xref: /linux/arch/arm64/kvm/vgic/vgic-kvm-device.c (revision ed5c2f5fd10dda07263f79f338a512c0f49f76f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGIC: KVM DEVICE API
4  *
5  * Copyright (C) 2015 ARM Ltd.
6  * Author: Marc Zyngier <marc.zyngier@arm.com>
7  */
8 #include <linux/kvm_host.h>
9 #include <kvm/arm_vgic.h>
10 #include <linux/uaccess.h>
11 #include <asm/kvm_mmu.h>
12 #include <asm/cputype.h>
13 #include "vgic.h"
14 
15 /* common helpers */
16 
17 int vgic_check_iorange(struct kvm *kvm, phys_addr_t ioaddr,
18 		       phys_addr_t addr, phys_addr_t alignment,
19 		       phys_addr_t size)
20 {
21 	if (!IS_VGIC_ADDR_UNDEF(ioaddr))
22 		return -EEXIST;
23 
24 	if (!IS_ALIGNED(addr, alignment) || !IS_ALIGNED(size, alignment))
25 		return -EINVAL;
26 
27 	if (addr + size < addr)
28 		return -EINVAL;
29 
30 	if (addr & ~kvm_phys_mask(kvm) || addr + size > kvm_phys_size(kvm))
31 		return -E2BIG;
32 
33 	return 0;
34 }
35 
36 static int vgic_check_type(struct kvm *kvm, int type_needed)
37 {
38 	if (kvm->arch.vgic.vgic_model != type_needed)
39 		return -ENODEV;
40 	else
41 		return 0;
42 }
43 
44 int kvm_set_legacy_vgic_v2_addr(struct kvm *kvm, struct kvm_arm_device_addr *dev_addr)
45 {
46 	struct vgic_dist *vgic = &kvm->arch.vgic;
47 	int r;
48 
49 	mutex_lock(&kvm->lock);
50 	switch (FIELD_GET(KVM_ARM_DEVICE_TYPE_MASK, dev_addr->id)) {
51 	case KVM_VGIC_V2_ADDR_TYPE_DIST:
52 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
53 		if (!r)
54 			r = vgic_check_iorange(kvm, vgic->vgic_dist_base, dev_addr->addr,
55 					       SZ_4K, KVM_VGIC_V2_DIST_SIZE);
56 		if (!r)
57 			vgic->vgic_dist_base = dev_addr->addr;
58 		break;
59 	case KVM_VGIC_V2_ADDR_TYPE_CPU:
60 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
61 		if (!r)
62 			r = vgic_check_iorange(kvm, vgic->vgic_cpu_base, dev_addr->addr,
63 					       SZ_4K, KVM_VGIC_V2_CPU_SIZE);
64 		if (!r)
65 			vgic->vgic_cpu_base = dev_addr->addr;
66 		break;
67 	default:
68 		r = -ENODEV;
69 	}
70 
71 	mutex_unlock(&kvm->lock);
72 
73 	return r;
74 }
75 
76 /**
77  * kvm_vgic_addr - set or get vgic VM base addresses
78  * @kvm:   pointer to the vm struct
79  * @attr:  pointer to the attribute being retrieved/updated
80  * @write: if true set the address in the VM address space, if false read the
81  *          address
82  *
83  * Set or get the vgic base addresses for the distributor and the virtual CPU
84  * interface in the VM physical address space.  These addresses are properties
85  * of the emulated core/SoC and therefore user space initially knows this
86  * information.
87  * Check them for sanity (alignment, double assignment). We can't check for
88  * overlapping regions in case of a virtual GICv3 here, since we don't know
89  * the number of VCPUs yet, so we defer this check to map_resources().
90  */
91 static int kvm_vgic_addr(struct kvm *kvm, struct kvm_device_attr *attr, bool write)
92 {
93 	u64 __user *uaddr = (u64 __user *)attr->addr;
94 	struct vgic_dist *vgic = &kvm->arch.vgic;
95 	phys_addr_t *addr_ptr, alignment, size;
96 	u64 undef_value = VGIC_ADDR_UNDEF;
97 	u64 addr;
98 	int r;
99 
100 	/* Reading a redistributor region addr implies getting the index */
101 	if (write || attr->attr == KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION)
102 		if (get_user(addr, uaddr))
103 			return -EFAULT;
104 
105 	mutex_lock(&kvm->lock);
106 	switch (attr->attr) {
107 	case KVM_VGIC_V2_ADDR_TYPE_DIST:
108 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
109 		addr_ptr = &vgic->vgic_dist_base;
110 		alignment = SZ_4K;
111 		size = KVM_VGIC_V2_DIST_SIZE;
112 		break;
113 	case KVM_VGIC_V2_ADDR_TYPE_CPU:
114 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
115 		addr_ptr = &vgic->vgic_cpu_base;
116 		alignment = SZ_4K;
117 		size = KVM_VGIC_V2_CPU_SIZE;
118 		break;
119 	case KVM_VGIC_V3_ADDR_TYPE_DIST:
120 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
121 		addr_ptr = &vgic->vgic_dist_base;
122 		alignment = SZ_64K;
123 		size = KVM_VGIC_V3_DIST_SIZE;
124 		break;
125 	case KVM_VGIC_V3_ADDR_TYPE_REDIST: {
126 		struct vgic_redist_region *rdreg;
127 
128 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
129 		if (r)
130 			break;
131 		if (write) {
132 			r = vgic_v3_set_redist_base(kvm, 0, addr, 0);
133 			goto out;
134 		}
135 		rdreg = list_first_entry_or_null(&vgic->rd_regions,
136 						 struct vgic_redist_region, list);
137 		if (!rdreg)
138 			addr_ptr = &undef_value;
139 		else
140 			addr_ptr = &rdreg->base;
141 		break;
142 	}
143 	case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
144 	{
145 		struct vgic_redist_region *rdreg;
146 		u8 index;
147 
148 		r = vgic_check_type(kvm, KVM_DEV_TYPE_ARM_VGIC_V3);
149 		if (r)
150 			break;
151 
152 		index = addr & KVM_VGIC_V3_RDIST_INDEX_MASK;
153 
154 		if (write) {
155 			gpa_t base = addr & KVM_VGIC_V3_RDIST_BASE_MASK;
156 			u32 count = FIELD_GET(KVM_VGIC_V3_RDIST_COUNT_MASK, addr);
157 			u8 flags = FIELD_GET(KVM_VGIC_V3_RDIST_FLAGS_MASK, addr);
158 
159 			if (!count || flags)
160 				r = -EINVAL;
161 			else
162 				r = vgic_v3_set_redist_base(kvm, index,
163 							    base, count);
164 			goto out;
165 		}
166 
167 		rdreg = vgic_v3_rdist_region_from_index(kvm, index);
168 		if (!rdreg) {
169 			r = -ENOENT;
170 			goto out;
171 		}
172 
173 		addr = index;
174 		addr |= rdreg->base;
175 		addr |= (u64)rdreg->count << KVM_VGIC_V3_RDIST_COUNT_SHIFT;
176 		goto out;
177 	}
178 	default:
179 		r = -ENODEV;
180 	}
181 
182 	if (r)
183 		goto out;
184 
185 	if (write) {
186 		r = vgic_check_iorange(kvm, *addr_ptr, addr, alignment, size);
187 		if (!r)
188 			*addr_ptr = addr;
189 	} else {
190 		addr = *addr_ptr;
191 	}
192 
193 out:
194 	mutex_unlock(&kvm->lock);
195 
196 	if (!r && !write)
197 		r =  put_user(addr, uaddr);
198 
199 	return r;
200 }
201 
202 static int vgic_set_common_attr(struct kvm_device *dev,
203 				struct kvm_device_attr *attr)
204 {
205 	int r;
206 
207 	switch (attr->group) {
208 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
209 		r = kvm_vgic_addr(dev->kvm, attr, true);
210 		return (r == -ENODEV) ? -ENXIO : r;
211 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
212 		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
213 		u32 val;
214 		int ret = 0;
215 
216 		if (get_user(val, uaddr))
217 			return -EFAULT;
218 
219 		/*
220 		 * We require:
221 		 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
222 		 * - at most 1024 interrupts
223 		 * - a multiple of 32 interrupts
224 		 */
225 		if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
226 		    val > VGIC_MAX_RESERVED ||
227 		    (val & 31))
228 			return -EINVAL;
229 
230 		mutex_lock(&dev->kvm->lock);
231 
232 		if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_spis)
233 			ret = -EBUSY;
234 		else
235 			dev->kvm->arch.vgic.nr_spis =
236 				val - VGIC_NR_PRIVATE_IRQS;
237 
238 		mutex_unlock(&dev->kvm->lock);
239 
240 		return ret;
241 	}
242 	case KVM_DEV_ARM_VGIC_GRP_CTRL: {
243 		switch (attr->attr) {
244 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
245 			mutex_lock(&dev->kvm->lock);
246 			r = vgic_init(dev->kvm);
247 			mutex_unlock(&dev->kvm->lock);
248 			return r;
249 		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
250 			/*
251 			 * OK, this one isn't common at all, but we
252 			 * want to handle all control group attributes
253 			 * in a single place.
254 			 */
255 			if (vgic_check_type(dev->kvm, KVM_DEV_TYPE_ARM_VGIC_V3))
256 				return -ENXIO;
257 			mutex_lock(&dev->kvm->lock);
258 
259 			if (!lock_all_vcpus(dev->kvm)) {
260 				mutex_unlock(&dev->kvm->lock);
261 				return -EBUSY;
262 			}
263 			r = vgic_v3_save_pending_tables(dev->kvm);
264 			unlock_all_vcpus(dev->kvm);
265 			mutex_unlock(&dev->kvm->lock);
266 			return r;
267 		}
268 		break;
269 	}
270 	}
271 
272 	return -ENXIO;
273 }
274 
275 static int vgic_get_common_attr(struct kvm_device *dev,
276 				struct kvm_device_attr *attr)
277 {
278 	int r = -ENXIO;
279 
280 	switch (attr->group) {
281 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
282 		r = kvm_vgic_addr(dev->kvm, attr, false);
283 		return (r == -ENODEV) ? -ENXIO : r;
284 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
285 		u32 __user *uaddr = (u32 __user *)(long)attr->addr;
286 
287 		r = put_user(dev->kvm->arch.vgic.nr_spis +
288 			     VGIC_NR_PRIVATE_IRQS, uaddr);
289 		break;
290 	}
291 	}
292 
293 	return r;
294 }
295 
296 static int vgic_create(struct kvm_device *dev, u32 type)
297 {
298 	return kvm_vgic_create(dev->kvm, type);
299 }
300 
301 static void vgic_destroy(struct kvm_device *dev)
302 {
303 	kfree(dev);
304 }
305 
306 int kvm_register_vgic_device(unsigned long type)
307 {
308 	int ret = -ENODEV;
309 
310 	switch (type) {
311 	case KVM_DEV_TYPE_ARM_VGIC_V2:
312 		ret = kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
313 					      KVM_DEV_TYPE_ARM_VGIC_V2);
314 		break;
315 	case KVM_DEV_TYPE_ARM_VGIC_V3:
316 		ret = kvm_register_device_ops(&kvm_arm_vgic_v3_ops,
317 					      KVM_DEV_TYPE_ARM_VGIC_V3);
318 
319 		if (ret)
320 			break;
321 		ret = kvm_vgic_register_its_device();
322 		break;
323 	}
324 
325 	return ret;
326 }
327 
328 int vgic_v2_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
329 		       struct vgic_reg_attr *reg_attr)
330 {
331 	int cpuid;
332 
333 	cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
334 		 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
335 
336 	if (cpuid >= atomic_read(&dev->kvm->online_vcpus))
337 		return -EINVAL;
338 
339 	reg_attr->vcpu = kvm_get_vcpu(dev->kvm, cpuid);
340 	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
341 
342 	return 0;
343 }
344 
345 /* unlocks vcpus from @vcpu_lock_idx and smaller */
346 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
347 {
348 	struct kvm_vcpu *tmp_vcpu;
349 
350 	for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
351 		tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
352 		mutex_unlock(&tmp_vcpu->mutex);
353 	}
354 }
355 
356 void unlock_all_vcpus(struct kvm *kvm)
357 {
358 	unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
359 }
360 
361 /* Returns true if all vcpus were locked, false otherwise */
362 bool lock_all_vcpus(struct kvm *kvm)
363 {
364 	struct kvm_vcpu *tmp_vcpu;
365 	unsigned long c;
366 
367 	/*
368 	 * Any time a vcpu is run, vcpu_load is called which tries to grab the
369 	 * vcpu->mutex.  By grabbing the vcpu->mutex of all VCPUs we ensure
370 	 * that no other VCPUs are run and fiddle with the vgic state while we
371 	 * access it.
372 	 */
373 	kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
374 		if (!mutex_trylock(&tmp_vcpu->mutex)) {
375 			unlock_vcpus(kvm, c - 1);
376 			return false;
377 		}
378 	}
379 
380 	return true;
381 }
382 
383 /**
384  * vgic_v2_attr_regs_access - allows user space to access VGIC v2 state
385  *
386  * @dev:      kvm device handle
387  * @attr:     kvm device attribute
388  * @is_write: true if userspace is writing a register
389  */
390 static int vgic_v2_attr_regs_access(struct kvm_device *dev,
391 				    struct kvm_device_attr *attr,
392 				    bool is_write)
393 {
394 	u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
395 	struct vgic_reg_attr reg_attr;
396 	gpa_t addr;
397 	struct kvm_vcpu *vcpu;
398 	int ret;
399 	u32 val;
400 
401 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
402 	if (ret)
403 		return ret;
404 
405 	vcpu = reg_attr.vcpu;
406 	addr = reg_attr.addr;
407 
408 	if (is_write)
409 		if (get_user(val, uaddr))
410 			return -EFAULT;
411 
412 	mutex_lock(&dev->kvm->lock);
413 
414 	ret = vgic_init(dev->kvm);
415 	if (ret)
416 		goto out;
417 
418 	if (!lock_all_vcpus(dev->kvm)) {
419 		ret = -EBUSY;
420 		goto out;
421 	}
422 
423 	switch (attr->group) {
424 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
425 		ret = vgic_v2_cpuif_uaccess(vcpu, is_write, addr, &val);
426 		break;
427 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
428 		ret = vgic_v2_dist_uaccess(vcpu, is_write, addr, &val);
429 		break;
430 	default:
431 		ret = -EINVAL;
432 		break;
433 	}
434 
435 	unlock_all_vcpus(dev->kvm);
436 out:
437 	mutex_unlock(&dev->kvm->lock);
438 
439 	if (!ret && !is_write)
440 		ret = put_user(val, uaddr);
441 
442 	return ret;
443 }
444 
445 static int vgic_v2_set_attr(struct kvm_device *dev,
446 			    struct kvm_device_attr *attr)
447 {
448 	switch (attr->group) {
449 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
450 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
451 		return vgic_v2_attr_regs_access(dev, attr, true);
452 	default:
453 		return vgic_set_common_attr(dev, attr);
454 	}
455 }
456 
457 static int vgic_v2_get_attr(struct kvm_device *dev,
458 			    struct kvm_device_attr *attr)
459 {
460 	switch (attr->group) {
461 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
462 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
463 		return vgic_v2_attr_regs_access(dev, attr, false);
464 	default:
465 		return vgic_get_common_attr(dev, attr);
466 	}
467 }
468 
469 static int vgic_v2_has_attr(struct kvm_device *dev,
470 			    struct kvm_device_attr *attr)
471 {
472 	switch (attr->group) {
473 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
474 		switch (attr->attr) {
475 		case KVM_VGIC_V2_ADDR_TYPE_DIST:
476 		case KVM_VGIC_V2_ADDR_TYPE_CPU:
477 			return 0;
478 		}
479 		break;
480 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
481 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
482 		return vgic_v2_has_attr_regs(dev, attr);
483 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
484 		return 0;
485 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
486 		switch (attr->attr) {
487 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
488 			return 0;
489 		}
490 	}
491 	return -ENXIO;
492 }
493 
494 struct kvm_device_ops kvm_arm_vgic_v2_ops = {
495 	.name = "kvm-arm-vgic-v2",
496 	.create = vgic_create,
497 	.destroy = vgic_destroy,
498 	.set_attr = vgic_v2_set_attr,
499 	.get_attr = vgic_v2_get_attr,
500 	.has_attr = vgic_v2_has_attr,
501 };
502 
503 int vgic_v3_parse_attr(struct kvm_device *dev, struct kvm_device_attr *attr,
504 		       struct vgic_reg_attr *reg_attr)
505 {
506 	unsigned long vgic_mpidr, mpidr_reg;
507 
508 	/*
509 	 * For KVM_DEV_ARM_VGIC_GRP_DIST_REGS group,
510 	 * attr might not hold MPIDR. Hence assume vcpu0.
511 	 */
512 	if (attr->group != KVM_DEV_ARM_VGIC_GRP_DIST_REGS) {
513 		vgic_mpidr = (attr->attr & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) >>
514 			      KVM_DEV_ARM_VGIC_V3_MPIDR_SHIFT;
515 
516 		mpidr_reg = VGIC_TO_MPIDR(vgic_mpidr);
517 		reg_attr->vcpu = kvm_mpidr_to_vcpu(dev->kvm, mpidr_reg);
518 	} else {
519 		reg_attr->vcpu = kvm_get_vcpu(dev->kvm, 0);
520 	}
521 
522 	if (!reg_attr->vcpu)
523 		return -EINVAL;
524 
525 	reg_attr->addr = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
526 
527 	return 0;
528 }
529 
530 /*
531  * vgic_v3_attr_regs_access - allows user space to access VGIC v3 state
532  *
533  * @dev:      kvm device handle
534  * @attr:     kvm device attribute
535  * @is_write: true if userspace is writing a register
536  */
537 static int vgic_v3_attr_regs_access(struct kvm_device *dev,
538 				    struct kvm_device_attr *attr,
539 				    bool is_write)
540 {
541 	struct vgic_reg_attr reg_attr;
542 	gpa_t addr;
543 	struct kvm_vcpu *vcpu;
544 	bool uaccess;
545 	u32 val;
546 	int ret;
547 
548 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
549 	if (ret)
550 		return ret;
551 
552 	vcpu = reg_attr.vcpu;
553 	addr = reg_attr.addr;
554 
555 	switch (attr->group) {
556 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
557 		/* Sysregs uaccess is performed by the sysreg handling code */
558 		uaccess = false;
559 		break;
560 	default:
561 		uaccess = true;
562 	}
563 
564 	if (uaccess && is_write) {
565 		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
566 		if (get_user(val, uaddr))
567 			return -EFAULT;
568 	}
569 
570 	mutex_lock(&dev->kvm->lock);
571 
572 	if (unlikely(!vgic_initialized(dev->kvm))) {
573 		ret = -EBUSY;
574 		goto out;
575 	}
576 
577 	if (!lock_all_vcpus(dev->kvm)) {
578 		ret = -EBUSY;
579 		goto out;
580 	}
581 
582 	switch (attr->group) {
583 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
584 		ret = vgic_v3_dist_uaccess(vcpu, is_write, addr, &val);
585 		break;
586 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
587 		ret = vgic_v3_redist_uaccess(vcpu, is_write, addr, &val);
588 		break;
589 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
590 		ret = vgic_v3_cpu_sysregs_uaccess(vcpu, attr, is_write);
591 		break;
592 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
593 		unsigned int info, intid;
594 
595 		info = (attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
596 			KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT;
597 		if (info == VGIC_LEVEL_INFO_LINE_LEVEL) {
598 			intid = attr->attr &
599 				KVM_DEV_ARM_VGIC_LINE_LEVEL_INTID_MASK;
600 			ret = vgic_v3_line_level_info_uaccess(vcpu, is_write,
601 							      intid, &val);
602 		} else {
603 			ret = -EINVAL;
604 		}
605 		break;
606 	}
607 	default:
608 		ret = -EINVAL;
609 		break;
610 	}
611 
612 	unlock_all_vcpus(dev->kvm);
613 out:
614 	mutex_unlock(&dev->kvm->lock);
615 
616 	if (!ret && uaccess && !is_write) {
617 		u32 __user *uaddr = (u32 __user *)(unsigned long)attr->addr;
618 		ret = put_user(val, uaddr);
619 	}
620 
621 	return ret;
622 }
623 
624 static int vgic_v3_set_attr(struct kvm_device *dev,
625 			    struct kvm_device_attr *attr)
626 {
627 	switch (attr->group) {
628 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
629 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
630 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
631 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
632 		return vgic_v3_attr_regs_access(dev, attr, true);
633 	default:
634 		return vgic_set_common_attr(dev, attr);
635 	}
636 }
637 
638 static int vgic_v3_get_attr(struct kvm_device *dev,
639 			    struct kvm_device_attr *attr)
640 {
641 	switch (attr->group) {
642 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
643 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
644 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
645 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO:
646 		return vgic_v3_attr_regs_access(dev, attr, false);
647 	default:
648 		return vgic_get_common_attr(dev, attr);
649 	}
650 }
651 
652 static int vgic_v3_has_attr(struct kvm_device *dev,
653 			    struct kvm_device_attr *attr)
654 {
655 	switch (attr->group) {
656 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
657 		switch (attr->attr) {
658 		case KVM_VGIC_V3_ADDR_TYPE_DIST:
659 		case KVM_VGIC_V3_ADDR_TYPE_REDIST:
660 		case KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION:
661 			return 0;
662 		}
663 		break;
664 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
665 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:
666 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
667 		return vgic_v3_has_attr_regs(dev, attr);
668 	case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
669 		return 0;
670 	case KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO: {
671 		if (((attr->attr & KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_MASK) >>
672 		      KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT) ==
673 		      VGIC_LEVEL_INFO_LINE_LEVEL)
674 			return 0;
675 		break;
676 	}
677 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
678 		switch (attr->attr) {
679 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
680 			return 0;
681 		case KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES:
682 			return 0;
683 		}
684 	}
685 	return -ENXIO;
686 }
687 
688 struct kvm_device_ops kvm_arm_vgic_v3_ops = {
689 	.name = "kvm-arm-vgic-v3",
690 	.create = vgic_create,
691 	.destroy = vgic_destroy,
692 	.set_attr = vgic_v3_set_attr,
693 	.get_attr = vgic_v3_get_attr,
694 	.has_attr = vgic_v3_has_attr,
695 };
696