1 // SPDX-License-Identifier: GPL-2.0-only 2 3 #include <linux/cpu.h> 4 #include <linux/kvm.h> 5 #include <linux/kvm_host.h> 6 #include <linux/interrupt.h> 7 #include <linux/io.h> 8 #include <linux/uaccess.h> 9 10 #include <kvm/arm_vgic.h> 11 12 #include <asm/kvm_arm.h> 13 #include <asm/kvm_emulate.h> 14 #include <asm/kvm_nested.h> 15 16 #include "vgic.h" 17 18 #define ICH_LRN(n) (ICH_LR0_EL2 + (n)) 19 #define ICH_AP0RN(n) (ICH_AP0R0_EL2 + (n)) 20 #define ICH_AP1RN(n) (ICH_AP1R0_EL2 + (n)) 21 22 struct mi_state { 23 u16 eisr; 24 u16 elrsr; 25 bool pend; 26 }; 27 28 /* 29 * The shadow registers loaded to the hardware when running a L2 guest 30 * with the virtual IMO/FMO bits set. 31 */ 32 struct shadow_if { 33 struct vgic_v3_cpu_if cpuif; 34 unsigned long lr_map; 35 }; 36 37 static DEFINE_PER_CPU(struct shadow_if, shadow_if); 38 39 /* 40 * Nesting GICv3 support 41 * 42 * On a non-nesting VM (only running at EL0/EL1), the host hypervisor 43 * completely controls the interrupts injected via the list registers. 44 * Consequently, most of the state that is modified by the guest (by ACK-ing 45 * and EOI-ing interrupts) is synced by KVM on each entry/exit, so that we 46 * keep a semi-consistent view of the interrupts. 47 * 48 * This still applies for a NV guest, but only while "InHost" (either 49 * running at EL2, or at EL0 with HCR_EL2.{E2H.TGE}=={1,1}. 50 * 51 * When running a L2 guest ("not InHost"), things are radically different, 52 * as the L1 guest is in charge of provisioning the interrupts via its own 53 * view of the ICH_LR*_EL2 registers, which conveniently live in the VNCR 54 * page. This means that the flow described above does work (there is no 55 * state to rebuild in the L0 hypervisor), and that most things happed on L2 56 * load/put: 57 * 58 * - on L2 load: move the in-memory L1 vGIC configuration into a shadow, 59 * per-CPU data structure that is used to populate the actual LRs. This is 60 * an extra copy that we could avoid, but life is short. In the process, 61 * we remap any interrupt that has the HW bit set to the mapped interrupt 62 * on the host, should the host consider it a HW one. This allows the HW 63 * deactivation to take its course, such as for the timer. 64 * 65 * - on L2 put: perform the inverse transformation, so that the result of L2 66 * running becomes visible to L1 in the VNCR-accessible registers. 67 * 68 * - there is nothing to do on L2 entry, as everything will have happened 69 * on load. However, this is the point where we detect that an interrupt 70 * targeting L1 and prepare the grand switcheroo. 71 * 72 * - on L2 exit: emulate the HW bit, and deactivate corresponding the L1 73 * interrupt. The L0 active state will be cleared by the HW if the L1 74 * interrupt was itself backed by a HW interrupt. 75 * 76 * Maintenance Interrupt (MI) management: 77 * 78 * Since the L2 guest runs the vgic in its full glory, MIs get delivered and 79 * used as a handover point between L2 and L1. 80 * 81 * - on delivery of a MI to L0 while L2 is running: make the L1 MI pending, 82 * and let it rip. This will initiate a vcpu_put() on L2, and allow L1 to 83 * run and process the MI. 84 * 85 * - L1 MI is a fully virtual interrupt, not linked to the host's MI. Its 86 * state must be computed at each entry/exit of the guest, much like we do 87 * it for the PMU interrupt. 88 * 89 * - because most of the ICH_*_EL2 registers live in the VNCR page, the 90 * quality of emulation is poor: L1 can setup the vgic so that an MI would 91 * immediately fire, and not observe anything until the next exit. Trying 92 * to read ICH_MISR_EL2 would do the trick, for example. 93 * 94 * System register emulation: 95 * 96 * We get two classes of registers: 97 * 98 * - those backed by memory (LRs, APRs, HCR, VMCR): L1 can freely access 99 * them, and L0 doesn't see a thing. 100 * 101 * - those that always trap (ELRSR, EISR, MISR): these are status registers 102 * that are built on the fly based on the in-memory state. 103 * 104 * Only L1 can access the ICH_*_EL2 registers. A non-NV L2 obviously cannot, 105 * and a NV L2 would either access the VNCR page provided by L1 (memory 106 * based registers), or see the access redirected to L1 (registers that 107 * trap) thanks to NV being set by L1. 108 */ 109 110 bool vgic_state_is_nested(struct kvm_vcpu *vcpu) 111 { 112 u64 xmo; 113 114 if (vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu)) { 115 xmo = __vcpu_sys_reg(vcpu, HCR_EL2) & (HCR_IMO | HCR_FMO); 116 WARN_ONCE(xmo && xmo != (HCR_IMO | HCR_FMO), 117 "Separate virtual IRQ/FIQ settings not supported\n"); 118 119 return !!xmo; 120 } 121 122 return false; 123 } 124 125 static struct shadow_if *get_shadow_if(void) 126 { 127 return this_cpu_ptr(&shadow_if); 128 } 129 130 static bool lr_triggers_eoi(u64 lr) 131 { 132 return !(lr & (ICH_LR_STATE | ICH_LR_HW)) && (lr & ICH_LR_EOI); 133 } 134 135 static void vgic_compute_mi_state(struct kvm_vcpu *vcpu, struct mi_state *mi_state) 136 { 137 u16 eisr = 0, elrsr = 0; 138 bool pend = false; 139 140 for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) { 141 u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); 142 143 if (lr_triggers_eoi(lr)) 144 eisr |= BIT(i); 145 if (!(lr & ICH_LR_STATE)) 146 elrsr |= BIT(i); 147 pend |= (lr & ICH_LR_PENDING_BIT); 148 } 149 150 mi_state->eisr = eisr; 151 mi_state->elrsr = elrsr; 152 mi_state->pend = pend; 153 } 154 155 u16 vgic_v3_get_eisr(struct kvm_vcpu *vcpu) 156 { 157 struct mi_state mi_state; 158 159 vgic_compute_mi_state(vcpu, &mi_state); 160 return mi_state.eisr; 161 } 162 163 u16 vgic_v3_get_elrsr(struct kvm_vcpu *vcpu) 164 { 165 struct mi_state mi_state; 166 167 vgic_compute_mi_state(vcpu, &mi_state); 168 return mi_state.elrsr; 169 } 170 171 u64 vgic_v3_get_misr(struct kvm_vcpu *vcpu) 172 { 173 struct mi_state mi_state; 174 u64 reg = 0, hcr, vmcr; 175 176 hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); 177 vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2); 178 179 vgic_compute_mi_state(vcpu, &mi_state); 180 181 if (mi_state.eisr) 182 reg |= ICH_MISR_EL2_EOI; 183 184 if (__vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_UIE) { 185 int used_lrs = kvm_vgic_global_state.nr_lr; 186 187 used_lrs -= hweight16(mi_state.elrsr); 188 reg |= (used_lrs <= 1) ? ICH_MISR_EL2_U : 0; 189 } 190 191 if ((hcr & ICH_HCR_EL2_LRENPIE) && FIELD_GET(ICH_HCR_EL2_EOIcount_MASK, hcr)) 192 reg |= ICH_MISR_EL2_LRENP; 193 194 if ((hcr & ICH_HCR_EL2_NPIE) && !mi_state.pend) 195 reg |= ICH_MISR_EL2_NP; 196 197 if ((hcr & ICH_HCR_EL2_VGrp0EIE) && (vmcr & ICH_VMCR_ENG0_MASK)) 198 reg |= ICH_MISR_EL2_VGrp0E; 199 200 if ((hcr & ICH_HCR_EL2_VGrp0DIE) && !(vmcr & ICH_VMCR_ENG0_MASK)) 201 reg |= ICH_MISR_EL2_VGrp0D; 202 203 if ((hcr & ICH_HCR_EL2_VGrp1EIE) && (vmcr & ICH_VMCR_ENG1_MASK)) 204 reg |= ICH_MISR_EL2_VGrp1E; 205 206 if ((hcr & ICH_HCR_EL2_VGrp1DIE) && !(vmcr & ICH_VMCR_ENG1_MASK)) 207 reg |= ICH_MISR_EL2_VGrp1D; 208 209 return reg; 210 } 211 212 /* 213 * For LRs which have HW bit set such as timer interrupts, we modify them to 214 * have the host hardware interrupt number instead of the virtual one programmed 215 * by the guest hypervisor. 216 */ 217 static void vgic_v3_create_shadow_lr(struct kvm_vcpu *vcpu, 218 struct vgic_v3_cpu_if *s_cpu_if) 219 { 220 unsigned long lr_map = 0; 221 int index = 0; 222 223 for (int i = 0; i < kvm_vgic_global_state.nr_lr; i++) { 224 u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); 225 struct vgic_irq *irq; 226 227 if (!(lr & ICH_LR_STATE)) 228 lr = 0; 229 230 if (!(lr & ICH_LR_HW)) 231 goto next; 232 233 /* We have the HW bit set, check for validity of pINTID */ 234 irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr)); 235 if (!irq || !irq->hw || irq->intid > VGIC_MAX_SPI ) { 236 /* There was no real mapping, so nuke the HW bit */ 237 lr &= ~ICH_LR_HW; 238 if (irq) 239 vgic_put_irq(vcpu->kvm, irq); 240 goto next; 241 } 242 243 /* It is illegal to have the EOI bit set with HW */ 244 lr &= ~ICH_LR_EOI; 245 246 /* Translate the virtual mapping to the real one */ 247 lr &= ~ICH_LR_PHYS_ID_MASK; 248 lr |= FIELD_PREP(ICH_LR_PHYS_ID_MASK, (u64)irq->hwintid); 249 250 vgic_put_irq(vcpu->kvm, irq); 251 252 next: 253 s_cpu_if->vgic_lr[index] = lr; 254 if (lr) { 255 lr_map |= BIT(i); 256 index++; 257 } 258 } 259 260 container_of(s_cpu_if, struct shadow_if, cpuif)->lr_map = lr_map; 261 s_cpu_if->used_lrs = index; 262 } 263 264 void vgic_v3_sync_nested(struct kvm_vcpu *vcpu) 265 { 266 struct shadow_if *shadow_if = get_shadow_if(); 267 int i, index = 0; 268 269 for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) { 270 u64 lr = __vcpu_sys_reg(vcpu, ICH_LRN(i)); 271 struct vgic_irq *irq; 272 273 if (!(lr & ICH_LR_HW) || !(lr & ICH_LR_STATE)) 274 goto next; 275 276 /* 277 * If we had a HW lr programmed by the guest hypervisor, we 278 * need to emulate the HW effect between the guest hypervisor 279 * and the nested guest. 280 */ 281 irq = vgic_get_vcpu_irq(vcpu, FIELD_GET(ICH_LR_PHYS_ID_MASK, lr)); 282 if (WARN_ON(!irq)) /* Shouldn't happen as we check on load */ 283 goto next; 284 285 lr = __gic_v3_get_lr(index); 286 if (!(lr & ICH_LR_STATE)) 287 irq->active = false; 288 289 vgic_put_irq(vcpu->kvm, irq); 290 next: 291 index++; 292 } 293 } 294 295 static void vgic_v3_create_shadow_state(struct kvm_vcpu *vcpu, 296 struct vgic_v3_cpu_if *s_cpu_if) 297 { 298 struct vgic_v3_cpu_if *host_if = &vcpu->arch.vgic_cpu.vgic_v3; 299 u64 val = 0; 300 int i; 301 302 /* 303 * If we're on a system with a broken vgic that requires 304 * trapping, propagate the trapping requirements. 305 * 306 * Ah, the smell of rotten fruits... 307 */ 308 if (static_branch_unlikely(&vgic_v3_cpuif_trap)) 309 val = host_if->vgic_hcr & (ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | 310 ICH_HCR_EL2_TC | ICH_HCR_EL2_TDIR); 311 s_cpu_if->vgic_hcr = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) | val; 312 s_cpu_if->vgic_vmcr = __vcpu_sys_reg(vcpu, ICH_VMCR_EL2); 313 s_cpu_if->vgic_sre = host_if->vgic_sre; 314 315 for (i = 0; i < 4; i++) { 316 s_cpu_if->vgic_ap0r[i] = __vcpu_sys_reg(vcpu, ICH_AP0RN(i)); 317 s_cpu_if->vgic_ap1r[i] = __vcpu_sys_reg(vcpu, ICH_AP1RN(i)); 318 } 319 320 vgic_v3_create_shadow_lr(vcpu, s_cpu_if); 321 } 322 323 void vgic_v3_load_nested(struct kvm_vcpu *vcpu) 324 { 325 struct shadow_if *shadow_if = get_shadow_if(); 326 struct vgic_v3_cpu_if *cpu_if = &shadow_if->cpuif; 327 328 BUG_ON(!vgic_state_is_nested(vcpu)); 329 330 vgic_v3_create_shadow_state(vcpu, cpu_if); 331 332 __vgic_v3_restore_vmcr_aprs(cpu_if); 333 __vgic_v3_activate_traps(cpu_if); 334 335 __vgic_v3_restore_state(cpu_if); 336 337 /* 338 * Propagate the number of used LRs for the benefit of the HYP 339 * GICv3 emulation code. Yes, this is a pretty sorry hack. 340 */ 341 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = cpu_if->used_lrs; 342 } 343 344 void vgic_v3_put_nested(struct kvm_vcpu *vcpu) 345 { 346 struct shadow_if *shadow_if = get_shadow_if(); 347 struct vgic_v3_cpu_if *s_cpu_if = &shadow_if->cpuif; 348 u64 val; 349 int i; 350 351 __vgic_v3_save_vmcr_aprs(s_cpu_if); 352 __vgic_v3_deactivate_traps(s_cpu_if); 353 __vgic_v3_save_state(s_cpu_if); 354 355 /* 356 * Translate the shadow state HW fields back to the virtual ones 357 * before copying the shadow struct back to the nested one. 358 */ 359 val = __vcpu_sys_reg(vcpu, ICH_HCR_EL2); 360 val &= ~ICH_HCR_EL2_EOIcount_MASK; 361 val |= (s_cpu_if->vgic_hcr & ICH_HCR_EL2_EOIcount_MASK); 362 __vcpu_sys_reg(vcpu, ICH_HCR_EL2) = val; 363 __vcpu_sys_reg(vcpu, ICH_VMCR_EL2) = s_cpu_if->vgic_vmcr; 364 365 for (i = 0; i < 4; i++) { 366 __vcpu_sys_reg(vcpu, ICH_AP0RN(i)) = s_cpu_if->vgic_ap0r[i]; 367 __vcpu_sys_reg(vcpu, ICH_AP1RN(i)) = s_cpu_if->vgic_ap1r[i]; 368 } 369 370 for_each_set_bit(i, &shadow_if->lr_map, kvm_vgic_global_state.nr_lr) { 371 val = __vcpu_sys_reg(vcpu, ICH_LRN(i)); 372 373 val &= ~ICH_LR_STATE; 374 val |= s_cpu_if->vgic_lr[i] & ICH_LR_STATE; 375 376 __vcpu_sys_reg(vcpu, ICH_LRN(i)) = val; 377 s_cpu_if->vgic_lr[i] = 0; 378 } 379 380 shadow_if->lr_map = 0; 381 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = 0; 382 } 383 384 /* 385 * If we exit a L2 VM with a pending maintenance interrupt from the GIC, 386 * then we need to forward this to L1 so that it can re-sync the appropriate 387 * LRs and sample level triggered interrupts again. 388 */ 389 void vgic_v3_handle_nested_maint_irq(struct kvm_vcpu *vcpu) 390 { 391 bool state = read_sysreg_s(SYS_ICH_MISR_EL2); 392 393 /* This will force a switch back to L1 if the level is high */ 394 kvm_vgic_inject_irq(vcpu->kvm, vcpu, 395 vcpu->kvm->arch.vgic.mi_intid, state, vcpu); 396 397 sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EL2_En, 0); 398 } 399 400 void vgic_v3_nested_update_mi(struct kvm_vcpu *vcpu) 401 { 402 bool level; 403 404 level = __vcpu_sys_reg(vcpu, ICH_HCR_EL2) & ICH_HCR_EL2_En; 405 if (level) 406 level &= vgic_v3_get_misr(vcpu); 407 kvm_vgic_inject_irq(vcpu->kvm, vcpu, 408 vcpu->kvm->arch.vgic.mi_intid, level, vcpu); 409 } 410