xref: /linux/arch/arm64/kvm/vgic/vgic.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/kvm_hyp.h>
14 
15 #include "vgic.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19 
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23 
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   vcpu->mutex (mutex)
28  *     kvm->arch.config_lock (mutex)
29  *       its->cmd_lock (mutex)
30  *         its->its_lock (mutex)
31  *           vgic_cpu->ap_list_lock		must be taken with IRQs disabled
32  *             vgic_dist->lpi_xa.xa_lock	must be taken with IRQs disabled
33  *               vgic_irq->irq_lock		must be taken with IRQs disabled
34  *
35  * As the ap_list_lock might be taken from the timer interrupt handler,
36  * we have to disable IRQs before taking this lock and everything lower
37  * than it.
38  *
39  * The config_lock has additional ordering requirements:
40  * kvm->slots_lock
41  *   kvm->srcu
42  *     kvm->arch.config_lock
43  *
44  * If you need to take multiple locks, always take the upper lock first,
45  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46  * If you are already holding a lock and need to take a higher one, you
47  * have to drop the lower ranking lock first and re-acquire it after having
48  * taken the upper one.
49  *
50  * When taking more than one ap_list_lock at the same time, always take the
51  * lowest numbered VCPU's ap_list_lock first, so:
52  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
53  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55  *
56  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58  * spinlocks for any lock that may be taken while injecting an interrupt.
59  */
60 
61 /*
62  * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63  * structure. The caller is expected to call vgic_put_irq() later once it's
64  * finished with the IRQ.
65  */
66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 	struct vgic_dist *dist = &kvm->arch.vgic;
69 	struct vgic_irq *irq = NULL;
70 
71 	rcu_read_lock();
72 
73 	irq = xa_load(&dist->lpi_xa, intid);
74 	if (!vgic_try_get_irq_kref(irq))
75 		irq = NULL;
76 
77 	rcu_read_unlock();
78 
79 	return irq;
80 }
81 
82 /*
83  * This looks up the virtual interrupt ID to get the corresponding
84  * struct vgic_irq. It also increases the refcount, so any caller is expected
85  * to call vgic_put_irq() once it's finished with this IRQ.
86  */
87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
88 			      u32 intid)
89 {
90 	/* SGIs and PPIs */
91 	if (intid <= VGIC_MAX_PRIVATE) {
92 		intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
93 		return &vcpu->arch.vgic_cpu.private_irqs[intid];
94 	}
95 
96 	/* SPIs */
97 	if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
98 		intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
99 		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
100 	}
101 
102 	/* LPIs */
103 	if (intid >= VGIC_MIN_LPI)
104 		return vgic_get_lpi(kvm, intid);
105 
106 	return NULL;
107 }
108 
109 /*
110  * We can't do anything in here, because we lack the kvm pointer to
111  * lock and remove the item from the lpi_list. So we keep this function
112  * empty and use the return value of kref_put() to trigger the freeing.
113  */
114 static void vgic_irq_release(struct kref *ref)
115 {
116 }
117 
118 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
119 {
120 	struct vgic_dist *dist = &kvm->arch.vgic;
121 	unsigned long flags;
122 
123 	if (irq->intid < VGIC_MIN_LPI)
124 		return;
125 
126 	if (!kref_put(&irq->refcount, vgic_irq_release))
127 		return;
128 
129 	xa_lock_irqsave(&dist->lpi_xa, flags);
130 	__xa_erase(&dist->lpi_xa, irq->intid);
131 	xa_unlock_irqrestore(&dist->lpi_xa, flags);
132 
133 	kfree_rcu(irq, rcu);
134 }
135 
136 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
137 {
138 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
139 	struct vgic_irq *irq, *tmp;
140 	unsigned long flags;
141 
142 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
143 
144 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
145 		if (irq->intid >= VGIC_MIN_LPI) {
146 			raw_spin_lock(&irq->irq_lock);
147 			list_del(&irq->ap_list);
148 			irq->vcpu = NULL;
149 			raw_spin_unlock(&irq->irq_lock);
150 			vgic_put_irq(vcpu->kvm, irq);
151 		}
152 	}
153 
154 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
155 }
156 
157 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
158 {
159 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
160 				      IRQCHIP_STATE_PENDING,
161 				      pending));
162 }
163 
164 bool vgic_get_phys_line_level(struct vgic_irq *irq)
165 {
166 	bool line_level;
167 
168 	BUG_ON(!irq->hw);
169 
170 	if (irq->ops && irq->ops->get_input_level)
171 		return irq->ops->get_input_level(irq->intid);
172 
173 	WARN_ON(irq_get_irqchip_state(irq->host_irq,
174 				      IRQCHIP_STATE_PENDING,
175 				      &line_level));
176 	return line_level;
177 }
178 
179 /* Set/Clear the physical active state */
180 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
181 {
182 
183 	BUG_ON(!irq->hw);
184 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
185 				      IRQCHIP_STATE_ACTIVE,
186 				      active));
187 }
188 
189 /**
190  * vgic_target_oracle - compute the target vcpu for an irq
191  *
192  * @irq:	The irq to route. Must be already locked.
193  *
194  * Based on the current state of the interrupt (enabled, pending,
195  * active, vcpu and target_vcpu), compute the next vcpu this should be
196  * given to. Return NULL if this shouldn't be injected at all.
197  *
198  * Requires the IRQ lock to be held.
199  */
200 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
201 {
202 	lockdep_assert_held(&irq->irq_lock);
203 
204 	/* If the interrupt is active, it must stay on the current vcpu */
205 	if (irq->active)
206 		return irq->vcpu ? : irq->target_vcpu;
207 
208 	/*
209 	 * If the IRQ is not active but enabled and pending, we should direct
210 	 * it to its configured target VCPU.
211 	 * If the distributor is disabled, pending interrupts shouldn't be
212 	 * forwarded.
213 	 */
214 	if (irq->enabled && irq_is_pending(irq)) {
215 		if (unlikely(irq->target_vcpu &&
216 			     !irq->target_vcpu->kvm->arch.vgic.enabled))
217 			return NULL;
218 
219 		return irq->target_vcpu;
220 	}
221 
222 	/* If neither active nor pending and enabled, then this IRQ should not
223 	 * be queued to any VCPU.
224 	 */
225 	return NULL;
226 }
227 
228 /*
229  * The order of items in the ap_lists defines how we'll pack things in LRs as
230  * well, the first items in the list being the first things populated in the
231  * LRs.
232  *
233  * A hard rule is that active interrupts can never be pushed out of the LRs
234  * (and therefore take priority) since we cannot reliably trap on deactivation
235  * of IRQs and therefore they have to be present in the LRs.
236  *
237  * Otherwise things should be sorted by the priority field and the GIC
238  * hardware support will take care of preemption of priority groups etc.
239  *
240  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
241  * to sort "b" before "a".
242  */
243 static int vgic_irq_cmp(void *priv, const struct list_head *a,
244 			const struct list_head *b)
245 {
246 	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
247 	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
248 	bool penda, pendb;
249 	int ret;
250 
251 	/*
252 	 * list_sort may call this function with the same element when
253 	 * the list is fairly long.
254 	 */
255 	if (unlikely(irqa == irqb))
256 		return 0;
257 
258 	raw_spin_lock(&irqa->irq_lock);
259 	raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
260 
261 	if (irqa->active || irqb->active) {
262 		ret = (int)irqb->active - (int)irqa->active;
263 		goto out;
264 	}
265 
266 	penda = irqa->enabled && irq_is_pending(irqa);
267 	pendb = irqb->enabled && irq_is_pending(irqb);
268 
269 	if (!penda || !pendb) {
270 		ret = (int)pendb - (int)penda;
271 		goto out;
272 	}
273 
274 	/* Both pending and enabled, sort by priority */
275 	ret = irqa->priority - irqb->priority;
276 out:
277 	raw_spin_unlock(&irqb->irq_lock);
278 	raw_spin_unlock(&irqa->irq_lock);
279 	return ret;
280 }
281 
282 /* Must be called with the ap_list_lock held */
283 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
284 {
285 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
286 
287 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
288 
289 	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
290 }
291 
292 /*
293  * Only valid injection if changing level for level-triggered IRQs or for a
294  * rising edge, and in-kernel connected IRQ lines can only be controlled by
295  * their owner.
296  */
297 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
298 {
299 	if (irq->owner != owner)
300 		return false;
301 
302 	switch (irq->config) {
303 	case VGIC_CONFIG_LEVEL:
304 		return irq->line_level != level;
305 	case VGIC_CONFIG_EDGE:
306 		return level;
307 	}
308 
309 	return false;
310 }
311 
312 /*
313  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
314  * Do the queuing if necessary, taking the right locks in the right order.
315  * Returns true when the IRQ was queued, false otherwise.
316  *
317  * Needs to be entered with the IRQ lock already held, but will return
318  * with all locks dropped.
319  */
320 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
321 			   unsigned long flags) __releases(&irq->irq_lock)
322 {
323 	struct kvm_vcpu *vcpu;
324 
325 	lockdep_assert_held(&irq->irq_lock);
326 
327 retry:
328 	vcpu = vgic_target_oracle(irq);
329 	if (irq->vcpu || !vcpu) {
330 		/*
331 		 * If this IRQ is already on a VCPU's ap_list, then it
332 		 * cannot be moved or modified and there is no more work for
333 		 * us to do.
334 		 *
335 		 * Otherwise, if the irq is not pending and enabled, it does
336 		 * not need to be inserted into an ap_list and there is also
337 		 * no more work for us to do.
338 		 */
339 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
340 
341 		/*
342 		 * We have to kick the VCPU here, because we could be
343 		 * queueing an edge-triggered interrupt for which we
344 		 * get no EOI maintenance interrupt. In that case,
345 		 * while the IRQ is already on the VCPU's AP list, the
346 		 * VCPU could have EOI'ed the original interrupt and
347 		 * won't see this one until it exits for some other
348 		 * reason.
349 		 */
350 		if (vcpu) {
351 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
352 			kvm_vcpu_kick(vcpu);
353 		}
354 		return false;
355 	}
356 
357 	/*
358 	 * We must unlock the irq lock to take the ap_list_lock where
359 	 * we are going to insert this new pending interrupt.
360 	 */
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	/* someone can do stuff here, which we re-check below */
364 
365 	raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
366 	raw_spin_lock(&irq->irq_lock);
367 
368 	/*
369 	 * Did something change behind our backs?
370 	 *
371 	 * There are two cases:
372 	 * 1) The irq lost its pending state or was disabled behind our
373 	 *    backs and/or it was queued to another VCPU's ap_list.
374 	 * 2) Someone changed the affinity on this irq behind our
375 	 *    backs and we are now holding the wrong ap_list_lock.
376 	 *
377 	 * In both cases, drop the locks and retry.
378 	 */
379 
380 	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
381 		raw_spin_unlock(&irq->irq_lock);
382 		raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
383 					   flags);
384 
385 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
386 		goto retry;
387 	}
388 
389 	/*
390 	 * Grab a reference to the irq to reflect the fact that it is
391 	 * now in the ap_list. This is safe as the caller must already hold a
392 	 * reference on the irq.
393 	 */
394 	vgic_get_irq_kref(irq);
395 	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
396 	irq->vcpu = vcpu;
397 
398 	raw_spin_unlock(&irq->irq_lock);
399 	raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
400 
401 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
402 	kvm_vcpu_kick(vcpu);
403 
404 	return true;
405 }
406 
407 /**
408  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
409  * @kvm:     The VM structure pointer
410  * @vcpu:    The CPU for PPIs or NULL for global interrupts
411  * @intid:   The INTID to inject a new state to.
412  * @level:   Edge-triggered:  true:  to trigger the interrupt
413  *			      false: to ignore the call
414  *	     Level-sensitive  true:  raise the input signal
415  *			      false: lower the input signal
416  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
417  *           that the caller is allowed to inject this IRQ.  Userspace
418  *           injections will have owner == NULL.
419  *
420  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
421  * level-sensitive interrupts.  You can think of the level parameter as 1
422  * being HIGH and 0 being LOW and all devices being active-HIGH.
423  */
424 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
425 			unsigned int intid, bool level, void *owner)
426 {
427 	struct vgic_irq *irq;
428 	unsigned long flags;
429 	int ret;
430 
431 	ret = vgic_lazy_init(kvm);
432 	if (ret)
433 		return ret;
434 
435 	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
436 		return -EINVAL;
437 
438 	trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
439 
440 	irq = vgic_get_irq(kvm, vcpu, intid);
441 	if (!irq)
442 		return -EINVAL;
443 
444 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
445 
446 	if (!vgic_validate_injection(irq, level, owner)) {
447 		/* Nothing to see here, move along... */
448 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
449 		vgic_put_irq(kvm, irq);
450 		return 0;
451 	}
452 
453 	if (irq->config == VGIC_CONFIG_LEVEL)
454 		irq->line_level = level;
455 	else
456 		irq->pending_latch = true;
457 
458 	vgic_queue_irq_unlock(kvm, irq, flags);
459 	vgic_put_irq(kvm, irq);
460 
461 	return 0;
462 }
463 
464 /* @irq->irq_lock must be held */
465 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
466 			    unsigned int host_irq,
467 			    struct irq_ops *ops)
468 {
469 	struct irq_desc *desc;
470 	struct irq_data *data;
471 
472 	/*
473 	 * Find the physical IRQ number corresponding to @host_irq
474 	 */
475 	desc = irq_to_desc(host_irq);
476 	if (!desc) {
477 		kvm_err("%s: no interrupt descriptor\n", __func__);
478 		return -EINVAL;
479 	}
480 	data = irq_desc_get_irq_data(desc);
481 	while (data->parent_data)
482 		data = data->parent_data;
483 
484 	irq->hw = true;
485 	irq->host_irq = host_irq;
486 	irq->hwintid = data->hwirq;
487 	irq->ops = ops;
488 	return 0;
489 }
490 
491 /* @irq->irq_lock must be held */
492 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
493 {
494 	irq->hw = false;
495 	irq->hwintid = 0;
496 	irq->ops = NULL;
497 }
498 
499 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
500 			  u32 vintid, struct irq_ops *ops)
501 {
502 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
503 	unsigned long flags;
504 	int ret;
505 
506 	BUG_ON(!irq);
507 
508 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
509 	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
510 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
511 	vgic_put_irq(vcpu->kvm, irq);
512 
513 	return ret;
514 }
515 
516 /**
517  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
518  * @vcpu: The VCPU pointer
519  * @vintid: The INTID of the interrupt
520  *
521  * Reset the active and pending states of a mapped interrupt.  Kernel
522  * subsystems injecting mapped interrupts should reset their interrupt lines
523  * when we are doing a reset of the VM.
524  */
525 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
526 {
527 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
528 	unsigned long flags;
529 
530 	if (!irq->hw)
531 		goto out;
532 
533 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
534 	irq->active = false;
535 	irq->pending_latch = false;
536 	irq->line_level = false;
537 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
538 out:
539 	vgic_put_irq(vcpu->kvm, irq);
540 }
541 
542 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
543 {
544 	struct vgic_irq *irq;
545 	unsigned long flags;
546 
547 	if (!vgic_initialized(vcpu->kvm))
548 		return -EAGAIN;
549 
550 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
551 	BUG_ON(!irq);
552 
553 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
554 	kvm_vgic_unmap_irq(irq);
555 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
556 	vgic_put_irq(vcpu->kvm, irq);
557 
558 	return 0;
559 }
560 
561 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
562 {
563 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
564 	unsigned long flags;
565 	int ret = -1;
566 
567 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
568 	if (irq->hw)
569 		ret = irq->hwintid;
570 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
571 
572 	vgic_put_irq(vcpu->kvm, irq);
573 	return ret;
574 }
575 
576 /**
577  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
578  *
579  * @vcpu:   Pointer to the VCPU (used for PPIs)
580  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
581  * @owner:  Opaque pointer to the owner
582  *
583  * Returns 0 if intid is not already used by another in-kernel device and the
584  * owner is set, otherwise returns an error code.
585  */
586 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
587 {
588 	struct vgic_irq *irq;
589 	unsigned long flags;
590 	int ret = 0;
591 
592 	if (!vgic_initialized(vcpu->kvm))
593 		return -EAGAIN;
594 
595 	/* SGIs and LPIs cannot be wired up to any device */
596 	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
597 		return -EINVAL;
598 
599 	irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
600 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
601 	if (irq->owner && irq->owner != owner)
602 		ret = -EEXIST;
603 	else
604 		irq->owner = owner;
605 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606 
607 	return ret;
608 }
609 
610 /**
611  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
612  *
613  * @vcpu: The VCPU pointer
614  *
615  * Go over the list of "interesting" interrupts, and prune those that we
616  * won't have to consider in the near future.
617  */
618 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
619 {
620 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
621 	struct vgic_irq *irq, *tmp;
622 
623 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
624 
625 retry:
626 	raw_spin_lock(&vgic_cpu->ap_list_lock);
627 
628 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
629 		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
630 		bool target_vcpu_needs_kick = false;
631 
632 		raw_spin_lock(&irq->irq_lock);
633 
634 		BUG_ON(vcpu != irq->vcpu);
635 
636 		target_vcpu = vgic_target_oracle(irq);
637 
638 		if (!target_vcpu) {
639 			/*
640 			 * We don't need to process this interrupt any
641 			 * further, move it off the list.
642 			 */
643 			list_del(&irq->ap_list);
644 			irq->vcpu = NULL;
645 			raw_spin_unlock(&irq->irq_lock);
646 
647 			/*
648 			 * This vgic_put_irq call matches the
649 			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
650 			 * where we added the LPI to the ap_list. As
651 			 * we remove the irq from the list, we drop
652 			 * also drop the refcount.
653 			 */
654 			vgic_put_irq(vcpu->kvm, irq);
655 			continue;
656 		}
657 
658 		if (target_vcpu == vcpu) {
659 			/* We're on the right CPU */
660 			raw_spin_unlock(&irq->irq_lock);
661 			continue;
662 		}
663 
664 		/* This interrupt looks like it has to be migrated. */
665 
666 		raw_spin_unlock(&irq->irq_lock);
667 		raw_spin_unlock(&vgic_cpu->ap_list_lock);
668 
669 		/*
670 		 * Ensure locking order by always locking the smallest
671 		 * ID first.
672 		 */
673 		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
674 			vcpuA = vcpu;
675 			vcpuB = target_vcpu;
676 		} else {
677 			vcpuA = target_vcpu;
678 			vcpuB = vcpu;
679 		}
680 
681 		raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
682 		raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
683 				      SINGLE_DEPTH_NESTING);
684 		raw_spin_lock(&irq->irq_lock);
685 
686 		/*
687 		 * If the affinity has been preserved, move the
688 		 * interrupt around. Otherwise, it means things have
689 		 * changed while the interrupt was unlocked, and we
690 		 * need to replay this.
691 		 *
692 		 * In all cases, we cannot trust the list not to have
693 		 * changed, so we restart from the beginning.
694 		 */
695 		if (target_vcpu == vgic_target_oracle(irq)) {
696 			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
697 
698 			list_del(&irq->ap_list);
699 			irq->vcpu = target_vcpu;
700 			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
701 			target_vcpu_needs_kick = true;
702 		}
703 
704 		raw_spin_unlock(&irq->irq_lock);
705 		raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
706 		raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
707 
708 		if (target_vcpu_needs_kick) {
709 			kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
710 			kvm_vcpu_kick(target_vcpu);
711 		}
712 
713 		goto retry;
714 	}
715 
716 	raw_spin_unlock(&vgic_cpu->ap_list_lock);
717 }
718 
719 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
720 {
721 	if (kvm_vgic_global_state.type == VGIC_V2)
722 		vgic_v2_fold_lr_state(vcpu);
723 	else
724 		vgic_v3_fold_lr_state(vcpu);
725 }
726 
727 /* Requires the irq_lock to be held. */
728 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
729 				    struct vgic_irq *irq, int lr)
730 {
731 	lockdep_assert_held(&irq->irq_lock);
732 
733 	if (kvm_vgic_global_state.type == VGIC_V2)
734 		vgic_v2_populate_lr(vcpu, irq, lr);
735 	else
736 		vgic_v3_populate_lr(vcpu, irq, lr);
737 }
738 
739 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
740 {
741 	if (kvm_vgic_global_state.type == VGIC_V2)
742 		vgic_v2_clear_lr(vcpu, lr);
743 	else
744 		vgic_v3_clear_lr(vcpu, lr);
745 }
746 
747 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
748 {
749 	if (kvm_vgic_global_state.type == VGIC_V2)
750 		vgic_v2_set_underflow(vcpu);
751 	else
752 		vgic_v3_set_underflow(vcpu);
753 }
754 
755 /* Requires the ap_list_lock to be held. */
756 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
757 				 bool *multi_sgi)
758 {
759 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
760 	struct vgic_irq *irq;
761 	int count = 0;
762 
763 	*multi_sgi = false;
764 
765 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
766 
767 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
768 		int w;
769 
770 		raw_spin_lock(&irq->irq_lock);
771 		/* GICv2 SGIs can count for more than one... */
772 		w = vgic_irq_get_lr_count(irq);
773 		raw_spin_unlock(&irq->irq_lock);
774 
775 		count += w;
776 		*multi_sgi |= (w > 1);
777 	}
778 	return count;
779 }
780 
781 /* Requires the VCPU's ap_list_lock to be held. */
782 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
783 {
784 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
785 	struct vgic_irq *irq;
786 	int count;
787 	bool multi_sgi;
788 	u8 prio = 0xff;
789 	int i = 0;
790 
791 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
792 
793 	count = compute_ap_list_depth(vcpu, &multi_sgi);
794 	if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
795 		vgic_sort_ap_list(vcpu);
796 
797 	count = 0;
798 
799 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
800 		raw_spin_lock(&irq->irq_lock);
801 
802 		/*
803 		 * If we have multi-SGIs in the pipeline, we need to
804 		 * guarantee that they are all seen before any IRQ of
805 		 * lower priority. In that case, we need to filter out
806 		 * these interrupts by exiting early. This is easy as
807 		 * the AP list has been sorted already.
808 		 */
809 		if (multi_sgi && irq->priority > prio) {
810 			_raw_spin_unlock(&irq->irq_lock);
811 			break;
812 		}
813 
814 		if (likely(vgic_target_oracle(irq) == vcpu)) {
815 			vgic_populate_lr(vcpu, irq, count++);
816 
817 			if (irq->source)
818 				prio = irq->priority;
819 		}
820 
821 		raw_spin_unlock(&irq->irq_lock);
822 
823 		if (count == kvm_vgic_global_state.nr_lr) {
824 			if (!list_is_last(&irq->ap_list,
825 					  &vgic_cpu->ap_list_head))
826 				vgic_set_underflow(vcpu);
827 			break;
828 		}
829 	}
830 
831 	/* Nuke remaining LRs */
832 	for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
833 		vgic_clear_lr(vcpu, i);
834 
835 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
836 		vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
837 	else
838 		vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
839 }
840 
841 static inline bool can_access_vgic_from_kernel(void)
842 {
843 	/*
844 	 * GICv2 can always be accessed from the kernel because it is
845 	 * memory-mapped, and VHE systems can access GICv3 EL2 system
846 	 * registers.
847 	 */
848 	return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
849 }
850 
851 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
852 {
853 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
854 		vgic_v2_save_state(vcpu);
855 	else
856 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
857 }
858 
859 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
860 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
861 {
862 	int used_lrs;
863 
864 	/* An empty ap_list_head implies used_lrs == 0 */
865 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
866 		return;
867 
868 	if (can_access_vgic_from_kernel())
869 		vgic_save_state(vcpu);
870 
871 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
872 		used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
873 	else
874 		used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
875 
876 	if (used_lrs)
877 		vgic_fold_lr_state(vcpu);
878 	vgic_prune_ap_list(vcpu);
879 }
880 
881 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
882 {
883 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
884 		vgic_v2_restore_state(vcpu);
885 	else
886 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
887 }
888 
889 /* Flush our emulation state into the GIC hardware before entering the guest. */
890 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
891 {
892 	/*
893 	 * If there are no virtual interrupts active or pending for this
894 	 * VCPU, then there is no work to do and we can bail out without
895 	 * taking any lock.  There is a potential race with someone injecting
896 	 * interrupts to the VCPU, but it is a benign race as the VCPU will
897 	 * either observe the new interrupt before or after doing this check,
898 	 * and introducing additional synchronization mechanism doesn't change
899 	 * this.
900 	 *
901 	 * Note that we still need to go through the whole thing if anything
902 	 * can be directly injected (GICv4).
903 	 */
904 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
905 	    !vgic_supports_direct_msis(vcpu->kvm))
906 		return;
907 
908 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
909 
910 	if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
911 		raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
912 		vgic_flush_lr_state(vcpu);
913 		raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
914 	}
915 
916 	if (can_access_vgic_from_kernel())
917 		vgic_restore_state(vcpu);
918 
919 	if (vgic_supports_direct_msis(vcpu->kvm))
920 		vgic_v4_commit(vcpu);
921 }
922 
923 void kvm_vgic_load(struct kvm_vcpu *vcpu)
924 {
925 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
926 		if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
927 			__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
928 		return;
929 	}
930 
931 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
932 		vgic_v2_load(vcpu);
933 	else
934 		vgic_v3_load(vcpu);
935 }
936 
937 void kvm_vgic_put(struct kvm_vcpu *vcpu)
938 {
939 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
940 		if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
941 			__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
942 		return;
943 	}
944 
945 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
946 		vgic_v2_put(vcpu);
947 	else
948 		vgic_v3_put(vcpu);
949 }
950 
951 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
952 {
953 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
954 	struct vgic_irq *irq;
955 	bool pending = false;
956 	unsigned long flags;
957 	struct vgic_vmcr vmcr;
958 
959 	if (!vcpu->kvm->arch.vgic.enabled)
960 		return false;
961 
962 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
963 		return true;
964 
965 	vgic_get_vmcr(vcpu, &vmcr);
966 
967 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
968 
969 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
970 		raw_spin_lock(&irq->irq_lock);
971 		pending = irq_is_pending(irq) && irq->enabled &&
972 			  !irq->active &&
973 			  irq->priority < vmcr.pmr;
974 		raw_spin_unlock(&irq->irq_lock);
975 
976 		if (pending)
977 			break;
978 	}
979 
980 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
981 
982 	return pending;
983 }
984 
985 void vgic_kick_vcpus(struct kvm *kvm)
986 {
987 	struct kvm_vcpu *vcpu;
988 	unsigned long c;
989 
990 	/*
991 	 * We've injected an interrupt, time to find out who deserves
992 	 * a good kick...
993 	 */
994 	kvm_for_each_vcpu(c, vcpu, kvm) {
995 		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
996 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
997 			kvm_vcpu_kick(vcpu);
998 		}
999 	}
1000 }
1001 
1002 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1003 {
1004 	struct vgic_irq *irq;
1005 	bool map_is_active;
1006 	unsigned long flags;
1007 
1008 	if (!vgic_initialized(vcpu->kvm))
1009 		return false;
1010 
1011 	irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1012 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1013 	map_is_active = irq->hw && irq->active;
1014 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1015 	vgic_put_irq(vcpu->kvm, irq);
1016 
1017 	return map_is_active;
1018 }
1019 
1020 /*
1021  * Level-triggered mapped IRQs are special because we only observe rising
1022  * edges as input to the VGIC.
1023  *
1024  * If the guest never acked the interrupt we have to sample the physical
1025  * line and set the line level, because the device state could have changed
1026  * or we simply need to process the still pending interrupt later.
1027  *
1028  * We could also have entered the guest with the interrupt active+pending.
1029  * On the next exit, we need to re-evaluate the pending state, as it could
1030  * otherwise result in a spurious interrupt by injecting a now potentially
1031  * stale pending state.
1032  *
1033  * If this causes us to lower the level, we have to also clear the physical
1034  * active state, since we will otherwise never be told when the interrupt
1035  * becomes asserted again.
1036  *
1037  * Another case is when the interrupt requires a helping hand on
1038  * deactivation (no HW deactivation, for example).
1039  */
1040 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1041 				bool lr_deactivated, bool lr_pending)
1042 {
1043 	if (vgic_irq_is_mapped_level(irq)) {
1044 		bool resample = false;
1045 
1046 		if (unlikely(vgic_irq_needs_resampling(irq))) {
1047 			resample = !(irq->active || irq->pending_latch);
1048 		} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1049 			irq->line_level = vgic_get_phys_line_level(irq);
1050 			resample = !irq->line_level;
1051 		}
1052 
1053 		if (resample)
1054 			vgic_irq_set_phys_active(irq, false);
1055 	}
1056 }
1057