1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kstrtox.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <kvm/arm_vgic.h> 10 #include <asm/kvm_hyp.h> 11 #include <asm/kvm_mmu.h> 12 #include <asm/kvm_asm.h> 13 14 #include "vgic.h" 15 16 static bool group0_trap; 17 static bool group1_trap; 18 static bool common_trap; 19 static bool dir_trap; 20 static bool gicv4_enable; 21 22 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 23 { 24 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 25 26 cpuif->vgic_hcr |= ICH_HCR_UIE; 27 } 28 29 static bool lr_signals_eoi_mi(u64 lr_val) 30 { 31 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 32 !(lr_val & ICH_LR_HW); 33 } 34 35 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 36 { 37 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 38 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 39 u32 model = vcpu->kvm->arch.vgic.vgic_model; 40 int lr; 41 42 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 43 44 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 45 46 for (lr = 0; lr < cpuif->used_lrs; lr++) { 47 u64 val = cpuif->vgic_lr[lr]; 48 u32 intid, cpuid; 49 struct vgic_irq *irq; 50 bool is_v2_sgi = false; 51 bool deactivated; 52 53 cpuid = val & GICH_LR_PHYSID_CPUID; 54 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 55 56 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 57 intid = val & ICH_LR_VIRTUAL_ID_MASK; 58 } else { 59 intid = val & GICH_LR_VIRTUALID; 60 is_v2_sgi = vgic_irq_is_sgi(intid); 61 } 62 63 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 64 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 65 kvm_notify_acked_irq(vcpu->kvm, 0, 66 intid - VGIC_NR_PRIVATE_IRQS); 67 68 irq = vgic_get_vcpu_irq(vcpu, intid); 69 if (!irq) /* An LPI could have been unmapped. */ 70 continue; 71 72 raw_spin_lock(&irq->irq_lock); 73 74 /* Always preserve the active bit, note deactivation */ 75 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 76 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 77 78 if (irq->active && is_v2_sgi) 79 irq->active_source = cpuid; 80 81 /* Edge is the only case where we preserve the pending bit */ 82 if (irq->config == VGIC_CONFIG_EDGE && 83 (val & ICH_LR_PENDING_BIT)) { 84 irq->pending_latch = true; 85 86 if (is_v2_sgi) 87 irq->source |= (1 << cpuid); 88 } 89 90 /* 91 * Clear soft pending state when level irqs have been acked. 92 */ 93 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 94 irq->pending_latch = false; 95 96 /* Handle resampling for mapped interrupts if required */ 97 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 98 99 raw_spin_unlock(&irq->irq_lock); 100 vgic_put_irq(vcpu->kvm, irq); 101 } 102 103 cpuif->used_lrs = 0; 104 } 105 106 /* Requires the irq to be locked already */ 107 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 108 { 109 u32 model = vcpu->kvm->arch.vgic.vgic_model; 110 u64 val = irq->intid; 111 bool allow_pending = true, is_v2_sgi; 112 113 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 114 model == KVM_DEV_TYPE_ARM_VGIC_V2); 115 116 if (irq->active) { 117 val |= ICH_LR_ACTIVE_BIT; 118 if (is_v2_sgi) 119 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 120 if (vgic_irq_is_multi_sgi(irq)) { 121 allow_pending = false; 122 val |= ICH_LR_EOI; 123 } 124 } 125 126 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 127 val |= ICH_LR_HW; 128 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 129 /* 130 * Never set pending+active on a HW interrupt, as the 131 * pending state is kept at the physical distributor 132 * level. 133 */ 134 if (irq->active) 135 allow_pending = false; 136 } else { 137 if (irq->config == VGIC_CONFIG_LEVEL) { 138 val |= ICH_LR_EOI; 139 140 /* 141 * Software resampling doesn't work very well 142 * if we allow P+A, so let's not do that. 143 */ 144 if (irq->active) 145 allow_pending = false; 146 } 147 } 148 149 if (allow_pending && irq_is_pending(irq)) { 150 val |= ICH_LR_PENDING_BIT; 151 152 if (irq->config == VGIC_CONFIG_EDGE) 153 irq->pending_latch = false; 154 155 if (vgic_irq_is_sgi(irq->intid) && 156 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 157 u32 src = ffs(irq->source); 158 159 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 160 irq->intid)) 161 return; 162 163 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 164 irq->source &= ~(1 << (src - 1)); 165 if (irq->source) { 166 irq->pending_latch = true; 167 val |= ICH_LR_EOI; 168 } 169 } 170 } 171 172 /* 173 * Level-triggered mapped IRQs are special because we only observe 174 * rising edges as input to the VGIC. We therefore lower the line 175 * level here, so that we can take new virtual IRQs. See 176 * vgic_v3_fold_lr_state for more info. 177 */ 178 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 179 irq->line_level = false; 180 181 if (irq->group) 182 val |= ICH_LR_GROUP; 183 184 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 185 186 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 187 } 188 189 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 190 { 191 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 192 } 193 194 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 195 { 196 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 197 u32 model = vcpu->kvm->arch.vgic.vgic_model; 198 u32 vmcr; 199 200 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 201 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 202 ICH_VMCR_ACK_CTL_MASK; 203 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 204 ICH_VMCR_FIQ_EN_MASK; 205 } else { 206 /* 207 * When emulating GICv3 on GICv3 with SRE=1 on the 208 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 209 */ 210 vmcr = ICH_VMCR_FIQ_EN_MASK; 211 } 212 213 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 214 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 215 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 216 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 217 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 218 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 219 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 220 221 cpu_if->vgic_vmcr = vmcr; 222 } 223 224 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 225 { 226 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 227 u32 model = vcpu->kvm->arch.vgic.vgic_model; 228 u32 vmcr; 229 230 vmcr = cpu_if->vgic_vmcr; 231 232 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 233 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 234 ICH_VMCR_ACK_CTL_SHIFT; 235 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 236 ICH_VMCR_FIQ_EN_SHIFT; 237 } else { 238 /* 239 * When emulating GICv3 on GICv3 with SRE=1 on the 240 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 241 */ 242 vmcrp->fiqen = 1; 243 vmcrp->ackctl = 0; 244 } 245 246 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 247 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 248 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 249 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 250 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 251 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 252 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 253 } 254 255 #define INITIAL_PENDBASER_VALUE \ 256 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 257 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 258 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 259 260 void vgic_v3_enable(struct kvm_vcpu *vcpu) 261 { 262 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 263 264 /* 265 * By forcing VMCR to zero, the GIC will restore the binary 266 * points to their reset values. Anything else resets to zero 267 * anyway. 268 */ 269 vgic_v3->vgic_vmcr = 0; 270 271 /* 272 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 273 * way, so we force SRE to 1 to demonstrate this to the guest. 274 * Also, we don't support any form of IRQ/FIQ bypass. 275 * This goes with the spec allowing the value to be RAO/WI. 276 */ 277 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 278 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 279 ICC_SRE_EL1_DFB | 280 ICC_SRE_EL1_SRE); 281 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 282 } else { 283 vgic_v3->vgic_sre = 0; 284 } 285 286 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 287 ICH_VTR_ID_BITS_MASK) >> 288 ICH_VTR_ID_BITS_SHIFT; 289 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 290 ICH_VTR_PRI_BITS_MASK) >> 291 ICH_VTR_PRI_BITS_SHIFT) + 1; 292 293 /* Get the show on the road... */ 294 vgic_v3->vgic_hcr = ICH_HCR_EN; 295 } 296 297 void vcpu_set_ich_hcr(struct kvm_vcpu *vcpu) 298 { 299 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 300 301 /* Hide GICv3 sysreg if necessary */ 302 if (!kvm_has_gicv3(vcpu->kvm)) { 303 vgic_v3->vgic_hcr |= ICH_HCR_TALL0 | ICH_HCR_TALL1 | ICH_HCR_TC; 304 return; 305 } 306 307 if (group0_trap) 308 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 309 if (group1_trap) 310 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 311 if (common_trap) 312 vgic_v3->vgic_hcr |= ICH_HCR_TC; 313 if (dir_trap) 314 vgic_v3->vgic_hcr |= ICH_HCR_TDIR; 315 } 316 317 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 318 { 319 struct kvm_vcpu *vcpu; 320 int byte_offset, bit_nr; 321 gpa_t pendbase, ptr; 322 bool status; 323 u8 val; 324 int ret; 325 unsigned long flags; 326 327 retry: 328 vcpu = irq->target_vcpu; 329 if (!vcpu) 330 return 0; 331 332 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 333 334 byte_offset = irq->intid / BITS_PER_BYTE; 335 bit_nr = irq->intid % BITS_PER_BYTE; 336 ptr = pendbase + byte_offset; 337 338 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 339 if (ret) 340 return ret; 341 342 status = val & (1 << bit_nr); 343 344 raw_spin_lock_irqsave(&irq->irq_lock, flags); 345 if (irq->target_vcpu != vcpu) { 346 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 347 goto retry; 348 } 349 irq->pending_latch = status; 350 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 351 352 if (status) { 353 /* clear consumed data */ 354 val &= ~(1 << bit_nr); 355 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 356 if (ret) 357 return ret; 358 } 359 return 0; 360 } 361 362 /* 363 * The deactivation of the doorbell interrupt will trigger the 364 * unmapping of the associated vPE. 365 */ 366 static void unmap_all_vpes(struct kvm *kvm) 367 { 368 struct vgic_dist *dist = &kvm->arch.vgic; 369 int i; 370 371 for (i = 0; i < dist->its_vm.nr_vpes; i++) 372 free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); 373 } 374 375 static void map_all_vpes(struct kvm *kvm) 376 { 377 struct vgic_dist *dist = &kvm->arch.vgic; 378 int i; 379 380 for (i = 0; i < dist->its_vm.nr_vpes; i++) 381 WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), 382 dist->its_vm.vpes[i]->irq)); 383 } 384 385 /* 386 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 387 * kvm lock and all vcpu lock must be held 388 */ 389 int vgic_v3_save_pending_tables(struct kvm *kvm) 390 { 391 struct vgic_dist *dist = &kvm->arch.vgic; 392 struct vgic_irq *irq; 393 gpa_t last_ptr = ~(gpa_t)0; 394 bool vlpi_avail = false; 395 unsigned long index; 396 int ret = 0; 397 u8 val; 398 399 if (unlikely(!vgic_initialized(kvm))) 400 return -ENXIO; 401 402 /* 403 * A preparation for getting any VLPI states. 404 * The above vgic initialized check also ensures that the allocation 405 * and enabling of the doorbells have already been done. 406 */ 407 if (kvm_vgic_global_state.has_gicv4_1) { 408 unmap_all_vpes(kvm); 409 vlpi_avail = true; 410 } 411 412 xa_for_each(&dist->lpi_xa, index, irq) { 413 int byte_offset, bit_nr; 414 struct kvm_vcpu *vcpu; 415 gpa_t pendbase, ptr; 416 bool is_pending; 417 bool stored; 418 419 vcpu = irq->target_vcpu; 420 if (!vcpu) 421 continue; 422 423 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 424 425 byte_offset = irq->intid / BITS_PER_BYTE; 426 bit_nr = irq->intid % BITS_PER_BYTE; 427 ptr = pendbase + byte_offset; 428 429 if (ptr != last_ptr) { 430 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 431 if (ret) 432 goto out; 433 last_ptr = ptr; 434 } 435 436 stored = val & (1U << bit_nr); 437 438 is_pending = irq->pending_latch; 439 440 if (irq->hw && vlpi_avail) 441 vgic_v4_get_vlpi_state(irq, &is_pending); 442 443 if (stored == is_pending) 444 continue; 445 446 if (is_pending) 447 val |= 1 << bit_nr; 448 else 449 val &= ~(1 << bit_nr); 450 451 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 452 if (ret) 453 goto out; 454 } 455 456 out: 457 if (vlpi_avail) 458 map_all_vpes(kvm); 459 460 return ret; 461 } 462 463 /** 464 * vgic_v3_rdist_overlap - check if a region overlaps with any 465 * existing redistributor region 466 * 467 * @kvm: kvm handle 468 * @base: base of the region 469 * @size: size of region 470 * 471 * Return: true if there is an overlap 472 */ 473 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 474 { 475 struct vgic_dist *d = &kvm->arch.vgic; 476 struct vgic_redist_region *rdreg; 477 478 list_for_each_entry(rdreg, &d->rd_regions, list) { 479 if ((base + size > rdreg->base) && 480 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 481 return true; 482 } 483 return false; 484 } 485 486 /* 487 * Check for overlapping regions and for regions crossing the end of memory 488 * for base addresses which have already been set. 489 */ 490 bool vgic_v3_check_base(struct kvm *kvm) 491 { 492 struct vgic_dist *d = &kvm->arch.vgic; 493 struct vgic_redist_region *rdreg; 494 495 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 496 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 497 return false; 498 499 list_for_each_entry(rdreg, &d->rd_regions, list) { 500 size_t sz = vgic_v3_rd_region_size(kvm, rdreg); 501 502 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, 503 rdreg->base, SZ_64K, sz)) 504 return false; 505 } 506 507 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 508 return true; 509 510 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 511 KVM_VGIC_V3_DIST_SIZE); 512 } 513 514 /** 515 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 516 * which has free space to put a new rdist region. 517 * 518 * @rd_regions: redistributor region list head 519 * 520 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 521 * Stride between redistributors is 0 and regions are filled in the index order. 522 * 523 * Return: the redist region handle, if any, that has space to map a new rdist 524 * region. 525 */ 526 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 527 { 528 struct vgic_redist_region *rdreg; 529 530 list_for_each_entry(rdreg, rd_regions, list) { 531 if (!vgic_v3_redist_region_full(rdreg)) 532 return rdreg; 533 } 534 return NULL; 535 } 536 537 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 538 u32 index) 539 { 540 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 541 struct vgic_redist_region *rdreg; 542 543 list_for_each_entry(rdreg, rd_regions, list) { 544 if (rdreg->index == index) 545 return rdreg; 546 } 547 return NULL; 548 } 549 550 551 int vgic_v3_map_resources(struct kvm *kvm) 552 { 553 struct vgic_dist *dist = &kvm->arch.vgic; 554 struct kvm_vcpu *vcpu; 555 unsigned long c; 556 557 kvm_for_each_vcpu(c, vcpu, kvm) { 558 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 559 560 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 561 kvm_debug("vcpu %ld redistributor base not set\n", c); 562 return -ENXIO; 563 } 564 } 565 566 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 567 kvm_debug("Need to set vgic distributor addresses first\n"); 568 return -ENXIO; 569 } 570 571 if (!vgic_v3_check_base(kvm)) { 572 kvm_debug("VGIC redist and dist frames overlap\n"); 573 return -EINVAL; 574 } 575 576 /* 577 * For a VGICv3 we require the userland to explicitly initialize 578 * the VGIC before we need to use it. 579 */ 580 if (!vgic_initialized(kvm)) { 581 return -EBUSY; 582 } 583 584 if (kvm_vgic_global_state.has_gicv4_1) 585 vgic_v4_configure_vsgis(kvm); 586 587 return 0; 588 } 589 590 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 591 592 static int __init early_group0_trap_cfg(char *buf) 593 { 594 return kstrtobool(buf, &group0_trap); 595 } 596 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 597 598 static int __init early_group1_trap_cfg(char *buf) 599 { 600 return kstrtobool(buf, &group1_trap); 601 } 602 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 603 604 static int __init early_common_trap_cfg(char *buf) 605 { 606 return kstrtobool(buf, &common_trap); 607 } 608 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 609 610 static int __init early_gicv4_enable(char *buf) 611 { 612 return kstrtobool(buf, &gicv4_enable); 613 } 614 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 615 616 static const struct midr_range broken_seis[] = { 617 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), 618 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), 619 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), 620 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), 621 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), 622 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), 623 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), 624 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), 625 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO), 626 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO), 627 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX), 628 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX), 629 {}, 630 }; 631 632 static bool vgic_v3_broken_seis(void) 633 { 634 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && 635 is_midr_in_range_list(read_cpuid_id(), broken_seis)); 636 } 637 638 /** 639 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 640 * @info: pointer to the GIC description 641 * 642 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 643 * otherwise 644 */ 645 int vgic_v3_probe(const struct gic_kvm_info *info) 646 { 647 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 648 bool has_v2; 649 int ret; 650 651 has_v2 = ich_vtr_el2 >> 63; 652 ich_vtr_el2 = (u32)ich_vtr_el2; 653 654 /* 655 * The ListRegs field is 5 bits, but there is an architectural 656 * maximum of 16 list registers. Just ignore bit 4... 657 */ 658 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 659 kvm_vgic_global_state.can_emulate_gicv2 = false; 660 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 661 662 /* GICv4 support? */ 663 if (info->has_v4) { 664 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 665 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 666 kvm_info("GICv4%s support %sabled\n", 667 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 668 gicv4_enable ? "en" : "dis"); 669 } 670 671 kvm_vgic_global_state.vcpu_base = 0; 672 673 if (!info->vcpu.start) { 674 kvm_info("GICv3: no GICV resource entry\n"); 675 } else if (!has_v2) { 676 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 677 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 678 pr_warn("GICV physical address 0x%llx not page aligned\n", 679 (unsigned long long)info->vcpu.start); 680 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { 681 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 682 kvm_vgic_global_state.can_emulate_gicv2 = true; 683 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 684 if (ret) { 685 kvm_err("Cannot register GICv2 KVM device.\n"); 686 return ret; 687 } 688 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 689 } 690 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 691 if (ret) { 692 kvm_err("Cannot register GICv3 KVM device.\n"); 693 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 694 return ret; 695 } 696 697 if (kvm_vgic_global_state.vcpu_base == 0) 698 kvm_info("disabling GICv2 emulation\n"); 699 700 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 701 group0_trap = true; 702 group1_trap = true; 703 } 704 705 if (vgic_v3_broken_seis()) { 706 kvm_info("GICv3 with broken locally generated SEI\n"); 707 708 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; 709 group0_trap = true; 710 group1_trap = true; 711 if (ich_vtr_el2 & ICH_VTR_TDS_MASK) 712 dir_trap = true; 713 else 714 common_trap = true; 715 } 716 717 if (group0_trap || group1_trap || common_trap | dir_trap) { 718 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", 719 group0_trap ? "G0" : "", 720 group1_trap ? "G1" : "", 721 common_trap ? "C" : "", 722 dir_trap ? "D" : ""); 723 static_branch_enable(&vgic_v3_cpuif_trap); 724 } 725 726 kvm_vgic_global_state.vctrl_base = NULL; 727 kvm_vgic_global_state.type = VGIC_V3; 728 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 729 730 return 0; 731 } 732 733 void vgic_v3_load(struct kvm_vcpu *vcpu) 734 { 735 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 736 737 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if); 738 739 if (has_vhe()) 740 __vgic_v3_activate_traps(cpu_if); 741 742 WARN_ON(vgic_v4_load(vcpu)); 743 } 744 745 void vgic_v3_put(struct kvm_vcpu *vcpu) 746 { 747 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 748 749 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if); 750 WARN_ON(vgic_v4_put(vcpu)); 751 752 if (has_vhe()) 753 __vgic_v3_deactivate_traps(cpu_if); 754 } 755