xref: /linux/arch/arm64/kvm/vgic/vgic-mmio.c (revision 2dcb8e8782d8e4c38903bf37b1a24d3ffd193da7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 				 gpa_t addr, unsigned int len)
21 {
22 	return 0;
23 }
24 
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return -1UL;
29 }
30 
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 			unsigned int len, unsigned long val)
33 {
34 	/* Ignore */
35 }
36 
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			       unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 	return 0;
42 }
43 
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 				   gpa_t addr, unsigned int len)
46 {
47 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 	u32 value = 0;
49 	int i;
50 
51 	/* Loop over all IRQs affected by this read */
52 	for (i = 0; i < len * 8; i++) {
53 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
54 
55 		if (irq->group)
56 			value |= BIT(i);
57 
58 		vgic_put_irq(vcpu->kvm, irq);
59 	}
60 
61 	return value;
62 }
63 
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 	WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68 
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 			   unsigned int len, unsigned long val)
71 {
72 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 	int i;
74 	unsigned long flags;
75 
76 	for (i = 0; i < len * 8; i++) {
77 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
78 
79 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 		irq->group = !!(val & BIT(i));
81 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 			vgic_update_vsgi(irq);
83 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 		} else {
85 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 		}
87 
88 		vgic_put_irq(vcpu->kvm, irq);
89 	}
90 }
91 
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 				    gpa_t addr, unsigned int len)
98 {
99 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 	u32 value = 0;
101 	int i;
102 
103 	/* Loop over all IRQs affected by this read */
104 	for (i = 0; i < len * 8; i++) {
105 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
106 
107 		if (irq->enabled)
108 			value |= (1U << i);
109 
110 		vgic_put_irq(vcpu->kvm, irq);
111 	}
112 
113 	return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 			     gpa_t addr, unsigned int len,
118 			     unsigned long val)
119 {
120 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 	int i;
122 	unsigned long flags;
123 
124 	for_each_set_bit(i, &val, len * 8) {
125 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
126 
127 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 			if (!irq->enabled) {
130 				struct irq_data *data;
131 
132 				irq->enabled = true;
133 				data = &irq_to_desc(irq->host_irq)->irq_data;
134 				while (irqd_irq_disabled(data))
135 					enable_irq(irq->host_irq);
136 			}
137 
138 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 			vgic_put_irq(vcpu->kvm, irq);
140 
141 			continue;
142 		} else if (vgic_irq_is_mapped_level(irq)) {
143 			bool was_high = irq->line_level;
144 
145 			/*
146 			 * We need to update the state of the interrupt because
147 			 * the guest might have changed the state of the device
148 			 * while the interrupt was disabled at the VGIC level.
149 			 */
150 			irq->line_level = vgic_get_phys_line_level(irq);
151 			/*
152 			 * Deactivate the physical interrupt so the GIC will let
153 			 * us know when it is asserted again.
154 			 */
155 			if (!irq->active && was_high && !irq->line_level)
156 				vgic_irq_set_phys_active(irq, false);
157 		}
158 		irq->enabled = true;
159 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161 		vgic_put_irq(vcpu->kvm, irq);
162 	}
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 			     gpa_t addr, unsigned int len,
167 			     unsigned long val)
168 {
169 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 	int i;
171 	unsigned long flags;
172 
173 	for_each_set_bit(i, &val, len * 8) {
174 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
175 
176 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 		if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 			disable_irq_nosync(irq->host_irq);
179 
180 		irq->enabled = false;
181 
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 			       gpa_t addr, unsigned int len,
189 			       unsigned long val)
190 {
191 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 	int i;
193 	unsigned long flags;
194 
195 	for_each_set_bit(i, &val, len * 8) {
196 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
197 
198 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 		irq->enabled = true;
200 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202 		vgic_put_irq(vcpu->kvm, irq);
203 	}
204 
205 	return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 			       gpa_t addr, unsigned int len,
210 			       unsigned long val)
211 {
212 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 	int i;
214 	unsigned long flags;
215 
216 	for_each_set_bit(i, &val, len * 8) {
217 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
218 
219 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 		irq->enabled = false;
221 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223 		vgic_put_irq(vcpu->kvm, irq);
224 	}
225 
226 	return 0;
227 }
228 
229 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
230 				     gpa_t addr, unsigned int len)
231 {
232 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
233 	u32 value = 0;
234 	int i;
235 
236 	/* Loop over all IRQs affected by this read */
237 	for (i = 0; i < len * 8; i++) {
238 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
239 		unsigned long flags;
240 		bool val;
241 
242 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
243 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
244 			int err;
245 
246 			val = false;
247 			err = irq_get_irqchip_state(irq->host_irq,
248 						    IRQCHIP_STATE_PENDING,
249 						    &val);
250 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
251 		} else if (vgic_irq_is_mapped_level(irq)) {
252 			val = vgic_get_phys_line_level(irq);
253 		} else {
254 			val = irq_is_pending(irq);
255 		}
256 
257 		value |= ((u32)val << i);
258 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
259 
260 		vgic_put_irq(vcpu->kvm, irq);
261 	}
262 
263 	return value;
264 }
265 
266 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
267 {
268 	return (vgic_irq_is_sgi(irq->intid) &&
269 		vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
270 }
271 
272 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
273 			      gpa_t addr, unsigned int len,
274 			      unsigned long val)
275 {
276 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
277 	int i;
278 	unsigned long flags;
279 
280 	for_each_set_bit(i, &val, len * 8) {
281 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
282 
283 		/* GICD_ISPENDR0 SGI bits are WI */
284 		if (is_vgic_v2_sgi(vcpu, irq)) {
285 			vgic_put_irq(vcpu->kvm, irq);
286 			continue;
287 		}
288 
289 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
290 
291 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
292 			/* HW SGI? Ask the GIC to inject it */
293 			int err;
294 			err = irq_set_irqchip_state(irq->host_irq,
295 						    IRQCHIP_STATE_PENDING,
296 						    true);
297 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
298 
299 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
300 			vgic_put_irq(vcpu->kvm, irq);
301 
302 			continue;
303 		}
304 
305 		irq->pending_latch = true;
306 		if (irq->hw)
307 			vgic_irq_set_phys_active(irq, true);
308 
309 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
310 		vgic_put_irq(vcpu->kvm, irq);
311 	}
312 }
313 
314 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
315 				gpa_t addr, unsigned int len,
316 				unsigned long val)
317 {
318 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
319 	int i;
320 	unsigned long flags;
321 
322 	for_each_set_bit(i, &val, len * 8) {
323 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
324 
325 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
326 		irq->pending_latch = true;
327 
328 		/*
329 		 * GICv2 SGIs are terribly broken. We can't restore
330 		 * the source of the interrupt, so just pick the vcpu
331 		 * itself as the source...
332 		 */
333 		if (is_vgic_v2_sgi(vcpu, irq))
334 			irq->source |= BIT(vcpu->vcpu_id);
335 
336 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
337 
338 		vgic_put_irq(vcpu->kvm, irq);
339 	}
340 
341 	return 0;
342 }
343 
344 /* Must be called with irq->irq_lock held */
345 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
346 {
347 	irq->pending_latch = false;
348 
349 	/*
350 	 * We don't want the guest to effectively mask the physical
351 	 * interrupt by doing a write to SPENDR followed by a write to
352 	 * CPENDR for HW interrupts, so we clear the active state on
353 	 * the physical side if the virtual interrupt is not active.
354 	 * This may lead to taking an additional interrupt on the
355 	 * host, but that should not be a problem as the worst that
356 	 * can happen is an additional vgic injection.  We also clear
357 	 * the pending state to maintain proper semantics for edge HW
358 	 * interrupts.
359 	 */
360 	vgic_irq_set_phys_pending(irq, false);
361 	if (!irq->active)
362 		vgic_irq_set_phys_active(irq, false);
363 }
364 
365 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
366 			      gpa_t addr, unsigned int len,
367 			      unsigned long val)
368 {
369 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
370 	int i;
371 	unsigned long flags;
372 
373 	for_each_set_bit(i, &val, len * 8) {
374 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
375 
376 		/* GICD_ICPENDR0 SGI bits are WI */
377 		if (is_vgic_v2_sgi(vcpu, irq)) {
378 			vgic_put_irq(vcpu->kvm, irq);
379 			continue;
380 		}
381 
382 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
383 
384 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
385 			/* HW SGI? Ask the GIC to clear its pending bit */
386 			int err;
387 			err = irq_set_irqchip_state(irq->host_irq,
388 						    IRQCHIP_STATE_PENDING,
389 						    false);
390 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
391 
392 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
393 			vgic_put_irq(vcpu->kvm, irq);
394 
395 			continue;
396 		}
397 
398 		if (irq->hw)
399 			vgic_hw_irq_cpending(vcpu, irq);
400 		else
401 			irq->pending_latch = false;
402 
403 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
404 		vgic_put_irq(vcpu->kvm, irq);
405 	}
406 }
407 
408 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
409 				gpa_t addr, unsigned int len,
410 				unsigned long val)
411 {
412 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
413 	int i;
414 	unsigned long flags;
415 
416 	for_each_set_bit(i, &val, len * 8) {
417 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
418 
419 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
420 		/*
421 		 * More fun with GICv2 SGIs! If we're clearing one of them
422 		 * from userspace, which source vcpu to clear? Let's not
423 		 * even think of it, and blow the whole set.
424 		 */
425 		if (is_vgic_v2_sgi(vcpu, irq))
426 			irq->source = 0;
427 
428 		irq->pending_latch = false;
429 
430 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
431 
432 		vgic_put_irq(vcpu->kvm, irq);
433 	}
434 
435 	return 0;
436 }
437 
438 /*
439  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
440  * is not queued on some running VCPU's LRs, because then the change to the
441  * active state can be overwritten when the VCPU's state is synced coming back
442  * from the guest.
443  *
444  * For shared interrupts as well as GICv3 private interrupts, we have to
445  * stop all the VCPUs because interrupts can be migrated while we don't hold
446  * the IRQ locks and we don't want to be chasing moving targets.
447  *
448  * For GICv2 private interrupts we don't have to do anything because
449  * userspace accesses to the VGIC state already require all VCPUs to be
450  * stopped, and only the VCPU itself can modify its private interrupts
451  * active state, which guarantees that the VCPU is not running.
452  */
453 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
454 {
455 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
456 	    intid >= VGIC_NR_PRIVATE_IRQS)
457 		kvm_arm_halt_guest(vcpu->kvm);
458 }
459 
460 /* See vgic_access_active_prepare */
461 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
462 {
463 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 ||
464 	    intid >= VGIC_NR_PRIVATE_IRQS)
465 		kvm_arm_resume_guest(vcpu->kvm);
466 }
467 
468 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
469 					     gpa_t addr, unsigned int len)
470 {
471 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
472 	u32 value = 0;
473 	int i;
474 
475 	/* Loop over all IRQs affected by this read */
476 	for (i = 0; i < len * 8; i++) {
477 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
478 
479 		/*
480 		 * Even for HW interrupts, don't evaluate the HW state as
481 		 * all the guest is interested in is the virtual state.
482 		 */
483 		if (irq->active)
484 			value |= (1U << i);
485 
486 		vgic_put_irq(vcpu->kvm, irq);
487 	}
488 
489 	return value;
490 }
491 
492 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
493 				    gpa_t addr, unsigned int len)
494 {
495 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
496 	u32 val;
497 
498 	mutex_lock(&vcpu->kvm->lock);
499 	vgic_access_active_prepare(vcpu, intid);
500 
501 	val = __vgic_mmio_read_active(vcpu, addr, len);
502 
503 	vgic_access_active_finish(vcpu, intid);
504 	mutex_unlock(&vcpu->kvm->lock);
505 
506 	return val;
507 }
508 
509 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
510 				    gpa_t addr, unsigned int len)
511 {
512 	return __vgic_mmio_read_active(vcpu, addr, len);
513 }
514 
515 /* Must be called with irq->irq_lock held */
516 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
517 				      bool active, bool is_uaccess)
518 {
519 	if (is_uaccess)
520 		return;
521 
522 	irq->active = active;
523 	vgic_irq_set_phys_active(irq, active);
524 }
525 
526 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
527 				    bool active)
528 {
529 	unsigned long flags;
530 	struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
531 
532 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
533 
534 	if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
535 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
536 	} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
537 		/*
538 		 * GICv4.1 VSGI feature doesn't track an active state,
539 		 * so let's not kid ourselves, there is nothing we can
540 		 * do here.
541 		 */
542 		irq->active = false;
543 	} else {
544 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
545 		u8 active_source;
546 
547 		irq->active = active;
548 
549 		/*
550 		 * The GICv2 architecture indicates that the source CPUID for
551 		 * an SGI should be provided during an EOI which implies that
552 		 * the active state is stored somewhere, but at the same time
553 		 * this state is not architecturally exposed anywhere and we
554 		 * have no way of knowing the right source.
555 		 *
556 		 * This may lead to a VCPU not being able to receive
557 		 * additional instances of a particular SGI after migration
558 		 * for a GICv2 VM on some GIC implementations.  Oh well.
559 		 */
560 		active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
561 
562 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
563 		    active && vgic_irq_is_sgi(irq->intid))
564 			irq->active_source = active_source;
565 	}
566 
567 	if (irq->active)
568 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
569 	else
570 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
571 }
572 
573 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
574 				      gpa_t addr, unsigned int len,
575 				      unsigned long val)
576 {
577 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
578 	int i;
579 
580 	for_each_set_bit(i, &val, len * 8) {
581 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
582 		vgic_mmio_change_active(vcpu, irq, false);
583 		vgic_put_irq(vcpu->kvm, irq);
584 	}
585 }
586 
587 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
588 			     gpa_t addr, unsigned int len,
589 			     unsigned long val)
590 {
591 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
592 
593 	mutex_lock(&vcpu->kvm->lock);
594 	vgic_access_active_prepare(vcpu, intid);
595 
596 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
597 
598 	vgic_access_active_finish(vcpu, intid);
599 	mutex_unlock(&vcpu->kvm->lock);
600 }
601 
602 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
603 				     gpa_t addr, unsigned int len,
604 				     unsigned long val)
605 {
606 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
607 	return 0;
608 }
609 
610 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
611 				      gpa_t addr, unsigned int len,
612 				      unsigned long val)
613 {
614 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
615 	int i;
616 
617 	for_each_set_bit(i, &val, len * 8) {
618 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
619 		vgic_mmio_change_active(vcpu, irq, true);
620 		vgic_put_irq(vcpu->kvm, irq);
621 	}
622 }
623 
624 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
625 			     gpa_t addr, unsigned int len,
626 			     unsigned long val)
627 {
628 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
629 
630 	mutex_lock(&vcpu->kvm->lock);
631 	vgic_access_active_prepare(vcpu, intid);
632 
633 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
634 
635 	vgic_access_active_finish(vcpu, intid);
636 	mutex_unlock(&vcpu->kvm->lock);
637 }
638 
639 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
640 				     gpa_t addr, unsigned int len,
641 				     unsigned long val)
642 {
643 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
644 	return 0;
645 }
646 
647 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
648 				      gpa_t addr, unsigned int len)
649 {
650 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
651 	int i;
652 	u64 val = 0;
653 
654 	for (i = 0; i < len; i++) {
655 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
656 
657 		val |= (u64)irq->priority << (i * 8);
658 
659 		vgic_put_irq(vcpu->kvm, irq);
660 	}
661 
662 	return val;
663 }
664 
665 /*
666  * We currently don't handle changing the priority of an interrupt that
667  * is already pending on a VCPU. If there is a need for this, we would
668  * need to make this VCPU exit and re-evaluate the priorities, potentially
669  * leading to this interrupt getting presented now to the guest (if it has
670  * been masked by the priority mask before).
671  */
672 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
673 			      gpa_t addr, unsigned int len,
674 			      unsigned long val)
675 {
676 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
677 	int i;
678 	unsigned long flags;
679 
680 	for (i = 0; i < len; i++) {
681 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
682 
683 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
684 		/* Narrow the priority range to what we actually support */
685 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
686 		if (irq->hw && vgic_irq_is_sgi(irq->intid))
687 			vgic_update_vsgi(irq);
688 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
689 
690 		vgic_put_irq(vcpu->kvm, irq);
691 	}
692 }
693 
694 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
695 				    gpa_t addr, unsigned int len)
696 {
697 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
698 	u32 value = 0;
699 	int i;
700 
701 	for (i = 0; i < len * 4; i++) {
702 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
703 
704 		if (irq->config == VGIC_CONFIG_EDGE)
705 			value |= (2U << (i * 2));
706 
707 		vgic_put_irq(vcpu->kvm, irq);
708 	}
709 
710 	return value;
711 }
712 
713 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
714 			    gpa_t addr, unsigned int len,
715 			    unsigned long val)
716 {
717 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
718 	int i;
719 	unsigned long flags;
720 
721 	for (i = 0; i < len * 4; i++) {
722 		struct vgic_irq *irq;
723 
724 		/*
725 		 * The configuration cannot be changed for SGIs in general,
726 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
727 		 * code relies on PPIs being level triggered, so we also
728 		 * make them read-only here.
729 		 */
730 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
731 			continue;
732 
733 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
734 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
735 
736 		if (test_bit(i * 2 + 1, &val))
737 			irq->config = VGIC_CONFIG_EDGE;
738 		else
739 			irq->config = VGIC_CONFIG_LEVEL;
740 
741 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
742 		vgic_put_irq(vcpu->kvm, irq);
743 	}
744 }
745 
746 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
747 {
748 	int i;
749 	u64 val = 0;
750 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
751 
752 	for (i = 0; i < 32; i++) {
753 		struct vgic_irq *irq;
754 
755 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
756 			continue;
757 
758 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
759 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
760 			val |= (1U << i);
761 
762 		vgic_put_irq(vcpu->kvm, irq);
763 	}
764 
765 	return val;
766 }
767 
768 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
769 				    const u64 val)
770 {
771 	int i;
772 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
773 	unsigned long flags;
774 
775 	for (i = 0; i < 32; i++) {
776 		struct vgic_irq *irq;
777 		bool new_level;
778 
779 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
780 			continue;
781 
782 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
783 
784 		/*
785 		 * Line level is set irrespective of irq type
786 		 * (level or edge) to avoid dependency that VM should
787 		 * restore irq config before line level.
788 		 */
789 		new_level = !!(val & (1U << i));
790 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
791 		irq->line_level = new_level;
792 		if (new_level)
793 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
794 		else
795 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
796 
797 		vgic_put_irq(vcpu->kvm, irq);
798 	}
799 }
800 
801 static int match_region(const void *key, const void *elt)
802 {
803 	const unsigned int offset = (unsigned long)key;
804 	const struct vgic_register_region *region = elt;
805 
806 	if (offset < region->reg_offset)
807 		return -1;
808 
809 	if (offset >= region->reg_offset + region->len)
810 		return 1;
811 
812 	return 0;
813 }
814 
815 const struct vgic_register_region *
816 vgic_find_mmio_region(const struct vgic_register_region *regions,
817 		      int nr_regions, unsigned int offset)
818 {
819 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
820 		       sizeof(regions[0]), match_region);
821 }
822 
823 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
824 {
825 	if (kvm_vgic_global_state.type == VGIC_V2)
826 		vgic_v2_set_vmcr(vcpu, vmcr);
827 	else
828 		vgic_v3_set_vmcr(vcpu, vmcr);
829 }
830 
831 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
832 {
833 	if (kvm_vgic_global_state.type == VGIC_V2)
834 		vgic_v2_get_vmcr(vcpu, vmcr);
835 	else
836 		vgic_v3_get_vmcr(vcpu, vmcr);
837 }
838 
839 /*
840  * kvm_mmio_read_buf() returns a value in a format where it can be converted
841  * to a byte array and be directly observed as the guest wanted it to appear
842  * in memory if it had done the store itself, which is LE for the GIC, as the
843  * guest knows the GIC is always LE.
844  *
845  * We convert this value to the CPUs native format to deal with it as a data
846  * value.
847  */
848 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
849 {
850 	unsigned long data = kvm_mmio_read_buf(val, len);
851 
852 	switch (len) {
853 	case 1:
854 		return data;
855 	case 2:
856 		return le16_to_cpu(data);
857 	case 4:
858 		return le32_to_cpu(data);
859 	default:
860 		return le64_to_cpu(data);
861 	}
862 }
863 
864 /*
865  * kvm_mmio_write_buf() expects a value in a format such that if converted to
866  * a byte array it is observed as the guest would see it if it could perform
867  * the load directly.  Since the GIC is LE, and the guest knows this, the
868  * guest expects a value in little endian format.
869  *
870  * We convert the data value from the CPUs native format to LE so that the
871  * value is returned in the proper format.
872  */
873 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
874 				unsigned long data)
875 {
876 	switch (len) {
877 	case 1:
878 		break;
879 	case 2:
880 		data = cpu_to_le16(data);
881 		break;
882 	case 4:
883 		data = cpu_to_le32(data);
884 		break;
885 	default:
886 		data = cpu_to_le64(data);
887 	}
888 
889 	kvm_mmio_write_buf(buf, len, data);
890 }
891 
892 static
893 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
894 {
895 	return container_of(dev, struct vgic_io_device, dev);
896 }
897 
898 static bool check_region(const struct kvm *kvm,
899 			 const struct vgic_register_region *region,
900 			 gpa_t addr, int len)
901 {
902 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
903 
904 	switch (len) {
905 	case sizeof(u8):
906 		flags = VGIC_ACCESS_8bit;
907 		break;
908 	case sizeof(u32):
909 		flags = VGIC_ACCESS_32bit;
910 		break;
911 	case sizeof(u64):
912 		flags = VGIC_ACCESS_64bit;
913 		break;
914 	default:
915 		return false;
916 	}
917 
918 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
919 		if (!region->bits_per_irq)
920 			return true;
921 
922 		/* Do we access a non-allocated IRQ? */
923 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
924 	}
925 
926 	return false;
927 }
928 
929 const struct vgic_register_region *
930 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
931 		     gpa_t addr, int len)
932 {
933 	const struct vgic_register_region *region;
934 
935 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
936 				       addr - iodev->base_addr);
937 	if (!region || !check_region(vcpu->kvm, region, addr, len))
938 		return NULL;
939 
940 	return region;
941 }
942 
943 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
944 			     gpa_t addr, u32 *val)
945 {
946 	const struct vgic_register_region *region;
947 	struct kvm_vcpu *r_vcpu;
948 
949 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
950 	if (!region) {
951 		*val = 0;
952 		return 0;
953 	}
954 
955 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
956 	if (region->uaccess_read)
957 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
958 	else
959 		*val = region->read(r_vcpu, addr, sizeof(u32));
960 
961 	return 0;
962 }
963 
964 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
965 			      gpa_t addr, const u32 *val)
966 {
967 	const struct vgic_register_region *region;
968 	struct kvm_vcpu *r_vcpu;
969 
970 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
971 	if (!region)
972 		return 0;
973 
974 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
975 	if (region->uaccess_write)
976 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
977 
978 	region->write(r_vcpu, addr, sizeof(u32), *val);
979 	return 0;
980 }
981 
982 /*
983  * Userland access to VGIC registers.
984  */
985 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
986 		 bool is_write, int offset, u32 *val)
987 {
988 	if (is_write)
989 		return vgic_uaccess_write(vcpu, dev, offset, val);
990 	else
991 		return vgic_uaccess_read(vcpu, dev, offset, val);
992 }
993 
994 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
995 			      gpa_t addr, int len, void *val)
996 {
997 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
998 	const struct vgic_register_region *region;
999 	unsigned long data = 0;
1000 
1001 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1002 	if (!region) {
1003 		memset(val, 0, len);
1004 		return 0;
1005 	}
1006 
1007 	switch (iodev->iodev_type) {
1008 	case IODEV_CPUIF:
1009 		data = region->read(vcpu, addr, len);
1010 		break;
1011 	case IODEV_DIST:
1012 		data = region->read(vcpu, addr, len);
1013 		break;
1014 	case IODEV_REDIST:
1015 		data = region->read(iodev->redist_vcpu, addr, len);
1016 		break;
1017 	case IODEV_ITS:
1018 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1019 		break;
1020 	}
1021 
1022 	vgic_data_host_to_mmio_bus(val, len, data);
1023 	return 0;
1024 }
1025 
1026 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1027 			       gpa_t addr, int len, const void *val)
1028 {
1029 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1030 	const struct vgic_register_region *region;
1031 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1032 
1033 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1034 	if (!region)
1035 		return 0;
1036 
1037 	switch (iodev->iodev_type) {
1038 	case IODEV_CPUIF:
1039 		region->write(vcpu, addr, len, data);
1040 		break;
1041 	case IODEV_DIST:
1042 		region->write(vcpu, addr, len, data);
1043 		break;
1044 	case IODEV_REDIST:
1045 		region->write(iodev->redist_vcpu, addr, len, data);
1046 		break;
1047 	case IODEV_ITS:
1048 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1049 		break;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
1055 const struct kvm_io_device_ops kvm_io_gic_ops = {
1056 	.read = dispatch_mmio_read,
1057 	.write = dispatch_mmio_write,
1058 };
1059 
1060 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1061 			     enum vgic_type type)
1062 {
1063 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1064 	int ret = 0;
1065 	unsigned int len;
1066 
1067 	switch (type) {
1068 	case VGIC_V2:
1069 		len = vgic_v2_init_dist_iodev(io_device);
1070 		break;
1071 	case VGIC_V3:
1072 		len = vgic_v3_init_dist_iodev(io_device);
1073 		break;
1074 	default:
1075 		BUG_ON(1);
1076 	}
1077 
1078 	io_device->base_addr = dist_base_address;
1079 	io_device->iodev_type = IODEV_DIST;
1080 	io_device->redist_vcpu = NULL;
1081 
1082 	mutex_lock(&kvm->slots_lock);
1083 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1084 				      len, &io_device->dev);
1085 	mutex_unlock(&kvm->slots_lock);
1086 
1087 	return ret;
1088 }
1089