1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kvm.h> 7 #include <linux/kvm_host.h> 8 #include <kvm/arm_vgic.h> 9 #include <asm/kvm_hyp.h> 10 #include <asm/kvm_mmu.h> 11 #include <asm/kvm_asm.h> 12 13 #include "vgic.h" 14 15 static bool group0_trap; 16 static bool group1_trap; 17 static bool common_trap; 18 static bool dir_trap; 19 static bool gicv4_enable; 20 21 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 22 { 23 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 24 25 cpuif->vgic_hcr |= ICH_HCR_UIE; 26 } 27 28 static bool lr_signals_eoi_mi(u64 lr_val) 29 { 30 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 31 !(lr_val & ICH_LR_HW); 32 } 33 34 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 35 { 36 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 37 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 38 u32 model = vcpu->kvm->arch.vgic.vgic_model; 39 int lr; 40 41 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 42 43 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 44 45 for (lr = 0; lr < cpuif->used_lrs; lr++) { 46 u64 val = cpuif->vgic_lr[lr]; 47 u32 intid, cpuid; 48 struct vgic_irq *irq; 49 bool is_v2_sgi = false; 50 bool deactivated; 51 52 cpuid = val & GICH_LR_PHYSID_CPUID; 53 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 54 55 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 56 intid = val & ICH_LR_VIRTUAL_ID_MASK; 57 } else { 58 intid = val & GICH_LR_VIRTUALID; 59 is_v2_sgi = vgic_irq_is_sgi(intid); 60 } 61 62 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 63 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 64 kvm_notify_acked_irq(vcpu->kvm, 0, 65 intid - VGIC_NR_PRIVATE_IRQS); 66 67 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 68 if (!irq) /* An LPI could have been unmapped. */ 69 continue; 70 71 raw_spin_lock(&irq->irq_lock); 72 73 /* Always preserve the active bit, note deactivation */ 74 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 75 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 76 77 if (irq->active && is_v2_sgi) 78 irq->active_source = cpuid; 79 80 /* Edge is the only case where we preserve the pending bit */ 81 if (irq->config == VGIC_CONFIG_EDGE && 82 (val & ICH_LR_PENDING_BIT)) { 83 irq->pending_latch = true; 84 85 if (is_v2_sgi) 86 irq->source |= (1 << cpuid); 87 } 88 89 /* 90 * Clear soft pending state when level irqs have been acked. 91 */ 92 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 93 irq->pending_latch = false; 94 95 /* Handle resampling for mapped interrupts if required */ 96 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 97 98 raw_spin_unlock(&irq->irq_lock); 99 vgic_put_irq(vcpu->kvm, irq); 100 } 101 102 cpuif->used_lrs = 0; 103 } 104 105 /* Requires the irq to be locked already */ 106 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 107 { 108 u32 model = vcpu->kvm->arch.vgic.vgic_model; 109 u64 val = irq->intid; 110 bool allow_pending = true, is_v2_sgi; 111 112 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 113 model == KVM_DEV_TYPE_ARM_VGIC_V2); 114 115 if (irq->active) { 116 val |= ICH_LR_ACTIVE_BIT; 117 if (is_v2_sgi) 118 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 119 if (vgic_irq_is_multi_sgi(irq)) { 120 allow_pending = false; 121 val |= ICH_LR_EOI; 122 } 123 } 124 125 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 126 val |= ICH_LR_HW; 127 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 128 /* 129 * Never set pending+active on a HW interrupt, as the 130 * pending state is kept at the physical distributor 131 * level. 132 */ 133 if (irq->active) 134 allow_pending = false; 135 } else { 136 if (irq->config == VGIC_CONFIG_LEVEL) { 137 val |= ICH_LR_EOI; 138 139 /* 140 * Software resampling doesn't work very well 141 * if we allow P+A, so let's not do that. 142 */ 143 if (irq->active) 144 allow_pending = false; 145 } 146 } 147 148 if (allow_pending && irq_is_pending(irq)) { 149 val |= ICH_LR_PENDING_BIT; 150 151 if (irq->config == VGIC_CONFIG_EDGE) 152 irq->pending_latch = false; 153 154 if (vgic_irq_is_sgi(irq->intid) && 155 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 156 u32 src = ffs(irq->source); 157 158 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 159 irq->intid)) 160 return; 161 162 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 163 irq->source &= ~(1 << (src - 1)); 164 if (irq->source) { 165 irq->pending_latch = true; 166 val |= ICH_LR_EOI; 167 } 168 } 169 } 170 171 /* 172 * Level-triggered mapped IRQs are special because we only observe 173 * rising edges as input to the VGIC. We therefore lower the line 174 * level here, so that we can take new virtual IRQs. See 175 * vgic_v3_fold_lr_state for more info. 176 */ 177 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 178 irq->line_level = false; 179 180 if (irq->group) 181 val |= ICH_LR_GROUP; 182 183 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 184 185 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 186 } 187 188 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 189 { 190 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 191 } 192 193 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 194 { 195 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 196 u32 model = vcpu->kvm->arch.vgic.vgic_model; 197 u32 vmcr; 198 199 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 200 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 201 ICH_VMCR_ACK_CTL_MASK; 202 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 203 ICH_VMCR_FIQ_EN_MASK; 204 } else { 205 /* 206 * When emulating GICv3 on GICv3 with SRE=1 on the 207 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 208 */ 209 vmcr = ICH_VMCR_FIQ_EN_MASK; 210 } 211 212 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 213 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 214 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 215 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 216 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 217 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 218 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 219 220 cpu_if->vgic_vmcr = vmcr; 221 } 222 223 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 224 { 225 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 226 u32 model = vcpu->kvm->arch.vgic.vgic_model; 227 u32 vmcr; 228 229 vmcr = cpu_if->vgic_vmcr; 230 231 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 232 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 233 ICH_VMCR_ACK_CTL_SHIFT; 234 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 235 ICH_VMCR_FIQ_EN_SHIFT; 236 } else { 237 /* 238 * When emulating GICv3 on GICv3 with SRE=1 on the 239 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 240 */ 241 vmcrp->fiqen = 1; 242 vmcrp->ackctl = 0; 243 } 244 245 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 246 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 247 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 248 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 249 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 250 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 251 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 252 } 253 254 #define INITIAL_PENDBASER_VALUE \ 255 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 256 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 257 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 258 259 void vgic_v3_enable(struct kvm_vcpu *vcpu) 260 { 261 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 262 263 /* 264 * By forcing VMCR to zero, the GIC will restore the binary 265 * points to their reset values. Anything else resets to zero 266 * anyway. 267 */ 268 vgic_v3->vgic_vmcr = 0; 269 270 /* 271 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 272 * way, so we force SRE to 1 to demonstrate this to the guest. 273 * Also, we don't support any form of IRQ/FIQ bypass. 274 * This goes with the spec allowing the value to be RAO/WI. 275 */ 276 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 277 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 278 ICC_SRE_EL1_DFB | 279 ICC_SRE_EL1_SRE); 280 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 281 } else { 282 vgic_v3->vgic_sre = 0; 283 } 284 285 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 286 ICH_VTR_ID_BITS_MASK) >> 287 ICH_VTR_ID_BITS_SHIFT; 288 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 289 ICH_VTR_PRI_BITS_MASK) >> 290 ICH_VTR_PRI_BITS_SHIFT) + 1; 291 292 /* Get the show on the road... */ 293 vgic_v3->vgic_hcr = ICH_HCR_EN; 294 if (group0_trap) 295 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 296 if (group1_trap) 297 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 298 if (common_trap) 299 vgic_v3->vgic_hcr |= ICH_HCR_TC; 300 if (dir_trap) 301 vgic_v3->vgic_hcr |= ICH_HCR_TDIR; 302 } 303 304 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 305 { 306 struct kvm_vcpu *vcpu; 307 int byte_offset, bit_nr; 308 gpa_t pendbase, ptr; 309 bool status; 310 u8 val; 311 int ret; 312 unsigned long flags; 313 314 retry: 315 vcpu = irq->target_vcpu; 316 if (!vcpu) 317 return 0; 318 319 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 320 321 byte_offset = irq->intid / BITS_PER_BYTE; 322 bit_nr = irq->intid % BITS_PER_BYTE; 323 ptr = pendbase + byte_offset; 324 325 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 326 if (ret) 327 return ret; 328 329 status = val & (1 << bit_nr); 330 331 raw_spin_lock_irqsave(&irq->irq_lock, flags); 332 if (irq->target_vcpu != vcpu) { 333 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 334 goto retry; 335 } 336 irq->pending_latch = status; 337 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 338 339 if (status) { 340 /* clear consumed data */ 341 val &= ~(1 << bit_nr); 342 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 343 if (ret) 344 return ret; 345 } 346 return 0; 347 } 348 349 /* 350 * The deactivation of the doorbell interrupt will trigger the 351 * unmapping of the associated vPE. 352 */ 353 static void unmap_all_vpes(struct kvm *kvm) 354 { 355 struct vgic_dist *dist = &kvm->arch.vgic; 356 int i; 357 358 for (i = 0; i < dist->its_vm.nr_vpes; i++) 359 free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); 360 } 361 362 static void map_all_vpes(struct kvm *kvm) 363 { 364 struct vgic_dist *dist = &kvm->arch.vgic; 365 int i; 366 367 for (i = 0; i < dist->its_vm.nr_vpes; i++) 368 WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), 369 dist->its_vm.vpes[i]->irq)); 370 } 371 372 /** 373 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 374 * kvm lock and all vcpu lock must be held 375 */ 376 int vgic_v3_save_pending_tables(struct kvm *kvm) 377 { 378 struct vgic_dist *dist = &kvm->arch.vgic; 379 struct vgic_irq *irq; 380 gpa_t last_ptr = ~(gpa_t)0; 381 bool vlpi_avail = false; 382 int ret = 0; 383 u8 val; 384 385 if (unlikely(!vgic_initialized(kvm))) 386 return -ENXIO; 387 388 /* 389 * A preparation for getting any VLPI states. 390 * The above vgic initialized check also ensures that the allocation 391 * and enabling of the doorbells have already been done. 392 */ 393 if (kvm_vgic_global_state.has_gicv4_1) { 394 unmap_all_vpes(kvm); 395 vlpi_avail = true; 396 } 397 398 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 399 int byte_offset, bit_nr; 400 struct kvm_vcpu *vcpu; 401 gpa_t pendbase, ptr; 402 bool is_pending; 403 bool stored; 404 405 vcpu = irq->target_vcpu; 406 if (!vcpu) 407 continue; 408 409 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 410 411 byte_offset = irq->intid / BITS_PER_BYTE; 412 bit_nr = irq->intid % BITS_PER_BYTE; 413 ptr = pendbase + byte_offset; 414 415 if (ptr != last_ptr) { 416 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 417 if (ret) 418 goto out; 419 last_ptr = ptr; 420 } 421 422 stored = val & (1U << bit_nr); 423 424 is_pending = irq->pending_latch; 425 426 if (irq->hw && vlpi_avail) 427 vgic_v4_get_vlpi_state(irq, &is_pending); 428 429 if (stored == is_pending) 430 continue; 431 432 if (is_pending) 433 val |= 1 << bit_nr; 434 else 435 val &= ~(1 << bit_nr); 436 437 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 438 if (ret) 439 goto out; 440 } 441 442 out: 443 if (vlpi_avail) 444 map_all_vpes(kvm); 445 446 return ret; 447 } 448 449 /** 450 * vgic_v3_rdist_overlap - check if a region overlaps with any 451 * existing redistributor region 452 * 453 * @kvm: kvm handle 454 * @base: base of the region 455 * @size: size of region 456 * 457 * Return: true if there is an overlap 458 */ 459 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 460 { 461 struct vgic_dist *d = &kvm->arch.vgic; 462 struct vgic_redist_region *rdreg; 463 464 list_for_each_entry(rdreg, &d->rd_regions, list) { 465 if ((base + size > rdreg->base) && 466 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 467 return true; 468 } 469 return false; 470 } 471 472 /* 473 * Check for overlapping regions and for regions crossing the end of memory 474 * for base addresses which have already been set. 475 */ 476 bool vgic_v3_check_base(struct kvm *kvm) 477 { 478 struct vgic_dist *d = &kvm->arch.vgic; 479 struct vgic_redist_region *rdreg; 480 481 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 482 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 483 return false; 484 485 list_for_each_entry(rdreg, &d->rd_regions, list) { 486 size_t sz = vgic_v3_rd_region_size(kvm, rdreg); 487 488 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, 489 rdreg->base, SZ_64K, sz)) 490 return false; 491 } 492 493 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 494 return true; 495 496 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 497 KVM_VGIC_V3_DIST_SIZE); 498 } 499 500 /** 501 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 502 * which has free space to put a new rdist region. 503 * 504 * @rd_regions: redistributor region list head 505 * 506 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 507 * Stride between redistributors is 0 and regions are filled in the index order. 508 * 509 * Return: the redist region handle, if any, that has space to map a new rdist 510 * region. 511 */ 512 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 513 { 514 struct vgic_redist_region *rdreg; 515 516 list_for_each_entry(rdreg, rd_regions, list) { 517 if (!vgic_v3_redist_region_full(rdreg)) 518 return rdreg; 519 } 520 return NULL; 521 } 522 523 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 524 u32 index) 525 { 526 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 527 struct vgic_redist_region *rdreg; 528 529 list_for_each_entry(rdreg, rd_regions, list) { 530 if (rdreg->index == index) 531 return rdreg; 532 } 533 return NULL; 534 } 535 536 537 int vgic_v3_map_resources(struct kvm *kvm) 538 { 539 struct vgic_dist *dist = &kvm->arch.vgic; 540 struct kvm_vcpu *vcpu; 541 int ret = 0; 542 unsigned long c; 543 544 kvm_for_each_vcpu(c, vcpu, kvm) { 545 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 546 547 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 548 kvm_debug("vcpu %ld redistributor base not set\n", c); 549 return -ENXIO; 550 } 551 } 552 553 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 554 kvm_debug("Need to set vgic distributor addresses first\n"); 555 return -ENXIO; 556 } 557 558 if (!vgic_v3_check_base(kvm)) { 559 kvm_debug("VGIC redist and dist frames overlap\n"); 560 return -EINVAL; 561 } 562 563 /* 564 * For a VGICv3 we require the userland to explicitly initialize 565 * the VGIC before we need to use it. 566 */ 567 if (!vgic_initialized(kvm)) { 568 return -EBUSY; 569 } 570 571 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); 572 if (ret) { 573 kvm_err("Unable to register VGICv3 dist MMIO regions\n"); 574 return ret; 575 } 576 577 if (kvm_vgic_global_state.has_gicv4_1) 578 vgic_v4_configure_vsgis(kvm); 579 580 return 0; 581 } 582 583 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 584 585 static int __init early_group0_trap_cfg(char *buf) 586 { 587 return strtobool(buf, &group0_trap); 588 } 589 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 590 591 static int __init early_group1_trap_cfg(char *buf) 592 { 593 return strtobool(buf, &group1_trap); 594 } 595 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 596 597 static int __init early_common_trap_cfg(char *buf) 598 { 599 return strtobool(buf, &common_trap); 600 } 601 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 602 603 static int __init early_gicv4_enable(char *buf) 604 { 605 return strtobool(buf, &gicv4_enable); 606 } 607 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 608 609 static const struct midr_range broken_seis[] = { 610 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), 611 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), 612 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), 613 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), 614 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), 615 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), 616 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), 617 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), 618 {}, 619 }; 620 621 static bool vgic_v3_broken_seis(void) 622 { 623 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && 624 is_midr_in_range_list(read_cpuid_id(), broken_seis)); 625 } 626 627 /** 628 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 629 * @info: pointer to the GIC description 630 * 631 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 632 * otherwise 633 */ 634 int vgic_v3_probe(const struct gic_kvm_info *info) 635 { 636 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 637 bool has_v2; 638 int ret; 639 640 has_v2 = ich_vtr_el2 >> 63; 641 ich_vtr_el2 = (u32)ich_vtr_el2; 642 643 /* 644 * The ListRegs field is 5 bits, but there is an architectural 645 * maximum of 16 list registers. Just ignore bit 4... 646 */ 647 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 648 kvm_vgic_global_state.can_emulate_gicv2 = false; 649 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 650 651 /* GICv4 support? */ 652 if (info->has_v4) { 653 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 654 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 655 kvm_info("GICv4%s support %sabled\n", 656 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 657 gicv4_enable ? "en" : "dis"); 658 } 659 660 kvm_vgic_global_state.vcpu_base = 0; 661 662 if (!info->vcpu.start) { 663 kvm_info("GICv3: no GICV resource entry\n"); 664 } else if (!has_v2) { 665 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 666 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 667 pr_warn("GICV physical address 0x%llx not page aligned\n", 668 (unsigned long long)info->vcpu.start); 669 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { 670 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 671 kvm_vgic_global_state.can_emulate_gicv2 = true; 672 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 673 if (ret) { 674 kvm_err("Cannot register GICv2 KVM device.\n"); 675 return ret; 676 } 677 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 678 } 679 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 680 if (ret) { 681 kvm_err("Cannot register GICv3 KVM device.\n"); 682 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 683 return ret; 684 } 685 686 if (kvm_vgic_global_state.vcpu_base == 0) 687 kvm_info("disabling GICv2 emulation\n"); 688 689 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 690 group0_trap = true; 691 group1_trap = true; 692 } 693 694 if (vgic_v3_broken_seis()) { 695 kvm_info("GICv3 with broken locally generated SEI\n"); 696 697 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; 698 group0_trap = true; 699 group1_trap = true; 700 if (ich_vtr_el2 & ICH_VTR_TDS_MASK) 701 dir_trap = true; 702 else 703 common_trap = true; 704 } 705 706 if (group0_trap || group1_trap || common_trap | dir_trap) { 707 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", 708 group0_trap ? "G0" : "", 709 group1_trap ? "G1" : "", 710 common_trap ? "C" : "", 711 dir_trap ? "D" : ""); 712 static_branch_enable(&vgic_v3_cpuif_trap); 713 } 714 715 kvm_vgic_global_state.vctrl_base = NULL; 716 kvm_vgic_global_state.type = VGIC_V3; 717 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 718 719 return 0; 720 } 721 722 void vgic_v3_load(struct kvm_vcpu *vcpu) 723 { 724 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 725 726 /* 727 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen 728 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the 729 * VMCR_EL2 save/restore in the world switch. 730 */ 731 if (likely(cpu_if->vgic_sre)) 732 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); 733 734 kvm_call_hyp(__vgic_v3_restore_aprs, cpu_if); 735 736 if (has_vhe()) 737 __vgic_v3_activate_traps(cpu_if); 738 739 WARN_ON(vgic_v4_load(vcpu)); 740 } 741 742 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu) 743 { 744 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 745 746 if (likely(cpu_if->vgic_sre)) 747 cpu_if->vgic_vmcr = kvm_call_hyp_ret(__vgic_v3_read_vmcr); 748 } 749 750 void vgic_v3_put(struct kvm_vcpu *vcpu) 751 { 752 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 753 754 WARN_ON(vgic_v4_put(vcpu, false)); 755 756 vgic_v3_vmcr_sync(vcpu); 757 758 kvm_call_hyp(__vgic_v3_save_aprs, cpu_if); 759 760 if (has_vhe()) 761 __vgic_v3_deactivate_traps(cpu_if); 762 } 763