xref: /linux/arch/arm64/kvm/vgic/vgic-mmio-v3.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5 
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20 
21 /* extract @num bytes at @offset bytes offset in data */
22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 			    unsigned int num)
24 {
25 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27 
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 		     unsigned long val)
31 {
32 	int lower = (offset & 4) * 8;
33 	int upper = lower + 8 * len - 1;
34 
35 	reg &= ~GENMASK_ULL(upper, lower);
36 	val &= GENMASK_ULL(len * 8 - 1, 0);
37 
38 	return reg | ((u64)val << lower);
39 }
40 
41 bool vgic_has_its(struct kvm *kvm)
42 {
43 	struct vgic_dist *dist = &kvm->arch.vgic;
44 
45 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 		return false;
47 
48 	return dist->has_its;
49 }
50 
51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 	return (kvm_vgic_global_state.has_gicv4_1 ||
54 		(kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56 
57 /*
58  * The Revision field in the IIDR have the following meanings:
59  *
60  * Revision 2: Interrupt groups are guest-configurable and signaled using
61  * 	       their configured groups.
62  */
63 
64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 					    gpa_t addr, unsigned int len)
66 {
67 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 	u32 value = 0;
69 
70 	switch (addr & 0x0c) {
71 	case GICD_CTLR:
72 		if (vgic->enabled)
73 			value |= GICD_CTLR_ENABLE_SS_G1;
74 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 		if (vgic->nassgireq)
76 			value |= GICD_CTLR_nASSGIreq;
77 		break;
78 	case GICD_TYPER:
79 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 		value = (value >> 5) - 1;
81 		if (vgic_has_its(vcpu->kvm)) {
82 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 			value |= GICD_TYPER_LPIS;
84 		} else {
85 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 		}
87 		break;
88 	case GICD_TYPER2:
89 		if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90 			value = GICD_TYPER2_nASSGIcap;
91 		break;
92 	case GICD_IIDR:
93 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 		break;
97 	default:
98 		return 0;
99 	}
100 
101 	return value;
102 }
103 
104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 				    gpa_t addr, unsigned int len,
106 				    unsigned long val)
107 {
108 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109 
110 	switch (addr & 0x0c) {
111 	case GICD_CTLR: {
112 		bool was_enabled, is_hwsgi;
113 
114 		mutex_lock(&vcpu->kvm->arch.config_lock);
115 
116 		was_enabled = dist->enabled;
117 		is_hwsgi = dist->nassgireq;
118 
119 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120 
121 		/* Not a GICv4.1? No HW SGIs */
122 		if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123 			val &= ~GICD_CTLR_nASSGIreq;
124 
125 		/* Dist stays enabled? nASSGIreq is RO */
126 		if (was_enabled && dist->enabled) {
127 			val &= ~GICD_CTLR_nASSGIreq;
128 			val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 		}
130 
131 		/* Switching HW SGIs? */
132 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 		if (is_hwsgi != dist->nassgireq)
134 			vgic_v4_configure_vsgis(vcpu->kvm);
135 
136 		if (kvm_vgic_global_state.has_gicv4_1 &&
137 		    was_enabled != dist->enabled)
138 			kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 		else if (!was_enabled && dist->enabled)
140 			vgic_kick_vcpus(vcpu->kvm);
141 
142 		mutex_unlock(&vcpu->kvm->arch.config_lock);
143 		break;
144 	}
145 	case GICD_TYPER:
146 	case GICD_TYPER2:
147 	case GICD_IIDR:
148 		/* This is at best for documentation purposes... */
149 		return;
150 	}
151 }
152 
153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 					   gpa_t addr, unsigned int len,
155 					   unsigned long val)
156 {
157 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158 	u32 reg;
159 
160 	switch (addr & 0x0c) {
161 	case GICD_TYPER2:
162 		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 			return -EINVAL;
164 		return 0;
165 	case GICD_IIDR:
166 		reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168 			return -EINVAL;
169 
170 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171 		switch (reg) {
172 		case KVM_VGIC_IMP_REV_2:
173 		case KVM_VGIC_IMP_REV_3:
174 			dist->implementation_rev = reg;
175 			return 0;
176 		default:
177 			return -EINVAL;
178 		}
179 	case GICD_CTLR:
180 		/* Not a GICv4.1? No HW SGIs */
181 		if (!kvm_vgic_global_state.has_gicv4_1)
182 			val &= ~GICD_CTLR_nASSGIreq;
183 
184 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185 		dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186 		return 0;
187 	}
188 
189 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190 	return 0;
191 }
192 
193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194 					    gpa_t addr, unsigned int len)
195 {
196 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
197 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198 	unsigned long ret = 0;
199 
200 	if (!irq)
201 		return 0;
202 
203 	/* The upper word is RAZ for us. */
204 	if (!(addr & 4))
205 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206 
207 	vgic_put_irq(vcpu->kvm, irq);
208 	return ret;
209 }
210 
211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212 				    gpa_t addr, unsigned int len,
213 				    unsigned long val)
214 {
215 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 	struct vgic_irq *irq;
217 	unsigned long flags;
218 
219 	/* The upper word is WI for us since we don't implement Aff3. */
220 	if (addr & 4)
221 		return;
222 
223 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224 
225 	if (!irq)
226 		return;
227 
228 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
229 
230 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
231 	irq->mpidr = val & GENMASK(23, 0);
232 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233 
234 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235 	vgic_put_irq(vcpu->kvm, irq);
236 }
237 
238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241 
242 	return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244 
245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246 					     gpa_t addr, unsigned int len)
247 {
248 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249 	unsigned long val;
250 
251 	val = atomic_read(&vgic_cpu->ctlr);
252 	if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253 		val |= GICR_CTLR_IR | GICR_CTLR_CES;
254 
255 	return val;
256 }
257 
258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259 				     gpa_t addr, unsigned int len,
260 				     unsigned long val)
261 {
262 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263 	u32 ctlr;
264 
265 	if (!vgic_has_its(vcpu->kvm))
266 		return;
267 
268 	if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269 		/*
270 		 * Don't disable if RWP is set, as there already an
271 		 * ongoing disable. Funky guest...
272 		 */
273 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274 					      GICR_CTLR_ENABLE_LPIS,
275 					      GICR_CTLR_RWP);
276 		if (ctlr != GICR_CTLR_ENABLE_LPIS)
277 			return;
278 
279 		vgic_flush_pending_lpis(vcpu);
280 		vgic_its_invalidate_all_caches(vcpu->kvm);
281 		atomic_set_release(&vgic_cpu->ctlr, 0);
282 	} else {
283 		ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284 					      GICR_CTLR_ENABLE_LPIS);
285 		if (ctlr != 0)
286 			return;
287 
288 		vgic_enable_lpis(vcpu);
289 	}
290 }
291 
292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296 	struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297 
298 	if (!rdreg)
299 		return false;
300 
301 	if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302 		return false;
303 	} else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304 		struct list_head *rd_regions = &vgic->rd_regions;
305 		gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306 
307 		/*
308 		 * the rdist is the last one of the redist region,
309 		 * check whether there is no other contiguous rdist region
310 		 */
311 		list_for_each_entry(iter, rd_regions, list) {
312 			if (iter->base == end && iter->free_index > 0)
313 				return false;
314 		}
315 	}
316 	return true;
317 }
318 
319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320 					      gpa_t addr, unsigned int len)
321 {
322 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323 	int target_vcpu_id = vcpu->vcpu_id;
324 	u64 value;
325 
326 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327 	value |= ((target_vcpu_id & 0xffff) << 8);
328 
329 	if (vgic_has_its(vcpu->kvm))
330 		value |= GICR_TYPER_PLPIS;
331 
332 	if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333 		value |= GICR_TYPER_LAST;
334 
335 	return extract_bytes(value, addr & 7, len);
336 }
337 
338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339 					     gpa_t addr, unsigned int len)
340 {
341 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343 
344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345 					      gpa_t addr, unsigned int len)
346 {
347 	switch (addr & 0xffff) {
348 	case GICD_PIDR2:
349 		/* report a GICv3 compliant implementation */
350 		return 0x3b;
351 	}
352 
353 	return 0;
354 }
355 
356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357 					 gpa_t addr, unsigned int len,
358 					 unsigned long val)
359 {
360 	int ret;
361 
362 	ret = vgic_uaccess_write_spending(vcpu, addr, len, val);
363 	if (ret)
364 		return ret;
365 
366 	return vgic_uaccess_write_cpending(vcpu, addr, len, ~val);
367 }
368 
369 /* We want to avoid outer shareable. */
370 u64 vgic_sanitise_shareability(u64 field)
371 {
372 	switch (field) {
373 	case GIC_BASER_OuterShareable:
374 		return GIC_BASER_InnerShareable;
375 	default:
376 		return field;
377 	}
378 }
379 
380 /* Avoid any inner non-cacheable mapping. */
381 u64 vgic_sanitise_inner_cacheability(u64 field)
382 {
383 	switch (field) {
384 	case GIC_BASER_CACHE_nCnB:
385 	case GIC_BASER_CACHE_nC:
386 		return GIC_BASER_CACHE_RaWb;
387 	default:
388 		return field;
389 	}
390 }
391 
392 /* Non-cacheable or same-as-inner are OK. */
393 u64 vgic_sanitise_outer_cacheability(u64 field)
394 {
395 	switch (field) {
396 	case GIC_BASER_CACHE_SameAsInner:
397 	case GIC_BASER_CACHE_nC:
398 		return field;
399 	default:
400 		return GIC_BASER_CACHE_SameAsInner;
401 	}
402 }
403 
404 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
405 			u64 (*sanitise_fn)(u64))
406 {
407 	u64 field = (reg & field_mask) >> field_shift;
408 
409 	field = sanitise_fn(field) << field_shift;
410 	return (reg & ~field_mask) | field;
411 }
412 
413 #define PROPBASER_RES0_MASK						\
414 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
415 #define PENDBASER_RES0_MASK						\
416 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
417 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
418 
419 static u64 vgic_sanitise_pendbaser(u64 reg)
420 {
421 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
422 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
423 				  vgic_sanitise_shareability);
424 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
425 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
426 				  vgic_sanitise_inner_cacheability);
427 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
428 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
429 				  vgic_sanitise_outer_cacheability);
430 
431 	reg &= ~PENDBASER_RES0_MASK;
432 
433 	return reg;
434 }
435 
436 static u64 vgic_sanitise_propbaser(u64 reg)
437 {
438 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
439 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
440 				  vgic_sanitise_shareability);
441 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
442 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
443 				  vgic_sanitise_inner_cacheability);
444 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
445 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
446 				  vgic_sanitise_outer_cacheability);
447 
448 	reg &= ~PROPBASER_RES0_MASK;
449 	return reg;
450 }
451 
452 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
453 					     gpa_t addr, unsigned int len)
454 {
455 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
456 
457 	return extract_bytes(dist->propbaser, addr & 7, len);
458 }
459 
460 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
461 				     gpa_t addr, unsigned int len,
462 				     unsigned long val)
463 {
464 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
465 	u64 old_propbaser, propbaser;
466 
467 	/* Storing a value with LPIs already enabled is undefined */
468 	if (vgic_lpis_enabled(vcpu))
469 		return;
470 
471 	do {
472 		old_propbaser = READ_ONCE(dist->propbaser);
473 		propbaser = old_propbaser;
474 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
475 		propbaser = vgic_sanitise_propbaser(propbaser);
476 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
477 			   propbaser) != old_propbaser);
478 }
479 
480 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
481 					     gpa_t addr, unsigned int len)
482 {
483 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
484 	u64 value = vgic_cpu->pendbaser;
485 
486 	value &= ~GICR_PENDBASER_PTZ;
487 
488 	return extract_bytes(value, addr & 7, len);
489 }
490 
491 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
492 				     gpa_t addr, unsigned int len,
493 				     unsigned long val)
494 {
495 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
496 	u64 old_pendbaser, pendbaser;
497 
498 	/* Storing a value with LPIs already enabled is undefined */
499 	if (vgic_lpis_enabled(vcpu))
500 		return;
501 
502 	do {
503 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
504 		pendbaser = old_pendbaser;
505 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
506 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
507 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
508 			   pendbaser) != old_pendbaser);
509 }
510 
511 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
512 					 gpa_t addr, unsigned int len)
513 {
514 	return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
515 }
516 
517 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
518 {
519 	if (busy) {
520 		atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
521 		smp_mb__after_atomic();
522 	} else {
523 		smp_mb__before_atomic();
524 		atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
525 	}
526 }
527 
528 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
529 				   gpa_t addr, unsigned int len,
530 				   unsigned long val)
531 {
532 	struct vgic_irq *irq;
533 
534 	/*
535 	 * If the guest wrote only to the upper 32bit part of the
536 	 * register, drop the write on the floor, as it is only for
537 	 * vPEs (which we don't support for obvious reasons).
538 	 *
539 	 * Also discard the access if LPIs are not enabled.
540 	 */
541 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
542 		return;
543 
544 	vgic_set_rdist_busy(vcpu, true);
545 
546 	irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
547 	if (irq) {
548 		vgic_its_inv_lpi(vcpu->kvm, irq);
549 		vgic_put_irq(vcpu->kvm, irq);
550 	}
551 
552 	vgic_set_rdist_busy(vcpu, false);
553 }
554 
555 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
556 				   gpa_t addr, unsigned int len,
557 				   unsigned long val)
558 {
559 	/* See vgic_mmio_write_invlpi() for the early return rationale */
560 	if ((addr & 4) || !vgic_lpis_enabled(vcpu))
561 		return;
562 
563 	vgic_set_rdist_busy(vcpu, true);
564 	vgic_its_invall(vcpu);
565 	vgic_set_rdist_busy(vcpu, false);
566 }
567 
568 /*
569  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
570  * redistributors, while SPIs are covered by registers in the distributor
571  * block. Trying to set private IRQs in this block gets ignored.
572  * We take some special care here to fix the calculation of the register
573  * offset.
574  */
575 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
576 	{								\
577 		.reg_offset = off,					\
578 		.bits_per_irq = bpi,					\
579 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
580 		.access_flags = acc,					\
581 		.read = vgic_mmio_read_raz,				\
582 		.write = vgic_mmio_write_wi,				\
583 	}, {								\
584 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
585 		.bits_per_irq = bpi,					\
586 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
587 		.access_flags = acc,					\
588 		.read = rd,						\
589 		.write = wr,						\
590 		.uaccess_read = ur,					\
591 		.uaccess_write = uw,					\
592 	}
593 
594 static const struct vgic_register_region vgic_v3_dist_registers[] = {
595 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
596 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
597 		NULL, vgic_mmio_uaccess_write_v3_misc,
598 		16, VGIC_ACCESS_32bit),
599 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
600 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
601 		VGIC_ACCESS_32bit),
602 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
603 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
604 		VGIC_ACCESS_32bit),
605 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
606 		vgic_mmio_read_enable, vgic_mmio_write_senable,
607 		NULL, vgic_uaccess_write_senable, 1,
608 		VGIC_ACCESS_32bit),
609 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
610 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
611 	       NULL, vgic_uaccess_write_cenable, 1,
612 		VGIC_ACCESS_32bit),
613 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
614 		vgic_mmio_read_pending, vgic_mmio_write_spending,
615 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
616 		VGIC_ACCESS_32bit),
617 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
618 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
619 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
620 		VGIC_ACCESS_32bit),
621 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
622 		vgic_mmio_read_active, vgic_mmio_write_sactive,
623 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
624 		VGIC_ACCESS_32bit),
625 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
626 		vgic_mmio_read_active, vgic_mmio_write_cactive,
627 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
628 		1, VGIC_ACCESS_32bit),
629 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
630 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
631 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
632 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
633 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
634 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
635 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
636 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
637 		VGIC_ACCESS_32bit),
638 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
639 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
640 		VGIC_ACCESS_32bit),
641 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
642 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
643 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
644 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
645 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
646 		VGIC_ACCESS_32bit),
647 };
648 
649 static const struct vgic_register_region vgic_v3_rd_registers[] = {
650 	/* RD_base registers */
651 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
652 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
653 		VGIC_ACCESS_32bit),
654 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
655 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
656 		VGIC_ACCESS_32bit),
657 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
658 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
659 		VGIC_ACCESS_32bit),
660 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
661 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
662 		NULL, vgic_mmio_uaccess_write_wi, 8,
663 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
664 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
665 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
666 		VGIC_ACCESS_32bit),
667 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
668 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
669 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
670 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
671 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
672 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
673 	REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
674 		vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
675 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
676 	REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
677 		vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
678 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
679 	REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
680 		vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
681 		VGIC_ACCESS_32bit),
682 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
683 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
684 		VGIC_ACCESS_32bit),
685 	/* SGI_base registers */
686 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
687 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
688 		VGIC_ACCESS_32bit),
689 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
690 		vgic_mmio_read_enable, vgic_mmio_write_senable,
691 		NULL, vgic_uaccess_write_senable, 4,
692 		VGIC_ACCESS_32bit),
693 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
694 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
695 		NULL, vgic_uaccess_write_cenable, 4,
696 		VGIC_ACCESS_32bit),
697 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
698 		vgic_mmio_read_pending, vgic_mmio_write_spending,
699 		vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
700 		VGIC_ACCESS_32bit),
701 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
702 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
703 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
704 		VGIC_ACCESS_32bit),
705 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
706 		vgic_mmio_read_active, vgic_mmio_write_sactive,
707 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
708 		VGIC_ACCESS_32bit),
709 	REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
710 		vgic_mmio_read_active, vgic_mmio_write_cactive,
711 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
712 		VGIC_ACCESS_32bit),
713 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
714 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
715 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
716 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
717 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
718 		VGIC_ACCESS_32bit),
719 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
720 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
721 		VGIC_ACCESS_32bit),
722 	REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
723 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
724 		VGIC_ACCESS_32bit),
725 };
726 
727 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
728 {
729 	dev->regions = vgic_v3_dist_registers;
730 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
731 
732 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
733 
734 	return SZ_64K;
735 }
736 
737 /**
738  * vgic_register_redist_iodev - register a single redist iodev
739  * @vcpu:    The VCPU to which the redistributor belongs
740  *
741  * Register a KVM iodev for this VCPU's redistributor using the address
742  * provided.
743  *
744  * Return 0 on success, -ERRNO otherwise.
745  */
746 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
747 {
748 	struct kvm *kvm = vcpu->kvm;
749 	struct vgic_dist *vgic = &kvm->arch.vgic;
750 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
751 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
752 	struct vgic_redist_region *rdreg;
753 	gpa_t rd_base;
754 	int ret = 0;
755 
756 	lockdep_assert_held(&kvm->slots_lock);
757 	mutex_lock(&kvm->arch.config_lock);
758 
759 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
760 		goto out_unlock;
761 
762 	/*
763 	 * We may be creating VCPUs before having set the base address for the
764 	 * redistributor region, in which case we will come back to this
765 	 * function for all VCPUs when the base address is set.  Just return
766 	 * without doing any work for now.
767 	 */
768 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
769 	if (!rdreg)
770 		goto out_unlock;
771 
772 	if (!vgic_v3_check_base(kvm)) {
773 		ret = -EINVAL;
774 		goto out_unlock;
775 	}
776 
777 	vgic_cpu->rdreg = rdreg;
778 	vgic_cpu->rdreg_index = rdreg->free_index;
779 
780 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
781 
782 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
783 	rd_dev->base_addr = rd_base;
784 	rd_dev->iodev_type = IODEV_REDIST;
785 	rd_dev->regions = vgic_v3_rd_registers;
786 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
787 	rd_dev->redist_vcpu = vcpu;
788 
789 	mutex_unlock(&kvm->arch.config_lock);
790 
791 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
792 				      2 * SZ_64K, &rd_dev->dev);
793 	if (ret)
794 		return ret;
795 
796 	/* Protected by slots_lock */
797 	rdreg->free_index++;
798 	return 0;
799 
800 out_unlock:
801 	mutex_unlock(&kvm->arch.config_lock);
802 	return ret;
803 }
804 
805 void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
806 {
807 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
808 
809 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
810 }
811 
812 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
813 {
814 	struct kvm_vcpu *vcpu;
815 	unsigned long c;
816 	int ret = 0;
817 
818 	lockdep_assert_held(&kvm->slots_lock);
819 
820 	kvm_for_each_vcpu(c, vcpu, kvm) {
821 		ret = vgic_register_redist_iodev(vcpu);
822 		if (ret)
823 			break;
824 	}
825 
826 	if (ret) {
827 		/* The current c failed, so iterate over the previous ones. */
828 		int i;
829 
830 		for (i = 0; i < c; i++) {
831 			vcpu = kvm_get_vcpu(kvm, i);
832 			vgic_unregister_redist_iodev(vcpu);
833 		}
834 	}
835 
836 	return ret;
837 }
838 
839 /**
840  * vgic_v3_alloc_redist_region - Allocate a new redistributor region
841  *
842  * Performs various checks before inserting the rdist region in the list.
843  * Those tests depend on whether the size of the rdist region is known
844  * (ie. count != 0). The list is sorted by rdist region index.
845  *
846  * @kvm: kvm handle
847  * @index: redist region index
848  * @base: base of the new rdist region
849  * @count: number of redistributors the region is made of (0 in the old style
850  * single region, whose size is induced from the number of vcpus)
851  *
852  * Return 0 on success, < 0 otherwise
853  */
854 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
855 				       gpa_t base, uint32_t count)
856 {
857 	struct vgic_dist *d = &kvm->arch.vgic;
858 	struct vgic_redist_region *rdreg;
859 	struct list_head *rd_regions = &d->rd_regions;
860 	int nr_vcpus = atomic_read(&kvm->online_vcpus);
861 	size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
862 			    : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
863 	int ret;
864 
865 	/* cross the end of memory ? */
866 	if (base + size < base)
867 		return -EINVAL;
868 
869 	if (list_empty(rd_regions)) {
870 		if (index != 0)
871 			return -EINVAL;
872 	} else {
873 		rdreg = list_last_entry(rd_regions,
874 					struct vgic_redist_region, list);
875 
876 		/* Don't mix single region and discrete redist regions */
877 		if (!count && rdreg->count)
878 			return -EINVAL;
879 
880 		if (!count)
881 			return -EEXIST;
882 
883 		if (index != rdreg->index + 1)
884 			return -EINVAL;
885 	}
886 
887 	/*
888 	 * For legacy single-region redistributor regions (!count),
889 	 * check that the redistributor region does not overlap with the
890 	 * distributor's address space.
891 	 */
892 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
893 		vgic_dist_overlap(kvm, base, size))
894 		return -EINVAL;
895 
896 	/* collision with any other rdist region? */
897 	if (vgic_v3_rdist_overlap(kvm, base, size))
898 		return -EINVAL;
899 
900 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
901 	if (!rdreg)
902 		return -ENOMEM;
903 
904 	rdreg->base = VGIC_ADDR_UNDEF;
905 
906 	ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
907 	if (ret)
908 		goto free;
909 
910 	rdreg->base = base;
911 	rdreg->count = count;
912 	rdreg->free_index = 0;
913 	rdreg->index = index;
914 
915 	list_add_tail(&rdreg->list, rd_regions);
916 	return 0;
917 free:
918 	kfree(rdreg);
919 	return ret;
920 }
921 
922 void vgic_v3_free_redist_region(struct kvm *kvm, struct vgic_redist_region *rdreg)
923 {
924 	struct kvm_vcpu *vcpu;
925 	unsigned long c;
926 
927 	lockdep_assert_held(&kvm->arch.config_lock);
928 
929 	/* Garbage collect the region */
930 	kvm_for_each_vcpu(c, vcpu, kvm) {
931 		if (vcpu->arch.vgic_cpu.rdreg == rdreg)
932 			vcpu->arch.vgic_cpu.rdreg = NULL;
933 	}
934 
935 	list_del(&rdreg->list);
936 	kfree(rdreg);
937 }
938 
939 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
940 {
941 	int ret;
942 
943 	mutex_lock(&kvm->arch.config_lock);
944 	ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
945 	mutex_unlock(&kvm->arch.config_lock);
946 	if (ret)
947 		return ret;
948 
949 	/*
950 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
951 	 * afterwards will register the iodevs when needed.
952 	 */
953 	ret = vgic_register_all_redist_iodevs(kvm);
954 	if (ret) {
955 		struct vgic_redist_region *rdreg;
956 
957 		mutex_lock(&kvm->arch.config_lock);
958 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
959 		vgic_v3_free_redist_region(kvm, rdreg);
960 		mutex_unlock(&kvm->arch.config_lock);
961 		return ret;
962 	}
963 
964 	return 0;
965 }
966 
967 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
968 {
969 	const struct vgic_register_region *region;
970 	struct vgic_io_device iodev;
971 	struct vgic_reg_attr reg_attr;
972 	struct kvm_vcpu *vcpu;
973 	gpa_t addr;
974 	int ret;
975 
976 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
977 	if (ret)
978 		return ret;
979 
980 	vcpu = reg_attr.vcpu;
981 	addr = reg_attr.addr;
982 
983 	switch (attr->group) {
984 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
985 		iodev.regions = vgic_v3_dist_registers;
986 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
987 		iodev.base_addr = 0;
988 		break;
989 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
990 		iodev.regions = vgic_v3_rd_registers;
991 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
992 		iodev.base_addr = 0;
993 		break;
994 	}
995 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
996 		return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
997 	default:
998 		return -ENXIO;
999 	}
1000 
1001 	/* We only support aligned 32-bit accesses. */
1002 	if (addr & 3)
1003 		return -ENXIO;
1004 
1005 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1006 	if (!region)
1007 		return -ENXIO;
1008 
1009 	return 0;
1010 }
1011 
1012 /*
1013  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1014  * so provide a wrapper to use the existing defines to isolate a certain
1015  * affinity level.
1016  */
1017 #define SGI_AFFINITY_LEVEL(reg, level) \
1018 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1019 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1020 
1021 static void vgic_v3_queue_sgi(struct kvm_vcpu *vcpu, u32 sgi, bool allow_group1)
1022 {
1023 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, sgi);
1024 	unsigned long flags;
1025 
1026 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
1027 
1028 	/*
1029 	 * An access targeting Group0 SGIs can only generate
1030 	 * those, while an access targeting Group1 SGIs can
1031 	 * generate interrupts of either group.
1032 	 */
1033 	if (!irq->group || allow_group1) {
1034 		if (!irq->hw) {
1035 			irq->pending_latch = true;
1036 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1037 		} else {
1038 			/* HW SGI? Ask the GIC to inject it */
1039 			int err;
1040 			err = irq_set_irqchip_state(irq->host_irq,
1041 						    IRQCHIP_STATE_PENDING,
1042 						    true);
1043 			WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1044 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1045 		}
1046 	} else {
1047 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1048 	}
1049 
1050 	vgic_put_irq(vcpu->kvm, irq);
1051 }
1052 
1053 /**
1054  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1055  * @vcpu: The VCPU requesting a SGI
1056  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1057  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1058  *
1059  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1060  * This will trap in sys_regs.c and call this function.
1061  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1062  * target processors as well as a bitmask of 16 Aff0 CPUs.
1063  *
1064  * If the interrupt routing mode bit is not set, we iterate over the Aff0
1065  * bits and signal the VCPUs matching the provided Aff{3,2,1}.
1066  *
1067  * If this bit is set, we signal all, but not the calling VCPU.
1068  */
1069 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1070 {
1071 	struct kvm *kvm = vcpu->kvm;
1072 	struct kvm_vcpu *c_vcpu;
1073 	unsigned long target_cpus;
1074 	u64 mpidr;
1075 	u32 sgi, aff0;
1076 	unsigned long c;
1077 
1078 	sgi = FIELD_GET(ICC_SGI1R_SGI_ID_MASK, reg);
1079 
1080 	/* Broadcast */
1081 	if (unlikely(reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT))) {
1082 		kvm_for_each_vcpu(c, c_vcpu, kvm) {
1083 			/* Don't signal the calling VCPU */
1084 			if (c_vcpu == vcpu)
1085 				continue;
1086 
1087 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1088 		}
1089 
1090 		return;
1091 	}
1092 
1093 	/* We iterate over affinities to find the corresponding vcpus */
1094 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1095 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1096 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1097 	target_cpus = FIELD_GET(ICC_SGI1R_TARGET_LIST_MASK, reg);
1098 
1099 	for_each_set_bit(aff0, &target_cpus, hweight_long(ICC_SGI1R_TARGET_LIST_MASK)) {
1100 		c_vcpu = kvm_mpidr_to_vcpu(kvm, mpidr | aff0);
1101 		if (c_vcpu)
1102 			vgic_v3_queue_sgi(c_vcpu, sgi, allow_group1);
1103 	}
1104 }
1105 
1106 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1107 			 int offset, u32 *val)
1108 {
1109 	struct vgic_io_device dev = {
1110 		.regions = vgic_v3_dist_registers,
1111 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1112 	};
1113 
1114 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1115 }
1116 
1117 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1118 			   int offset, u32 *val)
1119 {
1120 	struct vgic_io_device rd_dev = {
1121 		.regions = vgic_v3_rd_registers,
1122 		.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1123 	};
1124 
1125 	return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1126 }
1127 
1128 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1129 				    u32 intid, u32 *val)
1130 {
1131 	if (intid % 32)
1132 		return -EINVAL;
1133 
1134 	if (is_write)
1135 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1136 	else
1137 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1138 
1139 	return 0;
1140 }
1141