xref: /linux/arch/arm64/kvm/vgic/vgic-mmio.c (revision 34dc1baba215b826e454b8d19e4f24adbeb7d00d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 				 gpa_t addr, unsigned int len)
21 {
22 	return 0;
23 }
24 
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return -1UL;
29 }
30 
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 			unsigned int len, unsigned long val)
33 {
34 	/* Ignore */
35 }
36 
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			       unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 	return 0;
42 }
43 
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 				   gpa_t addr, unsigned int len)
46 {
47 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 	u32 value = 0;
49 	int i;
50 
51 	/* Loop over all IRQs affected by this read */
52 	for (i = 0; i < len * 8; i++) {
53 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54 
55 		if (irq->group)
56 			value |= BIT(i);
57 
58 		vgic_put_irq(vcpu->kvm, irq);
59 	}
60 
61 	return value;
62 }
63 
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 	WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68 
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 			   unsigned int len, unsigned long val)
71 {
72 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 	int i;
74 	unsigned long flags;
75 
76 	for (i = 0; i < len * 8; i++) {
77 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78 
79 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 		irq->group = !!(val & BIT(i));
81 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 			vgic_update_vsgi(irq);
83 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 		} else {
85 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 		}
87 
88 		vgic_put_irq(vcpu->kvm, irq);
89 	}
90 }
91 
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 				    gpa_t addr, unsigned int len)
98 {
99 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 	u32 value = 0;
101 	int i;
102 
103 	/* Loop over all IRQs affected by this read */
104 	for (i = 0; i < len * 8; i++) {
105 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106 
107 		if (irq->enabled)
108 			value |= (1U << i);
109 
110 		vgic_put_irq(vcpu->kvm, irq);
111 	}
112 
113 	return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 			     gpa_t addr, unsigned int len,
118 			     unsigned long val)
119 {
120 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 	int i;
122 	unsigned long flags;
123 
124 	for_each_set_bit(i, &val, len * 8) {
125 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126 
127 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 			if (!irq->enabled) {
130 				struct irq_data *data;
131 
132 				irq->enabled = true;
133 				data = &irq_to_desc(irq->host_irq)->irq_data;
134 				while (irqd_irq_disabled(data))
135 					enable_irq(irq->host_irq);
136 			}
137 
138 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 			vgic_put_irq(vcpu->kvm, irq);
140 
141 			continue;
142 		} else if (vgic_irq_is_mapped_level(irq)) {
143 			bool was_high = irq->line_level;
144 
145 			/*
146 			 * We need to update the state of the interrupt because
147 			 * the guest might have changed the state of the device
148 			 * while the interrupt was disabled at the VGIC level.
149 			 */
150 			irq->line_level = vgic_get_phys_line_level(irq);
151 			/*
152 			 * Deactivate the physical interrupt so the GIC will let
153 			 * us know when it is asserted again.
154 			 */
155 			if (!irq->active && was_high && !irq->line_level)
156 				vgic_irq_set_phys_active(irq, false);
157 		}
158 		irq->enabled = true;
159 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161 		vgic_put_irq(vcpu->kvm, irq);
162 	}
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 			     gpa_t addr, unsigned int len,
167 			     unsigned long val)
168 {
169 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 	int i;
171 	unsigned long flags;
172 
173 	for_each_set_bit(i, &val, len * 8) {
174 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175 
176 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 		if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 			disable_irq_nosync(irq->host_irq);
179 
180 		irq->enabled = false;
181 
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 			       gpa_t addr, unsigned int len,
189 			       unsigned long val)
190 {
191 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 	int i;
193 	unsigned long flags;
194 
195 	for_each_set_bit(i, &val, len * 8) {
196 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197 
198 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 		irq->enabled = true;
200 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202 		vgic_put_irq(vcpu->kvm, irq);
203 	}
204 
205 	return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 			       gpa_t addr, unsigned int len,
210 			       unsigned long val)
211 {
212 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 	int i;
214 	unsigned long flags;
215 
216 	for_each_set_bit(i, &val, len * 8) {
217 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218 
219 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 		irq->enabled = false;
221 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223 		vgic_put_irq(vcpu->kvm, irq);
224 	}
225 
226 	return 0;
227 }
228 
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230 				    gpa_t addr, unsigned int len,
231 				    bool is_user)
232 {
233 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234 	u32 value = 0;
235 	int i;
236 
237 	/* Loop over all IRQs affected by this read */
238 	for (i = 0; i < len * 8; i++) {
239 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
240 		unsigned long flags;
241 		bool val;
242 
243 		/*
244 		 * When used from userspace with a GICv3 model:
245 		 *
246 		 * Pending state of interrupt is latched in pending_latch
247 		 * variable.  Userspace will save and restore pending state
248 		 * and line_level separately.
249 		 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250 		 * for handling of ISPENDR and ICPENDR.
251 		 */
252 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
253 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254 			int err;
255 
256 			val = false;
257 			err = irq_get_irqchip_state(irq->host_irq,
258 						    IRQCHIP_STATE_PENDING,
259 						    &val);
260 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261 		} else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262 			val = vgic_get_phys_line_level(irq);
263 		} else {
264 			switch (vcpu->kvm->arch.vgic.vgic_model) {
265 			case KVM_DEV_TYPE_ARM_VGIC_V3:
266 				if (is_user) {
267 					val = irq->pending_latch;
268 					break;
269 				}
270 				fallthrough;
271 			default:
272 				val = irq_is_pending(irq);
273 				break;
274 			}
275 		}
276 
277 		value |= ((u32)val << i);
278 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279 
280 		vgic_put_irq(vcpu->kvm, irq);
281 	}
282 
283 	return value;
284 }
285 
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287 				     gpa_t addr, unsigned int len)
288 {
289 	return __read_pending(vcpu, addr, len, false);
290 }
291 
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293 					gpa_t addr, unsigned int len)
294 {
295 	return __read_pending(vcpu, addr, len, true);
296 }
297 
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300 	return (vgic_irq_is_sgi(irq->intid) &&
301 		vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303 
304 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
305 			      gpa_t addr, unsigned int len,
306 			      unsigned long val)
307 {
308 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
309 	int i;
310 	unsigned long flags;
311 
312 	for_each_set_bit(i, &val, len * 8) {
313 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
314 
315 		/* GICD_ISPENDR0 SGI bits are WI */
316 		if (is_vgic_v2_sgi(vcpu, irq)) {
317 			vgic_put_irq(vcpu->kvm, irq);
318 			continue;
319 		}
320 
321 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
322 
323 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
324 			/* HW SGI? Ask the GIC to inject it */
325 			int err;
326 			err = irq_set_irqchip_state(irq->host_irq,
327 						    IRQCHIP_STATE_PENDING,
328 						    true);
329 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
330 
331 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
332 			vgic_put_irq(vcpu->kvm, irq);
333 
334 			continue;
335 		}
336 
337 		irq->pending_latch = true;
338 		if (irq->hw)
339 			vgic_irq_set_phys_active(irq, true);
340 
341 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
342 		vgic_put_irq(vcpu->kvm, irq);
343 	}
344 }
345 
346 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
347 				gpa_t addr, unsigned int len,
348 				unsigned long val)
349 {
350 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
351 	int i;
352 	unsigned long flags;
353 
354 	for_each_set_bit(i, &val, len * 8) {
355 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
356 
357 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
358 		irq->pending_latch = true;
359 
360 		/*
361 		 * GICv2 SGIs are terribly broken. We can't restore
362 		 * the source of the interrupt, so just pick the vcpu
363 		 * itself as the source...
364 		 */
365 		if (is_vgic_v2_sgi(vcpu, irq))
366 			irq->source |= BIT(vcpu->vcpu_id);
367 
368 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
369 
370 		vgic_put_irq(vcpu->kvm, irq);
371 	}
372 
373 	return 0;
374 }
375 
376 /* Must be called with irq->irq_lock held */
377 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
378 {
379 	irq->pending_latch = false;
380 
381 	/*
382 	 * We don't want the guest to effectively mask the physical
383 	 * interrupt by doing a write to SPENDR followed by a write to
384 	 * CPENDR for HW interrupts, so we clear the active state on
385 	 * the physical side if the virtual interrupt is not active.
386 	 * This may lead to taking an additional interrupt on the
387 	 * host, but that should not be a problem as the worst that
388 	 * can happen is an additional vgic injection.  We also clear
389 	 * the pending state to maintain proper semantics for edge HW
390 	 * interrupts.
391 	 */
392 	vgic_irq_set_phys_pending(irq, false);
393 	if (!irq->active)
394 		vgic_irq_set_phys_active(irq, false);
395 }
396 
397 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
398 			      gpa_t addr, unsigned int len,
399 			      unsigned long val)
400 {
401 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
402 	int i;
403 	unsigned long flags;
404 
405 	for_each_set_bit(i, &val, len * 8) {
406 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
407 
408 		/* GICD_ICPENDR0 SGI bits are WI */
409 		if (is_vgic_v2_sgi(vcpu, irq)) {
410 			vgic_put_irq(vcpu->kvm, irq);
411 			continue;
412 		}
413 
414 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
415 
416 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417 			/* HW SGI? Ask the GIC to clear its pending bit */
418 			int err;
419 			err = irq_set_irqchip_state(irq->host_irq,
420 						    IRQCHIP_STATE_PENDING,
421 						    false);
422 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423 
424 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425 			vgic_put_irq(vcpu->kvm, irq);
426 
427 			continue;
428 		}
429 
430 		if (irq->hw)
431 			vgic_hw_irq_cpending(vcpu, irq);
432 		else
433 			irq->pending_latch = false;
434 
435 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436 		vgic_put_irq(vcpu->kvm, irq);
437 	}
438 }
439 
440 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
441 				gpa_t addr, unsigned int len,
442 				unsigned long val)
443 {
444 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
445 	int i;
446 	unsigned long flags;
447 
448 	for_each_set_bit(i, &val, len * 8) {
449 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
450 
451 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
452 		/*
453 		 * More fun with GICv2 SGIs! If we're clearing one of them
454 		 * from userspace, which source vcpu to clear? Let's not
455 		 * even think of it, and blow the whole set.
456 		 */
457 		if (is_vgic_v2_sgi(vcpu, irq))
458 			irq->source = 0;
459 
460 		irq->pending_latch = false;
461 
462 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
463 
464 		vgic_put_irq(vcpu->kvm, irq);
465 	}
466 
467 	return 0;
468 }
469 
470 /*
471  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
472  * is not queued on some running VCPU's LRs, because then the change to the
473  * active state can be overwritten when the VCPU's state is synced coming back
474  * from the guest.
475  *
476  * For shared interrupts as well as GICv3 private interrupts accessed from the
477  * non-owning CPU, we have to stop all the VCPUs because interrupts can be
478  * migrated while we don't hold the IRQ locks and we don't want to be chasing
479  * moving targets.
480  *
481  * For GICv2 private interrupts we don't have to do anything because
482  * userspace accesses to the VGIC state already require all VCPUs to be
483  * stopped, and only the VCPU itself can modify its private interrupts
484  * active state, which guarantees that the VCPU is not running.
485  */
486 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
487 {
488 	if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
489 	     vcpu != kvm_get_running_vcpu()) ||
490 	    intid >= VGIC_NR_PRIVATE_IRQS)
491 		kvm_arm_halt_guest(vcpu->kvm);
492 }
493 
494 /* See vgic_access_active_prepare */
495 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
496 {
497 	if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
498 	     vcpu != kvm_get_running_vcpu()) ||
499 	    intid >= VGIC_NR_PRIVATE_IRQS)
500 		kvm_arm_resume_guest(vcpu->kvm);
501 }
502 
503 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
504 					     gpa_t addr, unsigned int len)
505 {
506 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
507 	u32 value = 0;
508 	int i;
509 
510 	/* Loop over all IRQs affected by this read */
511 	for (i = 0; i < len * 8; i++) {
512 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
513 
514 		/*
515 		 * Even for HW interrupts, don't evaluate the HW state as
516 		 * all the guest is interested in is the virtual state.
517 		 */
518 		if (irq->active)
519 			value |= (1U << i);
520 
521 		vgic_put_irq(vcpu->kvm, irq);
522 	}
523 
524 	return value;
525 }
526 
527 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
528 				    gpa_t addr, unsigned int len)
529 {
530 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
531 	u32 val;
532 
533 	mutex_lock(&vcpu->kvm->arch.config_lock);
534 	vgic_access_active_prepare(vcpu, intid);
535 
536 	val = __vgic_mmio_read_active(vcpu, addr, len);
537 
538 	vgic_access_active_finish(vcpu, intid);
539 	mutex_unlock(&vcpu->kvm->arch.config_lock);
540 
541 	return val;
542 }
543 
544 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
545 				    gpa_t addr, unsigned int len)
546 {
547 	return __vgic_mmio_read_active(vcpu, addr, len);
548 }
549 
550 /* Must be called with irq->irq_lock held */
551 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
552 				      bool active, bool is_uaccess)
553 {
554 	if (is_uaccess)
555 		return;
556 
557 	irq->active = active;
558 	vgic_irq_set_phys_active(irq, active);
559 }
560 
561 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
562 				    bool active)
563 {
564 	unsigned long flags;
565 	struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
566 
567 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
568 
569 	if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
570 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
571 	} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
572 		/*
573 		 * GICv4.1 VSGI feature doesn't track an active state,
574 		 * so let's not kid ourselves, there is nothing we can
575 		 * do here.
576 		 */
577 		irq->active = false;
578 	} else {
579 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
580 		u8 active_source;
581 
582 		irq->active = active;
583 
584 		/*
585 		 * The GICv2 architecture indicates that the source CPUID for
586 		 * an SGI should be provided during an EOI which implies that
587 		 * the active state is stored somewhere, but at the same time
588 		 * this state is not architecturally exposed anywhere and we
589 		 * have no way of knowing the right source.
590 		 *
591 		 * This may lead to a VCPU not being able to receive
592 		 * additional instances of a particular SGI after migration
593 		 * for a GICv2 VM on some GIC implementations.  Oh well.
594 		 */
595 		active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
596 
597 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
598 		    active && vgic_irq_is_sgi(irq->intid))
599 			irq->active_source = active_source;
600 	}
601 
602 	if (irq->active)
603 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
604 	else
605 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606 }
607 
608 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
609 				      gpa_t addr, unsigned int len,
610 				      unsigned long val)
611 {
612 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
613 	int i;
614 
615 	for_each_set_bit(i, &val, len * 8) {
616 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
617 		vgic_mmio_change_active(vcpu, irq, false);
618 		vgic_put_irq(vcpu->kvm, irq);
619 	}
620 }
621 
622 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
623 			     gpa_t addr, unsigned int len,
624 			     unsigned long val)
625 {
626 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
627 
628 	mutex_lock(&vcpu->kvm->arch.config_lock);
629 	vgic_access_active_prepare(vcpu, intid);
630 
631 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
632 
633 	vgic_access_active_finish(vcpu, intid);
634 	mutex_unlock(&vcpu->kvm->arch.config_lock);
635 }
636 
637 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
638 				     gpa_t addr, unsigned int len,
639 				     unsigned long val)
640 {
641 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
642 	return 0;
643 }
644 
645 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
646 				      gpa_t addr, unsigned int len,
647 				      unsigned long val)
648 {
649 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
650 	int i;
651 
652 	for_each_set_bit(i, &val, len * 8) {
653 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
654 		vgic_mmio_change_active(vcpu, irq, true);
655 		vgic_put_irq(vcpu->kvm, irq);
656 	}
657 }
658 
659 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
660 			     gpa_t addr, unsigned int len,
661 			     unsigned long val)
662 {
663 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
664 
665 	mutex_lock(&vcpu->kvm->arch.config_lock);
666 	vgic_access_active_prepare(vcpu, intid);
667 
668 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
669 
670 	vgic_access_active_finish(vcpu, intid);
671 	mutex_unlock(&vcpu->kvm->arch.config_lock);
672 }
673 
674 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
675 				     gpa_t addr, unsigned int len,
676 				     unsigned long val)
677 {
678 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
679 	return 0;
680 }
681 
682 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
683 				      gpa_t addr, unsigned int len)
684 {
685 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
686 	int i;
687 	u64 val = 0;
688 
689 	for (i = 0; i < len; i++) {
690 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
691 
692 		val |= (u64)irq->priority << (i * 8);
693 
694 		vgic_put_irq(vcpu->kvm, irq);
695 	}
696 
697 	return val;
698 }
699 
700 /*
701  * We currently don't handle changing the priority of an interrupt that
702  * is already pending on a VCPU. If there is a need for this, we would
703  * need to make this VCPU exit and re-evaluate the priorities, potentially
704  * leading to this interrupt getting presented now to the guest (if it has
705  * been masked by the priority mask before).
706  */
707 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
708 			      gpa_t addr, unsigned int len,
709 			      unsigned long val)
710 {
711 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
712 	int i;
713 	unsigned long flags;
714 
715 	for (i = 0; i < len; i++) {
716 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
717 
718 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
719 		/* Narrow the priority range to what we actually support */
720 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
721 		if (irq->hw && vgic_irq_is_sgi(irq->intid))
722 			vgic_update_vsgi(irq);
723 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
724 
725 		vgic_put_irq(vcpu->kvm, irq);
726 	}
727 }
728 
729 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
730 				    gpa_t addr, unsigned int len)
731 {
732 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
733 	u32 value = 0;
734 	int i;
735 
736 	for (i = 0; i < len * 4; i++) {
737 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
738 
739 		if (irq->config == VGIC_CONFIG_EDGE)
740 			value |= (2U << (i * 2));
741 
742 		vgic_put_irq(vcpu->kvm, irq);
743 	}
744 
745 	return value;
746 }
747 
748 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
749 			    gpa_t addr, unsigned int len,
750 			    unsigned long val)
751 {
752 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
753 	int i;
754 	unsigned long flags;
755 
756 	for (i = 0; i < len * 4; i++) {
757 		struct vgic_irq *irq;
758 
759 		/*
760 		 * The configuration cannot be changed for SGIs in general,
761 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
762 		 * code relies on PPIs being level triggered, so we also
763 		 * make them read-only here.
764 		 */
765 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
766 			continue;
767 
768 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
769 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
770 
771 		if (test_bit(i * 2 + 1, &val))
772 			irq->config = VGIC_CONFIG_EDGE;
773 		else
774 			irq->config = VGIC_CONFIG_LEVEL;
775 
776 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
777 		vgic_put_irq(vcpu->kvm, irq);
778 	}
779 }
780 
781 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
782 {
783 	int i;
784 	u32 val = 0;
785 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
786 
787 	for (i = 0; i < 32; i++) {
788 		struct vgic_irq *irq;
789 
790 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
791 			continue;
792 
793 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
794 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
795 			val |= (1U << i);
796 
797 		vgic_put_irq(vcpu->kvm, irq);
798 	}
799 
800 	return val;
801 }
802 
803 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
804 				    const u32 val)
805 {
806 	int i;
807 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
808 	unsigned long flags;
809 
810 	for (i = 0; i < 32; i++) {
811 		struct vgic_irq *irq;
812 		bool new_level;
813 
814 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
815 			continue;
816 
817 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
818 
819 		/*
820 		 * Line level is set irrespective of irq type
821 		 * (level or edge) to avoid dependency that VM should
822 		 * restore irq config before line level.
823 		 */
824 		new_level = !!(val & (1U << i));
825 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
826 		irq->line_level = new_level;
827 		if (new_level)
828 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
829 		else
830 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
831 
832 		vgic_put_irq(vcpu->kvm, irq);
833 	}
834 }
835 
836 static int match_region(const void *key, const void *elt)
837 {
838 	const unsigned int offset = (unsigned long)key;
839 	const struct vgic_register_region *region = elt;
840 
841 	if (offset < region->reg_offset)
842 		return -1;
843 
844 	if (offset >= region->reg_offset + region->len)
845 		return 1;
846 
847 	return 0;
848 }
849 
850 const struct vgic_register_region *
851 vgic_find_mmio_region(const struct vgic_register_region *regions,
852 		      int nr_regions, unsigned int offset)
853 {
854 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
855 		       sizeof(regions[0]), match_region);
856 }
857 
858 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
859 {
860 	if (kvm_vgic_global_state.type == VGIC_V2)
861 		vgic_v2_set_vmcr(vcpu, vmcr);
862 	else
863 		vgic_v3_set_vmcr(vcpu, vmcr);
864 }
865 
866 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
867 {
868 	if (kvm_vgic_global_state.type == VGIC_V2)
869 		vgic_v2_get_vmcr(vcpu, vmcr);
870 	else
871 		vgic_v3_get_vmcr(vcpu, vmcr);
872 }
873 
874 /*
875  * kvm_mmio_read_buf() returns a value in a format where it can be converted
876  * to a byte array and be directly observed as the guest wanted it to appear
877  * in memory if it had done the store itself, which is LE for the GIC, as the
878  * guest knows the GIC is always LE.
879  *
880  * We convert this value to the CPUs native format to deal with it as a data
881  * value.
882  */
883 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
884 {
885 	unsigned long data = kvm_mmio_read_buf(val, len);
886 
887 	switch (len) {
888 	case 1:
889 		return data;
890 	case 2:
891 		return le16_to_cpu(data);
892 	case 4:
893 		return le32_to_cpu(data);
894 	default:
895 		return le64_to_cpu(data);
896 	}
897 }
898 
899 /*
900  * kvm_mmio_write_buf() expects a value in a format such that if converted to
901  * a byte array it is observed as the guest would see it if it could perform
902  * the load directly.  Since the GIC is LE, and the guest knows this, the
903  * guest expects a value in little endian format.
904  *
905  * We convert the data value from the CPUs native format to LE so that the
906  * value is returned in the proper format.
907  */
908 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
909 				unsigned long data)
910 {
911 	switch (len) {
912 	case 1:
913 		break;
914 	case 2:
915 		data = cpu_to_le16(data);
916 		break;
917 	case 4:
918 		data = cpu_to_le32(data);
919 		break;
920 	default:
921 		data = cpu_to_le64(data);
922 	}
923 
924 	kvm_mmio_write_buf(buf, len, data);
925 }
926 
927 static
928 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
929 {
930 	return container_of(dev, struct vgic_io_device, dev);
931 }
932 
933 static bool check_region(const struct kvm *kvm,
934 			 const struct vgic_register_region *region,
935 			 gpa_t addr, int len)
936 {
937 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
938 
939 	switch (len) {
940 	case sizeof(u8):
941 		flags = VGIC_ACCESS_8bit;
942 		break;
943 	case sizeof(u32):
944 		flags = VGIC_ACCESS_32bit;
945 		break;
946 	case sizeof(u64):
947 		flags = VGIC_ACCESS_64bit;
948 		break;
949 	default:
950 		return false;
951 	}
952 
953 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
954 		if (!region->bits_per_irq)
955 			return true;
956 
957 		/* Do we access a non-allocated IRQ? */
958 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
959 	}
960 
961 	return false;
962 }
963 
964 const struct vgic_register_region *
965 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
966 		     gpa_t addr, int len)
967 {
968 	const struct vgic_register_region *region;
969 
970 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
971 				       addr - iodev->base_addr);
972 	if (!region || !check_region(vcpu->kvm, region, addr, len))
973 		return NULL;
974 
975 	return region;
976 }
977 
978 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
979 			     gpa_t addr, u32 *val)
980 {
981 	const struct vgic_register_region *region;
982 	struct kvm_vcpu *r_vcpu;
983 
984 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
985 	if (!region) {
986 		*val = 0;
987 		return 0;
988 	}
989 
990 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
991 	if (region->uaccess_read)
992 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
993 	else
994 		*val = region->read(r_vcpu, addr, sizeof(u32));
995 
996 	return 0;
997 }
998 
999 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
1000 			      gpa_t addr, const u32 *val)
1001 {
1002 	const struct vgic_register_region *region;
1003 	struct kvm_vcpu *r_vcpu;
1004 
1005 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
1006 	if (!region)
1007 		return 0;
1008 
1009 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
1010 	if (region->uaccess_write)
1011 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
1012 
1013 	region->write(r_vcpu, addr, sizeof(u32), *val);
1014 	return 0;
1015 }
1016 
1017 /*
1018  * Userland access to VGIC registers.
1019  */
1020 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1021 		 bool is_write, int offset, u32 *val)
1022 {
1023 	if (is_write)
1024 		return vgic_uaccess_write(vcpu, dev, offset, val);
1025 	else
1026 		return vgic_uaccess_read(vcpu, dev, offset, val);
1027 }
1028 
1029 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1030 			      gpa_t addr, int len, void *val)
1031 {
1032 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1033 	const struct vgic_register_region *region;
1034 	unsigned long data = 0;
1035 
1036 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1037 	if (!region) {
1038 		memset(val, 0, len);
1039 		return 0;
1040 	}
1041 
1042 	switch (iodev->iodev_type) {
1043 	case IODEV_CPUIF:
1044 		data = region->read(vcpu, addr, len);
1045 		break;
1046 	case IODEV_DIST:
1047 		data = region->read(vcpu, addr, len);
1048 		break;
1049 	case IODEV_REDIST:
1050 		data = region->read(iodev->redist_vcpu, addr, len);
1051 		break;
1052 	case IODEV_ITS:
1053 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1054 		break;
1055 	}
1056 
1057 	vgic_data_host_to_mmio_bus(val, len, data);
1058 	return 0;
1059 }
1060 
1061 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1062 			       gpa_t addr, int len, const void *val)
1063 {
1064 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1065 	const struct vgic_register_region *region;
1066 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1067 
1068 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1069 	if (!region)
1070 		return 0;
1071 
1072 	switch (iodev->iodev_type) {
1073 	case IODEV_CPUIF:
1074 		region->write(vcpu, addr, len, data);
1075 		break;
1076 	case IODEV_DIST:
1077 		region->write(vcpu, addr, len, data);
1078 		break;
1079 	case IODEV_REDIST:
1080 		region->write(iodev->redist_vcpu, addr, len, data);
1081 		break;
1082 	case IODEV_ITS:
1083 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1084 		break;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 const struct kvm_io_device_ops kvm_io_gic_ops = {
1091 	.read = dispatch_mmio_read,
1092 	.write = dispatch_mmio_write,
1093 };
1094 
1095 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1096 			     enum vgic_type type)
1097 {
1098 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1099 	unsigned int len;
1100 
1101 	switch (type) {
1102 	case VGIC_V2:
1103 		len = vgic_v2_init_dist_iodev(io_device);
1104 		break;
1105 	case VGIC_V3:
1106 		len = vgic_v3_init_dist_iodev(io_device);
1107 		break;
1108 	default:
1109 		BUG_ON(1);
1110 	}
1111 
1112 	io_device->base_addr = dist_base_address;
1113 	io_device->iodev_type = IODEV_DIST;
1114 	io_device->redist_vcpu = NULL;
1115 
1116 	return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1117 				       len, &io_device->dev);
1118 }
1119