1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/irqchip/arm-gic-v3.h> 4 #include <linux/irq.h> 5 #include <linux/irqdomain.h> 6 #include <linux/kstrtox.h> 7 #include <linux/kvm.h> 8 #include <linux/kvm_host.h> 9 #include <kvm/arm_vgic.h> 10 #include <asm/kvm_hyp.h> 11 #include <asm/kvm_mmu.h> 12 #include <asm/kvm_asm.h> 13 14 #include "vgic.h" 15 16 static bool group0_trap; 17 static bool group1_trap; 18 static bool common_trap; 19 static bool dir_trap; 20 static bool gicv4_enable; 21 22 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) 23 { 24 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; 25 26 cpuif->vgic_hcr |= ICH_HCR_UIE; 27 } 28 29 static bool lr_signals_eoi_mi(u64 lr_val) 30 { 31 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && 32 !(lr_val & ICH_LR_HW); 33 } 34 35 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) 36 { 37 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 38 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; 39 u32 model = vcpu->kvm->arch.vgic.vgic_model; 40 int lr; 41 42 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); 43 44 cpuif->vgic_hcr &= ~ICH_HCR_UIE; 45 46 for (lr = 0; lr < cpuif->used_lrs; lr++) { 47 u64 val = cpuif->vgic_lr[lr]; 48 u32 intid, cpuid; 49 struct vgic_irq *irq; 50 bool is_v2_sgi = false; 51 bool deactivated; 52 53 cpuid = val & GICH_LR_PHYSID_CPUID; 54 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; 55 56 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { 57 intid = val & ICH_LR_VIRTUAL_ID_MASK; 58 } else { 59 intid = val & GICH_LR_VIRTUALID; 60 is_v2_sgi = vgic_irq_is_sgi(intid); 61 } 62 63 /* Notify fds when the guest EOI'ed a level-triggered IRQ */ 64 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) 65 kvm_notify_acked_irq(vcpu->kvm, 0, 66 intid - VGIC_NR_PRIVATE_IRQS); 67 68 irq = vgic_get_irq(vcpu->kvm, vcpu, intid); 69 if (!irq) /* An LPI could have been unmapped. */ 70 continue; 71 72 raw_spin_lock(&irq->irq_lock); 73 74 /* Always preserve the active bit, note deactivation */ 75 deactivated = irq->active && !(val & ICH_LR_ACTIVE_BIT); 76 irq->active = !!(val & ICH_LR_ACTIVE_BIT); 77 78 if (irq->active && is_v2_sgi) 79 irq->active_source = cpuid; 80 81 /* Edge is the only case where we preserve the pending bit */ 82 if (irq->config == VGIC_CONFIG_EDGE && 83 (val & ICH_LR_PENDING_BIT)) { 84 irq->pending_latch = true; 85 86 if (is_v2_sgi) 87 irq->source |= (1 << cpuid); 88 } 89 90 /* 91 * Clear soft pending state when level irqs have been acked. 92 */ 93 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) 94 irq->pending_latch = false; 95 96 /* Handle resampling for mapped interrupts if required */ 97 vgic_irq_handle_resampling(irq, deactivated, val & ICH_LR_PENDING_BIT); 98 99 raw_spin_unlock(&irq->irq_lock); 100 vgic_put_irq(vcpu->kvm, irq); 101 } 102 103 cpuif->used_lrs = 0; 104 } 105 106 /* Requires the irq to be locked already */ 107 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) 108 { 109 u32 model = vcpu->kvm->arch.vgic.vgic_model; 110 u64 val = irq->intid; 111 bool allow_pending = true, is_v2_sgi; 112 113 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && 114 model == KVM_DEV_TYPE_ARM_VGIC_V2); 115 116 if (irq->active) { 117 val |= ICH_LR_ACTIVE_BIT; 118 if (is_v2_sgi) 119 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; 120 if (vgic_irq_is_multi_sgi(irq)) { 121 allow_pending = false; 122 val |= ICH_LR_EOI; 123 } 124 } 125 126 if (irq->hw && !vgic_irq_needs_resampling(irq)) { 127 val |= ICH_LR_HW; 128 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; 129 /* 130 * Never set pending+active on a HW interrupt, as the 131 * pending state is kept at the physical distributor 132 * level. 133 */ 134 if (irq->active) 135 allow_pending = false; 136 } else { 137 if (irq->config == VGIC_CONFIG_LEVEL) { 138 val |= ICH_LR_EOI; 139 140 /* 141 * Software resampling doesn't work very well 142 * if we allow P+A, so let's not do that. 143 */ 144 if (irq->active) 145 allow_pending = false; 146 } 147 } 148 149 if (allow_pending && irq_is_pending(irq)) { 150 val |= ICH_LR_PENDING_BIT; 151 152 if (irq->config == VGIC_CONFIG_EDGE) 153 irq->pending_latch = false; 154 155 if (vgic_irq_is_sgi(irq->intid) && 156 model == KVM_DEV_TYPE_ARM_VGIC_V2) { 157 u32 src = ffs(irq->source); 158 159 if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n", 160 irq->intid)) 161 return; 162 163 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; 164 irq->source &= ~(1 << (src - 1)); 165 if (irq->source) { 166 irq->pending_latch = true; 167 val |= ICH_LR_EOI; 168 } 169 } 170 } 171 172 /* 173 * Level-triggered mapped IRQs are special because we only observe 174 * rising edges as input to the VGIC. We therefore lower the line 175 * level here, so that we can take new virtual IRQs. See 176 * vgic_v3_fold_lr_state for more info. 177 */ 178 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) 179 irq->line_level = false; 180 181 if (irq->group) 182 val |= ICH_LR_GROUP; 183 184 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; 185 186 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; 187 } 188 189 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) 190 { 191 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; 192 } 193 194 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 195 { 196 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 197 u32 model = vcpu->kvm->arch.vgic.vgic_model; 198 u32 vmcr; 199 200 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 201 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & 202 ICH_VMCR_ACK_CTL_MASK; 203 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & 204 ICH_VMCR_FIQ_EN_MASK; 205 } else { 206 /* 207 * When emulating GICv3 on GICv3 with SRE=1 on the 208 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 209 */ 210 vmcr = ICH_VMCR_FIQ_EN_MASK; 211 } 212 213 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; 214 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; 215 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; 216 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; 217 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; 218 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; 219 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; 220 221 cpu_if->vgic_vmcr = vmcr; 222 } 223 224 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) 225 { 226 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 227 u32 model = vcpu->kvm->arch.vgic.vgic_model; 228 u32 vmcr; 229 230 vmcr = cpu_if->vgic_vmcr; 231 232 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { 233 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> 234 ICH_VMCR_ACK_CTL_SHIFT; 235 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> 236 ICH_VMCR_FIQ_EN_SHIFT; 237 } else { 238 /* 239 * When emulating GICv3 on GICv3 with SRE=1 on the 240 * VFIQEn bit is RES1 and the VAckCtl bit is RES0. 241 */ 242 vmcrp->fiqen = 1; 243 vmcrp->ackctl = 0; 244 } 245 246 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; 247 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; 248 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; 249 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; 250 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; 251 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; 252 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; 253 } 254 255 #define INITIAL_PENDBASER_VALUE \ 256 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ 257 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ 258 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) 259 260 void vgic_v3_enable(struct kvm_vcpu *vcpu) 261 { 262 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; 263 264 /* 265 * By forcing VMCR to zero, the GIC will restore the binary 266 * points to their reset values. Anything else resets to zero 267 * anyway. 268 */ 269 vgic_v3->vgic_vmcr = 0; 270 271 /* 272 * If we are emulating a GICv3, we do it in an non-GICv2-compatible 273 * way, so we force SRE to 1 to demonstrate this to the guest. 274 * Also, we don't support any form of IRQ/FIQ bypass. 275 * This goes with the spec allowing the value to be RAO/WI. 276 */ 277 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 278 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | 279 ICC_SRE_EL1_DFB | 280 ICC_SRE_EL1_SRE); 281 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; 282 } else { 283 vgic_v3->vgic_sre = 0; 284 } 285 286 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & 287 ICH_VTR_ID_BITS_MASK) >> 288 ICH_VTR_ID_BITS_SHIFT; 289 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & 290 ICH_VTR_PRI_BITS_MASK) >> 291 ICH_VTR_PRI_BITS_SHIFT) + 1; 292 293 /* Get the show on the road... */ 294 vgic_v3->vgic_hcr = ICH_HCR_EN; 295 if (group0_trap) 296 vgic_v3->vgic_hcr |= ICH_HCR_TALL0; 297 if (group1_trap) 298 vgic_v3->vgic_hcr |= ICH_HCR_TALL1; 299 if (common_trap) 300 vgic_v3->vgic_hcr |= ICH_HCR_TC; 301 if (dir_trap) 302 vgic_v3->vgic_hcr |= ICH_HCR_TDIR; 303 } 304 305 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) 306 { 307 struct kvm_vcpu *vcpu; 308 int byte_offset, bit_nr; 309 gpa_t pendbase, ptr; 310 bool status; 311 u8 val; 312 int ret; 313 unsigned long flags; 314 315 retry: 316 vcpu = irq->target_vcpu; 317 if (!vcpu) 318 return 0; 319 320 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 321 322 byte_offset = irq->intid / BITS_PER_BYTE; 323 bit_nr = irq->intid % BITS_PER_BYTE; 324 ptr = pendbase + byte_offset; 325 326 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 327 if (ret) 328 return ret; 329 330 status = val & (1 << bit_nr); 331 332 raw_spin_lock_irqsave(&irq->irq_lock, flags); 333 if (irq->target_vcpu != vcpu) { 334 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 335 goto retry; 336 } 337 irq->pending_latch = status; 338 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 339 340 if (status) { 341 /* clear consumed data */ 342 val &= ~(1 << bit_nr); 343 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 344 if (ret) 345 return ret; 346 } 347 return 0; 348 } 349 350 /* 351 * The deactivation of the doorbell interrupt will trigger the 352 * unmapping of the associated vPE. 353 */ 354 static void unmap_all_vpes(struct kvm *kvm) 355 { 356 struct vgic_dist *dist = &kvm->arch.vgic; 357 int i; 358 359 for (i = 0; i < dist->its_vm.nr_vpes; i++) 360 free_irq(dist->its_vm.vpes[i]->irq, kvm_get_vcpu(kvm, i)); 361 } 362 363 static void map_all_vpes(struct kvm *kvm) 364 { 365 struct vgic_dist *dist = &kvm->arch.vgic; 366 int i; 367 368 for (i = 0; i < dist->its_vm.nr_vpes; i++) 369 WARN_ON(vgic_v4_request_vpe_irq(kvm_get_vcpu(kvm, i), 370 dist->its_vm.vpes[i]->irq)); 371 } 372 373 /* 374 * vgic_v3_save_pending_tables - Save the pending tables into guest RAM 375 * kvm lock and all vcpu lock must be held 376 */ 377 int vgic_v3_save_pending_tables(struct kvm *kvm) 378 { 379 struct vgic_dist *dist = &kvm->arch.vgic; 380 struct vgic_irq *irq; 381 gpa_t last_ptr = ~(gpa_t)0; 382 bool vlpi_avail = false; 383 unsigned long index; 384 int ret = 0; 385 u8 val; 386 387 if (unlikely(!vgic_initialized(kvm))) 388 return -ENXIO; 389 390 /* 391 * A preparation for getting any VLPI states. 392 * The above vgic initialized check also ensures that the allocation 393 * and enabling of the doorbells have already been done. 394 */ 395 if (kvm_vgic_global_state.has_gicv4_1) { 396 unmap_all_vpes(kvm); 397 vlpi_avail = true; 398 } 399 400 xa_for_each(&dist->lpi_xa, index, irq) { 401 int byte_offset, bit_nr; 402 struct kvm_vcpu *vcpu; 403 gpa_t pendbase, ptr; 404 bool is_pending; 405 bool stored; 406 407 vcpu = irq->target_vcpu; 408 if (!vcpu) 409 continue; 410 411 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 412 413 byte_offset = irq->intid / BITS_PER_BYTE; 414 bit_nr = irq->intid % BITS_PER_BYTE; 415 ptr = pendbase + byte_offset; 416 417 if (ptr != last_ptr) { 418 ret = kvm_read_guest_lock(kvm, ptr, &val, 1); 419 if (ret) 420 goto out; 421 last_ptr = ptr; 422 } 423 424 stored = val & (1U << bit_nr); 425 426 is_pending = irq->pending_latch; 427 428 if (irq->hw && vlpi_avail) 429 vgic_v4_get_vlpi_state(irq, &is_pending); 430 431 if (stored == is_pending) 432 continue; 433 434 if (is_pending) 435 val |= 1 << bit_nr; 436 else 437 val &= ~(1 << bit_nr); 438 439 ret = vgic_write_guest_lock(kvm, ptr, &val, 1); 440 if (ret) 441 goto out; 442 } 443 444 out: 445 if (vlpi_avail) 446 map_all_vpes(kvm); 447 448 return ret; 449 } 450 451 /** 452 * vgic_v3_rdist_overlap - check if a region overlaps with any 453 * existing redistributor region 454 * 455 * @kvm: kvm handle 456 * @base: base of the region 457 * @size: size of region 458 * 459 * Return: true if there is an overlap 460 */ 461 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) 462 { 463 struct vgic_dist *d = &kvm->arch.vgic; 464 struct vgic_redist_region *rdreg; 465 466 list_for_each_entry(rdreg, &d->rd_regions, list) { 467 if ((base + size > rdreg->base) && 468 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) 469 return true; 470 } 471 return false; 472 } 473 474 /* 475 * Check for overlapping regions and for regions crossing the end of memory 476 * for base addresses which have already been set. 477 */ 478 bool vgic_v3_check_base(struct kvm *kvm) 479 { 480 struct vgic_dist *d = &kvm->arch.vgic; 481 struct vgic_redist_region *rdreg; 482 483 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && 484 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) 485 return false; 486 487 list_for_each_entry(rdreg, &d->rd_regions, list) { 488 size_t sz = vgic_v3_rd_region_size(kvm, rdreg); 489 490 if (vgic_check_iorange(kvm, VGIC_ADDR_UNDEF, 491 rdreg->base, SZ_64K, sz)) 492 return false; 493 } 494 495 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) 496 return true; 497 498 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, 499 KVM_VGIC_V3_DIST_SIZE); 500 } 501 502 /** 503 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one 504 * which has free space to put a new rdist region. 505 * 506 * @rd_regions: redistributor region list head 507 * 508 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). 509 * Stride between redistributors is 0 and regions are filled in the index order. 510 * 511 * Return: the redist region handle, if any, that has space to map a new rdist 512 * region. 513 */ 514 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) 515 { 516 struct vgic_redist_region *rdreg; 517 518 list_for_each_entry(rdreg, rd_regions, list) { 519 if (!vgic_v3_redist_region_full(rdreg)) 520 return rdreg; 521 } 522 return NULL; 523 } 524 525 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, 526 u32 index) 527 { 528 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; 529 struct vgic_redist_region *rdreg; 530 531 list_for_each_entry(rdreg, rd_regions, list) { 532 if (rdreg->index == index) 533 return rdreg; 534 } 535 return NULL; 536 } 537 538 539 int vgic_v3_map_resources(struct kvm *kvm) 540 { 541 struct vgic_dist *dist = &kvm->arch.vgic; 542 struct kvm_vcpu *vcpu; 543 unsigned long c; 544 545 kvm_for_each_vcpu(c, vcpu, kvm) { 546 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 547 548 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { 549 kvm_debug("vcpu %ld redistributor base not set\n", c); 550 return -ENXIO; 551 } 552 } 553 554 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { 555 kvm_debug("Need to set vgic distributor addresses first\n"); 556 return -ENXIO; 557 } 558 559 if (!vgic_v3_check_base(kvm)) { 560 kvm_debug("VGIC redist and dist frames overlap\n"); 561 return -EINVAL; 562 } 563 564 /* 565 * For a VGICv3 we require the userland to explicitly initialize 566 * the VGIC before we need to use it. 567 */ 568 if (!vgic_initialized(kvm)) { 569 return -EBUSY; 570 } 571 572 if (kvm_vgic_global_state.has_gicv4_1) 573 vgic_v4_configure_vsgis(kvm); 574 575 return 0; 576 } 577 578 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); 579 580 static int __init early_group0_trap_cfg(char *buf) 581 { 582 return kstrtobool(buf, &group0_trap); 583 } 584 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); 585 586 static int __init early_group1_trap_cfg(char *buf) 587 { 588 return kstrtobool(buf, &group1_trap); 589 } 590 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); 591 592 static int __init early_common_trap_cfg(char *buf) 593 { 594 return kstrtobool(buf, &common_trap); 595 } 596 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); 597 598 static int __init early_gicv4_enable(char *buf) 599 { 600 return kstrtobool(buf, &gicv4_enable); 601 } 602 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); 603 604 static const struct midr_range broken_seis[] = { 605 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM), 606 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM), 607 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_PRO), 608 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_PRO), 609 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_ICESTORM_MAX), 610 MIDR_ALL_VERSIONS(MIDR_APPLE_M1_FIRESTORM_MAX), 611 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD), 612 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE), 613 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_PRO), 614 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_PRO), 615 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_BLIZZARD_MAX), 616 MIDR_ALL_VERSIONS(MIDR_APPLE_M2_AVALANCHE_MAX), 617 {}, 618 }; 619 620 static bool vgic_v3_broken_seis(void) 621 { 622 return ((kvm_vgic_global_state.ich_vtr_el2 & ICH_VTR_SEIS_MASK) && 623 is_midr_in_range_list(read_cpuid_id(), broken_seis)); 624 } 625 626 /** 627 * vgic_v3_probe - probe for a VGICv3 compatible interrupt controller 628 * @info: pointer to the GIC description 629 * 630 * Returns 0 if the VGICv3 has been probed successfully, returns an error code 631 * otherwise 632 */ 633 int vgic_v3_probe(const struct gic_kvm_info *info) 634 { 635 u64 ich_vtr_el2 = kvm_call_hyp_ret(__vgic_v3_get_gic_config); 636 bool has_v2; 637 int ret; 638 639 has_v2 = ich_vtr_el2 >> 63; 640 ich_vtr_el2 = (u32)ich_vtr_el2; 641 642 /* 643 * The ListRegs field is 5 bits, but there is an architectural 644 * maximum of 16 list registers. Just ignore bit 4... 645 */ 646 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; 647 kvm_vgic_global_state.can_emulate_gicv2 = false; 648 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; 649 650 /* GICv4 support? */ 651 if (info->has_v4) { 652 kvm_vgic_global_state.has_gicv4 = gicv4_enable; 653 kvm_vgic_global_state.has_gicv4_1 = info->has_v4_1 && gicv4_enable; 654 kvm_info("GICv4%s support %sabled\n", 655 kvm_vgic_global_state.has_gicv4_1 ? ".1" : "", 656 gicv4_enable ? "en" : "dis"); 657 } 658 659 kvm_vgic_global_state.vcpu_base = 0; 660 661 if (!info->vcpu.start) { 662 kvm_info("GICv3: no GICV resource entry\n"); 663 } else if (!has_v2) { 664 pr_warn(FW_BUG "CPU interface incapable of MMIO access\n"); 665 } else if (!PAGE_ALIGNED(info->vcpu.start)) { 666 pr_warn("GICV physical address 0x%llx not page aligned\n", 667 (unsigned long long)info->vcpu.start); 668 } else if (kvm_get_mode() != KVM_MODE_PROTECTED) { 669 kvm_vgic_global_state.vcpu_base = info->vcpu.start; 670 kvm_vgic_global_state.can_emulate_gicv2 = true; 671 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); 672 if (ret) { 673 kvm_err("Cannot register GICv2 KVM device.\n"); 674 return ret; 675 } 676 kvm_info("vgic-v2@%llx\n", info->vcpu.start); 677 } 678 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); 679 if (ret) { 680 kvm_err("Cannot register GICv3 KVM device.\n"); 681 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); 682 return ret; 683 } 684 685 if (kvm_vgic_global_state.vcpu_base == 0) 686 kvm_info("disabling GICv2 emulation\n"); 687 688 if (cpus_have_final_cap(ARM64_WORKAROUND_CAVIUM_30115)) { 689 group0_trap = true; 690 group1_trap = true; 691 } 692 693 if (vgic_v3_broken_seis()) { 694 kvm_info("GICv3 with broken locally generated SEI\n"); 695 696 kvm_vgic_global_state.ich_vtr_el2 &= ~ICH_VTR_SEIS_MASK; 697 group0_trap = true; 698 group1_trap = true; 699 if (ich_vtr_el2 & ICH_VTR_TDS_MASK) 700 dir_trap = true; 701 else 702 common_trap = true; 703 } 704 705 if (group0_trap || group1_trap || common_trap | dir_trap) { 706 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s%s], reduced performance)\n", 707 group0_trap ? "G0" : "", 708 group1_trap ? "G1" : "", 709 common_trap ? "C" : "", 710 dir_trap ? "D" : ""); 711 static_branch_enable(&vgic_v3_cpuif_trap); 712 } 713 714 kvm_vgic_global_state.vctrl_base = NULL; 715 kvm_vgic_global_state.type = VGIC_V3; 716 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; 717 718 return 0; 719 } 720 721 void vgic_v3_load(struct kvm_vcpu *vcpu) 722 { 723 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 724 725 kvm_call_hyp(__vgic_v3_restore_vmcr_aprs, cpu_if); 726 727 if (has_vhe()) 728 __vgic_v3_activate_traps(cpu_if); 729 730 WARN_ON(vgic_v4_load(vcpu)); 731 } 732 733 void vgic_v3_put(struct kvm_vcpu *vcpu) 734 { 735 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; 736 737 kvm_call_hyp(__vgic_v3_save_vmcr_aprs, cpu_if); 738 WARN_ON(vgic_v4_put(vcpu)); 739 740 if (has_vhe()) 741 __vgic_v3_deactivate_traps(cpu_if); 742 } 743