xref: /linux/arch/arm64/kvm/vgic/vgic.c (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12 
13 #include <asm/kvm_hyp.h>
14 
15 #include "vgic.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19 
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 	.gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23 
24 /*
25  * Locking order is always:
26  * kvm->lock (mutex)
27  *   vcpu->mutex (mutex)
28  *     kvm->arch.config_lock (mutex)
29  *       its->cmd_lock (mutex)
30  *         its->its_lock (mutex)
31  *           vgic_cpu->ap_list_lock		must be taken with IRQs disabled
32  *             vgic_dist->lpi_xa.xa_lock	must be taken with IRQs disabled
33  *               vgic_irq->irq_lock		must be taken with IRQs disabled
34  *
35  * As the ap_list_lock might be taken from the timer interrupt handler,
36  * we have to disable IRQs before taking this lock and everything lower
37  * than it.
38  *
39  * The config_lock has additional ordering requirements:
40  * kvm->slots_lock
41  *   kvm->srcu
42  *     kvm->arch.config_lock
43  *
44  * If you need to take multiple locks, always take the upper lock first,
45  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46  * If you are already holding a lock and need to take a higher one, you
47  * have to drop the lower ranking lock first and re-acquire it after having
48  * taken the upper one.
49  *
50  * When taking more than one ap_list_lock at the same time, always take the
51  * lowest numbered VCPU's ap_list_lock first, so:
52  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
53  *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54  *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55  *
56  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57  * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58  * spinlocks for any lock that may be taken while injecting an interrupt.
59  */
60 
61 /*
62  * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63  * structure. The caller is expected to call vgic_put_irq() later once it's
64  * finished with the IRQ.
65  */
66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 	struct vgic_dist *dist = &kvm->arch.vgic;
69 	struct vgic_irq *irq = NULL;
70 
71 	rcu_read_lock();
72 
73 	irq = xa_load(&dist->lpi_xa, intid);
74 	if (!vgic_try_get_irq_kref(irq))
75 		irq = NULL;
76 
77 	rcu_read_unlock();
78 
79 	return irq;
80 }
81 
82 /*
83  * This looks up the virtual interrupt ID to get the corresponding
84  * struct vgic_irq. It also increases the refcount, so any caller is expected
85  * to call vgic_put_irq() once it's finished with this IRQ.
86  */
87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88 {
89 	/* SPIs */
90 	if (intid >= VGIC_NR_PRIVATE_IRQS &&
91 	    intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92 		intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93 		return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94 	}
95 
96 	/* LPIs */
97 	if (intid >= VGIC_MIN_LPI)
98 		return vgic_get_lpi(kvm, intid);
99 
100 	return NULL;
101 }
102 
103 struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104 {
105 	if (WARN_ON(!vcpu))
106 		return NULL;
107 
108 	/* SGIs and PPIs */
109 	if (intid < VGIC_NR_PRIVATE_IRQS) {
110 		intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111 		return &vcpu->arch.vgic_cpu.private_irqs[intid];
112 	}
113 
114 	return vgic_get_irq(vcpu->kvm, intid);
115 }
116 
117 /*
118  * We can't do anything in here, because we lack the kvm pointer to
119  * lock and remove the item from the lpi_list. So we keep this function
120  * empty and use the return value of kref_put() to trigger the freeing.
121  */
122 static void vgic_irq_release(struct kref *ref)
123 {
124 }
125 
126 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
127 {
128 	struct vgic_dist *dist = &kvm->arch.vgic;
129 	unsigned long flags;
130 
131 	if (irq->intid < VGIC_MIN_LPI)
132 		return;
133 
134 	if (!kref_put(&irq->refcount, vgic_irq_release))
135 		return;
136 
137 	xa_lock_irqsave(&dist->lpi_xa, flags);
138 	__xa_erase(&dist->lpi_xa, irq->intid);
139 	xa_unlock_irqrestore(&dist->lpi_xa, flags);
140 
141 	kfree_rcu(irq, rcu);
142 }
143 
144 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
145 {
146 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
147 	struct vgic_irq *irq, *tmp;
148 	unsigned long flags;
149 
150 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
151 
152 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
153 		if (irq->intid >= VGIC_MIN_LPI) {
154 			raw_spin_lock(&irq->irq_lock);
155 			list_del(&irq->ap_list);
156 			irq->vcpu = NULL;
157 			raw_spin_unlock(&irq->irq_lock);
158 			vgic_put_irq(vcpu->kvm, irq);
159 		}
160 	}
161 
162 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
163 }
164 
165 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
166 {
167 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
168 				      IRQCHIP_STATE_PENDING,
169 				      pending));
170 }
171 
172 bool vgic_get_phys_line_level(struct vgic_irq *irq)
173 {
174 	bool line_level;
175 
176 	BUG_ON(!irq->hw);
177 
178 	if (irq->ops && irq->ops->get_input_level)
179 		return irq->ops->get_input_level(irq->intid);
180 
181 	WARN_ON(irq_get_irqchip_state(irq->host_irq,
182 				      IRQCHIP_STATE_PENDING,
183 				      &line_level));
184 	return line_level;
185 }
186 
187 /* Set/Clear the physical active state */
188 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
189 {
190 
191 	BUG_ON(!irq->hw);
192 	WARN_ON(irq_set_irqchip_state(irq->host_irq,
193 				      IRQCHIP_STATE_ACTIVE,
194 				      active));
195 }
196 
197 /**
198  * vgic_target_oracle - compute the target vcpu for an irq
199  *
200  * @irq:	The irq to route. Must be already locked.
201  *
202  * Based on the current state of the interrupt (enabled, pending,
203  * active, vcpu and target_vcpu), compute the next vcpu this should be
204  * given to. Return NULL if this shouldn't be injected at all.
205  *
206  * Requires the IRQ lock to be held.
207  */
208 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
209 {
210 	lockdep_assert_held(&irq->irq_lock);
211 
212 	/* If the interrupt is active, it must stay on the current vcpu */
213 	if (irq->active)
214 		return irq->vcpu ? : irq->target_vcpu;
215 
216 	/*
217 	 * If the IRQ is not active but enabled and pending, we should direct
218 	 * it to its configured target VCPU.
219 	 * If the distributor is disabled, pending interrupts shouldn't be
220 	 * forwarded.
221 	 */
222 	if (irq->enabled && irq_is_pending(irq)) {
223 		if (unlikely(irq->target_vcpu &&
224 			     !irq->target_vcpu->kvm->arch.vgic.enabled))
225 			return NULL;
226 
227 		return irq->target_vcpu;
228 	}
229 
230 	/* If neither active nor pending and enabled, then this IRQ should not
231 	 * be queued to any VCPU.
232 	 */
233 	return NULL;
234 }
235 
236 /*
237  * The order of items in the ap_lists defines how we'll pack things in LRs as
238  * well, the first items in the list being the first things populated in the
239  * LRs.
240  *
241  * A hard rule is that active interrupts can never be pushed out of the LRs
242  * (and therefore take priority) since we cannot reliably trap on deactivation
243  * of IRQs and therefore they have to be present in the LRs.
244  *
245  * Otherwise things should be sorted by the priority field and the GIC
246  * hardware support will take care of preemption of priority groups etc.
247  *
248  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
249  * to sort "b" before "a".
250  */
251 static int vgic_irq_cmp(void *priv, const struct list_head *a,
252 			const struct list_head *b)
253 {
254 	struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
255 	struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
256 	bool penda, pendb;
257 	int ret;
258 
259 	/*
260 	 * list_sort may call this function with the same element when
261 	 * the list is fairly long.
262 	 */
263 	if (unlikely(irqa == irqb))
264 		return 0;
265 
266 	raw_spin_lock(&irqa->irq_lock);
267 	raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
268 
269 	if (irqa->active || irqb->active) {
270 		ret = (int)irqb->active - (int)irqa->active;
271 		goto out;
272 	}
273 
274 	penda = irqa->enabled && irq_is_pending(irqa);
275 	pendb = irqb->enabled && irq_is_pending(irqb);
276 
277 	if (!penda || !pendb) {
278 		ret = (int)pendb - (int)penda;
279 		goto out;
280 	}
281 
282 	/* Both pending and enabled, sort by priority */
283 	ret = irqa->priority - irqb->priority;
284 out:
285 	raw_spin_unlock(&irqb->irq_lock);
286 	raw_spin_unlock(&irqa->irq_lock);
287 	return ret;
288 }
289 
290 /* Must be called with the ap_list_lock held */
291 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
292 {
293 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
294 
295 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
296 
297 	list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
298 }
299 
300 /*
301  * Only valid injection if changing level for level-triggered IRQs or for a
302  * rising edge, and in-kernel connected IRQ lines can only be controlled by
303  * their owner.
304  */
305 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
306 {
307 	if (irq->owner != owner)
308 		return false;
309 
310 	switch (irq->config) {
311 	case VGIC_CONFIG_LEVEL:
312 		return irq->line_level != level;
313 	case VGIC_CONFIG_EDGE:
314 		return level;
315 	}
316 
317 	return false;
318 }
319 
320 /*
321  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
322  * Do the queuing if necessary, taking the right locks in the right order.
323  * Returns true when the IRQ was queued, false otherwise.
324  *
325  * Needs to be entered with the IRQ lock already held, but will return
326  * with all locks dropped.
327  */
328 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
329 			   unsigned long flags) __releases(&irq->irq_lock)
330 {
331 	struct kvm_vcpu *vcpu;
332 
333 	lockdep_assert_held(&irq->irq_lock);
334 
335 retry:
336 	vcpu = vgic_target_oracle(irq);
337 	if (irq->vcpu || !vcpu) {
338 		/*
339 		 * If this IRQ is already on a VCPU's ap_list, then it
340 		 * cannot be moved or modified and there is no more work for
341 		 * us to do.
342 		 *
343 		 * Otherwise, if the irq is not pending and enabled, it does
344 		 * not need to be inserted into an ap_list and there is also
345 		 * no more work for us to do.
346 		 */
347 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
348 
349 		/*
350 		 * We have to kick the VCPU here, because we could be
351 		 * queueing an edge-triggered interrupt for which we
352 		 * get no EOI maintenance interrupt. In that case,
353 		 * while the IRQ is already on the VCPU's AP list, the
354 		 * VCPU could have EOI'ed the original interrupt and
355 		 * won't see this one until it exits for some other
356 		 * reason.
357 		 */
358 		if (vcpu) {
359 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
360 			kvm_vcpu_kick(vcpu);
361 		}
362 		return false;
363 	}
364 
365 	/*
366 	 * We must unlock the irq lock to take the ap_list_lock where
367 	 * we are going to insert this new pending interrupt.
368 	 */
369 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
370 
371 	/* someone can do stuff here, which we re-check below */
372 
373 	raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
374 	raw_spin_lock(&irq->irq_lock);
375 
376 	/*
377 	 * Did something change behind our backs?
378 	 *
379 	 * There are two cases:
380 	 * 1) The irq lost its pending state or was disabled behind our
381 	 *    backs and/or it was queued to another VCPU's ap_list.
382 	 * 2) Someone changed the affinity on this irq behind our
383 	 *    backs and we are now holding the wrong ap_list_lock.
384 	 *
385 	 * In both cases, drop the locks and retry.
386 	 */
387 
388 	if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
389 		raw_spin_unlock(&irq->irq_lock);
390 		raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
391 					   flags);
392 
393 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
394 		goto retry;
395 	}
396 
397 	/*
398 	 * Grab a reference to the irq to reflect the fact that it is
399 	 * now in the ap_list. This is safe as the caller must already hold a
400 	 * reference on the irq.
401 	 */
402 	vgic_get_irq_kref(irq);
403 	list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
404 	irq->vcpu = vcpu;
405 
406 	raw_spin_unlock(&irq->irq_lock);
407 	raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
408 
409 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
410 	kvm_vcpu_kick(vcpu);
411 
412 	return true;
413 }
414 
415 /**
416  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
417  * @kvm:     The VM structure pointer
418  * @vcpu:    The CPU for PPIs or NULL for global interrupts
419  * @intid:   The INTID to inject a new state to.
420  * @level:   Edge-triggered:  true:  to trigger the interrupt
421  *			      false: to ignore the call
422  *	     Level-sensitive  true:  raise the input signal
423  *			      false: lower the input signal
424  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
425  *           that the caller is allowed to inject this IRQ.  Userspace
426  *           injections will have owner == NULL.
427  *
428  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
429  * level-sensitive interrupts.  You can think of the level parameter as 1
430  * being HIGH and 0 being LOW and all devices being active-HIGH.
431  */
432 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
433 			unsigned int intid, bool level, void *owner)
434 {
435 	struct vgic_irq *irq;
436 	unsigned long flags;
437 	int ret;
438 
439 	ret = vgic_lazy_init(kvm);
440 	if (ret)
441 		return ret;
442 
443 	if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
444 		return -EINVAL;
445 
446 	trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
447 
448 	if (intid < VGIC_NR_PRIVATE_IRQS)
449 		irq = vgic_get_vcpu_irq(vcpu, intid);
450 	else
451 		irq = vgic_get_irq(kvm, intid);
452 	if (!irq)
453 		return -EINVAL;
454 
455 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
456 
457 	if (!vgic_validate_injection(irq, level, owner)) {
458 		/* Nothing to see here, move along... */
459 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
460 		vgic_put_irq(kvm, irq);
461 		return 0;
462 	}
463 
464 	if (irq->config == VGIC_CONFIG_LEVEL)
465 		irq->line_level = level;
466 	else
467 		irq->pending_latch = true;
468 
469 	vgic_queue_irq_unlock(kvm, irq, flags);
470 	vgic_put_irq(kvm, irq);
471 
472 	return 0;
473 }
474 
475 /* @irq->irq_lock must be held */
476 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
477 			    unsigned int host_irq,
478 			    struct irq_ops *ops)
479 {
480 	struct irq_desc *desc;
481 	struct irq_data *data;
482 
483 	/*
484 	 * Find the physical IRQ number corresponding to @host_irq
485 	 */
486 	desc = irq_to_desc(host_irq);
487 	if (!desc) {
488 		kvm_err("%s: no interrupt descriptor\n", __func__);
489 		return -EINVAL;
490 	}
491 	data = irq_desc_get_irq_data(desc);
492 	while (data->parent_data)
493 		data = data->parent_data;
494 
495 	irq->hw = true;
496 	irq->host_irq = host_irq;
497 	irq->hwintid = data->hwirq;
498 	irq->ops = ops;
499 	return 0;
500 }
501 
502 /* @irq->irq_lock must be held */
503 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
504 {
505 	irq->hw = false;
506 	irq->hwintid = 0;
507 	irq->ops = NULL;
508 }
509 
510 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
511 			  u32 vintid, struct irq_ops *ops)
512 {
513 	struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
514 	unsigned long flags;
515 	int ret;
516 
517 	BUG_ON(!irq);
518 
519 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
520 	ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
521 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
522 	vgic_put_irq(vcpu->kvm, irq);
523 
524 	return ret;
525 }
526 
527 /**
528  * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
529  * @vcpu: The VCPU pointer
530  * @vintid: The INTID of the interrupt
531  *
532  * Reset the active and pending states of a mapped interrupt.  Kernel
533  * subsystems injecting mapped interrupts should reset their interrupt lines
534  * when we are doing a reset of the VM.
535  */
536 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
537 {
538 	struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
539 	unsigned long flags;
540 
541 	if (!irq->hw)
542 		goto out;
543 
544 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
545 	irq->active = false;
546 	irq->pending_latch = false;
547 	irq->line_level = false;
548 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
549 out:
550 	vgic_put_irq(vcpu->kvm, irq);
551 }
552 
553 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
554 {
555 	struct vgic_irq *irq;
556 	unsigned long flags;
557 
558 	if (!vgic_initialized(vcpu->kvm))
559 		return -EAGAIN;
560 
561 	irq = vgic_get_vcpu_irq(vcpu, vintid);
562 	BUG_ON(!irq);
563 
564 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
565 	kvm_vgic_unmap_irq(irq);
566 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
567 	vgic_put_irq(vcpu->kvm, irq);
568 
569 	return 0;
570 }
571 
572 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
573 {
574 	struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
575 	unsigned long flags;
576 	int ret = -1;
577 
578 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
579 	if (irq->hw)
580 		ret = irq->hwintid;
581 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
582 
583 	vgic_put_irq(vcpu->kvm, irq);
584 	return ret;
585 }
586 
587 /**
588  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
589  *
590  * @vcpu:   Pointer to the VCPU (used for PPIs)
591  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
592  * @owner:  Opaque pointer to the owner
593  *
594  * Returns 0 if intid is not already used by another in-kernel device and the
595  * owner is set, otherwise returns an error code.
596  */
597 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
598 {
599 	struct vgic_irq *irq;
600 	unsigned long flags;
601 	int ret = 0;
602 
603 	if (!vgic_initialized(vcpu->kvm))
604 		return -EAGAIN;
605 
606 	/* SGIs and LPIs cannot be wired up to any device */
607 	if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
608 		return -EINVAL;
609 
610 	irq = vgic_get_vcpu_irq(vcpu, intid);
611 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
612 	if (irq->owner && irq->owner != owner)
613 		ret = -EEXIST;
614 	else
615 		irq->owner = owner;
616 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
617 
618 	return ret;
619 }
620 
621 /**
622  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
623  *
624  * @vcpu: The VCPU pointer
625  *
626  * Go over the list of "interesting" interrupts, and prune those that we
627  * won't have to consider in the near future.
628  */
629 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
630 {
631 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
632 	struct vgic_irq *irq, *tmp;
633 
634 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
635 
636 retry:
637 	raw_spin_lock(&vgic_cpu->ap_list_lock);
638 
639 	list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
640 		struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
641 		bool target_vcpu_needs_kick = false;
642 
643 		raw_spin_lock(&irq->irq_lock);
644 
645 		BUG_ON(vcpu != irq->vcpu);
646 
647 		target_vcpu = vgic_target_oracle(irq);
648 
649 		if (!target_vcpu) {
650 			/*
651 			 * We don't need to process this interrupt any
652 			 * further, move it off the list.
653 			 */
654 			list_del(&irq->ap_list);
655 			irq->vcpu = NULL;
656 			raw_spin_unlock(&irq->irq_lock);
657 
658 			/*
659 			 * This vgic_put_irq call matches the
660 			 * vgic_get_irq_kref in vgic_queue_irq_unlock,
661 			 * where we added the LPI to the ap_list. As
662 			 * we remove the irq from the list, we drop
663 			 * also drop the refcount.
664 			 */
665 			vgic_put_irq(vcpu->kvm, irq);
666 			continue;
667 		}
668 
669 		if (target_vcpu == vcpu) {
670 			/* We're on the right CPU */
671 			raw_spin_unlock(&irq->irq_lock);
672 			continue;
673 		}
674 
675 		/* This interrupt looks like it has to be migrated. */
676 
677 		raw_spin_unlock(&irq->irq_lock);
678 		raw_spin_unlock(&vgic_cpu->ap_list_lock);
679 
680 		/*
681 		 * Ensure locking order by always locking the smallest
682 		 * ID first.
683 		 */
684 		if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
685 			vcpuA = vcpu;
686 			vcpuB = target_vcpu;
687 		} else {
688 			vcpuA = target_vcpu;
689 			vcpuB = vcpu;
690 		}
691 
692 		raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
693 		raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
694 				      SINGLE_DEPTH_NESTING);
695 		raw_spin_lock(&irq->irq_lock);
696 
697 		/*
698 		 * If the affinity has been preserved, move the
699 		 * interrupt around. Otherwise, it means things have
700 		 * changed while the interrupt was unlocked, and we
701 		 * need to replay this.
702 		 *
703 		 * In all cases, we cannot trust the list not to have
704 		 * changed, so we restart from the beginning.
705 		 */
706 		if (target_vcpu == vgic_target_oracle(irq)) {
707 			struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
708 
709 			list_del(&irq->ap_list);
710 			irq->vcpu = target_vcpu;
711 			list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
712 			target_vcpu_needs_kick = true;
713 		}
714 
715 		raw_spin_unlock(&irq->irq_lock);
716 		raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
717 		raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
718 
719 		if (target_vcpu_needs_kick) {
720 			kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
721 			kvm_vcpu_kick(target_vcpu);
722 		}
723 
724 		goto retry;
725 	}
726 
727 	raw_spin_unlock(&vgic_cpu->ap_list_lock);
728 }
729 
730 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
731 {
732 	if (kvm_vgic_global_state.type == VGIC_V2)
733 		vgic_v2_fold_lr_state(vcpu);
734 	else
735 		vgic_v3_fold_lr_state(vcpu);
736 }
737 
738 /* Requires the irq_lock to be held. */
739 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
740 				    struct vgic_irq *irq, int lr)
741 {
742 	lockdep_assert_held(&irq->irq_lock);
743 
744 	if (kvm_vgic_global_state.type == VGIC_V2)
745 		vgic_v2_populate_lr(vcpu, irq, lr);
746 	else
747 		vgic_v3_populate_lr(vcpu, irq, lr);
748 }
749 
750 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
751 {
752 	if (kvm_vgic_global_state.type == VGIC_V2)
753 		vgic_v2_clear_lr(vcpu, lr);
754 	else
755 		vgic_v3_clear_lr(vcpu, lr);
756 }
757 
758 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
759 {
760 	if (kvm_vgic_global_state.type == VGIC_V2)
761 		vgic_v2_set_underflow(vcpu);
762 	else
763 		vgic_v3_set_underflow(vcpu);
764 }
765 
766 /* Requires the ap_list_lock to be held. */
767 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
768 				 bool *multi_sgi)
769 {
770 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
771 	struct vgic_irq *irq;
772 	int count = 0;
773 
774 	*multi_sgi = false;
775 
776 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
777 
778 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
779 		int w;
780 
781 		raw_spin_lock(&irq->irq_lock);
782 		/* GICv2 SGIs can count for more than one... */
783 		w = vgic_irq_get_lr_count(irq);
784 		raw_spin_unlock(&irq->irq_lock);
785 
786 		count += w;
787 		*multi_sgi |= (w > 1);
788 	}
789 	return count;
790 }
791 
792 /* Requires the VCPU's ap_list_lock to be held. */
793 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
794 {
795 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
796 	struct vgic_irq *irq;
797 	int count;
798 	bool multi_sgi;
799 	u8 prio = 0xff;
800 	int i = 0;
801 
802 	lockdep_assert_held(&vgic_cpu->ap_list_lock);
803 
804 	count = compute_ap_list_depth(vcpu, &multi_sgi);
805 	if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
806 		vgic_sort_ap_list(vcpu);
807 
808 	count = 0;
809 
810 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
811 		raw_spin_lock(&irq->irq_lock);
812 
813 		/*
814 		 * If we have multi-SGIs in the pipeline, we need to
815 		 * guarantee that they are all seen before any IRQ of
816 		 * lower priority. In that case, we need to filter out
817 		 * these interrupts by exiting early. This is easy as
818 		 * the AP list has been sorted already.
819 		 */
820 		if (multi_sgi && irq->priority > prio) {
821 			_raw_spin_unlock(&irq->irq_lock);
822 			break;
823 		}
824 
825 		if (likely(vgic_target_oracle(irq) == vcpu)) {
826 			vgic_populate_lr(vcpu, irq, count++);
827 
828 			if (irq->source)
829 				prio = irq->priority;
830 		}
831 
832 		raw_spin_unlock(&irq->irq_lock);
833 
834 		if (count == kvm_vgic_global_state.nr_lr) {
835 			if (!list_is_last(&irq->ap_list,
836 					  &vgic_cpu->ap_list_head))
837 				vgic_set_underflow(vcpu);
838 			break;
839 		}
840 	}
841 
842 	/* Nuke remaining LRs */
843 	for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
844 		vgic_clear_lr(vcpu, i);
845 
846 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
847 		vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
848 	else
849 		vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
850 }
851 
852 static inline bool can_access_vgic_from_kernel(void)
853 {
854 	/*
855 	 * GICv2 can always be accessed from the kernel because it is
856 	 * memory-mapped, and VHE systems can access GICv3 EL2 system
857 	 * registers.
858 	 */
859 	return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
860 }
861 
862 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
863 {
864 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
865 		vgic_v2_save_state(vcpu);
866 	else
867 		__vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
868 }
869 
870 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
871 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
872 {
873 	int used_lrs;
874 
875 	/* An empty ap_list_head implies used_lrs == 0 */
876 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
877 		return;
878 
879 	if (can_access_vgic_from_kernel())
880 		vgic_save_state(vcpu);
881 
882 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
883 		used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
884 	else
885 		used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
886 
887 	if (used_lrs)
888 		vgic_fold_lr_state(vcpu);
889 	vgic_prune_ap_list(vcpu);
890 }
891 
892 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
893 {
894 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
895 		vgic_v2_restore_state(vcpu);
896 	else
897 		__vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
898 }
899 
900 /* Flush our emulation state into the GIC hardware before entering the guest. */
901 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
902 {
903 	/*
904 	 * If there are no virtual interrupts active or pending for this
905 	 * VCPU, then there is no work to do and we can bail out without
906 	 * taking any lock.  There is a potential race with someone injecting
907 	 * interrupts to the VCPU, but it is a benign race as the VCPU will
908 	 * either observe the new interrupt before or after doing this check,
909 	 * and introducing additional synchronization mechanism doesn't change
910 	 * this.
911 	 *
912 	 * Note that we still need to go through the whole thing if anything
913 	 * can be directly injected (GICv4).
914 	 */
915 	if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
916 	    !vgic_supports_direct_msis(vcpu->kvm))
917 		return;
918 
919 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
920 
921 	if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
922 		raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
923 		vgic_flush_lr_state(vcpu);
924 		raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
925 	}
926 
927 	if (can_access_vgic_from_kernel())
928 		vgic_restore_state(vcpu);
929 
930 	if (vgic_supports_direct_msis(vcpu->kvm))
931 		vgic_v4_commit(vcpu);
932 }
933 
934 void kvm_vgic_load(struct kvm_vcpu *vcpu)
935 {
936 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
937 		if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
938 			__vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
939 		return;
940 	}
941 
942 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
943 		vgic_v2_load(vcpu);
944 	else
945 		vgic_v3_load(vcpu);
946 }
947 
948 void kvm_vgic_put(struct kvm_vcpu *vcpu)
949 {
950 	if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
951 		if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
952 			__vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
953 		return;
954 	}
955 
956 	if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
957 		vgic_v2_put(vcpu);
958 	else
959 		vgic_v3_put(vcpu);
960 }
961 
962 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
963 {
964 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
965 	struct vgic_irq *irq;
966 	bool pending = false;
967 	unsigned long flags;
968 	struct vgic_vmcr vmcr;
969 
970 	if (!vcpu->kvm->arch.vgic.enabled)
971 		return false;
972 
973 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
974 		return true;
975 
976 	vgic_get_vmcr(vcpu, &vmcr);
977 
978 	raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
979 
980 	list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
981 		raw_spin_lock(&irq->irq_lock);
982 		pending = irq_is_pending(irq) && irq->enabled &&
983 			  !irq->active &&
984 			  irq->priority < vmcr.pmr;
985 		raw_spin_unlock(&irq->irq_lock);
986 
987 		if (pending)
988 			break;
989 	}
990 
991 	raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
992 
993 	return pending;
994 }
995 
996 void vgic_kick_vcpus(struct kvm *kvm)
997 {
998 	struct kvm_vcpu *vcpu;
999 	unsigned long c;
1000 
1001 	/*
1002 	 * We've injected an interrupt, time to find out who deserves
1003 	 * a good kick...
1004 	 */
1005 	kvm_for_each_vcpu(c, vcpu, kvm) {
1006 		if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1007 			kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1008 			kvm_vcpu_kick(vcpu);
1009 		}
1010 	}
1011 }
1012 
1013 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1014 {
1015 	struct vgic_irq *irq;
1016 	bool map_is_active;
1017 	unsigned long flags;
1018 
1019 	if (!vgic_initialized(vcpu->kvm))
1020 		return false;
1021 
1022 	irq = vgic_get_vcpu_irq(vcpu, vintid);
1023 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1024 	map_is_active = irq->hw && irq->active;
1025 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1026 	vgic_put_irq(vcpu->kvm, irq);
1027 
1028 	return map_is_active;
1029 }
1030 
1031 /*
1032  * Level-triggered mapped IRQs are special because we only observe rising
1033  * edges as input to the VGIC.
1034  *
1035  * If the guest never acked the interrupt we have to sample the physical
1036  * line and set the line level, because the device state could have changed
1037  * or we simply need to process the still pending interrupt later.
1038  *
1039  * We could also have entered the guest with the interrupt active+pending.
1040  * On the next exit, we need to re-evaluate the pending state, as it could
1041  * otherwise result in a spurious interrupt by injecting a now potentially
1042  * stale pending state.
1043  *
1044  * If this causes us to lower the level, we have to also clear the physical
1045  * active state, since we will otherwise never be told when the interrupt
1046  * becomes asserted again.
1047  *
1048  * Another case is when the interrupt requires a helping hand on
1049  * deactivation (no HW deactivation, for example).
1050  */
1051 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1052 				bool lr_deactivated, bool lr_pending)
1053 {
1054 	if (vgic_irq_is_mapped_level(irq)) {
1055 		bool resample = false;
1056 
1057 		if (unlikely(vgic_irq_needs_resampling(irq))) {
1058 			resample = !(irq->active || irq->pending_latch);
1059 		} else if (lr_pending || (lr_deactivated && irq->line_level)) {
1060 			irq->line_level = vgic_get_phys_line_level(irq);
1061 			resample = !irq->line_level;
1062 		}
1063 
1064 		if (resample)
1065 			vgic_irq_set_phys_active(irq, false);
1066 	}
1067 }
1068