xref: /linux/arch/arm64/kvm/vgic/vgic-mmio.c (revision 024bfd2e9d80d7131f1178eb2235030b96f7ef0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC MMIO handling functions
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/bsearch.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <kvm/iodev.h>
13 #include <kvm/arm_arch_timer.h>
14 #include <kvm/arm_vgic.h>
15 
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18 
19 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
20 				 gpa_t addr, unsigned int len)
21 {
22 	return 0;
23 }
24 
25 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return -1UL;
29 }
30 
31 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
32 			unsigned int len, unsigned long val)
33 {
34 	/* Ignore */
35 }
36 
37 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			       unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 	return 0;
42 }
43 
44 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
45 				   gpa_t addr, unsigned int len)
46 {
47 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
48 	u32 value = 0;
49 	int i;
50 
51 	/* Loop over all IRQs affected by this read */
52 	for (i = 0; i < len * 8; i++) {
53 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
54 
55 		if (irq->group)
56 			value |= BIT(i);
57 
58 		vgic_put_irq(vcpu->kvm, irq);
59 	}
60 
61 	return value;
62 }
63 
64 static void vgic_update_vsgi(struct vgic_irq *irq)
65 {
66 	WARN_ON(its_prop_update_vsgi(irq->host_irq, irq->priority, irq->group));
67 }
68 
69 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
70 			   unsigned int len, unsigned long val)
71 {
72 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
73 	int i;
74 	unsigned long flags;
75 
76 	for (i = 0; i < len * 8; i++) {
77 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
78 
79 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
80 		irq->group = !!(val & BIT(i));
81 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
82 			vgic_update_vsgi(irq);
83 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
84 		} else {
85 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
86 		}
87 
88 		vgic_put_irq(vcpu->kvm, irq);
89 	}
90 }
91 
92 /*
93  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
94  * of the enabled bit, so there is only one function for both here.
95  */
96 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
97 				    gpa_t addr, unsigned int len)
98 {
99 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
100 	u32 value = 0;
101 	int i;
102 
103 	/* Loop over all IRQs affected by this read */
104 	for (i = 0; i < len * 8; i++) {
105 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
106 
107 		if (irq->enabled)
108 			value |= (1U << i);
109 
110 		vgic_put_irq(vcpu->kvm, irq);
111 	}
112 
113 	return value;
114 }
115 
116 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
117 			     gpa_t addr, unsigned int len,
118 			     unsigned long val)
119 {
120 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
121 	int i;
122 	unsigned long flags;
123 
124 	for_each_set_bit(i, &val, len * 8) {
125 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
126 
127 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
128 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
129 			if (!irq->enabled) {
130 				struct irq_data *data;
131 
132 				irq->enabled = true;
133 				data = &irq_to_desc(irq->host_irq)->irq_data;
134 				while (irqd_irq_disabled(data))
135 					enable_irq(irq->host_irq);
136 			}
137 
138 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
139 			vgic_put_irq(vcpu->kvm, irq);
140 
141 			continue;
142 		} else if (vgic_irq_is_mapped_level(irq)) {
143 			bool was_high = irq->line_level;
144 
145 			/*
146 			 * We need to update the state of the interrupt because
147 			 * the guest might have changed the state of the device
148 			 * while the interrupt was disabled at the VGIC level.
149 			 */
150 			irq->line_level = vgic_get_phys_line_level(irq);
151 			/*
152 			 * Deactivate the physical interrupt so the GIC will let
153 			 * us know when it is asserted again.
154 			 */
155 			if (!irq->active && was_high && !irq->line_level)
156 				vgic_irq_set_phys_active(irq, false);
157 		}
158 		irq->enabled = true;
159 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
160 
161 		vgic_put_irq(vcpu->kvm, irq);
162 	}
163 }
164 
165 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
166 			     gpa_t addr, unsigned int len,
167 			     unsigned long val)
168 {
169 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
170 	int i;
171 	unsigned long flags;
172 
173 	for_each_set_bit(i, &val, len * 8) {
174 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
175 
176 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
177 		if (irq->hw && vgic_irq_is_sgi(irq->intid) && irq->enabled)
178 			disable_irq_nosync(irq->host_irq);
179 
180 		irq->enabled = false;
181 
182 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 		vgic_put_irq(vcpu->kvm, irq);
184 	}
185 }
186 
187 int vgic_uaccess_write_senable(struct kvm_vcpu *vcpu,
188 			       gpa_t addr, unsigned int len,
189 			       unsigned long val)
190 {
191 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
192 	int i;
193 	unsigned long flags;
194 
195 	for_each_set_bit(i, &val, len * 8) {
196 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
197 
198 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
199 		irq->enabled = true;
200 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
201 
202 		vgic_put_irq(vcpu->kvm, irq);
203 	}
204 
205 	return 0;
206 }
207 
208 int vgic_uaccess_write_cenable(struct kvm_vcpu *vcpu,
209 			       gpa_t addr, unsigned int len,
210 			       unsigned long val)
211 {
212 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
213 	int i;
214 	unsigned long flags;
215 
216 	for_each_set_bit(i, &val, len * 8) {
217 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
218 
219 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
220 		irq->enabled = false;
221 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
222 
223 		vgic_put_irq(vcpu->kvm, irq);
224 	}
225 
226 	return 0;
227 }
228 
229 static unsigned long __read_pending(struct kvm_vcpu *vcpu,
230 				    gpa_t addr, unsigned int len,
231 				    bool is_user)
232 {
233 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
234 	u32 value = 0;
235 	int i;
236 
237 	/* Loop over all IRQs affected by this read */
238 	for (i = 0; i < len * 8; i++) {
239 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
240 		unsigned long flags;
241 		bool val;
242 
243 		/*
244 		 * When used from userspace with a GICv3 model:
245 		 *
246 		 * Pending state of interrupt is latched in pending_latch
247 		 * variable.  Userspace will save and restore pending state
248 		 * and line_level separately.
249 		 * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.rst
250 		 * for handling of ISPENDR and ICPENDR.
251 		 */
252 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
253 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
254 			int err;
255 
256 			val = false;
257 			err = irq_get_irqchip_state(irq->host_irq,
258 						    IRQCHIP_STATE_PENDING,
259 						    &val);
260 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
261 		} else if (!is_user && vgic_irq_is_mapped_level(irq)) {
262 			val = vgic_get_phys_line_level(irq);
263 		} else {
264 			switch (vcpu->kvm->arch.vgic.vgic_model) {
265 			case KVM_DEV_TYPE_ARM_VGIC_V3:
266 				if (is_user) {
267 					val = irq->pending_latch;
268 					break;
269 				}
270 				fallthrough;
271 			default:
272 				val = irq_is_pending(irq);
273 				break;
274 			}
275 		}
276 
277 		value |= ((u32)val << i);
278 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
279 
280 		vgic_put_irq(vcpu->kvm, irq);
281 	}
282 
283 	return value;
284 }
285 
286 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
287 				     gpa_t addr, unsigned int len)
288 {
289 	return __read_pending(vcpu, addr, len, false);
290 }
291 
292 unsigned long vgic_uaccess_read_pending(struct kvm_vcpu *vcpu,
293 					gpa_t addr, unsigned int len)
294 {
295 	return __read_pending(vcpu, addr, len, true);
296 }
297 
298 static bool is_vgic_v2_sgi(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
299 {
300 	return (vgic_irq_is_sgi(irq->intid) &&
301 		vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2);
302 }
303 
304 static void __set_pending(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len,
305 			  unsigned long val, bool is_user)
306 {
307 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
308 	int i;
309 	unsigned long flags;
310 
311 	for_each_set_bit(i, &val, len * 8) {
312 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
313 
314 		/* GICD_ISPENDR0 SGI bits are WI when written from the guest. */
315 		if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
316 			vgic_put_irq(vcpu->kvm, irq);
317 			continue;
318 		}
319 
320 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
321 
322 		/*
323 		 * GICv2 SGIs are terribly broken. We can't restore
324 		 * the source of the interrupt, so just pick the vcpu
325 		 * itself as the source...
326 		 */
327 		if (is_vgic_v2_sgi(vcpu, irq))
328 			irq->source |= BIT(vcpu->vcpu_id);
329 
330 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
331 			/* HW SGI? Ask the GIC to inject it */
332 			int err;
333 			err = irq_set_irqchip_state(irq->host_irq,
334 						    IRQCHIP_STATE_PENDING,
335 						    true);
336 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
337 
338 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
339 			vgic_put_irq(vcpu->kvm, irq);
340 
341 			continue;
342 		}
343 
344 		irq->pending_latch = true;
345 		if (irq->hw && !is_user)
346 			vgic_irq_set_phys_active(irq, true);
347 
348 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
349 		vgic_put_irq(vcpu->kvm, irq);
350 	}
351 }
352 
353 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
354 			      gpa_t addr, unsigned int len,
355 			      unsigned long val)
356 {
357 	__set_pending(vcpu, addr, len, val, false);
358 }
359 
360 int vgic_uaccess_write_spending(struct kvm_vcpu *vcpu,
361 				gpa_t addr, unsigned int len,
362 				unsigned long val)
363 {
364 	__set_pending(vcpu, addr, len, val, true);
365 	return 0;
366 }
367 
368 /* Must be called with irq->irq_lock held */
369 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq)
370 {
371 	irq->pending_latch = false;
372 
373 	/*
374 	 * We don't want the guest to effectively mask the physical
375 	 * interrupt by doing a write to SPENDR followed by a write to
376 	 * CPENDR for HW interrupts, so we clear the active state on
377 	 * the physical side if the virtual interrupt is not active.
378 	 * This may lead to taking an additional interrupt on the
379 	 * host, but that should not be a problem as the worst that
380 	 * can happen is an additional vgic injection.  We also clear
381 	 * the pending state to maintain proper semantics for edge HW
382 	 * interrupts.
383 	 */
384 	vgic_irq_set_phys_pending(irq, false);
385 	if (!irq->active)
386 		vgic_irq_set_phys_active(irq, false);
387 }
388 
389 static void __clear_pending(struct kvm_vcpu *vcpu,
390 			    gpa_t addr, unsigned int len,
391 			    unsigned long val, bool is_user)
392 {
393 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
394 	int i;
395 	unsigned long flags;
396 
397 	for_each_set_bit(i, &val, len * 8) {
398 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
399 
400 		/* GICD_ICPENDR0 SGI bits are WI when written from the guest. */
401 		if (is_vgic_v2_sgi(vcpu, irq) && !is_user) {
402 			vgic_put_irq(vcpu->kvm, irq);
403 			continue;
404 		}
405 
406 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
407 
408 		/*
409 		 * More fun with GICv2 SGIs! If we're clearing one of them
410 		 * from userspace, which source vcpu to clear? Let's not
411 		 * even think of it, and blow the whole set.
412 		 */
413 		if (is_vgic_v2_sgi(vcpu, irq))
414 			irq->source = 0;
415 
416 		if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
417 			/* HW SGI? Ask the GIC to clear its pending bit */
418 			int err;
419 			err = irq_set_irqchip_state(irq->host_irq,
420 						    IRQCHIP_STATE_PENDING,
421 						    false);
422 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
423 
424 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
425 			vgic_put_irq(vcpu->kvm, irq);
426 
427 			continue;
428 		}
429 
430 		if (irq->hw && !is_user)
431 			vgic_hw_irq_cpending(vcpu, irq);
432 		else
433 			irq->pending_latch = false;
434 
435 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
436 		vgic_put_irq(vcpu->kvm, irq);
437 	}
438 }
439 
440 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
441 			      gpa_t addr, unsigned int len,
442 			      unsigned long val)
443 {
444 	__clear_pending(vcpu, addr, len, val, false);
445 }
446 
447 int vgic_uaccess_write_cpending(struct kvm_vcpu *vcpu,
448 				gpa_t addr, unsigned int len,
449 				unsigned long val)
450 {
451 	__clear_pending(vcpu, addr, len, val, true);
452 	return 0;
453 }
454 
455 /*
456  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
457  * is not queued on some running VCPU's LRs, because then the change to the
458  * active state can be overwritten when the VCPU's state is synced coming back
459  * from the guest.
460  *
461  * For shared interrupts as well as GICv3 private interrupts accessed from the
462  * non-owning CPU, we have to stop all the VCPUs because interrupts can be
463  * migrated while we don't hold the IRQ locks and we don't want to be chasing
464  * moving targets.
465  *
466  * For GICv2 private interrupts we don't have to do anything because
467  * userspace accesses to the VGIC state already require all VCPUs to be
468  * stopped, and only the VCPU itself can modify its private interrupts
469  * active state, which guarantees that the VCPU is not running.
470  */
471 static void vgic_access_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
472 {
473 	if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
474 	     vcpu != kvm_get_running_vcpu()) ||
475 	    intid >= VGIC_NR_PRIVATE_IRQS)
476 		kvm_arm_halt_guest(vcpu->kvm);
477 }
478 
479 /* See vgic_access_active_prepare */
480 static void vgic_access_active_finish(struct kvm_vcpu *vcpu, u32 intid)
481 {
482 	if ((vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3 &&
483 	     vcpu != kvm_get_running_vcpu()) ||
484 	    intid >= VGIC_NR_PRIVATE_IRQS)
485 		kvm_arm_resume_guest(vcpu->kvm);
486 }
487 
488 static unsigned long __vgic_mmio_read_active(struct kvm_vcpu *vcpu,
489 					     gpa_t addr, unsigned int len)
490 {
491 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
492 	u32 value = 0;
493 	int i;
494 
495 	/* Loop over all IRQs affected by this read */
496 	for (i = 0; i < len * 8; i++) {
497 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
498 
499 		/*
500 		 * Even for HW interrupts, don't evaluate the HW state as
501 		 * all the guest is interested in is the virtual state.
502 		 */
503 		if (irq->active)
504 			value |= (1U << i);
505 
506 		vgic_put_irq(vcpu->kvm, irq);
507 	}
508 
509 	return value;
510 }
511 
512 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
513 				    gpa_t addr, unsigned int len)
514 {
515 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
516 	u32 val;
517 
518 	mutex_lock(&vcpu->kvm->arch.config_lock);
519 	vgic_access_active_prepare(vcpu, intid);
520 
521 	val = __vgic_mmio_read_active(vcpu, addr, len);
522 
523 	vgic_access_active_finish(vcpu, intid);
524 	mutex_unlock(&vcpu->kvm->arch.config_lock);
525 
526 	return val;
527 }
528 
529 unsigned long vgic_uaccess_read_active(struct kvm_vcpu *vcpu,
530 				    gpa_t addr, unsigned int len)
531 {
532 	return __vgic_mmio_read_active(vcpu, addr, len);
533 }
534 
535 /* Must be called with irq->irq_lock held */
536 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
537 				      bool active, bool is_uaccess)
538 {
539 	if (is_uaccess)
540 		return;
541 
542 	irq->active = active;
543 	vgic_irq_set_phys_active(irq, active);
544 }
545 
546 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
547 				    bool active)
548 {
549 	unsigned long flags;
550 	struct kvm_vcpu *requester_vcpu = kvm_get_running_vcpu();
551 
552 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
553 
554 	if (irq->hw && !vgic_irq_is_sgi(irq->intid)) {
555 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
556 	} else if (irq->hw && vgic_irq_is_sgi(irq->intid)) {
557 		/*
558 		 * GICv4.1 VSGI feature doesn't track an active state,
559 		 * so let's not kid ourselves, there is nothing we can
560 		 * do here.
561 		 */
562 		irq->active = false;
563 	} else {
564 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
565 		u8 active_source;
566 
567 		irq->active = active;
568 
569 		/*
570 		 * The GICv2 architecture indicates that the source CPUID for
571 		 * an SGI should be provided during an EOI which implies that
572 		 * the active state is stored somewhere, but at the same time
573 		 * this state is not architecturally exposed anywhere and we
574 		 * have no way of knowing the right source.
575 		 *
576 		 * This may lead to a VCPU not being able to receive
577 		 * additional instances of a particular SGI after migration
578 		 * for a GICv2 VM on some GIC implementations.  Oh well.
579 		 */
580 		active_source = (requester_vcpu) ? requester_vcpu->vcpu_id : 0;
581 
582 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
583 		    active && vgic_irq_is_sgi(irq->intid))
584 			irq->active_source = active_source;
585 	}
586 
587 	if (irq->active)
588 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
589 	else
590 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
591 }
592 
593 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
594 				      gpa_t addr, unsigned int len,
595 				      unsigned long val)
596 {
597 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
598 	int i;
599 
600 	for_each_set_bit(i, &val, len * 8) {
601 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
602 		vgic_mmio_change_active(vcpu, irq, false);
603 		vgic_put_irq(vcpu->kvm, irq);
604 	}
605 }
606 
607 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
608 			     gpa_t addr, unsigned int len,
609 			     unsigned long val)
610 {
611 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
612 
613 	mutex_lock(&vcpu->kvm->arch.config_lock);
614 	vgic_access_active_prepare(vcpu, intid);
615 
616 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
617 
618 	vgic_access_active_finish(vcpu, intid);
619 	mutex_unlock(&vcpu->kvm->arch.config_lock);
620 }
621 
622 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
623 				     gpa_t addr, unsigned int len,
624 				     unsigned long val)
625 {
626 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
627 	return 0;
628 }
629 
630 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
631 				      gpa_t addr, unsigned int len,
632 				      unsigned long val)
633 {
634 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
635 	int i;
636 
637 	for_each_set_bit(i, &val, len * 8) {
638 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
639 		vgic_mmio_change_active(vcpu, irq, true);
640 		vgic_put_irq(vcpu->kvm, irq);
641 	}
642 }
643 
644 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
645 			     gpa_t addr, unsigned int len,
646 			     unsigned long val)
647 {
648 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
649 
650 	mutex_lock(&vcpu->kvm->arch.config_lock);
651 	vgic_access_active_prepare(vcpu, intid);
652 
653 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
654 
655 	vgic_access_active_finish(vcpu, intid);
656 	mutex_unlock(&vcpu->kvm->arch.config_lock);
657 }
658 
659 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
660 				     gpa_t addr, unsigned int len,
661 				     unsigned long val)
662 {
663 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
664 	return 0;
665 }
666 
667 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
668 				      gpa_t addr, unsigned int len)
669 {
670 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
671 	int i;
672 	u64 val = 0;
673 
674 	for (i = 0; i < len; i++) {
675 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
676 
677 		val |= (u64)irq->priority << (i * 8);
678 
679 		vgic_put_irq(vcpu->kvm, irq);
680 	}
681 
682 	return val;
683 }
684 
685 /*
686  * We currently don't handle changing the priority of an interrupt that
687  * is already pending on a VCPU. If there is a need for this, we would
688  * need to make this VCPU exit and re-evaluate the priorities, potentially
689  * leading to this interrupt getting presented now to the guest (if it has
690  * been masked by the priority mask before).
691  */
692 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
693 			      gpa_t addr, unsigned int len,
694 			      unsigned long val)
695 {
696 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
697 	int i;
698 	unsigned long flags;
699 
700 	for (i = 0; i < len; i++) {
701 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
702 
703 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
704 		/* Narrow the priority range to what we actually support */
705 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
706 		if (irq->hw && vgic_irq_is_sgi(irq->intid))
707 			vgic_update_vsgi(irq);
708 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
709 
710 		vgic_put_irq(vcpu->kvm, irq);
711 	}
712 }
713 
714 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
715 				    gpa_t addr, unsigned int len)
716 {
717 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
718 	u32 value = 0;
719 	int i;
720 
721 	for (i = 0; i < len * 4; i++) {
722 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
723 
724 		if (irq->config == VGIC_CONFIG_EDGE)
725 			value |= (2U << (i * 2));
726 
727 		vgic_put_irq(vcpu->kvm, irq);
728 	}
729 
730 	return value;
731 }
732 
733 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
734 			    gpa_t addr, unsigned int len,
735 			    unsigned long val)
736 {
737 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
738 	int i;
739 	unsigned long flags;
740 
741 	for (i = 0; i < len * 4; i++) {
742 		struct vgic_irq *irq;
743 
744 		/*
745 		 * The configuration cannot be changed for SGIs in general,
746 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
747 		 * code relies on PPIs being level triggered, so we also
748 		 * make them read-only here.
749 		 */
750 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
751 			continue;
752 
753 		irq = vgic_get_irq(vcpu->kvm, intid + i);
754 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
755 
756 		if (test_bit(i * 2 + 1, &val))
757 			irq->config = VGIC_CONFIG_EDGE;
758 		else
759 			irq->config = VGIC_CONFIG_LEVEL;
760 
761 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
762 		vgic_put_irq(vcpu->kvm, irq);
763 	}
764 }
765 
766 u32 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
767 {
768 	int i;
769 	u32 val = 0;
770 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
771 
772 	for (i = 0; i < 32; i++) {
773 		struct vgic_irq *irq;
774 
775 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
776 			continue;
777 
778 		irq = vgic_get_vcpu_irq(vcpu, intid + i);
779 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
780 			val |= (1U << i);
781 
782 		vgic_put_irq(vcpu->kvm, irq);
783 	}
784 
785 	return val;
786 }
787 
788 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
789 				    const u32 val)
790 {
791 	int i;
792 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
793 	unsigned long flags;
794 
795 	for (i = 0; i < 32; i++) {
796 		struct vgic_irq *irq;
797 		bool new_level;
798 
799 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
800 			continue;
801 
802 		irq = vgic_get_vcpu_irq(vcpu, intid + i);
803 
804 		/*
805 		 * Line level is set irrespective of irq type
806 		 * (level or edge) to avoid dependency that VM should
807 		 * restore irq config before line level.
808 		 */
809 		new_level = !!(val & (1U << i));
810 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
811 		irq->line_level = new_level;
812 		if (new_level)
813 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
814 		else
815 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
816 
817 		vgic_put_irq(vcpu->kvm, irq);
818 	}
819 }
820 
821 static int match_region(const void *key, const void *elt)
822 {
823 	const unsigned int offset = (unsigned long)key;
824 	const struct vgic_register_region *region = elt;
825 
826 	if (offset < region->reg_offset)
827 		return -1;
828 
829 	if (offset >= region->reg_offset + region->len)
830 		return 1;
831 
832 	return 0;
833 }
834 
835 const struct vgic_register_region *
836 vgic_find_mmio_region(const struct vgic_register_region *regions,
837 		      int nr_regions, unsigned int offset)
838 {
839 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
840 		       sizeof(regions[0]), match_region);
841 }
842 
843 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
844 {
845 	if (kvm_vgic_global_state.type == VGIC_V2)
846 		vgic_v2_set_vmcr(vcpu, vmcr);
847 	else
848 		vgic_v3_set_vmcr(vcpu, vmcr);
849 }
850 
851 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
852 {
853 	if (kvm_vgic_global_state.type == VGIC_V2)
854 		vgic_v2_get_vmcr(vcpu, vmcr);
855 	else
856 		vgic_v3_get_vmcr(vcpu, vmcr);
857 }
858 
859 /*
860  * kvm_mmio_read_buf() returns a value in a format where it can be converted
861  * to a byte array and be directly observed as the guest wanted it to appear
862  * in memory if it had done the store itself, which is LE for the GIC, as the
863  * guest knows the GIC is always LE.
864  *
865  * We convert this value to the CPUs native format to deal with it as a data
866  * value.
867  */
868 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
869 {
870 	unsigned long data = kvm_mmio_read_buf(val, len);
871 
872 	switch (len) {
873 	case 1:
874 		return data;
875 	case 2:
876 		return le16_to_cpu(data);
877 	case 4:
878 		return le32_to_cpu(data);
879 	default:
880 		return le64_to_cpu(data);
881 	}
882 }
883 
884 /*
885  * kvm_mmio_write_buf() expects a value in a format such that if converted to
886  * a byte array it is observed as the guest would see it if it could perform
887  * the load directly.  Since the GIC is LE, and the guest knows this, the
888  * guest expects a value in little endian format.
889  *
890  * We convert the data value from the CPUs native format to LE so that the
891  * value is returned in the proper format.
892  */
893 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
894 				unsigned long data)
895 {
896 	switch (len) {
897 	case 1:
898 		break;
899 	case 2:
900 		data = cpu_to_le16(data);
901 		break;
902 	case 4:
903 		data = cpu_to_le32(data);
904 		break;
905 	default:
906 		data = cpu_to_le64(data);
907 	}
908 
909 	kvm_mmio_write_buf(buf, len, data);
910 }
911 
912 static
913 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
914 {
915 	return container_of(dev, struct vgic_io_device, dev);
916 }
917 
918 static bool check_region(const struct kvm *kvm,
919 			 const struct vgic_register_region *region,
920 			 gpa_t addr, int len)
921 {
922 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
923 
924 	switch (len) {
925 	case sizeof(u8):
926 		flags = VGIC_ACCESS_8bit;
927 		break;
928 	case sizeof(u32):
929 		flags = VGIC_ACCESS_32bit;
930 		break;
931 	case sizeof(u64):
932 		flags = VGIC_ACCESS_64bit;
933 		break;
934 	default:
935 		return false;
936 	}
937 
938 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
939 		if (!region->bits_per_irq)
940 			return true;
941 
942 		/* Do we access a non-allocated IRQ? */
943 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
944 	}
945 
946 	return false;
947 }
948 
949 const struct vgic_register_region *
950 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
951 		     gpa_t addr, int len)
952 {
953 	const struct vgic_register_region *region;
954 
955 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
956 				       addr - iodev->base_addr);
957 	if (!region || !check_region(vcpu->kvm, region, addr, len))
958 		return NULL;
959 
960 	return region;
961 }
962 
963 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
964 			     gpa_t addr, u32 *val)
965 {
966 	const struct vgic_register_region *region;
967 	struct kvm_vcpu *r_vcpu;
968 
969 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
970 	if (!region) {
971 		*val = 0;
972 		return 0;
973 	}
974 
975 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
976 	if (region->uaccess_read)
977 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
978 	else
979 		*val = region->read(r_vcpu, addr, sizeof(u32));
980 
981 	return 0;
982 }
983 
984 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
985 			      gpa_t addr, const u32 *val)
986 {
987 	const struct vgic_register_region *region;
988 	struct kvm_vcpu *r_vcpu;
989 
990 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
991 	if (!region)
992 		return 0;
993 
994 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
995 	if (region->uaccess_write)
996 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
997 
998 	region->write(r_vcpu, addr, sizeof(u32), *val);
999 	return 0;
1000 }
1001 
1002 /*
1003  * Userland access to VGIC registers.
1004  */
1005 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
1006 		 bool is_write, int offset, u32 *val)
1007 {
1008 	if (is_write)
1009 		return vgic_uaccess_write(vcpu, dev, offset, val);
1010 	else
1011 		return vgic_uaccess_read(vcpu, dev, offset, val);
1012 }
1013 
1014 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1015 			      gpa_t addr, int len, void *val)
1016 {
1017 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1018 	const struct vgic_register_region *region;
1019 	unsigned long data = 0;
1020 
1021 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1022 	if (!region) {
1023 		memset(val, 0, len);
1024 		return 0;
1025 	}
1026 
1027 	switch (iodev->iodev_type) {
1028 	case IODEV_CPUIF:
1029 		data = region->read(vcpu, addr, len);
1030 		break;
1031 	case IODEV_DIST:
1032 		data = region->read(vcpu, addr, len);
1033 		break;
1034 	case IODEV_REDIST:
1035 		data = region->read(iodev->redist_vcpu, addr, len);
1036 		break;
1037 	case IODEV_ITS:
1038 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
1039 		break;
1040 	}
1041 
1042 	vgic_data_host_to_mmio_bus(val, len, data);
1043 	return 0;
1044 }
1045 
1046 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
1047 			       gpa_t addr, int len, const void *val)
1048 {
1049 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
1050 	const struct vgic_register_region *region;
1051 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
1052 
1053 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
1054 	if (!region)
1055 		return 0;
1056 
1057 	switch (iodev->iodev_type) {
1058 	case IODEV_CPUIF:
1059 		region->write(vcpu, addr, len, data);
1060 		break;
1061 	case IODEV_DIST:
1062 		region->write(vcpu, addr, len, data);
1063 		break;
1064 	case IODEV_REDIST:
1065 		region->write(iodev->redist_vcpu, addr, len, data);
1066 		break;
1067 	case IODEV_ITS:
1068 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
1069 		break;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 const struct kvm_io_device_ops kvm_io_gic_ops = {
1076 	.read = dispatch_mmio_read,
1077 	.write = dispatch_mmio_write,
1078 };
1079 
1080 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
1081 			     enum vgic_type type)
1082 {
1083 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
1084 	unsigned int len;
1085 
1086 	switch (type) {
1087 	case VGIC_V2:
1088 		len = vgic_v2_init_dist_iodev(io_device);
1089 		break;
1090 	case VGIC_V3:
1091 		len = vgic_v3_init_dist_iodev(io_device);
1092 		break;
1093 	default:
1094 		BUG_ON(1);
1095 	}
1096 
1097 	io_device->base_addr = dist_base_address;
1098 	io_device->iodev_type = IODEV_DIST;
1099 	io_device->redist_vcpu = NULL;
1100 
1101 	return kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
1102 				       len, &io_device->dev);
1103 }
1104