1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * vcpu->mutex (mutex)
28 * kvm->arch.config_lock (mutex)
29 * its->cmd_lock (mutex)
30 * its->its_lock (mutex)
31 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
32 * vgic_dist->lpi_xa.xa_lock must be taken with IRQs disabled
33 * vgic_irq->irq_lock must be taken with IRQs disabled
34 *
35 * As the ap_list_lock might be taken from the timer interrupt handler,
36 * we have to disable IRQs before taking this lock and everything lower
37 * than it.
38 *
39 * The config_lock has additional ordering requirements:
40 * kvm->slots_lock
41 * kvm->srcu
42 * kvm->arch.config_lock
43 *
44 * If you need to take multiple locks, always take the upper lock first,
45 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
46 * If you are already holding a lock and need to take a higher one, you
47 * have to drop the lower ranking lock first and re-acquire it after having
48 * taken the upper one.
49 *
50 * When taking more than one ap_list_lock at the same time, always take the
51 * lowest numbered VCPU's ap_list_lock first, so:
52 * vcpuX->vcpu_id < vcpuY->vcpu_id:
53 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
54 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
55 *
56 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
57 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
58 * spinlocks for any lock that may be taken while injecting an interrupt.
59 */
60
61 /*
62 * Index the VM's xarray of mapped LPIs and return a reference to the IRQ
63 * structure. The caller is expected to call vgic_put_irq() later once it's
64 * finished with the IRQ.
65 */
vgic_get_lpi(struct kvm * kvm,u32 intid)66 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
67 {
68 struct vgic_dist *dist = &kvm->arch.vgic;
69 struct vgic_irq *irq = NULL;
70
71 rcu_read_lock();
72
73 irq = xa_load(&dist->lpi_xa, intid);
74 if (!vgic_try_get_irq_kref(irq))
75 irq = NULL;
76
77 rcu_read_unlock();
78
79 return irq;
80 }
81
82 /*
83 * This looks up the virtual interrupt ID to get the corresponding
84 * struct vgic_irq. It also increases the refcount, so any caller is expected
85 * to call vgic_put_irq() once it's finished with this IRQ.
86 */
vgic_get_irq(struct kvm * kvm,u32 intid)87 struct vgic_irq *vgic_get_irq(struct kvm *kvm, u32 intid)
88 {
89 /* SPIs */
90 if (intid >= VGIC_NR_PRIVATE_IRQS &&
91 intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
92 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
93 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
94 }
95
96 /* LPIs */
97 if (intid >= VGIC_MIN_LPI)
98 return vgic_get_lpi(kvm, intid);
99
100 return NULL;
101 }
102
vgic_get_vcpu_irq(struct kvm_vcpu * vcpu,u32 intid)103 struct vgic_irq *vgic_get_vcpu_irq(struct kvm_vcpu *vcpu, u32 intid)
104 {
105 if (WARN_ON(!vcpu))
106 return NULL;
107
108 /* SGIs and PPIs */
109 if (intid < VGIC_NR_PRIVATE_IRQS) {
110 intid = array_index_nospec(intid, VGIC_NR_PRIVATE_IRQS);
111 return &vcpu->arch.vgic_cpu.private_irqs[intid];
112 }
113
114 return vgic_get_irq(vcpu->kvm, intid);
115 }
116
117 /*
118 * We can't do anything in here, because we lack the kvm pointer to
119 * lock and remove the item from the lpi_list. So we keep this function
120 * empty and use the return value of kref_put() to trigger the freeing.
121 */
vgic_irq_release(struct kref * ref)122 static void vgic_irq_release(struct kref *ref)
123 {
124 }
125
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)126 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
127 {
128 struct vgic_dist *dist = &kvm->arch.vgic;
129 unsigned long flags;
130
131 if (irq->intid < VGIC_MIN_LPI)
132 return;
133
134 if (!kref_put(&irq->refcount, vgic_irq_release))
135 return;
136
137 xa_lock_irqsave(&dist->lpi_xa, flags);
138 __xa_erase(&dist->lpi_xa, irq->intid);
139 xa_unlock_irqrestore(&dist->lpi_xa, flags);
140
141 kfree_rcu(irq, rcu);
142 }
143
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)144 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
145 {
146 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
147 struct vgic_irq *irq, *tmp;
148 unsigned long flags;
149
150 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
151
152 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
153 if (irq->intid >= VGIC_MIN_LPI) {
154 raw_spin_lock(&irq->irq_lock);
155 list_del(&irq->ap_list);
156 irq->vcpu = NULL;
157 raw_spin_unlock(&irq->irq_lock);
158 vgic_put_irq(vcpu->kvm, irq);
159 }
160 }
161
162 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
163 }
164
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)165 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
166 {
167 WARN_ON(irq_set_irqchip_state(irq->host_irq,
168 IRQCHIP_STATE_PENDING,
169 pending));
170 }
171
vgic_get_phys_line_level(struct vgic_irq * irq)172 bool vgic_get_phys_line_level(struct vgic_irq *irq)
173 {
174 bool line_level;
175
176 BUG_ON(!irq->hw);
177
178 if (irq->ops && irq->ops->get_input_level)
179 return irq->ops->get_input_level(irq->intid);
180
181 WARN_ON(irq_get_irqchip_state(irq->host_irq,
182 IRQCHIP_STATE_PENDING,
183 &line_level));
184 return line_level;
185 }
186
187 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)188 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
189 {
190
191 BUG_ON(!irq->hw);
192 WARN_ON(irq_set_irqchip_state(irq->host_irq,
193 IRQCHIP_STATE_ACTIVE,
194 active));
195 }
196
197 /**
198 * vgic_target_oracle - compute the target vcpu for an irq
199 *
200 * @irq: The irq to route. Must be already locked.
201 *
202 * Based on the current state of the interrupt (enabled, pending,
203 * active, vcpu and target_vcpu), compute the next vcpu this should be
204 * given to. Return NULL if this shouldn't be injected at all.
205 *
206 * Requires the IRQ lock to be held.
207 */
vgic_target_oracle(struct vgic_irq * irq)208 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
209 {
210 lockdep_assert_held(&irq->irq_lock);
211
212 /* If the interrupt is active, it must stay on the current vcpu */
213 if (irq->active)
214 return irq->vcpu ? : irq->target_vcpu;
215
216 /*
217 * If the IRQ is not active but enabled and pending, we should direct
218 * it to its configured target VCPU.
219 * If the distributor is disabled, pending interrupts shouldn't be
220 * forwarded.
221 */
222 if (irq->enabled && irq_is_pending(irq)) {
223 if (unlikely(irq->target_vcpu &&
224 !irq->target_vcpu->kvm->arch.vgic.enabled))
225 return NULL;
226
227 return irq->target_vcpu;
228 }
229
230 /* If neither active nor pending and enabled, then this IRQ should not
231 * be queued to any VCPU.
232 */
233 return NULL;
234 }
235
236 /*
237 * The order of items in the ap_lists defines how we'll pack things in LRs as
238 * well, the first items in the list being the first things populated in the
239 * LRs.
240 *
241 * A hard rule is that active interrupts can never be pushed out of the LRs
242 * (and therefore take priority) since we cannot reliably trap on deactivation
243 * of IRQs and therefore they have to be present in the LRs.
244 *
245 * Otherwise things should be sorted by the priority field and the GIC
246 * hardware support will take care of preemption of priority groups etc.
247 *
248 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
249 * to sort "b" before "a".
250 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)251 static int vgic_irq_cmp(void *priv, const struct list_head *a,
252 const struct list_head *b)
253 {
254 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
255 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
256 bool penda, pendb;
257 int ret;
258
259 /*
260 * list_sort may call this function with the same element when
261 * the list is fairly long.
262 */
263 if (unlikely(irqa == irqb))
264 return 0;
265
266 raw_spin_lock(&irqa->irq_lock);
267 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
268
269 if (irqa->active || irqb->active) {
270 ret = (int)irqb->active - (int)irqa->active;
271 goto out;
272 }
273
274 penda = irqa->enabled && irq_is_pending(irqa);
275 pendb = irqb->enabled && irq_is_pending(irqb);
276
277 if (!penda || !pendb) {
278 ret = (int)pendb - (int)penda;
279 goto out;
280 }
281
282 /* Both pending and enabled, sort by priority */
283 ret = irqa->priority - irqb->priority;
284 out:
285 raw_spin_unlock(&irqb->irq_lock);
286 raw_spin_unlock(&irqa->irq_lock);
287 return ret;
288 }
289
290 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)291 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
292 {
293 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
294
295 lockdep_assert_held(&vgic_cpu->ap_list_lock);
296
297 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
298 }
299
300 /*
301 * Only valid injection if changing level for level-triggered IRQs or for a
302 * rising edge, and in-kernel connected IRQ lines can only be controlled by
303 * their owner.
304 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)305 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
306 {
307 if (irq->owner != owner)
308 return false;
309
310 switch (irq->config) {
311 case VGIC_CONFIG_LEVEL:
312 return irq->line_level != level;
313 case VGIC_CONFIG_EDGE:
314 return level;
315 }
316
317 return false;
318 }
319
320 /*
321 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
322 * Do the queuing if necessary, taking the right locks in the right order.
323 * Returns true when the IRQ was queued, false otherwise.
324 *
325 * Needs to be entered with the IRQ lock already held, but will return
326 * with all locks dropped.
327 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)328 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
329 unsigned long flags) __releases(&irq->irq_lock)
330 {
331 struct kvm_vcpu *vcpu;
332
333 lockdep_assert_held(&irq->irq_lock);
334
335 retry:
336 vcpu = vgic_target_oracle(irq);
337 if (irq->vcpu || !vcpu) {
338 /*
339 * If this IRQ is already on a VCPU's ap_list, then it
340 * cannot be moved or modified and there is no more work for
341 * us to do.
342 *
343 * Otherwise, if the irq is not pending and enabled, it does
344 * not need to be inserted into an ap_list and there is also
345 * no more work for us to do.
346 */
347 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
348
349 /*
350 * We have to kick the VCPU here, because we could be
351 * queueing an edge-triggered interrupt for which we
352 * get no EOI maintenance interrupt. In that case,
353 * while the IRQ is already on the VCPU's AP list, the
354 * VCPU could have EOI'ed the original interrupt and
355 * won't see this one until it exits for some other
356 * reason.
357 */
358 if (vcpu) {
359 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
360 kvm_vcpu_kick(vcpu);
361 }
362 return false;
363 }
364
365 /*
366 * We must unlock the irq lock to take the ap_list_lock where
367 * we are going to insert this new pending interrupt.
368 */
369 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
370
371 /* someone can do stuff here, which we re-check below */
372
373 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
374 raw_spin_lock(&irq->irq_lock);
375
376 /*
377 * Did something change behind our backs?
378 *
379 * There are two cases:
380 * 1) The irq lost its pending state or was disabled behind our
381 * backs and/or it was queued to another VCPU's ap_list.
382 * 2) Someone changed the affinity on this irq behind our
383 * backs and we are now holding the wrong ap_list_lock.
384 *
385 * In both cases, drop the locks and retry.
386 */
387
388 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
389 raw_spin_unlock(&irq->irq_lock);
390 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
391 flags);
392
393 raw_spin_lock_irqsave(&irq->irq_lock, flags);
394 goto retry;
395 }
396
397 /*
398 * Grab a reference to the irq to reflect the fact that it is
399 * now in the ap_list. This is safe as the caller must already hold a
400 * reference on the irq.
401 */
402 vgic_get_irq_kref(irq);
403 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
404 irq->vcpu = vcpu;
405
406 raw_spin_unlock(&irq->irq_lock);
407 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
408
409 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
410 kvm_vcpu_kick(vcpu);
411
412 return true;
413 }
414
415 /**
416 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
417 * @kvm: The VM structure pointer
418 * @vcpu: The CPU for PPIs or NULL for global interrupts
419 * @intid: The INTID to inject a new state to.
420 * @level: Edge-triggered: true: to trigger the interrupt
421 * false: to ignore the call
422 * Level-sensitive true: raise the input signal
423 * false: lower the input signal
424 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
425 * that the caller is allowed to inject this IRQ. Userspace
426 * injections will have owner == NULL.
427 *
428 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
429 * level-sensitive interrupts. You can think of the level parameter as 1
430 * being HIGH and 0 being LOW and all devices being active-HIGH.
431 */
kvm_vgic_inject_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,unsigned int intid,bool level,void * owner)432 int kvm_vgic_inject_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
433 unsigned int intid, bool level, void *owner)
434 {
435 struct vgic_irq *irq;
436 unsigned long flags;
437 int ret;
438
439 ret = vgic_lazy_init(kvm);
440 if (ret)
441 return ret;
442
443 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
444 return -EINVAL;
445
446 trace_vgic_update_irq_pending(vcpu ? vcpu->vcpu_idx : 0, intid, level);
447
448 if (intid < VGIC_NR_PRIVATE_IRQS)
449 irq = vgic_get_vcpu_irq(vcpu, intid);
450 else
451 irq = vgic_get_irq(kvm, intid);
452 if (!irq)
453 return -EINVAL;
454
455 raw_spin_lock_irqsave(&irq->irq_lock, flags);
456
457 if (!vgic_validate_injection(irq, level, owner)) {
458 /* Nothing to see here, move along... */
459 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
460 vgic_put_irq(kvm, irq);
461 return 0;
462 }
463
464 if (irq->config == VGIC_CONFIG_LEVEL)
465 irq->line_level = level;
466 else
467 irq->pending_latch = true;
468
469 vgic_queue_irq_unlock(kvm, irq, flags);
470 vgic_put_irq(kvm, irq);
471
472 return 0;
473 }
474
475 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)476 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
477 unsigned int host_irq,
478 struct irq_ops *ops)
479 {
480 struct irq_desc *desc;
481 struct irq_data *data;
482
483 /*
484 * Find the physical IRQ number corresponding to @host_irq
485 */
486 desc = irq_to_desc(host_irq);
487 if (!desc) {
488 kvm_err("%s: no interrupt descriptor\n", __func__);
489 return -EINVAL;
490 }
491 data = irq_desc_get_irq_data(desc);
492 while (data->parent_data)
493 data = data->parent_data;
494
495 irq->hw = true;
496 irq->host_irq = host_irq;
497 irq->hwintid = data->hwirq;
498 irq->ops = ops;
499 return 0;
500 }
501
502 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)503 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
504 {
505 irq->hw = false;
506 irq->hwintid = 0;
507 irq->ops = NULL;
508 }
509
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)510 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
511 u32 vintid, struct irq_ops *ops)
512 {
513 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
514 unsigned long flags;
515 int ret;
516
517 BUG_ON(!irq);
518
519 raw_spin_lock_irqsave(&irq->irq_lock, flags);
520 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
521 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
522 vgic_put_irq(vcpu->kvm, irq);
523
524 return ret;
525 }
526
527 /**
528 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
529 * @vcpu: The VCPU pointer
530 * @vintid: The INTID of the interrupt
531 *
532 * Reset the active and pending states of a mapped interrupt. Kernel
533 * subsystems injecting mapped interrupts should reset their interrupt lines
534 * when we are doing a reset of the VM.
535 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)536 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
537 {
538 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
539 unsigned long flags;
540
541 if (!irq->hw)
542 goto out;
543
544 raw_spin_lock_irqsave(&irq->irq_lock, flags);
545 irq->active = false;
546 irq->pending_latch = false;
547 irq->line_level = false;
548 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
549 out:
550 vgic_put_irq(vcpu->kvm, irq);
551 }
552
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)553 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
554 {
555 struct vgic_irq *irq;
556 unsigned long flags;
557
558 if (!vgic_initialized(vcpu->kvm))
559 return -EAGAIN;
560
561 irq = vgic_get_vcpu_irq(vcpu, vintid);
562 BUG_ON(!irq);
563
564 raw_spin_lock_irqsave(&irq->irq_lock, flags);
565 kvm_vgic_unmap_irq(irq);
566 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
567 vgic_put_irq(vcpu->kvm, irq);
568
569 return 0;
570 }
571
kvm_vgic_get_map(struct kvm_vcpu * vcpu,unsigned int vintid)572 int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid)
573 {
574 struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, vintid);
575 unsigned long flags;
576 int ret = -1;
577
578 raw_spin_lock_irqsave(&irq->irq_lock, flags);
579 if (irq->hw)
580 ret = irq->hwintid;
581 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
582
583 vgic_put_irq(vcpu->kvm, irq);
584 return ret;
585 }
586
587 /**
588 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
589 *
590 * @vcpu: Pointer to the VCPU (used for PPIs)
591 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
592 * @owner: Opaque pointer to the owner
593 *
594 * Returns 0 if intid is not already used by another in-kernel device and the
595 * owner is set, otherwise returns an error code.
596 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)597 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
598 {
599 struct vgic_irq *irq;
600 unsigned long flags;
601 int ret = 0;
602
603 if (!vgic_initialized(vcpu->kvm))
604 return -EAGAIN;
605
606 /* SGIs and LPIs cannot be wired up to any device */
607 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
608 return -EINVAL;
609
610 irq = vgic_get_vcpu_irq(vcpu, intid);
611 raw_spin_lock_irqsave(&irq->irq_lock, flags);
612 if (irq->owner && irq->owner != owner)
613 ret = -EEXIST;
614 else
615 irq->owner = owner;
616 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
617
618 return ret;
619 }
620
621 /**
622 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
623 *
624 * @vcpu: The VCPU pointer
625 *
626 * Go over the list of "interesting" interrupts, and prune those that we
627 * won't have to consider in the near future.
628 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)629 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
630 {
631 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
632 struct vgic_irq *irq, *tmp;
633
634 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
635
636 retry:
637 raw_spin_lock(&vgic_cpu->ap_list_lock);
638
639 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
640 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
641 bool target_vcpu_needs_kick = false;
642
643 raw_spin_lock(&irq->irq_lock);
644
645 BUG_ON(vcpu != irq->vcpu);
646
647 target_vcpu = vgic_target_oracle(irq);
648
649 if (!target_vcpu) {
650 /*
651 * We don't need to process this interrupt any
652 * further, move it off the list.
653 */
654 list_del(&irq->ap_list);
655 irq->vcpu = NULL;
656 raw_spin_unlock(&irq->irq_lock);
657
658 /*
659 * This vgic_put_irq call matches the
660 * vgic_get_irq_kref in vgic_queue_irq_unlock,
661 * where we added the LPI to the ap_list. As
662 * we remove the irq from the list, we drop
663 * also drop the refcount.
664 */
665 vgic_put_irq(vcpu->kvm, irq);
666 continue;
667 }
668
669 if (target_vcpu == vcpu) {
670 /* We're on the right CPU */
671 raw_spin_unlock(&irq->irq_lock);
672 continue;
673 }
674
675 /* This interrupt looks like it has to be migrated. */
676
677 raw_spin_unlock(&irq->irq_lock);
678 raw_spin_unlock(&vgic_cpu->ap_list_lock);
679
680 /*
681 * Ensure locking order by always locking the smallest
682 * ID first.
683 */
684 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
685 vcpuA = vcpu;
686 vcpuB = target_vcpu;
687 } else {
688 vcpuA = target_vcpu;
689 vcpuB = vcpu;
690 }
691
692 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
693 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
694 SINGLE_DEPTH_NESTING);
695 raw_spin_lock(&irq->irq_lock);
696
697 /*
698 * If the affinity has been preserved, move the
699 * interrupt around. Otherwise, it means things have
700 * changed while the interrupt was unlocked, and we
701 * need to replay this.
702 *
703 * In all cases, we cannot trust the list not to have
704 * changed, so we restart from the beginning.
705 */
706 if (target_vcpu == vgic_target_oracle(irq)) {
707 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
708
709 list_del(&irq->ap_list);
710 irq->vcpu = target_vcpu;
711 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
712 target_vcpu_needs_kick = true;
713 }
714
715 raw_spin_unlock(&irq->irq_lock);
716 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
717 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
718
719 if (target_vcpu_needs_kick) {
720 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
721 kvm_vcpu_kick(target_vcpu);
722 }
723
724 goto retry;
725 }
726
727 raw_spin_unlock(&vgic_cpu->ap_list_lock);
728 }
729
vgic_fold_lr_state(struct kvm_vcpu * vcpu)730 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
731 {
732 if (kvm_vgic_global_state.type == VGIC_V2)
733 vgic_v2_fold_lr_state(vcpu);
734 else
735 vgic_v3_fold_lr_state(vcpu);
736 }
737
738 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)739 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
740 struct vgic_irq *irq, int lr)
741 {
742 lockdep_assert_held(&irq->irq_lock);
743
744 if (kvm_vgic_global_state.type == VGIC_V2)
745 vgic_v2_populate_lr(vcpu, irq, lr);
746 else
747 vgic_v3_populate_lr(vcpu, irq, lr);
748 }
749
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)750 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
751 {
752 if (kvm_vgic_global_state.type == VGIC_V2)
753 vgic_v2_clear_lr(vcpu, lr);
754 else
755 vgic_v3_clear_lr(vcpu, lr);
756 }
757
vgic_set_underflow(struct kvm_vcpu * vcpu)758 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
759 {
760 if (kvm_vgic_global_state.type == VGIC_V2)
761 vgic_v2_set_underflow(vcpu);
762 else
763 vgic_v3_set_underflow(vcpu);
764 }
765
766 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)767 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
768 bool *multi_sgi)
769 {
770 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
771 struct vgic_irq *irq;
772 int count = 0;
773
774 *multi_sgi = false;
775
776 lockdep_assert_held(&vgic_cpu->ap_list_lock);
777
778 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
779 int w;
780
781 raw_spin_lock(&irq->irq_lock);
782 /* GICv2 SGIs can count for more than one... */
783 w = vgic_irq_get_lr_count(irq);
784 raw_spin_unlock(&irq->irq_lock);
785
786 count += w;
787 *multi_sgi |= (w > 1);
788 }
789 return count;
790 }
791
792 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)793 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
794 {
795 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
796 struct vgic_irq *irq;
797 int count;
798 bool multi_sgi;
799 u8 prio = 0xff;
800 int i = 0;
801
802 lockdep_assert_held(&vgic_cpu->ap_list_lock);
803
804 count = compute_ap_list_depth(vcpu, &multi_sgi);
805 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
806 vgic_sort_ap_list(vcpu);
807
808 count = 0;
809
810 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
811 raw_spin_lock(&irq->irq_lock);
812
813 /*
814 * If we have multi-SGIs in the pipeline, we need to
815 * guarantee that they are all seen before any IRQ of
816 * lower priority. In that case, we need to filter out
817 * these interrupts by exiting early. This is easy as
818 * the AP list has been sorted already.
819 */
820 if (multi_sgi && irq->priority > prio) {
821 _raw_spin_unlock(&irq->irq_lock);
822 break;
823 }
824
825 if (likely(vgic_target_oracle(irq) == vcpu)) {
826 vgic_populate_lr(vcpu, irq, count++);
827
828 if (irq->source)
829 prio = irq->priority;
830 }
831
832 raw_spin_unlock(&irq->irq_lock);
833
834 if (count == kvm_vgic_global_state.nr_lr) {
835 if (!list_is_last(&irq->ap_list,
836 &vgic_cpu->ap_list_head))
837 vgic_set_underflow(vcpu);
838 break;
839 }
840 }
841
842 /* Nuke remaining LRs */
843 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
844 vgic_clear_lr(vcpu, i);
845
846 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
847 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
848 else
849 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
850 }
851
can_access_vgic_from_kernel(void)852 static inline bool can_access_vgic_from_kernel(void)
853 {
854 /*
855 * GICv2 can always be accessed from the kernel because it is
856 * memory-mapped, and VHE systems can access GICv3 EL2 system
857 * registers.
858 */
859 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
860 }
861
vgic_save_state(struct kvm_vcpu * vcpu)862 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
863 {
864 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
865 vgic_v2_save_state(vcpu);
866 else
867 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
868 }
869
870 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)871 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
872 {
873 int used_lrs;
874
875 /* An empty ap_list_head implies used_lrs == 0 */
876 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
877 return;
878
879 if (can_access_vgic_from_kernel())
880 vgic_save_state(vcpu);
881
882 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
883 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
884 else
885 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
886
887 if (used_lrs)
888 vgic_fold_lr_state(vcpu);
889 vgic_prune_ap_list(vcpu);
890 }
891
vgic_restore_state(struct kvm_vcpu * vcpu)892 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
893 {
894 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
895 vgic_v2_restore_state(vcpu);
896 else
897 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
898 }
899
900 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)901 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
902 {
903 /*
904 * If there are no virtual interrupts active or pending for this
905 * VCPU, then there is no work to do and we can bail out without
906 * taking any lock. There is a potential race with someone injecting
907 * interrupts to the VCPU, but it is a benign race as the VCPU will
908 * either observe the new interrupt before or after doing this check,
909 * and introducing additional synchronization mechanism doesn't change
910 * this.
911 *
912 * Note that we still need to go through the whole thing if anything
913 * can be directly injected (GICv4).
914 */
915 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
916 !vgic_supports_direct_msis(vcpu->kvm))
917 return;
918
919 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
920
921 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
922 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
923 vgic_flush_lr_state(vcpu);
924 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
925 }
926
927 if (can_access_vgic_from_kernel())
928 vgic_restore_state(vcpu);
929
930 if (vgic_supports_direct_msis(vcpu->kvm))
931 vgic_v4_commit(vcpu);
932 }
933
kvm_vgic_load(struct kvm_vcpu * vcpu)934 void kvm_vgic_load(struct kvm_vcpu *vcpu)
935 {
936 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
937 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
938 __vgic_v3_activate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
939 return;
940 }
941
942 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
943 vgic_v2_load(vcpu);
944 else
945 vgic_v3_load(vcpu);
946 }
947
kvm_vgic_put(struct kvm_vcpu * vcpu)948 void kvm_vgic_put(struct kvm_vcpu *vcpu)
949 {
950 if (unlikely(!irqchip_in_kernel(vcpu->kvm) || !vgic_initialized(vcpu->kvm))) {
951 if (has_vhe() && static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
952 __vgic_v3_deactivate_traps(&vcpu->arch.vgic_cpu.vgic_v3);
953 return;
954 }
955
956 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
957 vgic_v2_put(vcpu);
958 else
959 vgic_v3_put(vcpu);
960 }
961
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)962 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
963 {
964 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
965 struct vgic_irq *irq;
966 bool pending = false;
967 unsigned long flags;
968 struct vgic_vmcr vmcr;
969
970 if (!vcpu->kvm->arch.vgic.enabled)
971 return false;
972
973 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
974 return true;
975
976 vgic_get_vmcr(vcpu, &vmcr);
977
978 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
979
980 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
981 raw_spin_lock(&irq->irq_lock);
982 pending = irq_is_pending(irq) && irq->enabled &&
983 !irq->active &&
984 irq->priority < vmcr.pmr;
985 raw_spin_unlock(&irq->irq_lock);
986
987 if (pending)
988 break;
989 }
990
991 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
992
993 return pending;
994 }
995
vgic_kick_vcpus(struct kvm * kvm)996 void vgic_kick_vcpus(struct kvm *kvm)
997 {
998 struct kvm_vcpu *vcpu;
999 unsigned long c;
1000
1001 /*
1002 * We've injected an interrupt, time to find out who deserves
1003 * a good kick...
1004 */
1005 kvm_for_each_vcpu(c, vcpu, kvm) {
1006 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
1007 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1008 kvm_vcpu_kick(vcpu);
1009 }
1010 }
1011 }
1012
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)1013 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
1014 {
1015 struct vgic_irq *irq;
1016 bool map_is_active;
1017 unsigned long flags;
1018
1019 if (!vgic_initialized(vcpu->kvm))
1020 return false;
1021
1022 irq = vgic_get_vcpu_irq(vcpu, vintid);
1023 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1024 map_is_active = irq->hw && irq->active;
1025 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1026 vgic_put_irq(vcpu->kvm, irq);
1027
1028 return map_is_active;
1029 }
1030
1031 /*
1032 * Level-triggered mapped IRQs are special because we only observe rising
1033 * edges as input to the VGIC.
1034 *
1035 * If the guest never acked the interrupt we have to sample the physical
1036 * line and set the line level, because the device state could have changed
1037 * or we simply need to process the still pending interrupt later.
1038 *
1039 * We could also have entered the guest with the interrupt active+pending.
1040 * On the next exit, we need to re-evaluate the pending state, as it could
1041 * otherwise result in a spurious interrupt by injecting a now potentially
1042 * stale pending state.
1043 *
1044 * If this causes us to lower the level, we have to also clear the physical
1045 * active state, since we will otherwise never be told when the interrupt
1046 * becomes asserted again.
1047 *
1048 * Another case is when the interrupt requires a helping hand on
1049 * deactivation (no HW deactivation, for example).
1050 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1051 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1052 bool lr_deactivated, bool lr_pending)
1053 {
1054 if (vgic_irq_is_mapped_level(irq)) {
1055 bool resample = false;
1056
1057 if (unlikely(vgic_irq_needs_resampling(irq))) {
1058 resample = !(irq->active || irq->pending_latch);
1059 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1060 irq->line_level = vgic_get_phys_line_level(irq);
1061 resample = !irq->line_level;
1062 }
1063
1064 if (resample)
1065 vgic_irq_set_phys_active(irq, false);
1066 }
1067 }
1068