1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static int vgic_its_save_tables_v0(struct vgic_its *its); 27 static int vgic_its_restore_tables_v0(struct vgic_its *its); 28 static int vgic_its_commit_v0(struct vgic_its *its); 29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 30 struct kvm_vcpu *filter_vcpu, bool needs_inv); 31 32 /* 33 * Creates a new (reference to a) struct vgic_irq for a given LPI. 34 * If this LPI is already mapped on another ITS, we increase its refcount 35 * and return a pointer to the existing structure. 36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 37 * This function returns a pointer to the _unlocked_ structure. 38 */ 39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 40 struct kvm_vcpu *vcpu) 41 { 42 struct vgic_dist *dist = &kvm->arch.vgic; 43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 44 unsigned long flags; 45 int ret; 46 47 /* In this case there is no put, since we keep the reference. */ 48 if (irq) 49 return irq; 50 51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 52 if (!irq) 53 return ERR_PTR(-ENOMEM); 54 55 INIT_LIST_HEAD(&irq->lpi_list); 56 INIT_LIST_HEAD(&irq->ap_list); 57 raw_spin_lock_init(&irq->irq_lock); 58 59 irq->config = VGIC_CONFIG_EDGE; 60 kref_init(&irq->refcount); 61 irq->intid = intid; 62 irq->target_vcpu = vcpu; 63 irq->group = 1; 64 65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 66 67 /* 68 * There could be a race with another vgic_add_lpi(), so we need to 69 * check that we don't add a second list entry with the same LPI. 70 */ 71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { 72 if (oldirq->intid != intid) 73 continue; 74 75 /* Someone was faster with adding this LPI, lets use that. */ 76 kfree(irq); 77 irq = oldirq; 78 79 /* 80 * This increases the refcount, the caller is expected to 81 * call vgic_put_irq() on the returned pointer once it's 82 * finished with the IRQ. 83 */ 84 vgic_get_irq_kref(irq); 85 86 goto out_unlock; 87 } 88 89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head); 90 dist->lpi_list_count++; 91 92 out_unlock: 93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 94 95 /* 96 * We "cache" the configuration table entries in our struct vgic_irq's. 97 * However we only have those structs for mapped IRQs, so we read in 98 * the respective config data from memory here upon mapping the LPI. 99 * 100 * Should any of these fail, behave as if we couldn't create the LPI 101 * by dropping the refcount and returning the error. 102 */ 103 ret = update_lpi_config(kvm, irq, NULL, false); 104 if (ret) { 105 vgic_put_irq(kvm, irq); 106 return ERR_PTR(ret); 107 } 108 109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 110 if (ret) { 111 vgic_put_irq(kvm, irq); 112 return ERR_PTR(ret); 113 } 114 115 return irq; 116 } 117 118 struct its_device { 119 struct list_head dev_list; 120 121 /* the head for the list of ITTEs */ 122 struct list_head itt_head; 123 u32 num_eventid_bits; 124 gpa_t itt_addr; 125 u32 device_id; 126 }; 127 128 #define COLLECTION_NOT_MAPPED ((u32)~0) 129 130 struct its_collection { 131 struct list_head coll_list; 132 133 u32 collection_id; 134 u32 target_addr; 135 }; 136 137 #define its_is_collection_mapped(coll) ((coll) && \ 138 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 139 140 struct its_ite { 141 struct list_head ite_list; 142 143 struct vgic_irq *irq; 144 struct its_collection *collection; 145 u32 event_id; 146 }; 147 148 struct vgic_translation_cache_entry { 149 struct list_head entry; 150 phys_addr_t db; 151 u32 devid; 152 u32 eventid; 153 struct vgic_irq *irq; 154 }; 155 156 /** 157 * struct vgic_its_abi - ITS abi ops and settings 158 * @cte_esz: collection table entry size 159 * @dte_esz: device table entry size 160 * @ite_esz: interrupt translation table entry size 161 * @save tables: save the ITS tables into guest RAM 162 * @restore_tables: restore the ITS internal structs from tables 163 * stored in guest RAM 164 * @commit: initialize the registers which expose the ABI settings, 165 * especially the entry sizes 166 */ 167 struct vgic_its_abi { 168 int cte_esz; 169 int dte_esz; 170 int ite_esz; 171 int (*save_tables)(struct vgic_its *its); 172 int (*restore_tables)(struct vgic_its *its); 173 int (*commit)(struct vgic_its *its); 174 }; 175 176 #define ABI_0_ESZ 8 177 #define ESZ_MAX ABI_0_ESZ 178 179 static const struct vgic_its_abi its_table_abi_versions[] = { 180 [0] = { 181 .cte_esz = ABI_0_ESZ, 182 .dte_esz = ABI_0_ESZ, 183 .ite_esz = ABI_0_ESZ, 184 .save_tables = vgic_its_save_tables_v0, 185 .restore_tables = vgic_its_restore_tables_v0, 186 .commit = vgic_its_commit_v0, 187 }, 188 }; 189 190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 191 192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 193 { 194 return &its_table_abi_versions[its->abi_rev]; 195 } 196 197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 198 { 199 const struct vgic_its_abi *abi; 200 201 its->abi_rev = rev; 202 abi = vgic_its_get_abi(its); 203 return abi->commit(its); 204 } 205 206 /* 207 * Find and returns a device in the device table for an ITS. 208 * Must be called with the its_lock mutex held. 209 */ 210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 211 { 212 struct its_device *device; 213 214 list_for_each_entry(device, &its->device_list, dev_list) 215 if (device_id == device->device_id) 216 return device; 217 218 return NULL; 219 } 220 221 /* 222 * Find and returns an interrupt translation table entry (ITTE) for a given 223 * Device ID/Event ID pair on an ITS. 224 * Must be called with the its_lock mutex held. 225 */ 226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 227 u32 event_id) 228 { 229 struct its_device *device; 230 struct its_ite *ite; 231 232 device = find_its_device(its, device_id); 233 if (device == NULL) 234 return NULL; 235 236 list_for_each_entry(ite, &device->itt_head, ite_list) 237 if (ite->event_id == event_id) 238 return ite; 239 240 return NULL; 241 } 242 243 /* To be used as an iterator this macro misses the enclosing parentheses */ 244 #define for_each_lpi_its(dev, ite, its) \ 245 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 246 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 247 248 #define GIC_LPI_OFFSET 8192 249 250 #define VITS_TYPER_IDBITS 16 251 #define VITS_TYPER_DEVBITS 16 252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 254 255 /* 256 * Finds and returns a collection in the ITS collection table. 257 * Must be called with the its_lock mutex held. 258 */ 259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 260 { 261 struct its_collection *collection; 262 263 list_for_each_entry(collection, &its->collection_list, coll_list) { 264 if (coll_id == collection->collection_id) 265 return collection; 266 } 267 268 return NULL; 269 } 270 271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 273 274 /* 275 * Reads the configuration data for a given LPI from guest memory and 276 * updates the fields in struct vgic_irq. 277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 278 * VCPU. Unconditionally applies if filter_vcpu is NULL. 279 */ 280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 281 struct kvm_vcpu *filter_vcpu, bool needs_inv) 282 { 283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 284 u8 prop; 285 int ret; 286 unsigned long flags; 287 288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 289 &prop, 1); 290 291 if (ret) 292 return ret; 293 294 raw_spin_lock_irqsave(&irq->irq_lock, flags); 295 296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 297 irq->priority = LPI_PROP_PRIORITY(prop); 298 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 299 300 if (!irq->hw) { 301 vgic_queue_irq_unlock(kvm, irq, flags); 302 return 0; 303 } 304 } 305 306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 307 308 if (irq->hw) 309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 310 311 return 0; 312 } 313 314 /* 315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can 316 * enumerate those LPIs without holding any lock. 317 * Returns their number and puts the kmalloc'ed array into intid_ptr. 318 */ 319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) 320 { 321 struct vgic_dist *dist = &kvm->arch.vgic; 322 struct vgic_irq *irq; 323 unsigned long flags; 324 u32 *intids; 325 int irq_count, i = 0; 326 327 /* 328 * There is an obvious race between allocating the array and LPIs 329 * being mapped/unmapped. If we ended up here as a result of a 330 * command, we're safe (locks are held, preventing another 331 * command). If coming from another path (such as enabling LPIs), 332 * we must be careful not to overrun the array. 333 */ 334 irq_count = READ_ONCE(dist->lpi_list_count); 335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT); 336 if (!intids) 337 return -ENOMEM; 338 339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { 341 if (i == irq_count) 342 break; 343 /* We don't need to "get" the IRQ, as we hold the list lock. */ 344 if (vcpu && irq->target_vcpu != vcpu) 345 continue; 346 intids[i++] = irq->intid; 347 } 348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 349 350 *intid_ptr = intids; 351 return i; 352 } 353 354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 355 { 356 int ret = 0; 357 unsigned long flags; 358 359 raw_spin_lock_irqsave(&irq->irq_lock, flags); 360 irq->target_vcpu = vcpu; 361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 362 363 if (irq->hw) { 364 struct its_vlpi_map map; 365 366 ret = its_get_vlpi(irq->host_irq, &map); 367 if (ret) 368 return ret; 369 370 if (map.vpe) 371 atomic_dec(&map.vpe->vlpi_count); 372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 373 atomic_inc(&map.vpe->vlpi_count); 374 375 ret = its_map_vlpi(irq->host_irq, &map); 376 } 377 378 return ret; 379 } 380 381 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm, 382 struct its_collection *col) 383 { 384 return kvm_get_vcpu_by_id(kvm, col->target_addr); 385 } 386 387 /* 388 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 389 * is targeting) to the VGIC's view, which deals with target VCPUs. 390 * Needs to be called whenever either the collection for a LPIs has 391 * changed or the collection itself got retargeted. 392 */ 393 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 394 { 395 struct kvm_vcpu *vcpu; 396 397 if (!its_is_collection_mapped(ite->collection)) 398 return; 399 400 vcpu = collection_to_vcpu(kvm, ite->collection); 401 update_affinity(ite->irq, vcpu); 402 } 403 404 /* 405 * Updates the target VCPU for every LPI targeting this collection. 406 * Must be called with the its_lock mutex held. 407 */ 408 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 409 struct its_collection *coll) 410 { 411 struct its_device *device; 412 struct its_ite *ite; 413 414 for_each_lpi_its(device, ite, its) { 415 if (ite->collection != coll) 416 continue; 417 418 update_affinity_ite(kvm, ite); 419 } 420 } 421 422 static u32 max_lpis_propbaser(u64 propbaser) 423 { 424 int nr_idbits = (propbaser & 0x1f) + 1; 425 426 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 427 } 428 429 /* 430 * Sync the pending table pending bit of LPIs targeting @vcpu 431 * with our own data structures. This relies on the LPI being 432 * mapped before. 433 */ 434 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 435 { 436 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 437 struct vgic_irq *irq; 438 int last_byte_offset = -1; 439 int ret = 0; 440 u32 *intids; 441 int nr_irqs, i; 442 unsigned long flags; 443 u8 pendmask; 444 445 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); 446 if (nr_irqs < 0) 447 return nr_irqs; 448 449 for (i = 0; i < nr_irqs; i++) { 450 int byte_offset, bit_nr; 451 452 byte_offset = intids[i] / BITS_PER_BYTE; 453 bit_nr = intids[i] % BITS_PER_BYTE; 454 455 /* 456 * For contiguously allocated LPIs chances are we just read 457 * this very same byte in the last iteration. Reuse that. 458 */ 459 if (byte_offset != last_byte_offset) { 460 ret = kvm_read_guest_lock(vcpu->kvm, 461 pendbase + byte_offset, 462 &pendmask, 1); 463 if (ret) { 464 kfree(intids); 465 return ret; 466 } 467 last_byte_offset = byte_offset; 468 } 469 470 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); 471 if (!irq) 472 continue; 473 474 raw_spin_lock_irqsave(&irq->irq_lock, flags); 475 irq->pending_latch = pendmask & (1U << bit_nr); 476 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 477 vgic_put_irq(vcpu->kvm, irq); 478 } 479 480 kfree(intids); 481 482 return ret; 483 } 484 485 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 486 struct vgic_its *its, 487 gpa_t addr, unsigned int len) 488 { 489 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 490 u64 reg = GITS_TYPER_PLPIS; 491 492 /* 493 * We use linear CPU numbers for redistributor addressing, 494 * so GITS_TYPER.PTA is 0. 495 * Also we force all PROPBASER registers to be the same, so 496 * CommonLPIAff is 0 as well. 497 * To avoid memory waste in the guest, we keep the number of IDBits and 498 * DevBits low - as least for the time being. 499 */ 500 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 501 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 502 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 503 504 return extract_bytes(reg, addr & 7, len); 505 } 506 507 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 508 struct vgic_its *its, 509 gpa_t addr, unsigned int len) 510 { 511 u32 val; 512 513 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 514 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 515 return val; 516 } 517 518 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 519 struct vgic_its *its, 520 gpa_t addr, unsigned int len, 521 unsigned long val) 522 { 523 u32 rev = GITS_IIDR_REV(val); 524 525 if (rev >= NR_ITS_ABIS) 526 return -EINVAL; 527 return vgic_its_set_abi(its, rev); 528 } 529 530 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 531 struct vgic_its *its, 532 gpa_t addr, unsigned int len) 533 { 534 switch (addr & 0xffff) { 535 case GITS_PIDR0: 536 return 0x92; /* part number, bits[7:0] */ 537 case GITS_PIDR1: 538 return 0xb4; /* part number, bits[11:8] */ 539 case GITS_PIDR2: 540 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 541 case GITS_PIDR4: 542 return 0x40; /* This is a 64K software visible page */ 543 /* The following are the ID registers for (any) GIC. */ 544 case GITS_CIDR0: 545 return 0x0d; 546 case GITS_CIDR1: 547 return 0xf0; 548 case GITS_CIDR2: 549 return 0x05; 550 case GITS_CIDR3: 551 return 0xb1; 552 } 553 554 return 0; 555 } 556 557 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist, 558 phys_addr_t db, 559 u32 devid, u32 eventid) 560 { 561 struct vgic_translation_cache_entry *cte; 562 563 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 564 /* 565 * If we hit a NULL entry, there is nothing after this 566 * point. 567 */ 568 if (!cte->irq) 569 break; 570 571 if (cte->db != db || cte->devid != devid || 572 cte->eventid != eventid) 573 continue; 574 575 /* 576 * Move this entry to the head, as it is the most 577 * recently used. 578 */ 579 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache)) 580 list_move(&cte->entry, &dist->lpi_translation_cache); 581 582 return cte->irq; 583 } 584 585 return NULL; 586 } 587 588 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 589 u32 devid, u32 eventid) 590 { 591 struct vgic_dist *dist = &kvm->arch.vgic; 592 struct vgic_irq *irq; 593 unsigned long flags; 594 595 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 596 597 irq = __vgic_its_check_cache(dist, db, devid, eventid); 598 if (irq) 599 vgic_get_irq_kref(irq); 600 601 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 602 603 return irq; 604 } 605 606 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 607 u32 devid, u32 eventid, 608 struct vgic_irq *irq) 609 { 610 struct vgic_dist *dist = &kvm->arch.vgic; 611 struct vgic_translation_cache_entry *cte; 612 unsigned long flags; 613 phys_addr_t db; 614 615 /* Do not cache a directly injected interrupt */ 616 if (irq->hw) 617 return; 618 619 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 620 621 if (unlikely(list_empty(&dist->lpi_translation_cache))) 622 goto out; 623 624 /* 625 * We could have raced with another CPU caching the same 626 * translation behind our back, so let's check it is not in 627 * already 628 */ 629 db = its->vgic_its_base + GITS_TRANSLATER; 630 if (__vgic_its_check_cache(dist, db, devid, eventid)) 631 goto out; 632 633 /* Always reuse the last entry (LRU policy) */ 634 cte = list_last_entry(&dist->lpi_translation_cache, 635 typeof(*cte), entry); 636 637 /* 638 * Caching the translation implies having an extra reference 639 * to the interrupt, so drop the potential reference on what 640 * was in the cache, and increment it on the new interrupt. 641 */ 642 if (cte->irq) 643 __vgic_put_lpi_locked(kvm, cte->irq); 644 645 vgic_get_irq_kref(irq); 646 647 cte->db = db; 648 cte->devid = devid; 649 cte->eventid = eventid; 650 cte->irq = irq; 651 652 /* Move the new translation to the head of the list */ 653 list_move(&cte->entry, &dist->lpi_translation_cache); 654 655 out: 656 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 657 } 658 659 void vgic_its_invalidate_cache(struct kvm *kvm) 660 { 661 struct vgic_dist *dist = &kvm->arch.vgic; 662 struct vgic_translation_cache_entry *cte; 663 unsigned long flags; 664 665 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); 666 667 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) { 668 /* 669 * If we hit a NULL entry, there is nothing after this 670 * point. 671 */ 672 if (!cte->irq) 673 break; 674 675 __vgic_put_lpi_locked(kvm, cte->irq); 676 cte->irq = NULL; 677 } 678 679 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); 680 } 681 682 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 683 u32 devid, u32 eventid, struct vgic_irq **irq) 684 { 685 struct kvm_vcpu *vcpu; 686 struct its_ite *ite; 687 688 if (!its->enabled) 689 return -EBUSY; 690 691 ite = find_ite(its, devid, eventid); 692 if (!ite || !its_is_collection_mapped(ite->collection)) 693 return E_ITS_INT_UNMAPPED_INTERRUPT; 694 695 vcpu = collection_to_vcpu(kvm, ite->collection); 696 if (!vcpu) 697 return E_ITS_INT_UNMAPPED_INTERRUPT; 698 699 if (!vgic_lpis_enabled(vcpu)) 700 return -EBUSY; 701 702 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 703 704 *irq = ite->irq; 705 return 0; 706 } 707 708 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 709 { 710 u64 address; 711 struct kvm_io_device *kvm_io_dev; 712 struct vgic_io_device *iodev; 713 714 if (!vgic_has_its(kvm)) 715 return ERR_PTR(-ENODEV); 716 717 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 718 return ERR_PTR(-EINVAL); 719 720 address = (u64)msi->address_hi << 32 | msi->address_lo; 721 722 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); 723 if (!kvm_io_dev) 724 return ERR_PTR(-EINVAL); 725 726 if (kvm_io_dev->ops != &kvm_io_gic_ops) 727 return ERR_PTR(-EINVAL); 728 729 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 730 if (iodev->iodev_type != IODEV_ITS) 731 return ERR_PTR(-EINVAL); 732 733 return iodev->its; 734 } 735 736 /* 737 * Find the target VCPU and the LPI number for a given devid/eventid pair 738 * and make this IRQ pending, possibly injecting it. 739 * Must be called with the its_lock mutex held. 740 * Returns 0 on success, a positive error value for any ITS mapping 741 * related errors and negative error values for generic errors. 742 */ 743 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 744 u32 devid, u32 eventid) 745 { 746 struct vgic_irq *irq = NULL; 747 unsigned long flags; 748 int err; 749 750 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 751 if (err) 752 return err; 753 754 if (irq->hw) 755 return irq_set_irqchip_state(irq->host_irq, 756 IRQCHIP_STATE_PENDING, true); 757 758 raw_spin_lock_irqsave(&irq->irq_lock, flags); 759 irq->pending_latch = true; 760 vgic_queue_irq_unlock(kvm, irq, flags); 761 762 return 0; 763 } 764 765 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 766 { 767 struct vgic_irq *irq; 768 unsigned long flags; 769 phys_addr_t db; 770 771 db = (u64)msi->address_hi << 32 | msi->address_lo; 772 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 773 if (!irq) 774 return -EWOULDBLOCK; 775 776 raw_spin_lock_irqsave(&irq->irq_lock, flags); 777 irq->pending_latch = true; 778 vgic_queue_irq_unlock(kvm, irq, flags); 779 vgic_put_irq(kvm, irq); 780 781 return 0; 782 } 783 784 /* 785 * Queries the KVM IO bus framework to get the ITS pointer from the given 786 * doorbell address. 787 * We then call vgic_its_trigger_msi() with the decoded data. 788 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 789 */ 790 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 791 { 792 struct vgic_its *its; 793 int ret; 794 795 if (!vgic_its_inject_cached_translation(kvm, msi)) 796 return 1; 797 798 its = vgic_msi_to_its(kvm, msi); 799 if (IS_ERR(its)) 800 return PTR_ERR(its); 801 802 mutex_lock(&its->its_lock); 803 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 804 mutex_unlock(&its->its_lock); 805 806 if (ret < 0) 807 return ret; 808 809 /* 810 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 811 * if the guest has blocked the MSI. So we map any LPI mapping 812 * related error to that. 813 */ 814 if (ret) 815 return 0; 816 else 817 return 1; 818 } 819 820 /* Requires the its_lock to be held. */ 821 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 822 { 823 list_del(&ite->ite_list); 824 825 /* This put matches the get in vgic_add_lpi. */ 826 if (ite->irq) { 827 if (ite->irq->hw) 828 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 829 830 vgic_put_irq(kvm, ite->irq); 831 } 832 833 kfree(ite); 834 } 835 836 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 837 { 838 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 839 } 840 841 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 842 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 843 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 844 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 845 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 846 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 847 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 848 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 849 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 850 851 /* 852 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 853 * Must be called with the its_lock mutex held. 854 */ 855 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 856 u64 *its_cmd) 857 { 858 u32 device_id = its_cmd_get_deviceid(its_cmd); 859 u32 event_id = its_cmd_get_id(its_cmd); 860 struct its_ite *ite; 861 862 ite = find_ite(its, device_id, event_id); 863 if (ite && its_is_collection_mapped(ite->collection)) { 864 /* 865 * Though the spec talks about removing the pending state, we 866 * don't bother here since we clear the ITTE anyway and the 867 * pending state is a property of the ITTE struct. 868 */ 869 vgic_its_invalidate_cache(kvm); 870 871 its_free_ite(kvm, ite); 872 return 0; 873 } 874 875 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 876 } 877 878 /* 879 * The MOVI command moves an ITTE to a different collection. 880 * Must be called with the its_lock mutex held. 881 */ 882 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 883 u64 *its_cmd) 884 { 885 u32 device_id = its_cmd_get_deviceid(its_cmd); 886 u32 event_id = its_cmd_get_id(its_cmd); 887 u32 coll_id = its_cmd_get_collection(its_cmd); 888 struct kvm_vcpu *vcpu; 889 struct its_ite *ite; 890 struct its_collection *collection; 891 892 ite = find_ite(its, device_id, event_id); 893 if (!ite) 894 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 895 896 if (!its_is_collection_mapped(ite->collection)) 897 return E_ITS_MOVI_UNMAPPED_COLLECTION; 898 899 collection = find_collection(its, coll_id); 900 if (!its_is_collection_mapped(collection)) 901 return E_ITS_MOVI_UNMAPPED_COLLECTION; 902 903 ite->collection = collection; 904 vcpu = collection_to_vcpu(kvm, collection); 905 906 vgic_its_invalidate_cache(kvm); 907 908 return update_affinity(ite->irq, vcpu); 909 } 910 911 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 912 { 913 gfn_t gfn = gpa >> PAGE_SHIFT; 914 int idx; 915 bool ret; 916 917 idx = srcu_read_lock(&its->dev->kvm->srcu); 918 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 919 srcu_read_unlock(&its->dev->kvm->srcu, idx); 920 return ret; 921 } 922 923 /* 924 * Check whether an ID can be stored into the corresponding guest table. 925 * For a direct table this is pretty easy, but gets a bit nasty for 926 * indirect tables. We check whether the resulting guest physical address 927 * is actually valid (covered by a memslot and guest accessible). 928 * For this we have to read the respective first level entry. 929 */ 930 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 931 gpa_t *eaddr) 932 { 933 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 934 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 935 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 936 int esz = GITS_BASER_ENTRY_SIZE(baser); 937 int index; 938 939 switch (type) { 940 case GITS_BASER_TYPE_DEVICE: 941 if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) 942 return false; 943 break; 944 case GITS_BASER_TYPE_COLLECTION: 945 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 946 if (id >= BIT_ULL(16)) 947 return false; 948 break; 949 default: 950 return false; 951 } 952 953 if (!(baser & GITS_BASER_INDIRECT)) { 954 phys_addr_t addr; 955 956 if (id >= (l1_tbl_size / esz)) 957 return false; 958 959 addr = base + id * esz; 960 961 if (eaddr) 962 *eaddr = addr; 963 964 return __is_visible_gfn_locked(its, addr); 965 } 966 967 /* calculate and check the index into the 1st level */ 968 index = id / (SZ_64K / esz); 969 if (index >= (l1_tbl_size / sizeof(u64))) 970 return false; 971 972 /* Each 1st level entry is represented by a 64-bit value. */ 973 if (kvm_read_guest_lock(its->dev->kvm, 974 base + index * sizeof(indirect_ptr), 975 &indirect_ptr, sizeof(indirect_ptr))) 976 return false; 977 978 indirect_ptr = le64_to_cpu(indirect_ptr); 979 980 /* check the valid bit of the first level entry */ 981 if (!(indirect_ptr & BIT_ULL(63))) 982 return false; 983 984 /* Mask the guest physical address and calculate the frame number. */ 985 indirect_ptr &= GENMASK_ULL(51, 16); 986 987 /* Find the address of the actual entry */ 988 index = id % (SZ_64K / esz); 989 indirect_ptr += index * esz; 990 991 if (eaddr) 992 *eaddr = indirect_ptr; 993 994 return __is_visible_gfn_locked(its, indirect_ptr); 995 } 996 997 /* 998 * Check whether an event ID can be stored in the corresponding Interrupt 999 * Translation Table, which starts at device->itt_addr. 1000 */ 1001 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 1002 u32 event_id) 1003 { 1004 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1005 int ite_esz = abi->ite_esz; 1006 gpa_t gpa; 1007 1008 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 1009 if (event_id >= BIT_ULL(device->num_eventid_bits)) 1010 return false; 1011 1012 gpa = device->itt_addr + event_id * ite_esz; 1013 return __is_visible_gfn_locked(its, gpa); 1014 } 1015 1016 /* 1017 * Add a new collection into the ITS collection table. 1018 * Returns 0 on success, and a negative error value for generic errors. 1019 */ 1020 static int vgic_its_alloc_collection(struct vgic_its *its, 1021 struct its_collection **colp, 1022 u32 coll_id) 1023 { 1024 struct its_collection *collection; 1025 1026 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 1027 if (!collection) 1028 return -ENOMEM; 1029 1030 collection->collection_id = coll_id; 1031 collection->target_addr = COLLECTION_NOT_MAPPED; 1032 1033 list_add_tail(&collection->coll_list, &its->collection_list); 1034 *colp = collection; 1035 1036 return 0; 1037 } 1038 1039 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1040 { 1041 struct its_collection *collection; 1042 struct its_device *device; 1043 struct its_ite *ite; 1044 1045 /* 1046 * Clearing the mapping for that collection ID removes the 1047 * entry from the list. If there wasn't any before, we can 1048 * go home early. 1049 */ 1050 collection = find_collection(its, coll_id); 1051 if (!collection) 1052 return; 1053 1054 for_each_lpi_its(device, ite, its) 1055 if (ite->collection && 1056 ite->collection->collection_id == coll_id) 1057 ite->collection = NULL; 1058 1059 list_del(&collection->coll_list); 1060 kfree(collection); 1061 } 1062 1063 /* Must be called with its_lock mutex held */ 1064 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1065 struct its_collection *collection, 1066 u32 event_id) 1067 { 1068 struct its_ite *ite; 1069 1070 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1071 if (!ite) 1072 return ERR_PTR(-ENOMEM); 1073 1074 ite->event_id = event_id; 1075 ite->collection = collection; 1076 1077 list_add_tail(&ite->ite_list, &device->itt_head); 1078 return ite; 1079 } 1080 1081 /* 1082 * The MAPTI and MAPI commands map LPIs to ITTEs. 1083 * Must be called with its_lock mutex held. 1084 */ 1085 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1086 u64 *its_cmd) 1087 { 1088 u32 device_id = its_cmd_get_deviceid(its_cmd); 1089 u32 event_id = its_cmd_get_id(its_cmd); 1090 u32 coll_id = its_cmd_get_collection(its_cmd); 1091 struct its_ite *ite; 1092 struct kvm_vcpu *vcpu = NULL; 1093 struct its_device *device; 1094 struct its_collection *collection, *new_coll = NULL; 1095 struct vgic_irq *irq; 1096 int lpi_nr; 1097 1098 device = find_its_device(its, device_id); 1099 if (!device) 1100 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1101 1102 if (!vgic_its_check_event_id(its, device, event_id)) 1103 return E_ITS_MAPTI_ID_OOR; 1104 1105 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1106 lpi_nr = its_cmd_get_physical_id(its_cmd); 1107 else 1108 lpi_nr = event_id; 1109 if (lpi_nr < GIC_LPI_OFFSET || 1110 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1111 return E_ITS_MAPTI_PHYSICALID_OOR; 1112 1113 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1114 if (find_ite(its, device_id, event_id)) 1115 return 0; 1116 1117 collection = find_collection(its, coll_id); 1118 if (!collection) { 1119 int ret; 1120 1121 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1122 return E_ITS_MAPC_COLLECTION_OOR; 1123 1124 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1125 if (ret) 1126 return ret; 1127 new_coll = collection; 1128 } 1129 1130 ite = vgic_its_alloc_ite(device, collection, event_id); 1131 if (IS_ERR(ite)) { 1132 if (new_coll) 1133 vgic_its_free_collection(its, coll_id); 1134 return PTR_ERR(ite); 1135 } 1136 1137 if (its_is_collection_mapped(collection)) 1138 vcpu = collection_to_vcpu(kvm, collection); 1139 1140 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1141 if (IS_ERR(irq)) { 1142 if (new_coll) 1143 vgic_its_free_collection(its, coll_id); 1144 its_free_ite(kvm, ite); 1145 return PTR_ERR(irq); 1146 } 1147 ite->irq = irq; 1148 1149 return 0; 1150 } 1151 1152 /* Requires the its_lock to be held. */ 1153 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) 1154 { 1155 struct its_ite *ite, *temp; 1156 1157 /* 1158 * The spec says that unmapping a device with still valid 1159 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1160 * since we cannot leave the memory unreferenced. 1161 */ 1162 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1163 its_free_ite(kvm, ite); 1164 1165 vgic_its_invalidate_cache(kvm); 1166 1167 list_del(&device->dev_list); 1168 kfree(device); 1169 } 1170 1171 /* its lock must be held */ 1172 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1173 { 1174 struct its_device *cur, *temp; 1175 1176 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1177 vgic_its_free_device(kvm, cur); 1178 } 1179 1180 /* its lock must be held */ 1181 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1182 { 1183 struct its_collection *cur, *temp; 1184 1185 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1186 vgic_its_free_collection(its, cur->collection_id); 1187 } 1188 1189 /* Must be called with its_lock mutex held */ 1190 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1191 u32 device_id, gpa_t itt_addr, 1192 u8 num_eventid_bits) 1193 { 1194 struct its_device *device; 1195 1196 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1197 if (!device) 1198 return ERR_PTR(-ENOMEM); 1199 1200 device->device_id = device_id; 1201 device->itt_addr = itt_addr; 1202 device->num_eventid_bits = num_eventid_bits; 1203 INIT_LIST_HEAD(&device->itt_head); 1204 1205 list_add_tail(&device->dev_list, &its->device_list); 1206 return device; 1207 } 1208 1209 /* 1210 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1211 * Must be called with the its_lock mutex held. 1212 */ 1213 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1214 u64 *its_cmd) 1215 { 1216 u32 device_id = its_cmd_get_deviceid(its_cmd); 1217 bool valid = its_cmd_get_validbit(its_cmd); 1218 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1219 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1220 struct its_device *device; 1221 1222 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1223 return E_ITS_MAPD_DEVICE_OOR; 1224 1225 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1226 return E_ITS_MAPD_ITTSIZE_OOR; 1227 1228 device = find_its_device(its, device_id); 1229 1230 /* 1231 * The spec says that calling MAPD on an already mapped device 1232 * invalidates all cached data for this device. We implement this 1233 * by removing the mapping and re-establishing it. 1234 */ 1235 if (device) 1236 vgic_its_free_device(kvm, device); 1237 1238 /* 1239 * The spec does not say whether unmapping a not-mapped device 1240 * is an error, so we are done in any case. 1241 */ 1242 if (!valid) 1243 return 0; 1244 1245 device = vgic_its_alloc_device(its, device_id, itt_addr, 1246 num_eventid_bits); 1247 1248 return PTR_ERR_OR_ZERO(device); 1249 } 1250 1251 /* 1252 * The MAPC command maps collection IDs to redistributors. 1253 * Must be called with the its_lock mutex held. 1254 */ 1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1256 u64 *its_cmd) 1257 { 1258 u16 coll_id; 1259 struct its_collection *collection; 1260 bool valid; 1261 1262 valid = its_cmd_get_validbit(its_cmd); 1263 coll_id = its_cmd_get_collection(its_cmd); 1264 1265 if (!valid) { 1266 vgic_its_free_collection(its, coll_id); 1267 vgic_its_invalidate_cache(kvm); 1268 } else { 1269 struct kvm_vcpu *vcpu; 1270 1271 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1272 if (!vcpu) 1273 return E_ITS_MAPC_PROCNUM_OOR; 1274 1275 collection = find_collection(its, coll_id); 1276 1277 if (!collection) { 1278 int ret; 1279 1280 if (!vgic_its_check_id(its, its->baser_coll_table, 1281 coll_id, NULL)) 1282 return E_ITS_MAPC_COLLECTION_OOR; 1283 1284 ret = vgic_its_alloc_collection(its, &collection, 1285 coll_id); 1286 if (ret) 1287 return ret; 1288 collection->target_addr = vcpu->vcpu_id; 1289 } else { 1290 collection->target_addr = vcpu->vcpu_id; 1291 update_affinity_collection(kvm, its, collection); 1292 } 1293 } 1294 1295 return 0; 1296 } 1297 1298 /* 1299 * The CLEAR command removes the pending state for a particular LPI. 1300 * Must be called with the its_lock mutex held. 1301 */ 1302 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1303 u64 *its_cmd) 1304 { 1305 u32 device_id = its_cmd_get_deviceid(its_cmd); 1306 u32 event_id = its_cmd_get_id(its_cmd); 1307 struct its_ite *ite; 1308 1309 1310 ite = find_ite(its, device_id, event_id); 1311 if (!ite) 1312 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1313 1314 ite->irq->pending_latch = false; 1315 1316 if (ite->irq->hw) 1317 return irq_set_irqchip_state(ite->irq->host_irq, 1318 IRQCHIP_STATE_PENDING, false); 1319 1320 return 0; 1321 } 1322 1323 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1324 { 1325 return update_lpi_config(kvm, irq, NULL, true); 1326 } 1327 1328 /* 1329 * The INV command syncs the configuration bits from the memory table. 1330 * Must be called with the its_lock mutex held. 1331 */ 1332 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1333 u64 *its_cmd) 1334 { 1335 u32 device_id = its_cmd_get_deviceid(its_cmd); 1336 u32 event_id = its_cmd_get_id(its_cmd); 1337 struct its_ite *ite; 1338 1339 1340 ite = find_ite(its, device_id, event_id); 1341 if (!ite) 1342 return E_ITS_INV_UNMAPPED_INTERRUPT; 1343 1344 return vgic_its_inv_lpi(kvm, ite->irq); 1345 } 1346 1347 /** 1348 * vgic_its_invall - invalidate all LPIs targetting a given vcpu 1349 * @vcpu: the vcpu for which the RD is targetted by an invalidation 1350 * 1351 * Contrary to the INVALL command, this targets a RD instead of a 1352 * collection, and we don't need to hold the its_lock, since no ITS is 1353 * involved here. 1354 */ 1355 int vgic_its_invall(struct kvm_vcpu *vcpu) 1356 { 1357 struct kvm *kvm = vcpu->kvm; 1358 int irq_count, i = 0; 1359 u32 *intids; 1360 1361 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); 1362 if (irq_count < 0) 1363 return irq_count; 1364 1365 for (i = 0; i < irq_count; i++) { 1366 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]); 1367 if (!irq) 1368 continue; 1369 update_lpi_config(kvm, irq, vcpu, false); 1370 vgic_put_irq(kvm, irq); 1371 } 1372 1373 kfree(intids); 1374 1375 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1376 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1377 1378 return 0; 1379 } 1380 1381 /* 1382 * The INVALL command requests flushing of all IRQ data in this collection. 1383 * Find the VCPU mapped to that collection, then iterate over the VM's list 1384 * of mapped LPIs and update the configuration for each IRQ which targets 1385 * the specified vcpu. The configuration will be read from the in-memory 1386 * configuration table. 1387 * Must be called with the its_lock mutex held. 1388 */ 1389 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1390 u64 *its_cmd) 1391 { 1392 u32 coll_id = its_cmd_get_collection(its_cmd); 1393 struct its_collection *collection; 1394 struct kvm_vcpu *vcpu; 1395 1396 collection = find_collection(its, coll_id); 1397 if (!its_is_collection_mapped(collection)) 1398 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1399 1400 vcpu = collection_to_vcpu(kvm, collection); 1401 vgic_its_invall(vcpu); 1402 1403 return 0; 1404 } 1405 1406 /* 1407 * The MOVALL command moves the pending state of all IRQs targeting one 1408 * redistributor to another. We don't hold the pending state in the VCPUs, 1409 * but in the IRQs instead, so there is really not much to do for us here. 1410 * However the spec says that no IRQ must target the old redistributor 1411 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1412 * This command affects all LPIs in the system that target that redistributor. 1413 */ 1414 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1415 u64 *its_cmd) 1416 { 1417 struct kvm_vcpu *vcpu1, *vcpu2; 1418 struct vgic_irq *irq; 1419 u32 *intids; 1420 int irq_count, i; 1421 1422 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */ 1423 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1424 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32)); 1425 1426 if (!vcpu1 || !vcpu2) 1427 return E_ITS_MOVALL_PROCNUM_OOR; 1428 1429 if (vcpu1 == vcpu2) 1430 return 0; 1431 1432 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); 1433 if (irq_count < 0) 1434 return irq_count; 1435 1436 for (i = 0; i < irq_count; i++) { 1437 irq = vgic_get_irq(kvm, NULL, intids[i]); 1438 if (!irq) 1439 continue; 1440 1441 update_affinity(irq, vcpu2); 1442 1443 vgic_put_irq(kvm, irq); 1444 } 1445 1446 vgic_its_invalidate_cache(kvm); 1447 1448 kfree(intids); 1449 return 0; 1450 } 1451 1452 /* 1453 * The INT command injects the LPI associated with that DevID/EvID pair. 1454 * Must be called with the its_lock mutex held. 1455 */ 1456 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1457 u64 *its_cmd) 1458 { 1459 u32 msi_data = its_cmd_get_id(its_cmd); 1460 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1461 1462 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1463 } 1464 1465 /* 1466 * This function is called with the its_cmd lock held, but the ITS data 1467 * structure lock dropped. 1468 */ 1469 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1470 u64 *its_cmd) 1471 { 1472 int ret = -ENODEV; 1473 1474 mutex_lock(&its->its_lock); 1475 switch (its_cmd_get_command(its_cmd)) { 1476 case GITS_CMD_MAPD: 1477 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1478 break; 1479 case GITS_CMD_MAPC: 1480 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1481 break; 1482 case GITS_CMD_MAPI: 1483 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1484 break; 1485 case GITS_CMD_MAPTI: 1486 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1487 break; 1488 case GITS_CMD_MOVI: 1489 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1490 break; 1491 case GITS_CMD_DISCARD: 1492 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1493 break; 1494 case GITS_CMD_CLEAR: 1495 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1496 break; 1497 case GITS_CMD_MOVALL: 1498 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1499 break; 1500 case GITS_CMD_INT: 1501 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1502 break; 1503 case GITS_CMD_INV: 1504 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1505 break; 1506 case GITS_CMD_INVALL: 1507 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1508 break; 1509 case GITS_CMD_SYNC: 1510 /* we ignore this command: we are in sync all of the time */ 1511 ret = 0; 1512 break; 1513 } 1514 mutex_unlock(&its->its_lock); 1515 1516 return ret; 1517 } 1518 1519 static u64 vgic_sanitise_its_baser(u64 reg) 1520 { 1521 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1522 GITS_BASER_SHAREABILITY_SHIFT, 1523 vgic_sanitise_shareability); 1524 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1525 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1526 vgic_sanitise_inner_cacheability); 1527 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1528 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1529 vgic_sanitise_outer_cacheability); 1530 1531 /* We support only one (ITS) page size: 64K */ 1532 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1533 1534 return reg; 1535 } 1536 1537 static u64 vgic_sanitise_its_cbaser(u64 reg) 1538 { 1539 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1540 GITS_CBASER_SHAREABILITY_SHIFT, 1541 vgic_sanitise_shareability); 1542 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1543 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1544 vgic_sanitise_inner_cacheability); 1545 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1546 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1547 vgic_sanitise_outer_cacheability); 1548 1549 /* Sanitise the physical address to be 64k aligned. */ 1550 reg &= ~GENMASK_ULL(15, 12); 1551 1552 return reg; 1553 } 1554 1555 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1556 struct vgic_its *its, 1557 gpa_t addr, unsigned int len) 1558 { 1559 return extract_bytes(its->cbaser, addr & 7, len); 1560 } 1561 1562 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1563 gpa_t addr, unsigned int len, 1564 unsigned long val) 1565 { 1566 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1567 if (its->enabled) 1568 return; 1569 1570 mutex_lock(&its->cmd_lock); 1571 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1572 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1573 its->creadr = 0; 1574 /* 1575 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1576 * it to CREADR to make sure we start with an empty command buffer. 1577 */ 1578 its->cwriter = its->creadr; 1579 mutex_unlock(&its->cmd_lock); 1580 } 1581 1582 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1583 #define ITS_CMD_SIZE 32 1584 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1585 1586 /* Must be called with the cmd_lock held. */ 1587 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1588 { 1589 gpa_t cbaser; 1590 u64 cmd_buf[4]; 1591 1592 /* Commands are only processed when the ITS is enabled. */ 1593 if (!its->enabled) 1594 return; 1595 1596 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1597 1598 while (its->cwriter != its->creadr) { 1599 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1600 cmd_buf, ITS_CMD_SIZE); 1601 /* 1602 * If kvm_read_guest() fails, this could be due to the guest 1603 * programming a bogus value in CBASER or something else going 1604 * wrong from which we cannot easily recover. 1605 * According to section 6.3.2 in the GICv3 spec we can just 1606 * ignore that command then. 1607 */ 1608 if (!ret) 1609 vgic_its_handle_command(kvm, its, cmd_buf); 1610 1611 its->creadr += ITS_CMD_SIZE; 1612 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1613 its->creadr = 0; 1614 } 1615 } 1616 1617 /* 1618 * By writing to CWRITER the guest announces new commands to be processed. 1619 * To avoid any races in the first place, we take the its_cmd lock, which 1620 * protects our ring buffer variables, so that there is only one user 1621 * per ITS handling commands at a given time. 1622 */ 1623 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1624 gpa_t addr, unsigned int len, 1625 unsigned long val) 1626 { 1627 u64 reg; 1628 1629 if (!its) 1630 return; 1631 1632 mutex_lock(&its->cmd_lock); 1633 1634 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1635 reg = ITS_CMD_OFFSET(reg); 1636 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1637 mutex_unlock(&its->cmd_lock); 1638 return; 1639 } 1640 its->cwriter = reg; 1641 1642 vgic_its_process_commands(kvm, its); 1643 1644 mutex_unlock(&its->cmd_lock); 1645 } 1646 1647 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1648 struct vgic_its *its, 1649 gpa_t addr, unsigned int len) 1650 { 1651 return extract_bytes(its->cwriter, addr & 0x7, len); 1652 } 1653 1654 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1655 struct vgic_its *its, 1656 gpa_t addr, unsigned int len) 1657 { 1658 return extract_bytes(its->creadr, addr & 0x7, len); 1659 } 1660 1661 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1662 struct vgic_its *its, 1663 gpa_t addr, unsigned int len, 1664 unsigned long val) 1665 { 1666 u32 cmd_offset; 1667 int ret = 0; 1668 1669 mutex_lock(&its->cmd_lock); 1670 1671 if (its->enabled) { 1672 ret = -EBUSY; 1673 goto out; 1674 } 1675 1676 cmd_offset = ITS_CMD_OFFSET(val); 1677 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1678 ret = -EINVAL; 1679 goto out; 1680 } 1681 1682 its->creadr = cmd_offset; 1683 out: 1684 mutex_unlock(&its->cmd_lock); 1685 return ret; 1686 } 1687 1688 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1689 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1690 struct vgic_its *its, 1691 gpa_t addr, unsigned int len) 1692 { 1693 u64 reg; 1694 1695 switch (BASER_INDEX(addr)) { 1696 case 0: 1697 reg = its->baser_device_table; 1698 break; 1699 case 1: 1700 reg = its->baser_coll_table; 1701 break; 1702 default: 1703 reg = 0; 1704 break; 1705 } 1706 1707 return extract_bytes(reg, addr & 7, len); 1708 } 1709 1710 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1711 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1712 struct vgic_its *its, 1713 gpa_t addr, unsigned int len, 1714 unsigned long val) 1715 { 1716 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1717 u64 entry_size, table_type; 1718 u64 reg, *regptr, clearbits = 0; 1719 1720 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1721 if (its->enabled) 1722 return; 1723 1724 switch (BASER_INDEX(addr)) { 1725 case 0: 1726 regptr = &its->baser_device_table; 1727 entry_size = abi->dte_esz; 1728 table_type = GITS_BASER_TYPE_DEVICE; 1729 break; 1730 case 1: 1731 regptr = &its->baser_coll_table; 1732 entry_size = abi->cte_esz; 1733 table_type = GITS_BASER_TYPE_COLLECTION; 1734 clearbits = GITS_BASER_INDIRECT; 1735 break; 1736 default: 1737 return; 1738 } 1739 1740 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1741 reg &= ~GITS_BASER_RO_MASK; 1742 reg &= ~clearbits; 1743 1744 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1745 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1746 reg = vgic_sanitise_its_baser(reg); 1747 1748 *regptr = reg; 1749 1750 if (!(reg & GITS_BASER_VALID)) { 1751 /* Take the its_lock to prevent a race with a save/restore */ 1752 mutex_lock(&its->its_lock); 1753 switch (table_type) { 1754 case GITS_BASER_TYPE_DEVICE: 1755 vgic_its_free_device_list(kvm, its); 1756 break; 1757 case GITS_BASER_TYPE_COLLECTION: 1758 vgic_its_free_collection_list(kvm, its); 1759 break; 1760 } 1761 mutex_unlock(&its->its_lock); 1762 } 1763 } 1764 1765 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1766 struct vgic_its *its, 1767 gpa_t addr, unsigned int len) 1768 { 1769 u32 reg = 0; 1770 1771 mutex_lock(&its->cmd_lock); 1772 if (its->creadr == its->cwriter) 1773 reg |= GITS_CTLR_QUIESCENT; 1774 if (its->enabled) 1775 reg |= GITS_CTLR_ENABLE; 1776 mutex_unlock(&its->cmd_lock); 1777 1778 return reg; 1779 } 1780 1781 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1782 gpa_t addr, unsigned int len, 1783 unsigned long val) 1784 { 1785 mutex_lock(&its->cmd_lock); 1786 1787 /* 1788 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1789 * device/collection BASER are invalid 1790 */ 1791 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1792 (!(its->baser_device_table & GITS_BASER_VALID) || 1793 !(its->baser_coll_table & GITS_BASER_VALID) || 1794 !(its->cbaser & GITS_CBASER_VALID))) 1795 goto out; 1796 1797 its->enabled = !!(val & GITS_CTLR_ENABLE); 1798 if (!its->enabled) 1799 vgic_its_invalidate_cache(kvm); 1800 1801 /* 1802 * Try to process any pending commands. This function bails out early 1803 * if the ITS is disabled or no commands have been queued. 1804 */ 1805 vgic_its_process_commands(kvm, its); 1806 1807 out: 1808 mutex_unlock(&its->cmd_lock); 1809 } 1810 1811 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1812 { \ 1813 .reg_offset = off, \ 1814 .len = length, \ 1815 .access_flags = acc, \ 1816 .its_read = rd, \ 1817 .its_write = wr, \ 1818 } 1819 1820 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1821 { \ 1822 .reg_offset = off, \ 1823 .len = length, \ 1824 .access_flags = acc, \ 1825 .its_read = rd, \ 1826 .its_write = wr, \ 1827 .uaccess_its_write = uwr, \ 1828 } 1829 1830 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1831 gpa_t addr, unsigned int len, unsigned long val) 1832 { 1833 /* Ignore */ 1834 } 1835 1836 static struct vgic_register_region its_registers[] = { 1837 REGISTER_ITS_DESC(GITS_CTLR, 1838 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1839 VGIC_ACCESS_32bit), 1840 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1841 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1842 vgic_mmio_uaccess_write_its_iidr, 4, 1843 VGIC_ACCESS_32bit), 1844 REGISTER_ITS_DESC(GITS_TYPER, 1845 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1846 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1847 REGISTER_ITS_DESC(GITS_CBASER, 1848 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1849 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1850 REGISTER_ITS_DESC(GITS_CWRITER, 1851 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1852 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1853 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1854 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1855 vgic_mmio_uaccess_write_its_creadr, 8, 1856 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1857 REGISTER_ITS_DESC(GITS_BASER, 1858 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1859 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1860 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1861 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1862 VGIC_ACCESS_32bit), 1863 }; 1864 1865 /* This is called on setting the LPI enable bit in the redistributor. */ 1866 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1867 { 1868 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1869 its_sync_lpi_pending_table(vcpu); 1870 } 1871 1872 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1873 u64 addr) 1874 { 1875 struct vgic_io_device *iodev = &its->iodev; 1876 int ret; 1877 1878 mutex_lock(&kvm->slots_lock); 1879 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1880 ret = -EBUSY; 1881 goto out; 1882 } 1883 1884 its->vgic_its_base = addr; 1885 iodev->regions = its_registers; 1886 iodev->nr_regions = ARRAY_SIZE(its_registers); 1887 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1888 1889 iodev->base_addr = its->vgic_its_base; 1890 iodev->iodev_type = IODEV_ITS; 1891 iodev->its = its; 1892 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1893 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1894 out: 1895 mutex_unlock(&kvm->slots_lock); 1896 1897 return ret; 1898 } 1899 1900 /* Default is 16 cached LPIs per vcpu */ 1901 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16 1902 1903 void vgic_lpi_translation_cache_init(struct kvm *kvm) 1904 { 1905 struct vgic_dist *dist = &kvm->arch.vgic; 1906 unsigned int sz; 1907 int i; 1908 1909 if (!list_empty(&dist->lpi_translation_cache)) 1910 return; 1911 1912 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE; 1913 1914 for (i = 0; i < sz; i++) { 1915 struct vgic_translation_cache_entry *cte; 1916 1917 /* An allocation failure is not fatal */ 1918 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT); 1919 if (WARN_ON(!cte)) 1920 break; 1921 1922 INIT_LIST_HEAD(&cte->entry); 1923 list_add(&cte->entry, &dist->lpi_translation_cache); 1924 } 1925 } 1926 1927 void vgic_lpi_translation_cache_destroy(struct kvm *kvm) 1928 { 1929 struct vgic_dist *dist = &kvm->arch.vgic; 1930 struct vgic_translation_cache_entry *cte, *tmp; 1931 1932 vgic_its_invalidate_cache(kvm); 1933 1934 list_for_each_entry_safe(cte, tmp, 1935 &dist->lpi_translation_cache, entry) { 1936 list_del(&cte->entry); 1937 kfree(cte); 1938 } 1939 } 1940 1941 #define INITIAL_BASER_VALUE \ 1942 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1943 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1944 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1945 GITS_BASER_PAGE_SIZE_64K) 1946 1947 #define INITIAL_PROPBASER_VALUE \ 1948 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1949 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1950 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1951 1952 static int vgic_its_create(struct kvm_device *dev, u32 type) 1953 { 1954 int ret; 1955 struct vgic_its *its; 1956 1957 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1958 return -ENODEV; 1959 1960 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1961 if (!its) 1962 return -ENOMEM; 1963 1964 mutex_lock(&dev->kvm->arch.config_lock); 1965 1966 if (vgic_initialized(dev->kvm)) { 1967 ret = vgic_v4_init(dev->kvm); 1968 if (ret < 0) { 1969 mutex_unlock(&dev->kvm->arch.config_lock); 1970 kfree(its); 1971 return ret; 1972 } 1973 1974 vgic_lpi_translation_cache_init(dev->kvm); 1975 } 1976 1977 mutex_init(&its->its_lock); 1978 mutex_init(&its->cmd_lock); 1979 1980 /* Yep, even more trickery for lock ordering... */ 1981 #ifdef CONFIG_LOCKDEP 1982 mutex_lock(&its->cmd_lock); 1983 mutex_lock(&its->its_lock); 1984 mutex_unlock(&its->its_lock); 1985 mutex_unlock(&its->cmd_lock); 1986 #endif 1987 1988 its->vgic_its_base = VGIC_ADDR_UNDEF; 1989 1990 INIT_LIST_HEAD(&its->device_list); 1991 INIT_LIST_HEAD(&its->collection_list); 1992 1993 dev->kvm->arch.vgic.msis_require_devid = true; 1994 dev->kvm->arch.vgic.has_its = true; 1995 its->enabled = false; 1996 its->dev = dev; 1997 1998 its->baser_device_table = INITIAL_BASER_VALUE | 1999 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 2000 its->baser_coll_table = INITIAL_BASER_VALUE | 2001 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 2002 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 2003 2004 dev->private = its; 2005 2006 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 2007 2008 mutex_unlock(&dev->kvm->arch.config_lock); 2009 2010 return ret; 2011 } 2012 2013 static void vgic_its_destroy(struct kvm_device *kvm_dev) 2014 { 2015 struct kvm *kvm = kvm_dev->kvm; 2016 struct vgic_its *its = kvm_dev->private; 2017 2018 mutex_lock(&its->its_lock); 2019 2020 vgic_its_free_device_list(kvm, its); 2021 vgic_its_free_collection_list(kvm, its); 2022 2023 mutex_unlock(&its->its_lock); 2024 kfree(its); 2025 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 2026 } 2027 2028 static int vgic_its_has_attr_regs(struct kvm_device *dev, 2029 struct kvm_device_attr *attr) 2030 { 2031 const struct vgic_register_region *region; 2032 gpa_t offset = attr->attr; 2033 int align; 2034 2035 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 2036 2037 if (offset & align) 2038 return -EINVAL; 2039 2040 region = vgic_find_mmio_region(its_registers, 2041 ARRAY_SIZE(its_registers), 2042 offset); 2043 if (!region) 2044 return -ENXIO; 2045 2046 return 0; 2047 } 2048 2049 static int vgic_its_attr_regs_access(struct kvm_device *dev, 2050 struct kvm_device_attr *attr, 2051 u64 *reg, bool is_write) 2052 { 2053 const struct vgic_register_region *region; 2054 struct vgic_its *its; 2055 gpa_t addr, offset; 2056 unsigned int len; 2057 int align, ret = 0; 2058 2059 its = dev->private; 2060 offset = attr->attr; 2061 2062 /* 2063 * Although the spec supports upper/lower 32-bit accesses to 2064 * 64-bit ITS registers, the userspace ABI requires 64-bit 2065 * accesses to all 64-bit wide registers. We therefore only 2066 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 2067 * registers 2068 */ 2069 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 2070 align = 0x3; 2071 else 2072 align = 0x7; 2073 2074 if (offset & align) 2075 return -EINVAL; 2076 2077 mutex_lock(&dev->kvm->lock); 2078 2079 if (!lock_all_vcpus(dev->kvm)) { 2080 mutex_unlock(&dev->kvm->lock); 2081 return -EBUSY; 2082 } 2083 2084 mutex_lock(&dev->kvm->arch.config_lock); 2085 2086 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2087 ret = -ENXIO; 2088 goto out; 2089 } 2090 2091 region = vgic_find_mmio_region(its_registers, 2092 ARRAY_SIZE(its_registers), 2093 offset); 2094 if (!region) { 2095 ret = -ENXIO; 2096 goto out; 2097 } 2098 2099 addr = its->vgic_its_base + offset; 2100 2101 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2102 2103 if (is_write) { 2104 if (region->uaccess_its_write) 2105 ret = region->uaccess_its_write(dev->kvm, its, addr, 2106 len, *reg); 2107 else 2108 region->its_write(dev->kvm, its, addr, len, *reg); 2109 } else { 2110 *reg = region->its_read(dev->kvm, its, addr, len); 2111 } 2112 out: 2113 mutex_unlock(&dev->kvm->arch.config_lock); 2114 unlock_all_vcpus(dev->kvm); 2115 mutex_unlock(&dev->kvm->lock); 2116 return ret; 2117 } 2118 2119 static u32 compute_next_devid_offset(struct list_head *h, 2120 struct its_device *dev) 2121 { 2122 struct its_device *next; 2123 u32 next_offset; 2124 2125 if (list_is_last(&dev->dev_list, h)) 2126 return 0; 2127 next = list_next_entry(dev, dev_list); 2128 next_offset = next->device_id - dev->device_id; 2129 2130 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2131 } 2132 2133 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2134 { 2135 struct its_ite *next; 2136 u32 next_offset; 2137 2138 if (list_is_last(&ite->ite_list, h)) 2139 return 0; 2140 next = list_next_entry(ite, ite_list); 2141 next_offset = next->event_id - ite->event_id; 2142 2143 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2144 } 2145 2146 /** 2147 * entry_fn_t - Callback called on a table entry restore path 2148 * @its: its handle 2149 * @id: id of the entry 2150 * @entry: pointer to the entry 2151 * @opaque: pointer to an opaque data 2152 * 2153 * Return: < 0 on error, 0 if last element was identified, id offset to next 2154 * element otherwise 2155 */ 2156 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2157 void *opaque); 2158 2159 /** 2160 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2161 * to each entry 2162 * 2163 * @its: its handle 2164 * @base: base gpa of the table 2165 * @size: size of the table in bytes 2166 * @esz: entry size in bytes 2167 * @start_id: the ID of the first entry in the table 2168 * (non zero for 2d level tables) 2169 * @fn: function to apply on each entry 2170 * 2171 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2172 * (the last element may not be found on second level tables) 2173 */ 2174 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2175 int start_id, entry_fn_t fn, void *opaque) 2176 { 2177 struct kvm *kvm = its->dev->kvm; 2178 unsigned long len = size; 2179 int id = start_id; 2180 gpa_t gpa = base; 2181 char entry[ESZ_MAX]; 2182 int ret; 2183 2184 memset(entry, 0, esz); 2185 2186 while (true) { 2187 int next_offset; 2188 size_t byte_offset; 2189 2190 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2191 if (ret) 2192 return ret; 2193 2194 next_offset = fn(its, id, entry, opaque); 2195 if (next_offset <= 0) 2196 return next_offset; 2197 2198 byte_offset = next_offset * esz; 2199 if (byte_offset >= len) 2200 break; 2201 2202 id += next_offset; 2203 gpa += byte_offset; 2204 len -= byte_offset; 2205 } 2206 return 1; 2207 } 2208 2209 /** 2210 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2211 */ 2212 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2213 struct its_ite *ite, gpa_t gpa, int ite_esz) 2214 { 2215 struct kvm *kvm = its->dev->kvm; 2216 u32 next_offset; 2217 u64 val; 2218 2219 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2220 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2221 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2222 ite->collection->collection_id; 2223 val = cpu_to_le64(val); 2224 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz); 2225 } 2226 2227 /** 2228 * vgic_its_restore_ite - restore an interrupt translation entry 2229 * @event_id: id used for indexing 2230 * @ptr: pointer to the ITE entry 2231 * @opaque: pointer to the its_device 2232 */ 2233 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2234 void *ptr, void *opaque) 2235 { 2236 struct its_device *dev = opaque; 2237 struct its_collection *collection; 2238 struct kvm *kvm = its->dev->kvm; 2239 struct kvm_vcpu *vcpu = NULL; 2240 u64 val; 2241 u64 *p = (u64 *)ptr; 2242 struct vgic_irq *irq; 2243 u32 coll_id, lpi_id; 2244 struct its_ite *ite; 2245 u32 offset; 2246 2247 val = *p; 2248 2249 val = le64_to_cpu(val); 2250 2251 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2252 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2253 2254 if (!lpi_id) 2255 return 1; /* invalid entry, no choice but to scan next entry */ 2256 2257 if (lpi_id < VGIC_MIN_LPI) 2258 return -EINVAL; 2259 2260 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2261 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2262 return -EINVAL; 2263 2264 collection = find_collection(its, coll_id); 2265 if (!collection) 2266 return -EINVAL; 2267 2268 if (!vgic_its_check_event_id(its, dev, event_id)) 2269 return -EINVAL; 2270 2271 ite = vgic_its_alloc_ite(dev, collection, event_id); 2272 if (IS_ERR(ite)) 2273 return PTR_ERR(ite); 2274 2275 if (its_is_collection_mapped(collection)) 2276 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr); 2277 2278 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2279 if (IS_ERR(irq)) { 2280 its_free_ite(kvm, ite); 2281 return PTR_ERR(irq); 2282 } 2283 ite->irq = irq; 2284 2285 return offset; 2286 } 2287 2288 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2289 const struct list_head *b) 2290 { 2291 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2292 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2293 2294 if (itea->event_id < iteb->event_id) 2295 return -1; 2296 else 2297 return 1; 2298 } 2299 2300 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2301 { 2302 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2303 gpa_t base = device->itt_addr; 2304 struct its_ite *ite; 2305 int ret; 2306 int ite_esz = abi->ite_esz; 2307 2308 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2309 2310 list_for_each_entry(ite, &device->itt_head, ite_list) { 2311 gpa_t gpa = base + ite->event_id * ite_esz; 2312 2313 /* 2314 * If an LPI carries the HW bit, this means that this 2315 * interrupt is controlled by GICv4, and we do not 2316 * have direct access to that state without GICv4.1. 2317 * Let's simply fail the save operation... 2318 */ 2319 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2320 return -EACCES; 2321 2322 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2323 if (ret) 2324 return ret; 2325 } 2326 return 0; 2327 } 2328 2329 /** 2330 * vgic_its_restore_itt - restore the ITT of a device 2331 * 2332 * @its: its handle 2333 * @dev: device handle 2334 * 2335 * Return 0 on success, < 0 on error 2336 */ 2337 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2338 { 2339 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2340 gpa_t base = dev->itt_addr; 2341 int ret; 2342 int ite_esz = abi->ite_esz; 2343 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2344 2345 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2346 vgic_its_restore_ite, dev); 2347 2348 /* scan_its_table returns +1 if all ITEs are invalid */ 2349 if (ret > 0) 2350 ret = 0; 2351 2352 return ret; 2353 } 2354 2355 /** 2356 * vgic_its_save_dte - Save a device table entry at a given GPA 2357 * 2358 * @its: ITS handle 2359 * @dev: ITS device 2360 * @ptr: GPA 2361 */ 2362 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2363 gpa_t ptr, int dte_esz) 2364 { 2365 struct kvm *kvm = its->dev->kvm; 2366 u64 val, itt_addr_field; 2367 u32 next_offset; 2368 2369 itt_addr_field = dev->itt_addr >> 8; 2370 next_offset = compute_next_devid_offset(&its->device_list, dev); 2371 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2372 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2373 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2374 (dev->num_eventid_bits - 1)); 2375 val = cpu_to_le64(val); 2376 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz); 2377 } 2378 2379 /** 2380 * vgic_its_restore_dte - restore a device table entry 2381 * 2382 * @its: its handle 2383 * @id: device id the DTE corresponds to 2384 * @ptr: kernel VA where the 8 byte DTE is located 2385 * @opaque: unused 2386 * 2387 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2388 * next dte otherwise 2389 */ 2390 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2391 void *ptr, void *opaque) 2392 { 2393 struct its_device *dev; 2394 u64 baser = its->baser_device_table; 2395 gpa_t itt_addr; 2396 u8 num_eventid_bits; 2397 u64 entry = *(u64 *)ptr; 2398 bool valid; 2399 u32 offset; 2400 int ret; 2401 2402 entry = le64_to_cpu(entry); 2403 2404 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2405 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2406 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2407 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2408 2409 if (!valid) 2410 return 1; 2411 2412 /* dte entry is valid */ 2413 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2414 2415 if (!vgic_its_check_id(its, baser, id, NULL)) 2416 return -EINVAL; 2417 2418 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2419 if (IS_ERR(dev)) 2420 return PTR_ERR(dev); 2421 2422 ret = vgic_its_restore_itt(its, dev); 2423 if (ret) { 2424 vgic_its_free_device(its->dev->kvm, dev); 2425 return ret; 2426 } 2427 2428 return offset; 2429 } 2430 2431 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2432 const struct list_head *b) 2433 { 2434 struct its_device *deva = container_of(a, struct its_device, dev_list); 2435 struct its_device *devb = container_of(b, struct its_device, dev_list); 2436 2437 if (deva->device_id < devb->device_id) 2438 return -1; 2439 else 2440 return 1; 2441 } 2442 2443 /** 2444 * vgic_its_save_device_tables - Save the device table and all ITT 2445 * into guest RAM 2446 * 2447 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2448 * returns the GPA of the device entry 2449 */ 2450 static int vgic_its_save_device_tables(struct vgic_its *its) 2451 { 2452 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2453 u64 baser = its->baser_device_table; 2454 struct its_device *dev; 2455 int dte_esz = abi->dte_esz; 2456 2457 if (!(baser & GITS_BASER_VALID)) 2458 return 0; 2459 2460 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2461 2462 list_for_each_entry(dev, &its->device_list, dev_list) { 2463 int ret; 2464 gpa_t eaddr; 2465 2466 if (!vgic_its_check_id(its, baser, 2467 dev->device_id, &eaddr)) 2468 return -EINVAL; 2469 2470 ret = vgic_its_save_itt(its, dev); 2471 if (ret) 2472 return ret; 2473 2474 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2475 if (ret) 2476 return ret; 2477 } 2478 return 0; 2479 } 2480 2481 /** 2482 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2483 * 2484 * @its: its handle 2485 * @id: index of the entry in the L1 table 2486 * @addr: kernel VA 2487 * @opaque: unused 2488 * 2489 * L1 table entries are scanned by steps of 1 entry 2490 * Return < 0 if error, 0 if last dte was found when scanning the L2 2491 * table, +1 otherwise (meaning next L1 entry must be scanned) 2492 */ 2493 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2494 void *opaque) 2495 { 2496 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2497 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2498 u64 entry = *(u64 *)addr; 2499 int dte_esz = abi->dte_esz; 2500 gpa_t gpa; 2501 int ret; 2502 2503 entry = le64_to_cpu(entry); 2504 2505 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2506 return 1; 2507 2508 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2509 2510 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2511 l2_start_id, vgic_its_restore_dte, NULL); 2512 2513 return ret; 2514 } 2515 2516 /** 2517 * vgic_its_restore_device_tables - Restore the device table and all ITT 2518 * from guest RAM to internal data structs 2519 */ 2520 static int vgic_its_restore_device_tables(struct vgic_its *its) 2521 { 2522 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2523 u64 baser = its->baser_device_table; 2524 int l1_esz, ret; 2525 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2526 gpa_t l1_gpa; 2527 2528 if (!(baser & GITS_BASER_VALID)) 2529 return 0; 2530 2531 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2532 2533 if (baser & GITS_BASER_INDIRECT) { 2534 l1_esz = GITS_LVL1_ENTRY_SIZE; 2535 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2536 handle_l1_dte, NULL); 2537 } else { 2538 l1_esz = abi->dte_esz; 2539 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2540 vgic_its_restore_dte, NULL); 2541 } 2542 2543 /* scan_its_table returns +1 if all entries are invalid */ 2544 if (ret > 0) 2545 ret = 0; 2546 2547 if (ret < 0) 2548 vgic_its_free_device_list(its->dev->kvm, its); 2549 2550 return ret; 2551 } 2552 2553 static int vgic_its_save_cte(struct vgic_its *its, 2554 struct its_collection *collection, 2555 gpa_t gpa, int esz) 2556 { 2557 u64 val; 2558 2559 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2560 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2561 collection->collection_id); 2562 val = cpu_to_le64(val); 2563 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2564 } 2565 2566 /* 2567 * Restore a collection entry into the ITS collection table. 2568 * Return +1 on success, 0 if the entry was invalid (which should be 2569 * interpreted as end-of-table), and a negative error value for generic errors. 2570 */ 2571 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2572 { 2573 struct its_collection *collection; 2574 struct kvm *kvm = its->dev->kvm; 2575 u32 target_addr, coll_id; 2576 u64 val; 2577 int ret; 2578 2579 BUG_ON(esz > sizeof(val)); 2580 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2581 if (ret) 2582 return ret; 2583 val = le64_to_cpu(val); 2584 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2585 return 0; 2586 2587 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2588 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2589 2590 if (target_addr != COLLECTION_NOT_MAPPED && 2591 !kvm_get_vcpu_by_id(kvm, target_addr)) 2592 return -EINVAL; 2593 2594 collection = find_collection(its, coll_id); 2595 if (collection) 2596 return -EEXIST; 2597 2598 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2599 return -EINVAL; 2600 2601 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2602 if (ret) 2603 return ret; 2604 collection->target_addr = target_addr; 2605 return 1; 2606 } 2607 2608 /** 2609 * vgic_its_save_collection_table - Save the collection table into 2610 * guest RAM 2611 */ 2612 static int vgic_its_save_collection_table(struct vgic_its *its) 2613 { 2614 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2615 u64 baser = its->baser_coll_table; 2616 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2617 struct its_collection *collection; 2618 u64 val; 2619 size_t max_size, filled = 0; 2620 int ret, cte_esz = abi->cte_esz; 2621 2622 if (!(baser & GITS_BASER_VALID)) 2623 return 0; 2624 2625 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2626 2627 list_for_each_entry(collection, &its->collection_list, coll_list) { 2628 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2629 if (ret) 2630 return ret; 2631 gpa += cte_esz; 2632 filled += cte_esz; 2633 } 2634 2635 if (filled == max_size) 2636 return 0; 2637 2638 /* 2639 * table is not fully filled, add a last dummy element 2640 * with valid bit unset 2641 */ 2642 val = 0; 2643 BUG_ON(cte_esz > sizeof(val)); 2644 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2645 return ret; 2646 } 2647 2648 /** 2649 * vgic_its_restore_collection_table - reads the collection table 2650 * in guest memory and restores the ITS internal state. Requires the 2651 * BASER registers to be restored before. 2652 */ 2653 static int vgic_its_restore_collection_table(struct vgic_its *its) 2654 { 2655 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2656 u64 baser = its->baser_coll_table; 2657 int cte_esz = abi->cte_esz; 2658 size_t max_size, read = 0; 2659 gpa_t gpa; 2660 int ret; 2661 2662 if (!(baser & GITS_BASER_VALID)) 2663 return 0; 2664 2665 gpa = GITS_BASER_ADDR_48_to_52(baser); 2666 2667 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2668 2669 while (read < max_size) { 2670 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2671 if (ret <= 0) 2672 break; 2673 gpa += cte_esz; 2674 read += cte_esz; 2675 } 2676 2677 if (ret > 0) 2678 return 0; 2679 2680 if (ret < 0) 2681 vgic_its_free_collection_list(its->dev->kvm, its); 2682 2683 return ret; 2684 } 2685 2686 /** 2687 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2688 * according to v0 ABI 2689 */ 2690 static int vgic_its_save_tables_v0(struct vgic_its *its) 2691 { 2692 int ret; 2693 2694 ret = vgic_its_save_device_tables(its); 2695 if (ret) 2696 return ret; 2697 2698 return vgic_its_save_collection_table(its); 2699 } 2700 2701 /** 2702 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2703 * to internal data structs according to V0 ABI 2704 * 2705 */ 2706 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2707 { 2708 int ret; 2709 2710 ret = vgic_its_restore_collection_table(its); 2711 if (ret) 2712 return ret; 2713 2714 ret = vgic_its_restore_device_tables(its); 2715 if (ret) 2716 vgic_its_free_collection_list(its->dev->kvm, its); 2717 return ret; 2718 } 2719 2720 static int vgic_its_commit_v0(struct vgic_its *its) 2721 { 2722 const struct vgic_its_abi *abi; 2723 2724 abi = vgic_its_get_abi(its); 2725 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2726 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2727 2728 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2729 << GITS_BASER_ENTRY_SIZE_SHIFT); 2730 2731 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2732 << GITS_BASER_ENTRY_SIZE_SHIFT); 2733 return 0; 2734 } 2735 2736 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2737 { 2738 /* We need to keep the ABI specific field values */ 2739 its->baser_coll_table &= ~GITS_BASER_VALID; 2740 its->baser_device_table &= ~GITS_BASER_VALID; 2741 its->cbaser = 0; 2742 its->creadr = 0; 2743 its->cwriter = 0; 2744 its->enabled = 0; 2745 vgic_its_free_device_list(kvm, its); 2746 vgic_its_free_collection_list(kvm, its); 2747 } 2748 2749 static int vgic_its_has_attr(struct kvm_device *dev, 2750 struct kvm_device_attr *attr) 2751 { 2752 switch (attr->group) { 2753 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2754 switch (attr->attr) { 2755 case KVM_VGIC_ITS_ADDR_TYPE: 2756 return 0; 2757 } 2758 break; 2759 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2760 switch (attr->attr) { 2761 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2762 return 0; 2763 case KVM_DEV_ARM_ITS_CTRL_RESET: 2764 return 0; 2765 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2766 return 0; 2767 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2768 return 0; 2769 } 2770 break; 2771 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2772 return vgic_its_has_attr_regs(dev, attr); 2773 } 2774 return -ENXIO; 2775 } 2776 2777 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2778 { 2779 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2780 int ret = 0; 2781 2782 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2783 return 0; 2784 2785 mutex_lock(&kvm->lock); 2786 2787 if (!lock_all_vcpus(kvm)) { 2788 mutex_unlock(&kvm->lock); 2789 return -EBUSY; 2790 } 2791 2792 mutex_lock(&kvm->arch.config_lock); 2793 mutex_lock(&its->its_lock); 2794 2795 switch (attr) { 2796 case KVM_DEV_ARM_ITS_CTRL_RESET: 2797 vgic_its_reset(kvm, its); 2798 break; 2799 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2800 ret = abi->save_tables(its); 2801 break; 2802 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2803 ret = abi->restore_tables(its); 2804 break; 2805 } 2806 2807 mutex_unlock(&its->its_lock); 2808 mutex_unlock(&kvm->arch.config_lock); 2809 unlock_all_vcpus(kvm); 2810 mutex_unlock(&kvm->lock); 2811 return ret; 2812 } 2813 2814 /* 2815 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2816 * without the running VCPU when dirty ring is enabled. 2817 * 2818 * The running VCPU is required to track dirty guest pages when dirty ring 2819 * is enabled. Otherwise, the backup bitmap should be used to track the 2820 * dirty guest pages. When vgic/its tables are being saved, the backup 2821 * bitmap is used to track the dirty guest pages due to the missed running 2822 * VCPU in the period. 2823 */ 2824 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2825 { 2826 struct vgic_dist *dist = &kvm->arch.vgic; 2827 2828 return dist->table_write_in_progress; 2829 } 2830 2831 static int vgic_its_set_attr(struct kvm_device *dev, 2832 struct kvm_device_attr *attr) 2833 { 2834 struct vgic_its *its = dev->private; 2835 int ret; 2836 2837 switch (attr->group) { 2838 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2839 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2840 unsigned long type = (unsigned long)attr->attr; 2841 u64 addr; 2842 2843 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2844 return -ENODEV; 2845 2846 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2847 return -EFAULT; 2848 2849 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2850 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2851 if (ret) 2852 return ret; 2853 2854 return vgic_register_its_iodev(dev->kvm, its, addr); 2855 } 2856 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2857 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2858 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2859 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2860 u64 reg; 2861 2862 if (get_user(reg, uaddr)) 2863 return -EFAULT; 2864 2865 return vgic_its_attr_regs_access(dev, attr, ®, true); 2866 } 2867 } 2868 return -ENXIO; 2869 } 2870 2871 static int vgic_its_get_attr(struct kvm_device *dev, 2872 struct kvm_device_attr *attr) 2873 { 2874 switch (attr->group) { 2875 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2876 struct vgic_its *its = dev->private; 2877 u64 addr = its->vgic_its_base; 2878 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2879 unsigned long type = (unsigned long)attr->attr; 2880 2881 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2882 return -ENODEV; 2883 2884 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2885 return -EFAULT; 2886 break; 2887 } 2888 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2889 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2890 u64 reg; 2891 int ret; 2892 2893 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2894 if (ret) 2895 return ret; 2896 return put_user(reg, uaddr); 2897 } 2898 default: 2899 return -ENXIO; 2900 } 2901 2902 return 0; 2903 } 2904 2905 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2906 .name = "kvm-arm-vgic-its", 2907 .create = vgic_its_create, 2908 .destroy = vgic_its_destroy, 2909 .set_attr = vgic_its_set_attr, 2910 .get_attr = vgic_its_get_attr, 2911 .has_attr = vgic_its_has_attr, 2912 }; 2913 2914 int kvm_vgic_register_its_device(void) 2915 { 2916 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2917 KVM_DEV_TYPE_ARM_VGIC_ITS); 2918 } 2919