1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/interrupt.h> 7 #include <linux/irq.h> 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/list_sort.h> 11 #include <linux/nospec.h> 12 13 #include <asm/kvm_hyp.h> 14 15 #include "vgic.h" 16 17 #define CREATE_TRACE_POINTS 18 #include "trace.h" 19 20 struct vgic_global kvm_vgic_global_state __ro_after_init = { 21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT, 22 }; 23 24 /* 25 * Locking order is always: 26 * kvm->lock (mutex) 27 * vcpu->mutex (mutex) 28 * kvm->arch.config_lock (mutex) 29 * its->cmd_lock (mutex) 30 * its->its_lock (mutex) 31 * vgic_cpu->ap_list_lock must be taken with IRQs disabled 32 * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled 33 * vgic_irq->irq_lock must be taken with IRQs disabled 34 * 35 * As the ap_list_lock might be taken from the timer interrupt handler, 36 * we have to disable IRQs before taking this lock and everything lower 37 * than it. 38 * 39 * If you need to take multiple locks, always take the upper lock first, 40 * then the lower ones, e.g. first take the its_lock, then the irq_lock. 41 * If you are already holding a lock and need to take a higher one, you 42 * have to drop the lower ranking lock first and re-acquire it after having 43 * taken the upper one. 44 * 45 * When taking more than one ap_list_lock at the same time, always take the 46 * lowest numbered VCPU's ap_list_lock first, so: 47 * vcpuX->vcpu_id < vcpuY->vcpu_id: 48 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); 49 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); 50 * 51 * Since the VGIC must support injecting virtual interrupts from ISRs, we have 52 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer 53 * spinlocks for any lock that may be taken while injecting an interrupt. 54 */ 55 56 /* 57 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ 58 * structure. The caller is expected to call vgic_put_irq() later once it's 59 * finished with the IRQ. 60 */ 61 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) 62 { 63 struct vgic_dist *dist = &kvm->arch.vgic; 64 struct vgic_irq *irq = NULL; 65 66 rcu_read_lock(); 67 68 irq = xa_load(&dist->lpi_xa, intid); 69 if (!vgic_try_get_irq_kref(irq)) 70 irq = NULL; 71 72 rcu_read_unlock(); 73 74 return irq; 75 } 76 77 /* 78 * This looks up the virtual interrupt ID to get the corresponding 79 * struct vgic_irq. It also increases the refcount, so any caller is expected 80 * to call vgic_put_irq() once it's finished with this IRQ. 81 */ 82 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, 83 u32 intid) 84 { 85 /* SGIs and PPIs */ 86 if (intid <= VGIC_MAX_PRIVATE) { 87 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); 88 return &vcpu->arch.vgic_cpu.private_irqs[intid]; 89 } 90 91 /* SPIs */ 92 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { 93 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); 94 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; 95 } 96 97 /* LPIs */ 98 if (intid >= VGIC_MIN_LPI) 99 return vgic_get_lpi(kvm, intid); 100 101 return NULL; 102 } 103 104 /* 105 * We can't do anything in here, because we lack the kvm pointer to 106 * lock and remove the item from the lpi_list. So we keep this function 107 * empty and use the return value of kref_put() to trigger the freeing. 108 */ 109 static void vgic_irq_release(struct kref *ref) 110 { 111 } 112 113 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) 114 { 115 struct vgic_dist *dist = &kvm->arch.vgic; 116 unsigned long flags; 117 118 if (irq->intid < VGIC_MIN_LPI) 119 return; 120 121 if (!kref_put(&irq->refcount, vgic_irq_release)) 122 return; 123 124 xa_lock_irqsave(&dist->lpi_xa, flags); 125 __xa_erase(&dist->lpi_xa, irq->intid); 126 xa_unlock_irqrestore(&dist->lpi_xa, flags); 127 128 kfree_rcu(irq, rcu); 129 } 130 131 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) 132 { 133 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 134 struct vgic_irq *irq, *tmp; 135 unsigned long flags; 136 137 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 138 139 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 140 if (irq->intid >= VGIC_MIN_LPI) { 141 raw_spin_lock(&irq->irq_lock); 142 list_del(&irq->ap_list); 143 irq->vcpu = NULL; 144 raw_spin_unlock(&irq->irq_lock); 145 vgic_put_irq(vcpu->kvm, irq); 146 } 147 } 148 149 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 150 } 151 152 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) 153 { 154 WARN_ON(irq_set_irqchip_state(irq->host_irq, 155 IRQCHIP_STATE_PENDING, 156 pending)); 157 } 158 159 bool vgic_get_phys_line_level(struct vgic_irq *irq) 160 { 161 bool line_level; 162 163 BUG_ON(!irq->hw); 164 165 if (irq->ops && irq->ops->get_input_level) 166 return irq->ops->get_input_level(irq->intid); 167 168 WARN_ON(irq_get_irqchip_state(irq->host_irq, 169 IRQCHIP_STATE_PENDING, 170 &line_level)); 171 return line_level; 172 } 173 174 /* Set/Clear the physical active state */ 175 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) 176 { 177 178 BUG_ON(!irq->hw); 179 WARN_ON(irq_set_irqchip_state(irq->host_irq, 180 IRQCHIP_STATE_ACTIVE, 181 active)); 182 } 183 184 /** 185 * vgic_target_oracle - compute the target vcpu for an irq 186 * 187 * @irq: The irq to route. Must be already locked. 188 * 189 * Based on the current state of the interrupt (enabled, pending, 190 * active, vcpu and target_vcpu), compute the next vcpu this should be 191 * given to. Return NULL if this shouldn't be injected at all. 192 * 193 * Requires the IRQ lock to be held. 194 */ 195 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) 196 { 197 lockdep_assert_held(&irq->irq_lock); 198 199 /* If the interrupt is active, it must stay on the current vcpu */ 200 if (irq->active) 201 return irq->vcpu ? : irq->target_vcpu; 202 203 /* 204 * If the IRQ is not active but enabled and pending, we should direct 205 * it to its configured target VCPU. 206 * If the distributor is disabled, pending interrupts shouldn't be 207 * forwarded. 208 */ 209 if (irq->enabled && irq_is_pending(irq)) { 210 if (unlikely(irq->target_vcpu && 211 !irq->target_vcpu->kvm->arch.vgic.enabled)) 212 return NULL; 213 214 return irq->target_vcpu; 215 } 216 217 /* If neither active nor pending and enabled, then this IRQ should not 218 * be queued to any VCPU. 219 */ 220 return NULL; 221 } 222 223 /* 224 * The order of items in the ap_lists defines how we'll pack things in LRs as 225 * well, the first items in the list being the first things populated in the 226 * LRs. 227 * 228 * A hard rule is that active interrupts can never be pushed out of the LRs 229 * (and therefore take priority) since we cannot reliably trap on deactivation 230 * of IRQs and therefore they have to be present in the LRs. 231 * 232 * Otherwise things should be sorted by the priority field and the GIC 233 * hardware support will take care of preemption of priority groups etc. 234 * 235 * Return negative if "a" sorts before "b", 0 to preserve order, and positive 236 * to sort "b" before "a". 237 */ 238 static int vgic_irq_cmp(void *priv, const struct list_head *a, 239 const struct list_head *b) 240 { 241 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); 242 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); 243 bool penda, pendb; 244 int ret; 245 246 /* 247 * list_sort may call this function with the same element when 248 * the list is fairly long. 249 */ 250 if (unlikely(irqa == irqb)) 251 return 0; 252 253 raw_spin_lock(&irqa->irq_lock); 254 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); 255 256 if (irqa->active || irqb->active) { 257 ret = (int)irqb->active - (int)irqa->active; 258 goto out; 259 } 260 261 penda = irqa->enabled && irq_is_pending(irqa); 262 pendb = irqb->enabled && irq_is_pending(irqb); 263 264 if (!penda || !pendb) { 265 ret = (int)pendb - (int)penda; 266 goto out; 267 } 268 269 /* Both pending and enabled, sort by priority */ 270 ret = irqa->priority - irqb->priority; 271 out: 272 raw_spin_unlock(&irqb->irq_lock); 273 raw_spin_unlock(&irqa->irq_lock); 274 return ret; 275 } 276 277 /* Must be called with the ap_list_lock held */ 278 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) 279 { 280 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 281 282 lockdep_assert_held(&vgic_cpu->ap_list_lock); 283 284 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); 285 } 286 287 /* 288 * Only valid injection if changing level for level-triggered IRQs or for a 289 * rising edge, and in-kernel connected IRQ lines can only be controlled by 290 * their owner. 291 */ 292 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) 293 { 294 if (irq->owner != owner) 295 return false; 296 297 switch (irq->config) { 298 case VGIC_CONFIG_LEVEL: 299 return irq->line_level != level; 300 case VGIC_CONFIG_EDGE: 301 return level; 302 } 303 304 return false; 305 } 306 307 /* 308 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. 309 * Do the queuing if necessary, taking the right locks in the right order. 310 * Returns true when the IRQ was queued, false otherwise. 311 * 312 * Needs to be entered with the IRQ lock already held, but will return 313 * with all locks dropped. 314 */ 315 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, 316 unsigned long flags) __releases(&irq->irq_lock) 317 { 318 struct kvm_vcpu *vcpu; 319 320 lockdep_assert_held(&irq->irq_lock); 321 322 retry: 323 vcpu = vgic_target_oracle(irq); 324 if (irq->vcpu || !vcpu) { 325 /* 326 * If this IRQ is already on a VCPU's ap_list, then it 327 * cannot be moved or modified and there is no more work for 328 * us to do. 329 * 330 * Otherwise, if the irq is not pending and enabled, it does 331 * not need to be inserted into an ap_list and there is also 332 * no more work for us to do. 333 */ 334 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 335 336 /* 337 * We have to kick the VCPU here, because we could be 338 * queueing an edge-triggered interrupt for which we 339 * get no EOI maintenance interrupt. In that case, 340 * while the IRQ is already on the VCPU's AP list, the 341 * VCPU could have EOI'ed the original interrupt and 342 * won't see this one until it exits for some other 343 * reason. 344 */ 345 if (vcpu) { 346 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 347 kvm_vcpu_kick(vcpu); 348 } 349 return false; 350 } 351 352 /* 353 * We must unlock the irq lock to take the ap_list_lock where 354 * we are going to insert this new pending interrupt. 355 */ 356 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 357 358 /* someone can do stuff here, which we re-check below */ 359 360 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 361 raw_spin_lock(&irq->irq_lock); 362 363 /* 364 * Did something change behind our backs? 365 * 366 * There are two cases: 367 * 1) The irq lost its pending state or was disabled behind our 368 * backs and/or it was queued to another VCPU's ap_list. 369 * 2) Someone changed the affinity on this irq behind our 370 * backs and we are now holding the wrong ap_list_lock. 371 * 372 * In both cases, drop the locks and retry. 373 */ 374 375 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { 376 raw_spin_unlock(&irq->irq_lock); 377 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, 378 flags); 379 380 raw_spin_lock_irqsave(&irq->irq_lock, flags); 381 goto retry; 382 } 383 384 /* 385 * Grab a reference to the irq to reflect the fact that it is 386 * now in the ap_list. This is safe as the caller must already hold a 387 * reference on the irq. 388 */ 389 vgic_get_irq_kref(irq); 390 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); 391 irq->vcpu = vcpu; 392 393 raw_spin_unlock(&irq->irq_lock); 394 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); 395 396 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 397 kvm_vcpu_kick(vcpu); 398 399 return true; 400 } 401 402 /** 403 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic 404 * @kvm: The VM structure pointer 405 * @vcpu: The CPU for PPIs or NULL for global interrupts 406 * @intid: The INTID to inject a new state to. 407 * @level: Edge-triggered: true: to trigger the interrupt 408 * false: to ignore the call 409 * Level-sensitive true: raise the input signal 410 * false: lower the input signal 411 * @owner: The opaque pointer to the owner of the IRQ being raised to verify 412 * that the caller is allowed to inject this IRQ. Userspace 413 * injections will have owner == NULL. 414 * 415 * The VGIC is not concerned with devices being active-LOW or active-HIGH for 416 * level-sensitive interrupts. You can think of the level parameter as 1 417 * being HIGH and 0 being LOW and all devices being active-HIGH. 418 */ 419 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, 420 unsigned int intid, bool level, void *owner) 421 { 422 struct vgic_irq *irq; 423 unsigned long flags; 424 int ret; 425 426 ret = vgic_lazy_init(kvm); 427 if (ret) 428 return ret; 429 430 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) 431 return -EINVAL; 432 433 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level); 434 435 irq = vgic_get_irq(kvm, vcpu, intid); 436 if (!irq) 437 return -EINVAL; 438 439 raw_spin_lock_irqsave(&irq->irq_lock, flags); 440 441 if (!vgic_validate_injection(irq, level, owner)) { 442 /* Nothing to see here, move along... */ 443 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 444 vgic_put_irq(kvm, irq); 445 return 0; 446 } 447 448 if (irq->config == VGIC_CONFIG_LEVEL) 449 irq->line_level = level; 450 else 451 irq->pending_latch = true; 452 453 vgic_queue_irq_unlock(kvm, irq, flags); 454 vgic_put_irq(kvm, irq); 455 456 return 0; 457 } 458 459 /* @irq->irq_lock must be held */ 460 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, 461 unsigned int host_irq, 462 struct irq_ops *ops) 463 { 464 struct irq_desc *desc; 465 struct irq_data *data; 466 467 /* 468 * Find the physical IRQ number corresponding to @host_irq 469 */ 470 desc = irq_to_desc(host_irq); 471 if (!desc) { 472 kvm_err("%s: no interrupt descriptor\n", __func__); 473 return -EINVAL; 474 } 475 data = irq_desc_get_irq_data(desc); 476 while (data->parent_data) 477 data = data->parent_data; 478 479 irq->hw = true; 480 irq->host_irq = host_irq; 481 irq->hwintid = data->hwirq; 482 irq->ops = ops; 483 return 0; 484 } 485 486 /* @irq->irq_lock must be held */ 487 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) 488 { 489 irq->hw = false; 490 irq->hwintid = 0; 491 irq->ops = NULL; 492 } 493 494 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, 495 u32 vintid, struct irq_ops *ops) 496 { 497 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 498 unsigned long flags; 499 int ret; 500 501 BUG_ON(!irq); 502 503 raw_spin_lock_irqsave(&irq->irq_lock, flags); 504 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); 505 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 506 vgic_put_irq(vcpu->kvm, irq); 507 508 return ret; 509 } 510 511 /** 512 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ 513 * @vcpu: The VCPU pointer 514 * @vintid: The INTID of the interrupt 515 * 516 * Reset the active and pending states of a mapped interrupt. Kernel 517 * subsystems injecting mapped interrupts should reset their interrupt lines 518 * when we are doing a reset of the VM. 519 */ 520 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) 521 { 522 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 523 unsigned long flags; 524 525 if (!irq->hw) 526 goto out; 527 528 raw_spin_lock_irqsave(&irq->irq_lock, flags); 529 irq->active = false; 530 irq->pending_latch = false; 531 irq->line_level = false; 532 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 533 out: 534 vgic_put_irq(vcpu->kvm, irq); 535 } 536 537 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) 538 { 539 struct vgic_irq *irq; 540 unsigned long flags; 541 542 if (!vgic_initialized(vcpu->kvm)) 543 return -EAGAIN; 544 545 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 546 BUG_ON(!irq); 547 548 raw_spin_lock_irqsave(&irq->irq_lock, flags); 549 kvm_vgic_unmap_irq(irq); 550 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 551 vgic_put_irq(vcpu->kvm, irq); 552 553 return 0; 554 } 555 556 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid) 557 { 558 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 559 unsigned long flags; 560 int ret = -1; 561 562 raw_spin_lock_irqsave(&irq->irq_lock, flags); 563 if (irq->hw) 564 ret = irq->hwintid; 565 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 566 567 vgic_put_irq(vcpu->kvm, irq); 568 return ret; 569 } 570 571 /** 572 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM 573 * 574 * @vcpu: Pointer to the VCPU (used for PPIs) 575 * @intid: The virtual INTID identifying the interrupt (PPI or SPI) 576 * @owner: Opaque pointer to the owner 577 * 578 * Returns 0 if intid is not already used by another in-kernel device and the 579 * owner is set, otherwise returns an error code. 580 */ 581 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) 582 { 583 struct vgic_irq *irq; 584 unsigned long flags; 585 int ret = 0; 586 587 if (!vgic_initialized(vcpu->kvm)) 588 return -EAGAIN; 589 590 /* SGIs and LPIs cannot be wired up to any device */ 591 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) 592 return -EINVAL; 593 594 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 595 raw_spin_lock_irqsave(&irq->irq_lock, flags); 596 if (irq->owner && irq->owner != owner) 597 ret = -EEXIST; 598 else 599 irq->owner = owner; 600 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 601 602 return ret; 603 } 604 605 /** 606 * vgic_prune_ap_list - Remove non-relevant interrupts from the list 607 * 608 * @vcpu: The VCPU pointer 609 * 610 * Go over the list of "interesting" interrupts, and prune those that we 611 * won't have to consider in the near future. 612 */ 613 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) 614 { 615 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 616 struct vgic_irq *irq, *tmp; 617 618 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 619 620 retry: 621 raw_spin_lock(&vgic_cpu->ap_list_lock); 622 623 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { 624 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; 625 bool target_vcpu_needs_kick = false; 626 627 raw_spin_lock(&irq->irq_lock); 628 629 BUG_ON(vcpu != irq->vcpu); 630 631 target_vcpu = vgic_target_oracle(irq); 632 633 if (!target_vcpu) { 634 /* 635 * We don't need to process this interrupt any 636 * further, move it off the list. 637 */ 638 list_del(&irq->ap_list); 639 irq->vcpu = NULL; 640 raw_spin_unlock(&irq->irq_lock); 641 642 /* 643 * This vgic_put_irq call matches the 644 * vgic_get_irq_kref in vgic_queue_irq_unlock, 645 * where we added the LPI to the ap_list. As 646 * we remove the irq from the list, we drop 647 * also drop the refcount. 648 */ 649 vgic_put_irq(vcpu->kvm, irq); 650 continue; 651 } 652 653 if (target_vcpu == vcpu) { 654 /* We're on the right CPU */ 655 raw_spin_unlock(&irq->irq_lock); 656 continue; 657 } 658 659 /* This interrupt looks like it has to be migrated. */ 660 661 raw_spin_unlock(&irq->irq_lock); 662 raw_spin_unlock(&vgic_cpu->ap_list_lock); 663 664 /* 665 * Ensure locking order by always locking the smallest 666 * ID first. 667 */ 668 if (vcpu->vcpu_id < target_vcpu->vcpu_id) { 669 vcpuA = vcpu; 670 vcpuB = target_vcpu; 671 } else { 672 vcpuA = target_vcpu; 673 vcpuB = vcpu; 674 } 675 676 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); 677 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, 678 SINGLE_DEPTH_NESTING); 679 raw_spin_lock(&irq->irq_lock); 680 681 /* 682 * If the affinity has been preserved, move the 683 * interrupt around. Otherwise, it means things have 684 * changed while the interrupt was unlocked, and we 685 * need to replay this. 686 * 687 * In all cases, we cannot trust the list not to have 688 * changed, so we restart from the beginning. 689 */ 690 if (target_vcpu == vgic_target_oracle(irq)) { 691 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; 692 693 list_del(&irq->ap_list); 694 irq->vcpu = target_vcpu; 695 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); 696 target_vcpu_needs_kick = true; 697 } 698 699 raw_spin_unlock(&irq->irq_lock); 700 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); 701 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); 702 703 if (target_vcpu_needs_kick) { 704 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); 705 kvm_vcpu_kick(target_vcpu); 706 } 707 708 goto retry; 709 } 710 711 raw_spin_unlock(&vgic_cpu->ap_list_lock); 712 } 713 714 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) 715 { 716 if (kvm_vgic_global_state.type == VGIC_V2) 717 vgic_v2_fold_lr_state(vcpu); 718 else 719 vgic_v3_fold_lr_state(vcpu); 720 } 721 722 /* Requires the irq_lock to be held. */ 723 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, 724 struct vgic_irq *irq, int lr) 725 { 726 lockdep_assert_held(&irq->irq_lock); 727 728 if (kvm_vgic_global_state.type == VGIC_V2) 729 vgic_v2_populate_lr(vcpu, irq, lr); 730 else 731 vgic_v3_populate_lr(vcpu, irq, lr); 732 } 733 734 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) 735 { 736 if (kvm_vgic_global_state.type == VGIC_V2) 737 vgic_v2_clear_lr(vcpu, lr); 738 else 739 vgic_v3_clear_lr(vcpu, lr); 740 } 741 742 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) 743 { 744 if (kvm_vgic_global_state.type == VGIC_V2) 745 vgic_v2_set_underflow(vcpu); 746 else 747 vgic_v3_set_underflow(vcpu); 748 } 749 750 /* Requires the ap_list_lock to be held. */ 751 static int compute_ap_list_depth(struct kvm_vcpu *vcpu, 752 bool *multi_sgi) 753 { 754 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 755 struct vgic_irq *irq; 756 int count = 0; 757 758 *multi_sgi = false; 759 760 lockdep_assert_held(&vgic_cpu->ap_list_lock); 761 762 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 763 int w; 764 765 raw_spin_lock(&irq->irq_lock); 766 /* GICv2 SGIs can count for more than one... */ 767 w = vgic_irq_get_lr_count(irq); 768 raw_spin_unlock(&irq->irq_lock); 769 770 count += w; 771 *multi_sgi |= (w > 1); 772 } 773 return count; 774 } 775 776 /* Requires the VCPU's ap_list_lock to be held. */ 777 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) 778 { 779 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 780 struct vgic_irq *irq; 781 int count; 782 bool multi_sgi; 783 u8 prio = 0xff; 784 int i = 0; 785 786 lockdep_assert_held(&vgic_cpu->ap_list_lock); 787 788 count = compute_ap_list_depth(vcpu, &multi_sgi); 789 if (count > kvm_vgic_global_state.nr_lr || multi_sgi) 790 vgic_sort_ap_list(vcpu); 791 792 count = 0; 793 794 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 795 raw_spin_lock(&irq->irq_lock); 796 797 /* 798 * If we have multi-SGIs in the pipeline, we need to 799 * guarantee that they are all seen before any IRQ of 800 * lower priority. In that case, we need to filter out 801 * these interrupts by exiting early. This is easy as 802 * the AP list has been sorted already. 803 */ 804 if (multi_sgi && irq->priority > prio) { 805 _raw_spin_unlock(&irq->irq_lock); 806 break; 807 } 808 809 if (likely(vgic_target_oracle(irq) == vcpu)) { 810 vgic_populate_lr(vcpu, irq, count++); 811 812 if (irq->source) 813 prio = irq->priority; 814 } 815 816 raw_spin_unlock(&irq->irq_lock); 817 818 if (count == kvm_vgic_global_state.nr_lr) { 819 if (!list_is_last(&irq->ap_list, 820 &vgic_cpu->ap_list_head)) 821 vgic_set_underflow(vcpu); 822 break; 823 } 824 } 825 826 /* Nuke remaining LRs */ 827 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++) 828 vgic_clear_lr(vcpu, i); 829 830 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 831 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; 832 else 833 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; 834 } 835 836 static inline bool can_access_vgic_from_kernel(void) 837 { 838 /* 839 * GICv2 can always be accessed from the kernel because it is 840 * memory-mapped, and VHE systems can access GICv3 EL2 system 841 * registers. 842 */ 843 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); 844 } 845 846 static inline void vgic_save_state(struct kvm_vcpu *vcpu) 847 { 848 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 849 vgic_v2_save_state(vcpu); 850 else 851 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); 852 } 853 854 /* Sync back the hardware VGIC state into our emulation after a guest's run. */ 855 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) 856 { 857 int used_lrs; 858 859 /* An empty ap_list_head implies used_lrs == 0 */ 860 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) 861 return; 862 863 if (can_access_vgic_from_kernel()) 864 vgic_save_state(vcpu); 865 866 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 867 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; 868 else 869 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; 870 871 if (used_lrs) 872 vgic_fold_lr_state(vcpu); 873 vgic_prune_ap_list(vcpu); 874 } 875 876 static inline void vgic_restore_state(struct kvm_vcpu *vcpu) 877 { 878 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) 879 vgic_v2_restore_state(vcpu); 880 else 881 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); 882 } 883 884 /* Flush our emulation state into the GIC hardware before entering the guest. */ 885 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) 886 { 887 /* 888 * If there are no virtual interrupts active or pending for this 889 * VCPU, then there is no work to do and we can bail out without 890 * taking any lock. There is a potential race with someone injecting 891 * interrupts to the VCPU, but it is a benign race as the VCPU will 892 * either observe the new interrupt before or after doing this check, 893 * and introducing additional synchronization mechanism doesn't change 894 * this. 895 * 896 * Note that we still need to go through the whole thing if anything 897 * can be directly injected (GICv4). 898 */ 899 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && 900 !vgic_supports_direct_msis(vcpu->kvm)) 901 return; 902 903 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 904 905 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { 906 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); 907 vgic_flush_lr_state(vcpu); 908 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); 909 } 910 911 if (can_access_vgic_from_kernel()) 912 vgic_restore_state(vcpu); 913 914 if (vgic_supports_direct_msis(vcpu->kvm)) 915 vgic_v4_commit(vcpu); 916 } 917 918 void kvm_vgic_load(struct kvm_vcpu *vcpu) 919 { 920 if (unlikely(!vgic_initialized(vcpu->kvm))) 921 return; 922 923 if (kvm_vgic_global_state.type == VGIC_V2) 924 vgic_v2_load(vcpu); 925 else 926 vgic_v3_load(vcpu); 927 } 928 929 void kvm_vgic_put(struct kvm_vcpu *vcpu) 930 { 931 if (unlikely(!vgic_initialized(vcpu->kvm))) 932 return; 933 934 if (kvm_vgic_global_state.type == VGIC_V2) 935 vgic_v2_put(vcpu); 936 else 937 vgic_v3_put(vcpu); 938 } 939 940 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) 941 { 942 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 943 struct vgic_irq *irq; 944 bool pending = false; 945 unsigned long flags; 946 struct vgic_vmcr vmcr; 947 948 if (!vcpu->kvm->arch.vgic.enabled) 949 return false; 950 951 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) 952 return true; 953 954 vgic_get_vmcr(vcpu, &vmcr); 955 956 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); 957 958 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { 959 raw_spin_lock(&irq->irq_lock); 960 pending = irq_is_pending(irq) && irq->enabled && 961 !irq->active && 962 irq->priority < vmcr.pmr; 963 raw_spin_unlock(&irq->irq_lock); 964 965 if (pending) 966 break; 967 } 968 969 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); 970 971 return pending; 972 } 973 974 void vgic_kick_vcpus(struct kvm *kvm) 975 { 976 struct kvm_vcpu *vcpu; 977 unsigned long c; 978 979 /* 980 * We've injected an interrupt, time to find out who deserves 981 * a good kick... 982 */ 983 kvm_for_each_vcpu(c, vcpu, kvm) { 984 if (kvm_vgic_vcpu_pending_irq(vcpu)) { 985 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); 986 kvm_vcpu_kick(vcpu); 987 } 988 } 989 } 990 991 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) 992 { 993 struct vgic_irq *irq; 994 bool map_is_active; 995 unsigned long flags; 996 997 if (!vgic_initialized(vcpu->kvm)) 998 return false; 999 1000 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); 1001 raw_spin_lock_irqsave(&irq->irq_lock, flags); 1002 map_is_active = irq->hw && irq->active; 1003 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 1004 vgic_put_irq(vcpu->kvm, irq); 1005 1006 return map_is_active; 1007 } 1008 1009 /* 1010 * Level-triggered mapped IRQs are special because we only observe rising 1011 * edges as input to the VGIC. 1012 * 1013 * If the guest never acked the interrupt we have to sample the physical 1014 * line and set the line level, because the device state could have changed 1015 * or we simply need to process the still pending interrupt later. 1016 * 1017 * We could also have entered the guest with the interrupt active+pending. 1018 * On the next exit, we need to re-evaluate the pending state, as it could 1019 * otherwise result in a spurious interrupt by injecting a now potentially 1020 * stale pending state. 1021 * 1022 * If this causes us to lower the level, we have to also clear the physical 1023 * active state, since we will otherwise never be told when the interrupt 1024 * becomes asserted again. 1025 * 1026 * Another case is when the interrupt requires a helping hand on 1027 * deactivation (no HW deactivation, for example). 1028 */ 1029 void vgic_irq_handle_resampling(struct vgic_irq *irq, 1030 bool lr_deactivated, bool lr_pending) 1031 { 1032 if (vgic_irq_is_mapped_level(irq)) { 1033 bool resample = false; 1034 1035 if (unlikely(vgic_irq_needs_resampling(irq))) { 1036 resample = !(irq->active || irq->pending_latch); 1037 } else if (lr_pending || (lr_deactivated && irq->line_level)) { 1038 irq->line_level = vgic_get_phys_line_level(irq); 1039 resample = !irq->line_level; 1040 } 1041 1042 if (resample) 1043 vgic_irq_set_phys_active(irq, false); 1044 } 1045 } 1046