0;
493 	irq->ops = NULL;
494 }
495 
496 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
497 			  u32 vintid, struct irq_ops *ops)
498 {
499 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
500 	unsigned long flags;
501 	int ret;
502 
503 	BUG_ON(!irq);
504 
505 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
506 	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
507 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
508 	vgic_put_irq(vcpu->kvm, irq);
509 
510 	return ret;
511 }
512 
513 /**
514  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
515  * @vcpu: The VCPU pointer
516  * @vintid: The INTID of the interrupt
517  *
518  * Reset the active and pending states of a mapped interrupt.  Kernel
519  * subsystems injecting mapped interrupts should reset their interrupt lines
520  * when we are doing a reset of the VM.
521  */
522 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
523 {
524 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
525 	unsigned long flags;
526 
527 	if (!irq->hw)
528 		goto out;
529 
530 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
531 	irq->active = false;
532 	irq->pending_latch = false;
533 	irq->line_level = false;
534 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
535 out:
536 	vgic_put_irq(vcpu->kvm, irq);
537 }
538 
539 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
540 {
541 	struct vgic_irq *irq;
542 	unsigned long flags;
543 
544 	if (!vgic_initialized(vcpu->kvm))
545 		return -EAGAIN;
546 
547 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
548 	BUG_ON(!irq);
549 
550 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
551 	kvm_vgic_unmap_irq(irq);
552 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
553 	vgic_put_irq(vcpu->kvm, irq);
554 
555 	return 0;
556 }
557 
558 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
559 {
560 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
561 	unsigned long flags;
562 	int ret = -1;
563 
564 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
565 	if (irq->hw)
566 		ret = irq->hwintid;
567 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
568 
569 	vgic_put_irq(vcpu->kvm, irq);
570 	return ret;
571 }
572 
573 /**
574  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
575  *
576  * @vcpu:   Pointer to the VCPU (used for PPIs)
577  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
578  * @owner:  Opaque pointer to the owner
579  *
580  * Returns 0 if intid is not already used by another in-kernel device and the
581  * owner is set, otherwise returns an error code.
582  */
583 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
584 {
585 	struct vgic_irq *irq;
586 	unsigned long flags;
587 	int ret = 0;
588 
589 	if (!vgic_initialized(vcpu->kvm))
590 		return -EAGAIN;
591 
592 	/* SGIs and LPIs cannot be wired up to any device */
593 	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
594 		return -EINVAL;
595 
596 	irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
597 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
598 	if (irq->owner && irq->owner != owner)
599 		ret = -EEXIST;
600 	else
601 		irq->owner = owner;
602 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
603 
604 	return ret;
605 }
606 
607 /**
608  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
609  *
610  * @vcpu: The VCPU pointer
611  *
612  * Go over the list of "interesting" interrupts, and prune those that we
613  * won't have to consider in the near future.
614  */
615 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
616 {
617 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
618 	struct vgic_irq *irq, *tmp;
619 
620 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
621 
622 retry:
623 	raw_spin_lock(&vgic_cpu->ap_list_lock);
624 
625 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
626 		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
627 		bool target_vcpu_needs_kick = false;
628 
629 		raw_spin_lock(&irq->irq_lock);
630 
631 		BUG_ON(vcpu != irq->vcpu);
632 
633 		target_vcpu = vgic_target_oracle(irq);
634 
635 		if (!target_vcpu) {
636 			/*
637 			 * We don't need to process this interrupt any
638 			 * further, move it off the list.
639 			 */
640 			list_del(&irq->ap_list);
641 			irq->vcpu = NULL;
642 			raw_spin_unlock(&irq->irq_lock);
643 
644 			/*
645 			 * This vgic_put_irq call matches the
646 			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
647 			 * where we added the LPI to the ap_list. As
648 			 * we remove the irq from the list, we drop
649 			 * also drop the refcount.
650 			 */
651 			vgic_put_irq(vcpu->kvm, irq);
652 			continue;
653 		}
654 
655 		if (target_vcpu == vcpu) {
656 			/* We're on the right CPU */
657 			raw_spin_unlock(&irq->irq_lock);
658 			continue;
659 		}
660 
661 		/* This interrupt looks like it has to be migrated. */
662 
663 		raw_spin_unlock(&irq->irq_lock);
664 		raw_spin_unlock(&vgic_cpu->ap_list_lock);
665 
666 		/*
667 		 * Ensure locking order by always locking the smallest
668 		 * ID first.
669 		 */
670 		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
671 			vcpuA = vcpu;
672 			vcpuB = target_vcpu;
673 		} else {
674 			vcpuA = target_vcpu;
675 			vcpuB = vcpu;
676 		}
677 
678 		raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
679 		raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
680 				      SINGLE_DEPTH_NESTING);
681 		raw_spin_lock(&irq->irq_lock);
682 
683 		/*
684 		 * If the affinity has been preserved, move the
685 		 * interrupt around. Otherwise, it means things have
686 		 * changed while the interrupt was unlocked, and we
687 		 * need to replay this.
688 		 *
689 		 * In all cases, we cannot trust the list not to have
690 		 * changed, so we restart from the beginning.
691 		 */
692 		if (target_vcpu == vgic_target_oracle(irq)) {
693 			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
694 
695 			list_del(&irq->ap_list);
696 			irq->vcpu = target_vcpu;
697 			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
698 			target_vcpu_needs_kick = true;
699 		}
700 
701 		raw_spin_unlock(&irq->irq_lock);
702 		raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
703 		raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
704 
705 		if (target_vcpu_needs_kick) {
706 			kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
707 			kvm_vcpu_kick(target_vcpu);
708 		}
709 
710 		goto retry;
711 	}
712 
713 	raw_spin_unlock(&vgic_cpu->ap_list_lock);
714 }
715 
716 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
717 {
718 	if (kvm_vgic_global_state.type == VGIC_V2)
719 		vgic_v2_fold_lr_state(vcpu);
720 	else
721 		vgic_v3_fold_lr_state(vcpu);
722 }
723 
724 /* Requires the irq_lock to be held. */
725 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
726 				    struct vgic_irq *irq, int lr)
727 {
728 	lockdep_assert_held(&irq->irq_lock);
729 
730 	if (kvm_vgic_global_state.type == VGIC_V2)
731 		vgic_v2_populate_lr(vcpu, irq, lr);
732 	else
733 		vgic_v3_populate_lr(vcpu, irq, lr);
734 }
735 
736 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
737 {
738 	if (kvm_vgic_global_state.type == VGIC_V2)
739 		vgic_v2_clear_lr(vcpu, lr);
740 	else
741 		vgic_v3_clear_lr(vcpu, lr);
742 }
743 
744 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
745 {
746 	if (kvm_vgic_global_state.type == VGIC_V2)
747 		vgic_v2_set_underflow(vcpu);
748 	else
749 		vgic_v3_set_underflow(vcpu);
750 }
751 
752 /* Requires the ap_list_lock to be held. */
753 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
754 				 bool *multi_sgi)
755 {
756 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
757 	struct vgic_irq *irq;
758 	int count = 0;
759 
760 	*multi_sgi = false;
761 
762 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
763 
764 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
765 		int w;
766 
767 		raw_spin_lock(&irq->irq_lock);
768 		/* GICv2 SGIs can count for more than one... */
769 		w = vgic_irq_get_lr_count(irq);
770 		raw_spin_unlock(&irq->irq_lock);
771 
772 		count += w;
773 		*multi_sgi |= (w > 1);
774 	}
775 	return count;
776 }
777 
778 /* Requires the VCPU's ap_list_lock to be held. */
779 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
780 {
781 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
782 	struct vgic_irq *irq;
783 	int count;
784 	bool multi_sgi;
785 	u8 prio = 0xff;
786 	int i = 0;
787 
788 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
789 
790 	count = compute_ap_list_depth(vcpu, &multi_sgi);
791 	if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
792 		vgic_sort_ap_list(vcpu);
793 
794 	count = 0;
795 
796 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
797 		raw_spin_lock(&irq->irq_lock);
798 
799 		/*
800 		 * If we have multi-SGIs in the pipeline, we need to
801 		 * guarantee that they are all seen before any IRQ of
802 		 * lower priority. In that case, we need to filter out
803 		 * these interrupts by exiting early. This is easy as
804 		 * the AP list has been sorted already.
805 		 */
806 		if (multi_sgi && irq->priority > prio) {
807 			_raw_spin_unlock(&irq->irq_lock);
808 			break;
809 		}
810 
811 		if (likely(vgic_target_oracle(irq) == vcpu)) {
812 			vgic_populate_lr(vcpu, irq, count++);
813 
814 			if (irq->source)
815 				prio = irq->priority;
816 		}
817 
818 		raw_spin_unlock(&irq->irq_lock);
819 
820 		if (count == kvm_vgic_global_state.nr_lr) {
821 			if (!list_is_last(&irq->ap_list,
822 					  &vgic_cpu->ap_list_head))
823 				vgic_set_underflow(vcpu);
824 			break;
825 		}
826 	}
827 
828 	/* Nuke remaining LRs */
829 	for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
830 		vgic_clear_lr(vcpu, i);
831 
832 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
833 		vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
834 	else
835 		vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
836 }
837 
838 static inline bool can_access_vgic_from_kernel(void)
839 {
840 	/*
841 	 * GICv2 can always be accessed from the kernel because it is
842 	 * memory-mapped, and VHE systems can access GICv3 EL2 system
843 	 * registers.
844 	 */
845 	return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
846 }
847 
848 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
849 {
850 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
851 		vgic_v2_save_state(vcpu);
852 	else
853 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
854 }
855 
856 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
857 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
858 {
859 	int used_lrs;
860 
861 	/* An empty ap_list_head implies used_lrs == 0 */
862 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
863 		return;
864 
865 	if (can_access_vgic_from_kernel())
866 		vgic_save_state(vcpu);
867 
868 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
869 		used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
870 	else
871 		used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
872 
873 	if (used_lrs)
874 		vgic_fold_lr_state(vcpu);
875 	vgic_prune_ap_list(vcpu);
876 }
877 
878 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
879 {
880 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
881 		vgic_v2_restore_state(vcpu);
882 	else
883 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
884 }
885 
886 /* Flush our emulation state into the GIC hardware before entering the guest. */
887 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
888 {
889 	/*
890 	 * If there are no virtual interrupts active or pending for this
891 	 * VCPU, then there is no work to do and we can bail out without
892 	 * taking any lock.  There is a potential race with someone injecting
893 	 * interrupts to the VCPU, but it is a benign race as the VCPU will
894 	 * either observe the new interrupt before or after doing this check,
895 	 * and introducing additional synchronization mechanism doesn't change
896 	 * this.
897 	 *
898 	 * Note that we still need to go through the whole thing if anything
899 	 * can be directly injected (GICv4).
900 	 */
901 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
902 	    !vgic_supports_direct_msis(vcpu->kvm))
903 		return;
904 
905 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
906 
907 	if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
908 		raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
909 		vgic_flush_lr_state(vcpu);
910 		raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
911 	}
912 
913 	if (can_access_vgic_from_kernel())
914 		vgic_restore_state(vcpu);
915 
916 	if (vgic_supports_direct_msis(vcpu->kvm))
917 		vgic_v4_commit(vcpu);
918 }
919 
920 void kvm_vgic_load(struct kvm_vcpu *vcpu)
921 {
922 	if (unlikely(!vgic_initialized(vcpu->kvm)))
923 		return;
924 
925 	if (kvm_vgic_global_state.type == VGIC_V2)
926 		vgic_v2_load(vcpu);
927 	else
928 		vgic_v3_load(vcpu);
929 }
930 
931 void kvm_vgic_put(struct kvm_vcpu *vcpu)
932 {
933 	if (unlikely(!vgic_initialized(vcpu->kvm)))
934 		return;
935 
936 	if (kvm_vgic_global_state.type == VGIC_V2)
937 		vgic_v2_put(vcpu);
938 	else
939 		vgic_v3_put(vcpu);
940 }
941 
942 void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
943 {
944 	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
945 		return;
946 
947 	if (kvm_vgic_global_state.type == VGIC_V2)
948 		vgic_v2_vmcr_sync(vcpu);
949 	else
950 		vgic_v3_vmcr_sync(vcpu);
951 }
952 
953 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
954 {
955 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
956 	struct vgic_irq *irq;
957 	bool pending = false;
958 	unsigned long flags;
959 	struct vgic_vmcr vmcr;
960 
961 	if (!vcpu->kvm->arch.vgic.enabled)
962 		return false;
963 
964 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
965 		return true;
966 
967 	vgic_get_vmcr(vcpu, &vmcr);
968 
969 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
970 
971 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
972 		raw_spin_lock(&irq->irq_lock);
973 		pending = irq_is_pending(irq) && irq->enabled &&
974 			  !irq->active &&
975 			  irq->priority < vmcr.pmr;
976 		raw_spin_unlock(&irq->irq_lock);
977 
978 		if (pending)
979 			break;
980 	}
981 
982 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
983 
984 	return pending;
985 }
986 
987 void vgic_kick_vcpus(struct kvm *kvm)
988 {
989 	struct kvm_vcpu *vcpu;
990 	unsigned long c;
991 
992 	/*
993 	 * We've injected an interrupt, time to find out who deserves
994 	 * a good kick...
995 	 */
996 	kvm_for_each_vcpu(c, vcpu, kvm) {
997 		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
998 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
999 			kvm_vcpu_kick(vcpu);
1000 		}
1001 	}
1002 }
1003 
1004 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1005 {
1006 	struct vgic_irq *irq;
1007 	bool map_is_active;
1008 	unsigned long flags;
1009 
1010 	if (!vgic_initialized(vcpu->kvm))
1011 		return false;
1012 
1013 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1014 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1015 	map_is_active = irq->hw && irq->active;
1016 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1017 	vgic_put_irq(vcpu->kvm, irq);
1018 
1019 	return map_is_active;
1020 }
1021 
1022 /*
1023  * Level-triggered mapped IRQs are special because we only observe rising
1024  * edges as input to the VGIC.
1025  *
1026  * If the guest never acked the interrupt we have to sample the physical
1027  * line and set the line level, because the device state could have changed
1028  * or we simply need to process the still pending interrupt later.
1029  *
1030  * We could also have entered the guest with the interrupt active+pending.
1031  * On the next exit, we need to re-evaluate the pending state, as it could
1032  * otherwise result in a spurious interrupt by injecting a now potentially
1033  * stale pending state.
1034  *
1035  * If this causes us to lower the level, we have to also clear the physical
1036  * active state, since we will otherwise never be told when the interrupt
1037  * becomes asserted again.
1038  *
1039  * Another case is when the interrupt requires a helping hand on
1040  * deactivation (no HW deactivation, for example).
1041  */
1042 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1043 				bool lr_deactivated, bool lr_pending)
1044 {
1045 	if (vgic_irq_is_mapped_level(irq)) {
1046 		bool resample = false;
1047 
1048 		if (unlikely(vgic_irq_needs_resampling(irq))) {
1049 			resample = !(irq->active || irq->pending_latch);
1050 		} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1051 			irq->line_level = vgic_get_phys_line_level(irq);
1052 			resample = !irq->line_level;
1053 		}
1054 
1055 		if (resample)
1056 			vgic_irq_set_phys_active(irq, false);
1057 	}
1058 }
1059