xref: /linux/arch/arm64/kvm/vgic/vgic-mmio-v2.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv2 MMIO handling functions
4  */
5 
6 #include <linux/irqchip/arm-gic.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <linux/nospec.h>
10 
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13 
14 #include "vgic.h"
15 #include "vgic-mmio.h"
16 
17 /*
18  * The Revision field in the IIDR have the following meanings:
19  *
20  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
21  * Revision 2: Interrupt groups are guest-configurable and signaled using
22  * 	       their configured groups.
23  */
24 
25 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
26 					    gpa_t addr, unsigned int len)
27 {
28 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
29 	u32 value;
30 
31 	switch (addr & 0x0c) {
32 	case GIC_DIST_CTRL:
33 		value = vgic->enabled ? GICD_ENABLE : 0;
34 		break;
35 	case GIC_DIST_CTR:
36 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
37 		value = (value >> 5) - 1;
38 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
39 		break;
40 	case GIC_DIST_IIDR:
41 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
42 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
43 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
44 		break;
45 	default:
46 		return 0;
47 	}
48 
49 	return value;
50 }
51 
52 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
53 				    gpa_t addr, unsigned int len,
54 				    unsigned long val)
55 {
56 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
57 	bool was_enabled = dist->enabled;
58 
59 	switch (addr & 0x0c) {
60 	case GIC_DIST_CTRL:
61 		dist->enabled = val & GICD_ENABLE;
62 		if (!was_enabled && dist->enabled)
63 			vgic_kick_vcpus(vcpu->kvm);
64 		break;
65 	case GIC_DIST_CTR:
66 	case GIC_DIST_IIDR:
67 		/* Nothing to do */
68 		return;
69 	}
70 }
71 
72 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
73 					   gpa_t addr, unsigned int len,
74 					   unsigned long val)
75 {
76 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
77 	u32 reg;
78 
79 	switch (addr & 0x0c) {
80 	case GIC_DIST_IIDR:
81 		reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
82 		if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
83 			return -EINVAL;
84 
85 		/*
86 		 * If we observe a write to GICD_IIDR we know that userspace
87 		 * has been updated and has had a chance to cope with older
88 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
89 		 * interrupts as group 1, and therefore we now allow groups to
90 		 * be user writable.  Doing this by default would break
91 		 * migration from old kernels to new kernels with legacy
92 		 * userspace.
93 		 */
94 		reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
95 		switch (reg) {
96 		case KVM_VGIC_IMP_REV_2:
97 		case KVM_VGIC_IMP_REV_3:
98 			vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
99 			dist->implementation_rev = reg;
100 			return 0;
101 		default:
102 			return -EINVAL;
103 		}
104 	}
105 
106 	vgic_mmio_write_v2_misc(vcpu, addr, len, val);
107 	return 0;
108 }
109 
110 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
111 					    gpa_t addr, unsigned int len,
112 					    unsigned long val)
113 {
114 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
115 		vgic_mmio_write_group(vcpu, addr, len, val);
116 
117 	return 0;
118 }
119 
120 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
121 				 gpa_t addr, unsigned int len,
122 				 unsigned long val)
123 {
124 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
125 	int intid = val & 0xf;
126 	int targets = (val >> 16) & 0xff;
127 	int mode = (val >> 24) & 0x03;
128 	struct kvm_vcpu *vcpu;
129 	unsigned long flags, c;
130 
131 	switch (mode) {
132 	case 0x0:		/* as specified by targets */
133 		break;
134 	case 0x1:
135 		targets = (1U << nr_vcpus) - 1;			/* all, ... */
136 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */
137 		break;
138 	case 0x2:		/* this very vCPU only */
139 		targets = (1U << source_vcpu->vcpu_id);
140 		break;
141 	case 0x3:		/* reserved */
142 		return;
143 	}
144 
145 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
146 		struct vgic_irq *irq;
147 
148 		if (!(targets & (1U << c)))
149 			continue;
150 
151 		irq = vgic_get_vcpu_irq(vcpu, intid);
152 
153 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
154 		irq->pending_latch = true;
155 		irq->source |= 1U << source_vcpu->vcpu_id;
156 
157 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
158 		vgic_put_irq(source_vcpu->kvm, irq);
159 	}
160 }
161 
162 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
163 					   gpa_t addr, unsigned int len)
164 {
165 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
166 	int i;
167 	u64 val = 0;
168 
169 	for (i = 0; i < len; i++) {
170 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
171 
172 		val |= (u64)irq->targets << (i * 8);
173 
174 		vgic_put_irq(vcpu->kvm, irq);
175 	}
176 
177 	return val;
178 }
179 
180 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
181 				   gpa_t addr, unsigned int len,
182 				   unsigned long val)
183 {
184 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
185 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
186 	int i;
187 	unsigned long flags;
188 
189 	/* GICD_ITARGETSR[0-7] are read-only */
190 	if (intid < VGIC_NR_PRIVATE_IRQS)
191 		return;
192 
193 	for (i = 0; i < len; i++) {
194 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, intid + i);
195 		int target;
196 
197 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
198 
199 		irq->targets = (val >> (i * 8)) & cpu_mask;
200 		target = irq->targets ? __ffs(irq->targets) : 0;
201 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
202 
203 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
204 		vgic_put_irq(vcpu->kvm, irq);
205 	}
206 }
207 
208 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
209 					    gpa_t addr, unsigned int len)
210 {
211 	u32 intid = addr & 0x0f;
212 	int i;
213 	u64 val = 0;
214 
215 	for (i = 0; i < len; i++) {
216 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
217 
218 		val |= (u64)irq->source << (i * 8);
219 
220 		vgic_put_irq(vcpu->kvm, irq);
221 	}
222 	return val;
223 }
224 
225 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
226 				     gpa_t addr, unsigned int len,
227 				     unsigned long val)
228 {
229 	u32 intid = addr & 0x0f;
230 	int i;
231 	unsigned long flags;
232 
233 	for (i = 0; i < len; i++) {
234 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
235 
236 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
237 
238 		irq->source &= ~((val >> (i * 8)) & 0xff);
239 		if (!irq->source)
240 			irq->pending_latch = false;
241 
242 		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
243 		vgic_put_irq(vcpu->kvm, irq);
244 	}
245 }
246 
247 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
248 				     gpa_t addr, unsigned int len,
249 				     unsigned long val)
250 {
251 	u32 intid = addr & 0x0f;
252 	int i;
253 	unsigned long flags;
254 
255 	for (i = 0; i < len; i++) {
256 		struct vgic_irq *irq = vgic_get_vcpu_irq(vcpu, intid + i);
257 
258 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
259 
260 		irq->source |= (val >> (i * 8)) & 0xff;
261 
262 		if (irq->source) {
263 			irq->pending_latch = true;
264 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
265 		} else {
266 			raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
267 		}
268 		vgic_put_irq(vcpu->kvm, irq);
269 	}
270 }
271 
272 #define GICC_ARCH_VERSION_V2	0x2
273 
274 /* These are for userland accesses only, there is no guest-facing emulation. */
275 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
276 					   gpa_t addr, unsigned int len)
277 {
278 	struct vgic_vmcr vmcr;
279 	u32 val;
280 
281 	vgic_get_vmcr(vcpu, &vmcr);
282 
283 	switch (addr & 0xff) {
284 	case GIC_CPU_CTRL:
285 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
286 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
287 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
288 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
289 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
290 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
291 
292 		break;
293 	case GIC_CPU_PRIMASK:
294 		/*
295 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
296 		 * PMR field as GICH_VMCR.VMPriMask rather than
297 		 * GICC_PMR.Priority, so we expose the upper five bits of
298 		 * priority mask to userspace using the lower bits in the
299 		 * unsigned long.
300 		 */
301 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
302 			GICV_PMR_PRIORITY_SHIFT;
303 		break;
304 	case GIC_CPU_BINPOINT:
305 		val = vmcr.bpr;
306 		break;
307 	case GIC_CPU_ALIAS_BINPOINT:
308 		val = vmcr.abpr;
309 		break;
310 	case GIC_CPU_IDENT:
311 		val = ((PRODUCT_ID_KVM << 20) |
312 		       (GICC_ARCH_VERSION_V2 << 16) |
313 		       IMPLEMENTER_ARM);
314 		break;
315 	default:
316 		return 0;
317 	}
318 
319 	return val;
320 }
321 
322 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
323 				   gpa_t addr, unsigned int len,
324 				   unsigned long val)
325 {
326 	struct vgic_vmcr vmcr;
327 
328 	vgic_get_vmcr(vcpu, &vmcr);
329 
330 	switch (addr & 0xff) {
331 	case GIC_CPU_CTRL:
332 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
333 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
334 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
335 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
336 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
337 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
338 
339 		break;
340 	case GIC_CPU_PRIMASK:
341 		/*
342 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
343 		 * PMR field as GICH_VMCR.VMPriMask rather than
344 		 * GICC_PMR.Priority, so we expose the upper five bits of
345 		 * priority mask to userspace using the lower bits in the
346 		 * unsigned long.
347 		 */
348 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
349 			GICV_PMR_PRIORITY_MASK;
350 		break;
351 	case GIC_CPU_BINPOINT:
352 		vmcr.bpr = val;
353 		break;
354 	case GIC_CPU_ALIAS_BINPOINT:
355 		vmcr.abpr = val;
356 		break;
357 	}
358 
359 	vgic_set_vmcr(vcpu, &vmcr);
360 }
361 
362 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
363 					gpa_t addr, unsigned int len)
364 {
365 	int n; /* which APRn is this */
366 
367 	n = (addr >> 2) & 0x3;
368 
369 	if (kvm_vgic_global_state.type == VGIC_V2) {
370 		/* GICv2 hardware systems support max. 32 groups */
371 		if (n != 0)
372 			return 0;
373 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
374 	} else {
375 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
376 
377 		if (n > vgic_v3_max_apr_idx(vcpu))
378 			return 0;
379 
380 		n = array_index_nospec(n, 4);
381 
382 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
383 		return vgicv3->vgic_ap1r[n];
384 	}
385 }
386 
387 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
388 				gpa_t addr, unsigned int len,
389 				unsigned long val)
390 {
391 	int n; /* which APRn is this */
392 
393 	n = (addr >> 2) & 0x3;
394 
395 	if (kvm_vgic_global_state.type == VGIC_V2) {
396 		/* GICv2 hardware systems support max. 32 groups */
397 		if (n != 0)
398 			return;
399 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
400 	} else {
401 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
402 
403 		if (n > vgic_v3_max_apr_idx(vcpu))
404 			return;
405 
406 		n = array_index_nospec(n, 4);
407 
408 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
409 		vgicv3->vgic_ap1r[n] = val;
410 	}
411 }
412 
413 static const struct vgic_register_region vgic_v2_dist_registers[] = {
414 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
415 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
416 		NULL, vgic_mmio_uaccess_write_v2_misc,
417 		12, VGIC_ACCESS_32bit),
418 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
419 		vgic_mmio_read_group, vgic_mmio_write_group,
420 		NULL, vgic_mmio_uaccess_write_v2_group, 1,
421 		VGIC_ACCESS_32bit),
422 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
423 		vgic_mmio_read_enable, vgic_mmio_write_senable,
424 		NULL, vgic_uaccess_write_senable, 1,
425 		VGIC_ACCESS_32bit),
426 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
427 		vgic_mmio_read_enable, vgic_mmio_write_cenable,
428 		NULL, vgic_uaccess_write_cenable, 1,
429 		VGIC_ACCESS_32bit),
430 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
431 		vgic_mmio_read_pending, vgic_mmio_write_spending,
432 		vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
433 		VGIC_ACCESS_32bit),
434 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
435 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
436 		vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
437 		VGIC_ACCESS_32bit),
438 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
439 		vgic_mmio_read_active, vgic_mmio_write_sactive,
440 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
441 		VGIC_ACCESS_32bit),
442 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
443 		vgic_mmio_read_active, vgic_mmio_write_cactive,
444 		vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
445 		VGIC_ACCESS_32bit),
446 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
447 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
448 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
449 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
450 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
451 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
452 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
453 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
454 		VGIC_ACCESS_32bit),
455 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
456 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
457 		VGIC_ACCESS_32bit),
458 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
459 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
460 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
461 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
462 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
463 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
464 };
465 
466 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
467 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
468 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
469 		VGIC_ACCESS_32bit),
470 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
471 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
472 		VGIC_ACCESS_32bit),
473 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
474 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
475 		VGIC_ACCESS_32bit),
476 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
477 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
478 		VGIC_ACCESS_32bit),
479 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
480 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
481 		VGIC_ACCESS_32bit),
482 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
483 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
484 		VGIC_ACCESS_32bit),
485 };
486 
487 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
488 {
489 	dev->regions = vgic_v2_dist_registers;
490 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
491 
492 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
493 
494 	return SZ_4K;
495 }
496 
497 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
498 {
499 	const struct vgic_register_region *region;
500 	struct vgic_io_device iodev;
501 	struct vgic_reg_attr reg_attr;
502 	struct kvm_vcpu *vcpu;
503 	gpa_t addr;
504 	int ret;
505 
506 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
507 	if (ret)
508 		return ret;
509 
510 	vcpu = reg_attr.vcpu;
511 	addr = reg_attr.addr;
512 
513 	switch (attr->group) {
514 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
515 		iodev.regions = vgic_v2_dist_registers;
516 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
517 		iodev.base_addr = 0;
518 		break;
519 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
520 		iodev.regions = vgic_v2_cpu_registers;
521 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
522 		iodev.base_addr = 0;
523 		break;
524 	default:
525 		return -ENXIO;
526 	}
527 
528 	/* We only support aligned 32-bit accesses. */
529 	if (addr & 3)
530 		return -ENXIO;
531 
532 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
533 	if (!region)
534 		return -ENXIO;
535 
536 	return 0;
537 }
538 
539 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
540 			  int offset, u32 *val)
541 {
542 	struct vgic_io_device dev = {
543 		.regions = vgic_v2_cpu_registers,
544 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
545 		.iodev_type = IODEV_CPUIF,
546 	};
547 
548 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
549 }
550 
551 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
552 			 int offset, u32 *val)
553 {
554 	struct vgic_io_device dev = {
555 		.regions = vgic_v2_dist_registers,
556 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
557 		.iodev_type = IODEV_DIST,
558 	};
559 
560 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
561 }
562