xref: /linux/arch/arm64/kvm/vgic/vgic-its.c (revision eb7cca1faf9883d7b4da792281147dbedc449238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	INIT_LIST_HEAD(&irq->lpi_list);
56 	INIT_LIST_HEAD(&irq->ap_list);
57 	raw_spin_lock_init(&irq->irq_lock);
58 
59 	irq->config = VGIC_CONFIG_EDGE;
60 	kref_init(&irq->refcount);
61 	irq->intid = intid;
62 	irq->target_vcpu = vcpu;
63 	irq->group = 1;
64 
65 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66 
67 	/*
68 	 * There could be a race with another vgic_add_lpi(), so we need to
69 	 * check that we don't add a second list entry with the same LPI.
70 	 */
71 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 		if (oldirq->intid != intid)
73 			continue;
74 
75 		/* Someone was faster with adding this LPI, lets use that. */
76 		kfree(irq);
77 		irq = oldirq;
78 
79 		/*
80 		 * This increases the refcount, the caller is expected to
81 		 * call vgic_put_irq() on the returned pointer once it's
82 		 * finished with the IRQ.
83 		 */
84 		vgic_get_irq_kref(irq);
85 
86 		goto out_unlock;
87 	}
88 
89 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 	dist->lpi_list_count++;
91 
92 out_unlock:
93 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94 
95 	/*
96 	 * We "cache" the configuration table entries in our struct vgic_irq's.
97 	 * However we only have those structs for mapped IRQs, so we read in
98 	 * the respective config data from memory here upon mapping the LPI.
99 	 *
100 	 * Should any of these fail, behave as if we couldn't create the LPI
101 	 * by dropping the refcount and returning the error.
102 	 */
103 	ret = update_lpi_config(kvm, irq, NULL, false);
104 	if (ret) {
105 		vgic_put_irq(kvm, irq);
106 		return ERR_PTR(ret);
107 	}
108 
109 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 	if (ret) {
111 		vgic_put_irq(kvm, irq);
112 		return ERR_PTR(ret);
113 	}
114 
115 	return irq;
116 }
117 
118 struct its_device {
119 	struct list_head dev_list;
120 
121 	/* the head for the list of ITTEs */
122 	struct list_head itt_head;
123 	u32 num_eventid_bits;
124 	gpa_t itt_addr;
125 	u32 device_id;
126 };
127 
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129 
130 struct its_collection {
131 	struct list_head coll_list;
132 
133 	u32 collection_id;
134 	u32 target_addr;
135 };
136 
137 #define its_is_collection_mapped(coll) ((coll) && \
138 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
139 
140 struct its_ite {
141 	struct list_head ite_list;
142 
143 	struct vgic_irq *irq;
144 	struct its_collection *collection;
145 	u32 event_id;
146 };
147 
148 struct vgic_translation_cache_entry {
149 	struct list_head	entry;
150 	phys_addr_t		db;
151 	u32			devid;
152 	u32			eventid;
153 	struct vgic_irq		*irq;
154 };
155 
156 /**
157  * struct vgic_its_abi - ITS abi ops and settings
158  * @cte_esz: collection table entry size
159  * @dte_esz: device table entry size
160  * @ite_esz: interrupt translation table entry size
161  * @save tables: save the ITS tables into guest RAM
162  * @restore_tables: restore the ITS internal structs from tables
163  *  stored in guest RAM
164  * @commit: initialize the registers which expose the ABI settings,
165  *  especially the entry sizes
166  */
167 struct vgic_its_abi {
168 	int cte_esz;
169 	int dte_esz;
170 	int ite_esz;
171 	int (*save_tables)(struct vgic_its *its);
172 	int (*restore_tables)(struct vgic_its *its);
173 	int (*commit)(struct vgic_its *its);
174 };
175 
176 #define ABI_0_ESZ	8
177 #define ESZ_MAX		ABI_0_ESZ
178 
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 	[0] = {
181 	 .cte_esz = ABI_0_ESZ,
182 	 .dte_esz = ABI_0_ESZ,
183 	 .ite_esz = ABI_0_ESZ,
184 	 .save_tables = vgic_its_save_tables_v0,
185 	 .restore_tables = vgic_its_restore_tables_v0,
186 	 .commit = vgic_its_commit_v0,
187 	},
188 };
189 
190 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
191 
192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 	return &its_table_abi_versions[its->abi_rev];
195 }
196 
197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 	const struct vgic_its_abi *abi;
200 
201 	its->abi_rev = rev;
202 	abi = vgic_its_get_abi(its);
203 	return abi->commit(its);
204 }
205 
206 /*
207  * Find and returns a device in the device table for an ITS.
208  * Must be called with the its_lock mutex held.
209  */
210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 	struct its_device *device;
213 
214 	list_for_each_entry(device, &its->device_list, dev_list)
215 		if (device_id == device->device_id)
216 			return device;
217 
218 	return NULL;
219 }
220 
221 /*
222  * Find and returns an interrupt translation table entry (ITTE) for a given
223  * Device ID/Event ID pair on an ITS.
224  * Must be called with the its_lock mutex held.
225  */
226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 				  u32 event_id)
228 {
229 	struct its_device *device;
230 	struct its_ite *ite;
231 
232 	device = find_its_device(its, device_id);
233 	if (device == NULL)
234 		return NULL;
235 
236 	list_for_each_entry(ite, &device->itt_head, ite_list)
237 		if (ite->event_id == event_id)
238 			return ite;
239 
240 	return NULL;
241 }
242 
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247 
248 #define GIC_LPI_OFFSET 8192
249 
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
254 
255 /*
256  * Finds and returns a collection in the ITS collection table.
257  * Must be called with the its_lock mutex held.
258  */
259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 	struct its_collection *collection;
262 
263 	list_for_each_entry(collection, &its->collection_list, coll_list) {
264 		if (coll_id == collection->collection_id)
265 			return collection;
266 	}
267 
268 	return NULL;
269 }
270 
271 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
273 
274 /*
275  * Reads the configuration data for a given LPI from guest memory and
276  * updates the fields in struct vgic_irq.
277  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278  * VCPU. Unconditionally applies if filter_vcpu is NULL.
279  */
280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 	u8 prop;
285 	int ret;
286 	unsigned long flags;
287 
288 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 				  &prop, 1);
290 
291 	if (ret)
292 		return ret;
293 
294 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
295 
296 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 		irq->priority = LPI_PROP_PRIORITY(prop);
298 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299 
300 		if (!irq->hw) {
301 			vgic_queue_irq_unlock(kvm, irq, flags);
302 			return 0;
303 		}
304 	}
305 
306 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307 
308 	if (irq->hw)
309 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310 
311 	return 0;
312 }
313 
314 /*
315  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316  * enumerate those LPIs without holding any lock.
317  * Returns their number and puts the kmalloc'ed array into intid_ptr.
318  */
319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 	struct vgic_dist *dist = &kvm->arch.vgic;
322 	struct vgic_irq *irq;
323 	unsigned long flags;
324 	u32 *intids;
325 	int irq_count, i = 0;
326 
327 	/*
328 	 * There is an obvious race between allocating the array and LPIs
329 	 * being mapped/unmapped. If we ended up here as a result of a
330 	 * command, we're safe (locks are held, preventing another
331 	 * command). If coming from another path (such as enabling LPIs),
332 	 * we must be careful not to overrun the array.
333 	 */
334 	irq_count = READ_ONCE(dist->lpi_list_count);
335 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336 	if (!intids)
337 		return -ENOMEM;
338 
339 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 		if (i == irq_count)
342 			break;
343 		/* We don't need to "get" the IRQ, as we hold the list lock. */
344 		if (vcpu && irq->target_vcpu != vcpu)
345 			continue;
346 		intids[i++] = irq->intid;
347 	}
348 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349 
350 	*intid_ptr = intids;
351 	return i;
352 }
353 
354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 	int ret = 0;
357 	unsigned long flags;
358 
359 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 	irq->target_vcpu = vcpu;
361 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362 
363 	if (irq->hw) {
364 		struct its_vlpi_map map;
365 
366 		ret = its_get_vlpi(irq->host_irq, &map);
367 		if (ret)
368 			return ret;
369 
370 		if (map.vpe)
371 			atomic_dec(&map.vpe->vlpi_count);
372 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 		atomic_inc(&map.vpe->vlpi_count);
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
382 					   struct its_collection *col)
383 {
384 	return kvm_get_vcpu_by_id(kvm, col->target_addr);
385 }
386 
387 /*
388  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
389  * is targeting) to the VGIC's view, which deals with target VCPUs.
390  * Needs to be called whenever either the collection for a LPIs has
391  * changed or the collection itself got retargeted.
392  */
393 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
394 {
395 	struct kvm_vcpu *vcpu;
396 
397 	if (!its_is_collection_mapped(ite->collection))
398 		return;
399 
400 	vcpu = collection_to_vcpu(kvm, ite->collection);
401 	update_affinity(ite->irq, vcpu);
402 }
403 
404 /*
405  * Updates the target VCPU for every LPI targeting this collection.
406  * Must be called with the its_lock mutex held.
407  */
408 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
409 				       struct its_collection *coll)
410 {
411 	struct its_device *device;
412 	struct its_ite *ite;
413 
414 	for_each_lpi_its(device, ite, its) {
415 		if (ite->collection != coll)
416 			continue;
417 
418 		update_affinity_ite(kvm, ite);
419 	}
420 }
421 
422 static u32 max_lpis_propbaser(u64 propbaser)
423 {
424 	int nr_idbits = (propbaser & 0x1f) + 1;
425 
426 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
427 }
428 
429 /*
430  * Sync the pending table pending bit of LPIs targeting @vcpu
431  * with our own data structures. This relies on the LPI being
432  * mapped before.
433  */
434 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
435 {
436 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
437 	struct vgic_irq *irq;
438 	int last_byte_offset = -1;
439 	int ret = 0;
440 	u32 *intids;
441 	int nr_irqs, i;
442 	unsigned long flags;
443 	u8 pendmask;
444 
445 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
446 	if (nr_irqs < 0)
447 		return nr_irqs;
448 
449 	for (i = 0; i < nr_irqs; i++) {
450 		int byte_offset, bit_nr;
451 
452 		byte_offset = intids[i] / BITS_PER_BYTE;
453 		bit_nr = intids[i] % BITS_PER_BYTE;
454 
455 		/*
456 		 * For contiguously allocated LPIs chances are we just read
457 		 * this very same byte in the last iteration. Reuse that.
458 		 */
459 		if (byte_offset != last_byte_offset) {
460 			ret = kvm_read_guest_lock(vcpu->kvm,
461 						  pendbase + byte_offset,
462 						  &pendmask, 1);
463 			if (ret) {
464 				kfree(intids);
465 				return ret;
466 			}
467 			last_byte_offset = byte_offset;
468 		}
469 
470 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
471 		if (!irq)
472 			continue;
473 
474 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
475 		irq->pending_latch = pendmask & (1U << bit_nr);
476 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
477 		vgic_put_irq(vcpu->kvm, irq);
478 	}
479 
480 	kfree(intids);
481 
482 	return ret;
483 }
484 
485 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
486 					      struct vgic_its *its,
487 					      gpa_t addr, unsigned int len)
488 {
489 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
490 	u64 reg = GITS_TYPER_PLPIS;
491 
492 	/*
493 	 * We use linear CPU numbers for redistributor addressing,
494 	 * so GITS_TYPER.PTA is 0.
495 	 * Also we force all PROPBASER registers to be the same, so
496 	 * CommonLPIAff is 0 as well.
497 	 * To avoid memory waste in the guest, we keep the number of IDBits and
498 	 * DevBits low - as least for the time being.
499 	 */
500 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
501 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
502 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
503 
504 	return extract_bytes(reg, addr & 7, len);
505 }
506 
507 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
508 					     struct vgic_its *its,
509 					     gpa_t addr, unsigned int len)
510 {
511 	u32 val;
512 
513 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
514 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
515 	return val;
516 }
517 
518 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
519 					    struct vgic_its *its,
520 					    gpa_t addr, unsigned int len,
521 					    unsigned long val)
522 {
523 	u32 rev = GITS_IIDR_REV(val);
524 
525 	if (rev >= NR_ITS_ABIS)
526 		return -EINVAL;
527 	return vgic_its_set_abi(its, rev);
528 }
529 
530 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
531 					       struct vgic_its *its,
532 					       gpa_t addr, unsigned int len)
533 {
534 	switch (addr & 0xffff) {
535 	case GITS_PIDR0:
536 		return 0x92;	/* part number, bits[7:0] */
537 	case GITS_PIDR1:
538 		return 0xb4;	/* part number, bits[11:8] */
539 	case GITS_PIDR2:
540 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
541 	case GITS_PIDR4:
542 		return 0x40;	/* This is a 64K software visible page */
543 	/* The following are the ID registers for (any) GIC. */
544 	case GITS_CIDR0:
545 		return 0x0d;
546 	case GITS_CIDR1:
547 		return 0xf0;
548 	case GITS_CIDR2:
549 		return 0x05;
550 	case GITS_CIDR3:
551 		return 0xb1;
552 	}
553 
554 	return 0;
555 }
556 
557 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
558 					       phys_addr_t db,
559 					       u32 devid, u32 eventid)
560 {
561 	struct vgic_translation_cache_entry *cte;
562 
563 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
564 		/*
565 		 * If we hit a NULL entry, there is nothing after this
566 		 * point.
567 		 */
568 		if (!cte->irq)
569 			break;
570 
571 		if (cte->db != db || cte->devid != devid ||
572 		    cte->eventid != eventid)
573 			continue;
574 
575 		/*
576 		 * Move this entry to the head, as it is the most
577 		 * recently used.
578 		 */
579 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
580 			list_move(&cte->entry, &dist->lpi_translation_cache);
581 
582 		return cte->irq;
583 	}
584 
585 	return NULL;
586 }
587 
588 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
589 					     u32 devid, u32 eventid)
590 {
591 	struct vgic_dist *dist = &kvm->arch.vgic;
592 	struct vgic_irq *irq;
593 	unsigned long flags;
594 
595 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
596 
597 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
598 	if (irq)
599 		vgic_get_irq_kref(irq);
600 
601 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
602 
603 	return irq;
604 }
605 
606 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
607 				       u32 devid, u32 eventid,
608 				       struct vgic_irq *irq)
609 {
610 	struct vgic_dist *dist = &kvm->arch.vgic;
611 	struct vgic_translation_cache_entry *cte;
612 	unsigned long flags;
613 	phys_addr_t db;
614 
615 	/* Do not cache a directly injected interrupt */
616 	if (irq->hw)
617 		return;
618 
619 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
620 
621 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
622 		goto out;
623 
624 	/*
625 	 * We could have raced with another CPU caching the same
626 	 * translation behind our back, so let's check it is not in
627 	 * already
628 	 */
629 	db = its->vgic_its_base + GITS_TRANSLATER;
630 	if (__vgic_its_check_cache(dist, db, devid, eventid))
631 		goto out;
632 
633 	/* Always reuse the last entry (LRU policy) */
634 	cte = list_last_entry(&dist->lpi_translation_cache,
635 			      typeof(*cte), entry);
636 
637 	/*
638 	 * Caching the translation implies having an extra reference
639 	 * to the interrupt, so drop the potential reference on what
640 	 * was in the cache, and increment it on the new interrupt.
641 	 */
642 	if (cte->irq)
643 		__vgic_put_lpi_locked(kvm, cte->irq);
644 
645 	vgic_get_irq_kref(irq);
646 
647 	cte->db		= db;
648 	cte->devid	= devid;
649 	cte->eventid	= eventid;
650 	cte->irq	= irq;
651 
652 	/* Move the new translation to the head of the list */
653 	list_move(&cte->entry, &dist->lpi_translation_cache);
654 
655 out:
656 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
657 }
658 
659 void vgic_its_invalidate_cache(struct kvm *kvm)
660 {
661 	struct vgic_dist *dist = &kvm->arch.vgic;
662 	struct vgic_translation_cache_entry *cte;
663 	unsigned long flags;
664 
665 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
666 
667 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
668 		/*
669 		 * If we hit a NULL entry, there is nothing after this
670 		 * point.
671 		 */
672 		if (!cte->irq)
673 			break;
674 
675 		__vgic_put_lpi_locked(kvm, cte->irq);
676 		cte->irq = NULL;
677 	}
678 
679 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
680 }
681 
682 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
683 			 u32 devid, u32 eventid, struct vgic_irq **irq)
684 {
685 	struct kvm_vcpu *vcpu;
686 	struct its_ite *ite;
687 
688 	if (!its->enabled)
689 		return -EBUSY;
690 
691 	ite = find_ite(its, devid, eventid);
692 	if (!ite || !its_is_collection_mapped(ite->collection))
693 		return E_ITS_INT_UNMAPPED_INTERRUPT;
694 
695 	vcpu = collection_to_vcpu(kvm, ite->collection);
696 	if (!vcpu)
697 		return E_ITS_INT_UNMAPPED_INTERRUPT;
698 
699 	if (!vgic_lpis_enabled(vcpu))
700 		return -EBUSY;
701 
702 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
703 
704 	*irq = ite->irq;
705 	return 0;
706 }
707 
708 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
709 {
710 	u64 address;
711 	struct kvm_io_device *kvm_io_dev;
712 	struct vgic_io_device *iodev;
713 
714 	if (!vgic_has_its(kvm))
715 		return ERR_PTR(-ENODEV);
716 
717 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
718 		return ERR_PTR(-EINVAL);
719 
720 	address = (u64)msi->address_hi << 32 | msi->address_lo;
721 
722 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
723 	if (!kvm_io_dev)
724 		return ERR_PTR(-EINVAL);
725 
726 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
727 		return ERR_PTR(-EINVAL);
728 
729 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
730 	if (iodev->iodev_type != IODEV_ITS)
731 		return ERR_PTR(-EINVAL);
732 
733 	return iodev->its;
734 }
735 
736 /*
737  * Find the target VCPU and the LPI number for a given devid/eventid pair
738  * and make this IRQ pending, possibly injecting it.
739  * Must be called with the its_lock mutex held.
740  * Returns 0 on success, a positive error value for any ITS mapping
741  * related errors and negative error values for generic errors.
742  */
743 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
744 				u32 devid, u32 eventid)
745 {
746 	struct vgic_irq *irq = NULL;
747 	unsigned long flags;
748 	int err;
749 
750 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
751 	if (err)
752 		return err;
753 
754 	if (irq->hw)
755 		return irq_set_irqchip_state(irq->host_irq,
756 					     IRQCHIP_STATE_PENDING, true);
757 
758 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
759 	irq->pending_latch = true;
760 	vgic_queue_irq_unlock(kvm, irq, flags);
761 
762 	return 0;
763 }
764 
765 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
766 {
767 	struct vgic_irq *irq;
768 	unsigned long flags;
769 	phys_addr_t db;
770 
771 	db = (u64)msi->address_hi << 32 | msi->address_lo;
772 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
773 	if (!irq)
774 		return -EWOULDBLOCK;
775 
776 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
777 	irq->pending_latch = true;
778 	vgic_queue_irq_unlock(kvm, irq, flags);
779 	vgic_put_irq(kvm, irq);
780 
781 	return 0;
782 }
783 
784 /*
785  * Queries the KVM IO bus framework to get the ITS pointer from the given
786  * doorbell address.
787  * We then call vgic_its_trigger_msi() with the decoded data.
788  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
789  */
790 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
791 {
792 	struct vgic_its *its;
793 	int ret;
794 
795 	if (!vgic_its_inject_cached_translation(kvm, msi))
796 		return 1;
797 
798 	its = vgic_msi_to_its(kvm, msi);
799 	if (IS_ERR(its))
800 		return PTR_ERR(its);
801 
802 	mutex_lock(&its->its_lock);
803 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
804 	mutex_unlock(&its->its_lock);
805 
806 	if (ret < 0)
807 		return ret;
808 
809 	/*
810 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
811 	 * if the guest has blocked the MSI. So we map any LPI mapping
812 	 * related error to that.
813 	 */
814 	if (ret)
815 		return 0;
816 	else
817 		return 1;
818 }
819 
820 /* Requires the its_lock to be held. */
821 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
822 {
823 	list_del(&ite->ite_list);
824 
825 	/* This put matches the get in vgic_add_lpi. */
826 	if (ite->irq) {
827 		if (ite->irq->hw)
828 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
829 
830 		vgic_put_irq(kvm, ite->irq);
831 	}
832 
833 	kfree(ite);
834 }
835 
836 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
837 {
838 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
839 }
840 
841 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
842 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
843 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
844 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
845 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
846 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
847 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
848 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
849 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
850 
851 /*
852  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
853  * Must be called with the its_lock mutex held.
854  */
855 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
856 				       u64 *its_cmd)
857 {
858 	u32 device_id = its_cmd_get_deviceid(its_cmd);
859 	u32 event_id = its_cmd_get_id(its_cmd);
860 	struct its_ite *ite;
861 
862 	ite = find_ite(its, device_id, event_id);
863 	if (ite && its_is_collection_mapped(ite->collection)) {
864 		/*
865 		 * Though the spec talks about removing the pending state, we
866 		 * don't bother here since we clear the ITTE anyway and the
867 		 * pending state is a property of the ITTE struct.
868 		 */
869 		vgic_its_invalidate_cache(kvm);
870 
871 		its_free_ite(kvm, ite);
872 		return 0;
873 	}
874 
875 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
876 }
877 
878 /*
879  * The MOVI command moves an ITTE to a different collection.
880  * Must be called with the its_lock mutex held.
881  */
882 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
883 				    u64 *its_cmd)
884 {
885 	u32 device_id = its_cmd_get_deviceid(its_cmd);
886 	u32 event_id = its_cmd_get_id(its_cmd);
887 	u32 coll_id = its_cmd_get_collection(its_cmd);
888 	struct kvm_vcpu *vcpu;
889 	struct its_ite *ite;
890 	struct its_collection *collection;
891 
892 	ite = find_ite(its, device_id, event_id);
893 	if (!ite)
894 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
895 
896 	if (!its_is_collection_mapped(ite->collection))
897 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
898 
899 	collection = find_collection(its, coll_id);
900 	if (!its_is_collection_mapped(collection))
901 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
902 
903 	ite->collection = collection;
904 	vcpu = collection_to_vcpu(kvm, collection);
905 
906 	vgic_its_invalidate_cache(kvm);
907 
908 	return update_affinity(ite->irq, vcpu);
909 }
910 
911 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
912 {
913 	gfn_t gfn = gpa >> PAGE_SHIFT;
914 	int idx;
915 	bool ret;
916 
917 	idx = srcu_read_lock(&its->dev->kvm->srcu);
918 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
919 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
920 	return ret;
921 }
922 
923 /*
924  * Check whether an ID can be stored into the corresponding guest table.
925  * For a direct table this is pretty easy, but gets a bit nasty for
926  * indirect tables. We check whether the resulting guest physical address
927  * is actually valid (covered by a memslot and guest accessible).
928  * For this we have to read the respective first level entry.
929  */
930 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
931 			      gpa_t *eaddr)
932 {
933 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
934 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
935 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
936 	int esz = GITS_BASER_ENTRY_SIZE(baser);
937 	int index;
938 
939 	switch (type) {
940 	case GITS_BASER_TYPE_DEVICE:
941 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
942 			return false;
943 		break;
944 	case GITS_BASER_TYPE_COLLECTION:
945 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
946 		if (id >= BIT_ULL(16))
947 			return false;
948 		break;
949 	default:
950 		return false;
951 	}
952 
953 	if (!(baser & GITS_BASER_INDIRECT)) {
954 		phys_addr_t addr;
955 
956 		if (id >= (l1_tbl_size / esz))
957 			return false;
958 
959 		addr = base + id * esz;
960 
961 		if (eaddr)
962 			*eaddr = addr;
963 
964 		return __is_visible_gfn_locked(its, addr);
965 	}
966 
967 	/* calculate and check the index into the 1st level */
968 	index = id / (SZ_64K / esz);
969 	if (index >= (l1_tbl_size / sizeof(u64)))
970 		return false;
971 
972 	/* Each 1st level entry is represented by a 64-bit value. */
973 	if (kvm_read_guest_lock(its->dev->kvm,
974 			   base + index * sizeof(indirect_ptr),
975 			   &indirect_ptr, sizeof(indirect_ptr)))
976 		return false;
977 
978 	indirect_ptr = le64_to_cpu(indirect_ptr);
979 
980 	/* check the valid bit of the first level entry */
981 	if (!(indirect_ptr & BIT_ULL(63)))
982 		return false;
983 
984 	/* Mask the guest physical address and calculate the frame number. */
985 	indirect_ptr &= GENMASK_ULL(51, 16);
986 
987 	/* Find the address of the actual entry */
988 	index = id % (SZ_64K / esz);
989 	indirect_ptr += index * esz;
990 
991 	if (eaddr)
992 		*eaddr = indirect_ptr;
993 
994 	return __is_visible_gfn_locked(its, indirect_ptr);
995 }
996 
997 /*
998  * Check whether an event ID can be stored in the corresponding Interrupt
999  * Translation Table, which starts at device->itt_addr.
1000  */
1001 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1002 		u32 event_id)
1003 {
1004 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1005 	int ite_esz = abi->ite_esz;
1006 	gpa_t gpa;
1007 
1008 	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1009 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1010 		return false;
1011 
1012 	gpa = device->itt_addr + event_id * ite_esz;
1013 	return __is_visible_gfn_locked(its, gpa);
1014 }
1015 
1016 /*
1017  * Add a new collection into the ITS collection table.
1018  * Returns 0 on success, and a negative error value for generic errors.
1019  */
1020 static int vgic_its_alloc_collection(struct vgic_its *its,
1021 				     struct its_collection **colp,
1022 				     u32 coll_id)
1023 {
1024 	struct its_collection *collection;
1025 
1026 	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1027 	if (!collection)
1028 		return -ENOMEM;
1029 
1030 	collection->collection_id = coll_id;
1031 	collection->target_addr = COLLECTION_NOT_MAPPED;
1032 
1033 	list_add_tail(&collection->coll_list, &its->collection_list);
1034 	*colp = collection;
1035 
1036 	return 0;
1037 }
1038 
1039 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1040 {
1041 	struct its_collection *collection;
1042 	struct its_device *device;
1043 	struct its_ite *ite;
1044 
1045 	/*
1046 	 * Clearing the mapping for that collection ID removes the
1047 	 * entry from the list. If there wasn't any before, we can
1048 	 * go home early.
1049 	 */
1050 	collection = find_collection(its, coll_id);
1051 	if (!collection)
1052 		return;
1053 
1054 	for_each_lpi_its(device, ite, its)
1055 		if (ite->collection &&
1056 		    ite->collection->collection_id == coll_id)
1057 			ite->collection = NULL;
1058 
1059 	list_del(&collection->coll_list);
1060 	kfree(collection);
1061 }
1062 
1063 /* Must be called with its_lock mutex held */
1064 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1065 					  struct its_collection *collection,
1066 					  u32 event_id)
1067 {
1068 	struct its_ite *ite;
1069 
1070 	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1071 	if (!ite)
1072 		return ERR_PTR(-ENOMEM);
1073 
1074 	ite->event_id	= event_id;
1075 	ite->collection = collection;
1076 
1077 	list_add_tail(&ite->ite_list, &device->itt_head);
1078 	return ite;
1079 }
1080 
1081 /*
1082  * The MAPTI and MAPI commands map LPIs to ITTEs.
1083  * Must be called with its_lock mutex held.
1084  */
1085 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1086 				    u64 *its_cmd)
1087 {
1088 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1089 	u32 event_id = its_cmd_get_id(its_cmd);
1090 	u32 coll_id = its_cmd_get_collection(its_cmd);
1091 	struct its_ite *ite;
1092 	struct kvm_vcpu *vcpu = NULL;
1093 	struct its_device *device;
1094 	struct its_collection *collection, *new_coll = NULL;
1095 	struct vgic_irq *irq;
1096 	int lpi_nr;
1097 
1098 	device = find_its_device(its, device_id);
1099 	if (!device)
1100 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1101 
1102 	if (!vgic_its_check_event_id(its, device, event_id))
1103 		return E_ITS_MAPTI_ID_OOR;
1104 
1105 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1106 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1107 	else
1108 		lpi_nr = event_id;
1109 	if (lpi_nr < GIC_LPI_OFFSET ||
1110 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1111 		return E_ITS_MAPTI_PHYSICALID_OOR;
1112 
1113 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1114 	if (find_ite(its, device_id, event_id))
1115 		return 0;
1116 
1117 	collection = find_collection(its, coll_id);
1118 	if (!collection) {
1119 		int ret;
1120 
1121 		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1122 			return E_ITS_MAPC_COLLECTION_OOR;
1123 
1124 		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1125 		if (ret)
1126 			return ret;
1127 		new_coll = collection;
1128 	}
1129 
1130 	ite = vgic_its_alloc_ite(device, collection, event_id);
1131 	if (IS_ERR(ite)) {
1132 		if (new_coll)
1133 			vgic_its_free_collection(its, coll_id);
1134 		return PTR_ERR(ite);
1135 	}
1136 
1137 	if (its_is_collection_mapped(collection))
1138 		vcpu = collection_to_vcpu(kvm, collection);
1139 
1140 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1141 	if (IS_ERR(irq)) {
1142 		if (new_coll)
1143 			vgic_its_free_collection(its, coll_id);
1144 		its_free_ite(kvm, ite);
1145 		return PTR_ERR(irq);
1146 	}
1147 	ite->irq = irq;
1148 
1149 	return 0;
1150 }
1151 
1152 /* Requires the its_lock to be held. */
1153 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1154 {
1155 	struct its_ite *ite, *temp;
1156 
1157 	/*
1158 	 * The spec says that unmapping a device with still valid
1159 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1160 	 * since we cannot leave the memory unreferenced.
1161 	 */
1162 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1163 		its_free_ite(kvm, ite);
1164 
1165 	vgic_its_invalidate_cache(kvm);
1166 
1167 	list_del(&device->dev_list);
1168 	kfree(device);
1169 }
1170 
1171 /* its lock must be held */
1172 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1173 {
1174 	struct its_device *cur, *temp;
1175 
1176 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1177 		vgic_its_free_device(kvm, cur);
1178 }
1179 
1180 /* its lock must be held */
1181 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1182 {
1183 	struct its_collection *cur, *temp;
1184 
1185 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1186 		vgic_its_free_collection(its, cur->collection_id);
1187 }
1188 
1189 /* Must be called with its_lock mutex held */
1190 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1191 						u32 device_id, gpa_t itt_addr,
1192 						u8 num_eventid_bits)
1193 {
1194 	struct its_device *device;
1195 
1196 	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1197 	if (!device)
1198 		return ERR_PTR(-ENOMEM);
1199 
1200 	device->device_id = device_id;
1201 	device->itt_addr = itt_addr;
1202 	device->num_eventid_bits = num_eventid_bits;
1203 	INIT_LIST_HEAD(&device->itt_head);
1204 
1205 	list_add_tail(&device->dev_list, &its->device_list);
1206 	return device;
1207 }
1208 
1209 /*
1210  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1211  * Must be called with the its_lock mutex held.
1212  */
1213 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1214 				    u64 *its_cmd)
1215 {
1216 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1217 	bool valid = its_cmd_get_validbit(its_cmd);
1218 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1219 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1220 	struct its_device *device;
1221 
1222 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1223 		return E_ITS_MAPD_DEVICE_OOR;
1224 
1225 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1226 		return E_ITS_MAPD_ITTSIZE_OOR;
1227 
1228 	device = find_its_device(its, device_id);
1229 
1230 	/*
1231 	 * The spec says that calling MAPD on an already mapped device
1232 	 * invalidates all cached data for this device. We implement this
1233 	 * by removing the mapping and re-establishing it.
1234 	 */
1235 	if (device)
1236 		vgic_its_free_device(kvm, device);
1237 
1238 	/*
1239 	 * The spec does not say whether unmapping a not-mapped device
1240 	 * is an error, so we are done in any case.
1241 	 */
1242 	if (!valid)
1243 		return 0;
1244 
1245 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1246 				       num_eventid_bits);
1247 
1248 	return PTR_ERR_OR_ZERO(device);
1249 }
1250 
1251 /*
1252  * The MAPC command maps collection IDs to redistributors.
1253  * Must be called with the its_lock mutex held.
1254  */
1255 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1256 				    u64 *its_cmd)
1257 {
1258 	u16 coll_id;
1259 	struct its_collection *collection;
1260 	bool valid;
1261 
1262 	valid = its_cmd_get_validbit(its_cmd);
1263 	coll_id = its_cmd_get_collection(its_cmd);
1264 
1265 	if (!valid) {
1266 		vgic_its_free_collection(its, coll_id);
1267 		vgic_its_invalidate_cache(kvm);
1268 	} else {
1269 		struct kvm_vcpu *vcpu;
1270 
1271 		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1272 		if (!vcpu)
1273 			return E_ITS_MAPC_PROCNUM_OOR;
1274 
1275 		collection = find_collection(its, coll_id);
1276 
1277 		if (!collection) {
1278 			int ret;
1279 
1280 			if (!vgic_its_check_id(its, its->baser_coll_table,
1281 						coll_id, NULL))
1282 				return E_ITS_MAPC_COLLECTION_OOR;
1283 
1284 			ret = vgic_its_alloc_collection(its, &collection,
1285 							coll_id);
1286 			if (ret)
1287 				return ret;
1288 			collection->target_addr = vcpu->vcpu_id;
1289 		} else {
1290 			collection->target_addr = vcpu->vcpu_id;
1291 			update_affinity_collection(kvm, its, collection);
1292 		}
1293 	}
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  * The CLEAR command removes the pending state for a particular LPI.
1300  * Must be called with the its_lock mutex held.
1301  */
1302 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1303 				     u64 *its_cmd)
1304 {
1305 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1306 	u32 event_id = its_cmd_get_id(its_cmd);
1307 	struct its_ite *ite;
1308 
1309 
1310 	ite = find_ite(its, device_id, event_id);
1311 	if (!ite)
1312 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1313 
1314 	ite->irq->pending_latch = false;
1315 
1316 	if (ite->irq->hw)
1317 		return irq_set_irqchip_state(ite->irq->host_irq,
1318 					     IRQCHIP_STATE_PENDING, false);
1319 
1320 	return 0;
1321 }
1322 
1323 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1324 {
1325 	return update_lpi_config(kvm, irq, NULL, true);
1326 }
1327 
1328 /*
1329  * The INV command syncs the configuration bits from the memory table.
1330  * Must be called with the its_lock mutex held.
1331  */
1332 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1333 				   u64 *its_cmd)
1334 {
1335 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1336 	u32 event_id = its_cmd_get_id(its_cmd);
1337 	struct its_ite *ite;
1338 
1339 
1340 	ite = find_ite(its, device_id, event_id);
1341 	if (!ite)
1342 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1343 
1344 	return vgic_its_inv_lpi(kvm, ite->irq);
1345 }
1346 
1347 /**
1348  * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1349  * @vcpu: the vcpu for which the RD is targetted by an invalidation
1350  *
1351  * Contrary to the INVALL command, this targets a RD instead of a
1352  * collection, and we don't need to hold the its_lock, since no ITS is
1353  * involved here.
1354  */
1355 int vgic_its_invall(struct kvm_vcpu *vcpu)
1356 {
1357 	struct kvm *kvm = vcpu->kvm;
1358 	int irq_count, i = 0;
1359 	u32 *intids;
1360 
1361 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1362 	if (irq_count < 0)
1363 		return irq_count;
1364 
1365 	for (i = 0; i < irq_count; i++) {
1366 		struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1367 		if (!irq)
1368 			continue;
1369 		update_lpi_config(kvm, irq, vcpu, false);
1370 		vgic_put_irq(kvm, irq);
1371 	}
1372 
1373 	kfree(intids);
1374 
1375 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1376 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1377 
1378 	return 0;
1379 }
1380 
1381 /*
1382  * The INVALL command requests flushing of all IRQ data in this collection.
1383  * Find the VCPU mapped to that collection, then iterate over the VM's list
1384  * of mapped LPIs and update the configuration for each IRQ which targets
1385  * the specified vcpu. The configuration will be read from the in-memory
1386  * configuration table.
1387  * Must be called with the its_lock mutex held.
1388  */
1389 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1390 				      u64 *its_cmd)
1391 {
1392 	u32 coll_id = its_cmd_get_collection(its_cmd);
1393 	struct its_collection *collection;
1394 	struct kvm_vcpu *vcpu;
1395 
1396 	collection = find_collection(its, coll_id);
1397 	if (!its_is_collection_mapped(collection))
1398 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1399 
1400 	vcpu = collection_to_vcpu(kvm, collection);
1401 	vgic_its_invall(vcpu);
1402 
1403 	return 0;
1404 }
1405 
1406 /*
1407  * The MOVALL command moves the pending state of all IRQs targeting one
1408  * redistributor to another. We don't hold the pending state in the VCPUs,
1409  * but in the IRQs instead, so there is really not much to do for us here.
1410  * However the spec says that no IRQ must target the old redistributor
1411  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1412  * This command affects all LPIs in the system that target that redistributor.
1413  */
1414 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1415 				      u64 *its_cmd)
1416 {
1417 	struct kvm_vcpu *vcpu1, *vcpu2;
1418 	struct vgic_irq *irq;
1419 	u32 *intids;
1420 	int irq_count, i;
1421 
1422 	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1423 	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1424 	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1425 
1426 	if (!vcpu1 || !vcpu2)
1427 		return E_ITS_MOVALL_PROCNUM_OOR;
1428 
1429 	if (vcpu1 == vcpu2)
1430 		return 0;
1431 
1432 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1433 	if (irq_count < 0)
1434 		return irq_count;
1435 
1436 	for (i = 0; i < irq_count; i++) {
1437 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1438 		if (!irq)
1439 			continue;
1440 
1441 		update_affinity(irq, vcpu2);
1442 
1443 		vgic_put_irq(kvm, irq);
1444 	}
1445 
1446 	vgic_its_invalidate_cache(kvm);
1447 
1448 	kfree(intids);
1449 	return 0;
1450 }
1451 
1452 /*
1453  * The INT command injects the LPI associated with that DevID/EvID pair.
1454  * Must be called with the its_lock mutex held.
1455  */
1456 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1457 				   u64 *its_cmd)
1458 {
1459 	u32 msi_data = its_cmd_get_id(its_cmd);
1460 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1461 
1462 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1463 }
1464 
1465 /*
1466  * This function is called with the its_cmd lock held, but the ITS data
1467  * structure lock dropped.
1468  */
1469 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1470 				   u64 *its_cmd)
1471 {
1472 	int ret = -ENODEV;
1473 
1474 	mutex_lock(&its->its_lock);
1475 	switch (its_cmd_get_command(its_cmd)) {
1476 	case GITS_CMD_MAPD:
1477 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1478 		break;
1479 	case GITS_CMD_MAPC:
1480 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1481 		break;
1482 	case GITS_CMD_MAPI:
1483 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1484 		break;
1485 	case GITS_CMD_MAPTI:
1486 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1487 		break;
1488 	case GITS_CMD_MOVI:
1489 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1490 		break;
1491 	case GITS_CMD_DISCARD:
1492 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1493 		break;
1494 	case GITS_CMD_CLEAR:
1495 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1496 		break;
1497 	case GITS_CMD_MOVALL:
1498 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1499 		break;
1500 	case GITS_CMD_INT:
1501 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1502 		break;
1503 	case GITS_CMD_INV:
1504 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1505 		break;
1506 	case GITS_CMD_INVALL:
1507 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1508 		break;
1509 	case GITS_CMD_SYNC:
1510 		/* we ignore this command: we are in sync all of the time */
1511 		ret = 0;
1512 		break;
1513 	}
1514 	mutex_unlock(&its->its_lock);
1515 
1516 	return ret;
1517 }
1518 
1519 static u64 vgic_sanitise_its_baser(u64 reg)
1520 {
1521 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1522 				  GITS_BASER_SHAREABILITY_SHIFT,
1523 				  vgic_sanitise_shareability);
1524 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1525 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1526 				  vgic_sanitise_inner_cacheability);
1527 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1528 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1529 				  vgic_sanitise_outer_cacheability);
1530 
1531 	/* We support only one (ITS) page size: 64K */
1532 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1533 
1534 	return reg;
1535 }
1536 
1537 static u64 vgic_sanitise_its_cbaser(u64 reg)
1538 {
1539 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1540 				  GITS_CBASER_SHAREABILITY_SHIFT,
1541 				  vgic_sanitise_shareability);
1542 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1543 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1544 				  vgic_sanitise_inner_cacheability);
1545 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1546 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1547 				  vgic_sanitise_outer_cacheability);
1548 
1549 	/* Sanitise the physical address to be 64k aligned. */
1550 	reg &= ~GENMASK_ULL(15, 12);
1551 
1552 	return reg;
1553 }
1554 
1555 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1556 					       struct vgic_its *its,
1557 					       gpa_t addr, unsigned int len)
1558 {
1559 	return extract_bytes(its->cbaser, addr & 7, len);
1560 }
1561 
1562 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1563 				       gpa_t addr, unsigned int len,
1564 				       unsigned long val)
1565 {
1566 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1567 	if (its->enabled)
1568 		return;
1569 
1570 	mutex_lock(&its->cmd_lock);
1571 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1572 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1573 	its->creadr = 0;
1574 	/*
1575 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1576 	 * it to CREADR to make sure we start with an empty command buffer.
1577 	 */
1578 	its->cwriter = its->creadr;
1579 	mutex_unlock(&its->cmd_lock);
1580 }
1581 
1582 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1583 #define ITS_CMD_SIZE			32
1584 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1585 
1586 /* Must be called with the cmd_lock held. */
1587 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1588 {
1589 	gpa_t cbaser;
1590 	u64 cmd_buf[4];
1591 
1592 	/* Commands are only processed when the ITS is enabled. */
1593 	if (!its->enabled)
1594 		return;
1595 
1596 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1597 
1598 	while (its->cwriter != its->creadr) {
1599 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1600 					      cmd_buf, ITS_CMD_SIZE);
1601 		/*
1602 		 * If kvm_read_guest() fails, this could be due to the guest
1603 		 * programming a bogus value in CBASER or something else going
1604 		 * wrong from which we cannot easily recover.
1605 		 * According to section 6.3.2 in the GICv3 spec we can just
1606 		 * ignore that command then.
1607 		 */
1608 		if (!ret)
1609 			vgic_its_handle_command(kvm, its, cmd_buf);
1610 
1611 		its->creadr += ITS_CMD_SIZE;
1612 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1613 			its->creadr = 0;
1614 	}
1615 }
1616 
1617 /*
1618  * By writing to CWRITER the guest announces new commands to be processed.
1619  * To avoid any races in the first place, we take the its_cmd lock, which
1620  * protects our ring buffer variables, so that there is only one user
1621  * per ITS handling commands at a given time.
1622  */
1623 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1624 					gpa_t addr, unsigned int len,
1625 					unsigned long val)
1626 {
1627 	u64 reg;
1628 
1629 	if (!its)
1630 		return;
1631 
1632 	mutex_lock(&its->cmd_lock);
1633 
1634 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1635 	reg = ITS_CMD_OFFSET(reg);
1636 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1637 		mutex_unlock(&its->cmd_lock);
1638 		return;
1639 	}
1640 	its->cwriter = reg;
1641 
1642 	vgic_its_process_commands(kvm, its);
1643 
1644 	mutex_unlock(&its->cmd_lock);
1645 }
1646 
1647 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1648 						struct vgic_its *its,
1649 						gpa_t addr, unsigned int len)
1650 {
1651 	return extract_bytes(its->cwriter, addr & 0x7, len);
1652 }
1653 
1654 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1655 					       struct vgic_its *its,
1656 					       gpa_t addr, unsigned int len)
1657 {
1658 	return extract_bytes(its->creadr, addr & 0x7, len);
1659 }
1660 
1661 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1662 					      struct vgic_its *its,
1663 					      gpa_t addr, unsigned int len,
1664 					      unsigned long val)
1665 {
1666 	u32 cmd_offset;
1667 	int ret = 0;
1668 
1669 	mutex_lock(&its->cmd_lock);
1670 
1671 	if (its->enabled) {
1672 		ret = -EBUSY;
1673 		goto out;
1674 	}
1675 
1676 	cmd_offset = ITS_CMD_OFFSET(val);
1677 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1678 		ret = -EINVAL;
1679 		goto out;
1680 	}
1681 
1682 	its->creadr = cmd_offset;
1683 out:
1684 	mutex_unlock(&its->cmd_lock);
1685 	return ret;
1686 }
1687 
1688 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1689 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1690 					      struct vgic_its *its,
1691 					      gpa_t addr, unsigned int len)
1692 {
1693 	u64 reg;
1694 
1695 	switch (BASER_INDEX(addr)) {
1696 	case 0:
1697 		reg = its->baser_device_table;
1698 		break;
1699 	case 1:
1700 		reg = its->baser_coll_table;
1701 		break;
1702 	default:
1703 		reg = 0;
1704 		break;
1705 	}
1706 
1707 	return extract_bytes(reg, addr & 7, len);
1708 }
1709 
1710 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1711 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1712 				      struct vgic_its *its,
1713 				      gpa_t addr, unsigned int len,
1714 				      unsigned long val)
1715 {
1716 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1717 	u64 entry_size, table_type;
1718 	u64 reg, *regptr, clearbits = 0;
1719 
1720 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1721 	if (its->enabled)
1722 		return;
1723 
1724 	switch (BASER_INDEX(addr)) {
1725 	case 0:
1726 		regptr = &its->baser_device_table;
1727 		entry_size = abi->dte_esz;
1728 		table_type = GITS_BASER_TYPE_DEVICE;
1729 		break;
1730 	case 1:
1731 		regptr = &its->baser_coll_table;
1732 		entry_size = abi->cte_esz;
1733 		table_type = GITS_BASER_TYPE_COLLECTION;
1734 		clearbits = GITS_BASER_INDIRECT;
1735 		break;
1736 	default:
1737 		return;
1738 	}
1739 
1740 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1741 	reg &= ~GITS_BASER_RO_MASK;
1742 	reg &= ~clearbits;
1743 
1744 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1745 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1746 	reg = vgic_sanitise_its_baser(reg);
1747 
1748 	*regptr = reg;
1749 
1750 	if (!(reg & GITS_BASER_VALID)) {
1751 		/* Take the its_lock to prevent a race with a save/restore */
1752 		mutex_lock(&its->its_lock);
1753 		switch (table_type) {
1754 		case GITS_BASER_TYPE_DEVICE:
1755 			vgic_its_free_device_list(kvm, its);
1756 			break;
1757 		case GITS_BASER_TYPE_COLLECTION:
1758 			vgic_its_free_collection_list(kvm, its);
1759 			break;
1760 		}
1761 		mutex_unlock(&its->its_lock);
1762 	}
1763 }
1764 
1765 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1766 					     struct vgic_its *its,
1767 					     gpa_t addr, unsigned int len)
1768 {
1769 	u32 reg = 0;
1770 
1771 	mutex_lock(&its->cmd_lock);
1772 	if (its->creadr == its->cwriter)
1773 		reg |= GITS_CTLR_QUIESCENT;
1774 	if (its->enabled)
1775 		reg |= GITS_CTLR_ENABLE;
1776 	mutex_unlock(&its->cmd_lock);
1777 
1778 	return reg;
1779 }
1780 
1781 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1782 				     gpa_t addr, unsigned int len,
1783 				     unsigned long val)
1784 {
1785 	mutex_lock(&its->cmd_lock);
1786 
1787 	/*
1788 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1789 	 * device/collection BASER are invalid
1790 	 */
1791 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1792 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1793 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1794 		 !(its->cbaser & GITS_CBASER_VALID)))
1795 		goto out;
1796 
1797 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1798 	if (!its->enabled)
1799 		vgic_its_invalidate_cache(kvm);
1800 
1801 	/*
1802 	 * Try to process any pending commands. This function bails out early
1803 	 * if the ITS is disabled or no commands have been queued.
1804 	 */
1805 	vgic_its_process_commands(kvm, its);
1806 
1807 out:
1808 	mutex_unlock(&its->cmd_lock);
1809 }
1810 
1811 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1812 {								\
1813 	.reg_offset = off,					\
1814 	.len = length,						\
1815 	.access_flags = acc,					\
1816 	.its_read = rd,						\
1817 	.its_write = wr,					\
1818 }
1819 
1820 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1821 {								\
1822 	.reg_offset = off,					\
1823 	.len = length,						\
1824 	.access_flags = acc,					\
1825 	.its_read = rd,						\
1826 	.its_write = wr,					\
1827 	.uaccess_its_write = uwr,				\
1828 }
1829 
1830 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1831 			      gpa_t addr, unsigned int len, unsigned long val)
1832 {
1833 	/* Ignore */
1834 }
1835 
1836 static struct vgic_register_region its_registers[] = {
1837 	REGISTER_ITS_DESC(GITS_CTLR,
1838 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1839 		VGIC_ACCESS_32bit),
1840 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1841 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1842 		vgic_mmio_uaccess_write_its_iidr, 4,
1843 		VGIC_ACCESS_32bit),
1844 	REGISTER_ITS_DESC(GITS_TYPER,
1845 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1846 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1847 	REGISTER_ITS_DESC(GITS_CBASER,
1848 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1849 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1850 	REGISTER_ITS_DESC(GITS_CWRITER,
1851 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1852 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1853 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1854 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1855 		vgic_mmio_uaccess_write_its_creadr, 8,
1856 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1857 	REGISTER_ITS_DESC(GITS_BASER,
1858 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1859 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1860 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1861 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1862 		VGIC_ACCESS_32bit),
1863 };
1864 
1865 /* This is called on setting the LPI enable bit in the redistributor. */
1866 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1867 {
1868 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1869 		its_sync_lpi_pending_table(vcpu);
1870 }
1871 
1872 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1873 				   u64 addr)
1874 {
1875 	struct vgic_io_device *iodev = &its->iodev;
1876 	int ret;
1877 
1878 	mutex_lock(&kvm->slots_lock);
1879 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1880 		ret = -EBUSY;
1881 		goto out;
1882 	}
1883 
1884 	its->vgic_its_base = addr;
1885 	iodev->regions = its_registers;
1886 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1887 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1888 
1889 	iodev->base_addr = its->vgic_its_base;
1890 	iodev->iodev_type = IODEV_ITS;
1891 	iodev->its = its;
1892 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1893 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1894 out:
1895 	mutex_unlock(&kvm->slots_lock);
1896 
1897 	return ret;
1898 }
1899 
1900 /* Default is 16 cached LPIs per vcpu */
1901 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1902 
1903 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1904 {
1905 	struct vgic_dist *dist = &kvm->arch.vgic;
1906 	unsigned int sz;
1907 	int i;
1908 
1909 	if (!list_empty(&dist->lpi_translation_cache))
1910 		return;
1911 
1912 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1913 
1914 	for (i = 0; i < sz; i++) {
1915 		struct vgic_translation_cache_entry *cte;
1916 
1917 		/* An allocation failure is not fatal */
1918 		cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1919 		if (WARN_ON(!cte))
1920 			break;
1921 
1922 		INIT_LIST_HEAD(&cte->entry);
1923 		list_add(&cte->entry, &dist->lpi_translation_cache);
1924 	}
1925 }
1926 
1927 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1928 {
1929 	struct vgic_dist *dist = &kvm->arch.vgic;
1930 	struct vgic_translation_cache_entry *cte, *tmp;
1931 
1932 	vgic_its_invalidate_cache(kvm);
1933 
1934 	list_for_each_entry_safe(cte, tmp,
1935 				 &dist->lpi_translation_cache, entry) {
1936 		list_del(&cte->entry);
1937 		kfree(cte);
1938 	}
1939 }
1940 
1941 #define INITIAL_BASER_VALUE						  \
1942 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1943 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1944 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1945 	 GITS_BASER_PAGE_SIZE_64K)
1946 
1947 #define INITIAL_PROPBASER_VALUE						  \
1948 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1949 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1950 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1951 
1952 static int vgic_its_create(struct kvm_device *dev, u32 type)
1953 {
1954 	int ret;
1955 	struct vgic_its *its;
1956 
1957 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1958 		return -ENODEV;
1959 
1960 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1961 	if (!its)
1962 		return -ENOMEM;
1963 
1964 	mutex_lock(&dev->kvm->arch.config_lock);
1965 
1966 	if (vgic_initialized(dev->kvm)) {
1967 		ret = vgic_v4_init(dev->kvm);
1968 		if (ret < 0) {
1969 			mutex_unlock(&dev->kvm->arch.config_lock);
1970 			kfree(its);
1971 			return ret;
1972 		}
1973 
1974 		vgic_lpi_translation_cache_init(dev->kvm);
1975 	}
1976 
1977 	mutex_init(&its->its_lock);
1978 	mutex_init(&its->cmd_lock);
1979 
1980 	/* Yep, even more trickery for lock ordering... */
1981 #ifdef CONFIG_LOCKDEP
1982 	mutex_lock(&its->cmd_lock);
1983 	mutex_lock(&its->its_lock);
1984 	mutex_unlock(&its->its_lock);
1985 	mutex_unlock(&its->cmd_lock);
1986 #endif
1987 
1988 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1989 
1990 	INIT_LIST_HEAD(&its->device_list);
1991 	INIT_LIST_HEAD(&its->collection_list);
1992 
1993 	dev->kvm->arch.vgic.msis_require_devid = true;
1994 	dev->kvm->arch.vgic.has_its = true;
1995 	its->enabled = false;
1996 	its->dev = dev;
1997 
1998 	its->baser_device_table = INITIAL_BASER_VALUE			|
1999 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2000 	its->baser_coll_table = INITIAL_BASER_VALUE |
2001 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2002 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2003 
2004 	dev->private = its;
2005 
2006 	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2007 
2008 	mutex_unlock(&dev->kvm->arch.config_lock);
2009 
2010 	return ret;
2011 }
2012 
2013 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2014 {
2015 	struct kvm *kvm = kvm_dev->kvm;
2016 	struct vgic_its *its = kvm_dev->private;
2017 
2018 	mutex_lock(&its->its_lock);
2019 
2020 	vgic_its_free_device_list(kvm, its);
2021 	vgic_its_free_collection_list(kvm, its);
2022 
2023 	mutex_unlock(&its->its_lock);
2024 	kfree(its);
2025 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2026 }
2027 
2028 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2029 				  struct kvm_device_attr *attr)
2030 {
2031 	const struct vgic_register_region *region;
2032 	gpa_t offset = attr->attr;
2033 	int align;
2034 
2035 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2036 
2037 	if (offset & align)
2038 		return -EINVAL;
2039 
2040 	region = vgic_find_mmio_region(its_registers,
2041 				       ARRAY_SIZE(its_registers),
2042 				       offset);
2043 	if (!region)
2044 		return -ENXIO;
2045 
2046 	return 0;
2047 }
2048 
2049 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2050 				     struct kvm_device_attr *attr,
2051 				     u64 *reg, bool is_write)
2052 {
2053 	const struct vgic_register_region *region;
2054 	struct vgic_its *its;
2055 	gpa_t addr, offset;
2056 	unsigned int len;
2057 	int align, ret = 0;
2058 
2059 	its = dev->private;
2060 	offset = attr->attr;
2061 
2062 	/*
2063 	 * Although the spec supports upper/lower 32-bit accesses to
2064 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
2065 	 * accesses to all 64-bit wide registers. We therefore only
2066 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2067 	 * registers
2068 	 */
2069 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2070 		align = 0x3;
2071 	else
2072 		align = 0x7;
2073 
2074 	if (offset & align)
2075 		return -EINVAL;
2076 
2077 	mutex_lock(&dev->kvm->lock);
2078 
2079 	if (!lock_all_vcpus(dev->kvm)) {
2080 		mutex_unlock(&dev->kvm->lock);
2081 		return -EBUSY;
2082 	}
2083 
2084 	mutex_lock(&dev->kvm->arch.config_lock);
2085 
2086 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2087 		ret = -ENXIO;
2088 		goto out;
2089 	}
2090 
2091 	region = vgic_find_mmio_region(its_registers,
2092 				       ARRAY_SIZE(its_registers),
2093 				       offset);
2094 	if (!region) {
2095 		ret = -ENXIO;
2096 		goto out;
2097 	}
2098 
2099 	addr = its->vgic_its_base + offset;
2100 
2101 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2102 
2103 	if (is_write) {
2104 		if (region->uaccess_its_write)
2105 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2106 							len, *reg);
2107 		else
2108 			region->its_write(dev->kvm, its, addr, len, *reg);
2109 	} else {
2110 		*reg = region->its_read(dev->kvm, its, addr, len);
2111 	}
2112 out:
2113 	mutex_unlock(&dev->kvm->arch.config_lock);
2114 	unlock_all_vcpus(dev->kvm);
2115 	mutex_unlock(&dev->kvm->lock);
2116 	return ret;
2117 }
2118 
2119 static u32 compute_next_devid_offset(struct list_head *h,
2120 				     struct its_device *dev)
2121 {
2122 	struct its_device *next;
2123 	u32 next_offset;
2124 
2125 	if (list_is_last(&dev->dev_list, h))
2126 		return 0;
2127 	next = list_next_entry(dev, dev_list);
2128 	next_offset = next->device_id - dev->device_id;
2129 
2130 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2131 }
2132 
2133 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2134 {
2135 	struct its_ite *next;
2136 	u32 next_offset;
2137 
2138 	if (list_is_last(&ite->ite_list, h))
2139 		return 0;
2140 	next = list_next_entry(ite, ite_list);
2141 	next_offset = next->event_id - ite->event_id;
2142 
2143 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2144 }
2145 
2146 /**
2147  * entry_fn_t - Callback called on a table entry restore path
2148  * @its: its handle
2149  * @id: id of the entry
2150  * @entry: pointer to the entry
2151  * @opaque: pointer to an opaque data
2152  *
2153  * Return: < 0 on error, 0 if last element was identified, id offset to next
2154  * element otherwise
2155  */
2156 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2157 			  void *opaque);
2158 
2159 /**
2160  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2161  * to each entry
2162  *
2163  * @its: its handle
2164  * @base: base gpa of the table
2165  * @size: size of the table in bytes
2166  * @esz: entry size in bytes
2167  * @start_id: the ID of the first entry in the table
2168  * (non zero for 2d level tables)
2169  * @fn: function to apply on each entry
2170  *
2171  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2172  * (the last element may not be found on second level tables)
2173  */
2174 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2175 			  int start_id, entry_fn_t fn, void *opaque)
2176 {
2177 	struct kvm *kvm = its->dev->kvm;
2178 	unsigned long len = size;
2179 	int id = start_id;
2180 	gpa_t gpa = base;
2181 	char entry[ESZ_MAX];
2182 	int ret;
2183 
2184 	memset(entry, 0, esz);
2185 
2186 	while (true) {
2187 		int next_offset;
2188 		size_t byte_offset;
2189 
2190 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2191 		if (ret)
2192 			return ret;
2193 
2194 		next_offset = fn(its, id, entry, opaque);
2195 		if (next_offset <= 0)
2196 			return next_offset;
2197 
2198 		byte_offset = next_offset * esz;
2199 		if (byte_offset >= len)
2200 			break;
2201 
2202 		id += next_offset;
2203 		gpa += byte_offset;
2204 		len -= byte_offset;
2205 	}
2206 	return 1;
2207 }
2208 
2209 /**
2210  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2211  */
2212 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2213 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2214 {
2215 	struct kvm *kvm = its->dev->kvm;
2216 	u32 next_offset;
2217 	u64 val;
2218 
2219 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2220 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2221 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2222 		ite->collection->collection_id;
2223 	val = cpu_to_le64(val);
2224 	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2225 }
2226 
2227 /**
2228  * vgic_its_restore_ite - restore an interrupt translation entry
2229  * @event_id: id used for indexing
2230  * @ptr: pointer to the ITE entry
2231  * @opaque: pointer to the its_device
2232  */
2233 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2234 				void *ptr, void *opaque)
2235 {
2236 	struct its_device *dev = opaque;
2237 	struct its_collection *collection;
2238 	struct kvm *kvm = its->dev->kvm;
2239 	struct kvm_vcpu *vcpu = NULL;
2240 	u64 val;
2241 	u64 *p = (u64 *)ptr;
2242 	struct vgic_irq *irq;
2243 	u32 coll_id, lpi_id;
2244 	struct its_ite *ite;
2245 	u32 offset;
2246 
2247 	val = *p;
2248 
2249 	val = le64_to_cpu(val);
2250 
2251 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2252 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2253 
2254 	if (!lpi_id)
2255 		return 1; /* invalid entry, no choice but to scan next entry */
2256 
2257 	if (lpi_id < VGIC_MIN_LPI)
2258 		return -EINVAL;
2259 
2260 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2261 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2262 		return -EINVAL;
2263 
2264 	collection = find_collection(its, coll_id);
2265 	if (!collection)
2266 		return -EINVAL;
2267 
2268 	if (!vgic_its_check_event_id(its, dev, event_id))
2269 		return -EINVAL;
2270 
2271 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2272 	if (IS_ERR(ite))
2273 		return PTR_ERR(ite);
2274 
2275 	if (its_is_collection_mapped(collection))
2276 		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2277 
2278 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2279 	if (IS_ERR(irq)) {
2280 		its_free_ite(kvm, ite);
2281 		return PTR_ERR(irq);
2282 	}
2283 	ite->irq = irq;
2284 
2285 	return offset;
2286 }
2287 
2288 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2289 			    const struct list_head *b)
2290 {
2291 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2292 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2293 
2294 	if (itea->event_id < iteb->event_id)
2295 		return -1;
2296 	else
2297 		return 1;
2298 }
2299 
2300 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2301 {
2302 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2303 	gpa_t base = device->itt_addr;
2304 	struct its_ite *ite;
2305 	int ret;
2306 	int ite_esz = abi->ite_esz;
2307 
2308 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2309 
2310 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2311 		gpa_t gpa = base + ite->event_id * ite_esz;
2312 
2313 		/*
2314 		 * If an LPI carries the HW bit, this means that this
2315 		 * interrupt is controlled by GICv4, and we do not
2316 		 * have direct access to that state without GICv4.1.
2317 		 * Let's simply fail the save operation...
2318 		 */
2319 		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2320 			return -EACCES;
2321 
2322 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2323 		if (ret)
2324 			return ret;
2325 	}
2326 	return 0;
2327 }
2328 
2329 /**
2330  * vgic_its_restore_itt - restore the ITT of a device
2331  *
2332  * @its: its handle
2333  * @dev: device handle
2334  *
2335  * Return 0 on success, < 0 on error
2336  */
2337 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2338 {
2339 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2340 	gpa_t base = dev->itt_addr;
2341 	int ret;
2342 	int ite_esz = abi->ite_esz;
2343 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2344 
2345 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2346 			     vgic_its_restore_ite, dev);
2347 
2348 	/* scan_its_table returns +1 if all ITEs are invalid */
2349 	if (ret > 0)
2350 		ret = 0;
2351 
2352 	return ret;
2353 }
2354 
2355 /**
2356  * vgic_its_save_dte - Save a device table entry at a given GPA
2357  *
2358  * @its: ITS handle
2359  * @dev: ITS device
2360  * @ptr: GPA
2361  */
2362 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2363 			     gpa_t ptr, int dte_esz)
2364 {
2365 	struct kvm *kvm = its->dev->kvm;
2366 	u64 val, itt_addr_field;
2367 	u32 next_offset;
2368 
2369 	itt_addr_field = dev->itt_addr >> 8;
2370 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2371 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2372 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2373 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2374 		(dev->num_eventid_bits - 1));
2375 	val = cpu_to_le64(val);
2376 	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2377 }
2378 
2379 /**
2380  * vgic_its_restore_dte - restore a device table entry
2381  *
2382  * @its: its handle
2383  * @id: device id the DTE corresponds to
2384  * @ptr: kernel VA where the 8 byte DTE is located
2385  * @opaque: unused
2386  *
2387  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2388  * next dte otherwise
2389  */
2390 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2391 				void *ptr, void *opaque)
2392 {
2393 	struct its_device *dev;
2394 	u64 baser = its->baser_device_table;
2395 	gpa_t itt_addr;
2396 	u8 num_eventid_bits;
2397 	u64 entry = *(u64 *)ptr;
2398 	bool valid;
2399 	u32 offset;
2400 	int ret;
2401 
2402 	entry = le64_to_cpu(entry);
2403 
2404 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2405 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2406 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2407 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2408 
2409 	if (!valid)
2410 		return 1;
2411 
2412 	/* dte entry is valid */
2413 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2414 
2415 	if (!vgic_its_check_id(its, baser, id, NULL))
2416 		return -EINVAL;
2417 
2418 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2419 	if (IS_ERR(dev))
2420 		return PTR_ERR(dev);
2421 
2422 	ret = vgic_its_restore_itt(its, dev);
2423 	if (ret) {
2424 		vgic_its_free_device(its->dev->kvm, dev);
2425 		return ret;
2426 	}
2427 
2428 	return offset;
2429 }
2430 
2431 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2432 			       const struct list_head *b)
2433 {
2434 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2435 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2436 
2437 	if (deva->device_id < devb->device_id)
2438 		return -1;
2439 	else
2440 		return 1;
2441 }
2442 
2443 /**
2444  * vgic_its_save_device_tables - Save the device table and all ITT
2445  * into guest RAM
2446  *
2447  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2448  * returns the GPA of the device entry
2449  */
2450 static int vgic_its_save_device_tables(struct vgic_its *its)
2451 {
2452 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2453 	u64 baser = its->baser_device_table;
2454 	struct its_device *dev;
2455 	int dte_esz = abi->dte_esz;
2456 
2457 	if (!(baser & GITS_BASER_VALID))
2458 		return 0;
2459 
2460 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2461 
2462 	list_for_each_entry(dev, &its->device_list, dev_list) {
2463 		int ret;
2464 		gpa_t eaddr;
2465 
2466 		if (!vgic_its_check_id(its, baser,
2467 				       dev->device_id, &eaddr))
2468 			return -EINVAL;
2469 
2470 		ret = vgic_its_save_itt(its, dev);
2471 		if (ret)
2472 			return ret;
2473 
2474 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2475 		if (ret)
2476 			return ret;
2477 	}
2478 	return 0;
2479 }
2480 
2481 /**
2482  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2483  *
2484  * @its: its handle
2485  * @id: index of the entry in the L1 table
2486  * @addr: kernel VA
2487  * @opaque: unused
2488  *
2489  * L1 table entries are scanned by steps of 1 entry
2490  * Return < 0 if error, 0 if last dte was found when scanning the L2
2491  * table, +1 otherwise (meaning next L1 entry must be scanned)
2492  */
2493 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2494 			 void *opaque)
2495 {
2496 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2497 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2498 	u64 entry = *(u64 *)addr;
2499 	int dte_esz = abi->dte_esz;
2500 	gpa_t gpa;
2501 	int ret;
2502 
2503 	entry = le64_to_cpu(entry);
2504 
2505 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2506 		return 1;
2507 
2508 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2509 
2510 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2511 			     l2_start_id, vgic_its_restore_dte, NULL);
2512 
2513 	return ret;
2514 }
2515 
2516 /**
2517  * vgic_its_restore_device_tables - Restore the device table and all ITT
2518  * from guest RAM to internal data structs
2519  */
2520 static int vgic_its_restore_device_tables(struct vgic_its *its)
2521 {
2522 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2523 	u64 baser = its->baser_device_table;
2524 	int l1_esz, ret;
2525 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2526 	gpa_t l1_gpa;
2527 
2528 	if (!(baser & GITS_BASER_VALID))
2529 		return 0;
2530 
2531 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2532 
2533 	if (baser & GITS_BASER_INDIRECT) {
2534 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2535 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2536 				     handle_l1_dte, NULL);
2537 	} else {
2538 		l1_esz = abi->dte_esz;
2539 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2540 				     vgic_its_restore_dte, NULL);
2541 	}
2542 
2543 	/* scan_its_table returns +1 if all entries are invalid */
2544 	if (ret > 0)
2545 		ret = 0;
2546 
2547 	if (ret < 0)
2548 		vgic_its_free_device_list(its->dev->kvm, its);
2549 
2550 	return ret;
2551 }
2552 
2553 static int vgic_its_save_cte(struct vgic_its *its,
2554 			     struct its_collection *collection,
2555 			     gpa_t gpa, int esz)
2556 {
2557 	u64 val;
2558 
2559 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2560 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2561 	       collection->collection_id);
2562 	val = cpu_to_le64(val);
2563 	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2564 }
2565 
2566 /*
2567  * Restore a collection entry into the ITS collection table.
2568  * Return +1 on success, 0 if the entry was invalid (which should be
2569  * interpreted as end-of-table), and a negative error value for generic errors.
2570  */
2571 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2572 {
2573 	struct its_collection *collection;
2574 	struct kvm *kvm = its->dev->kvm;
2575 	u32 target_addr, coll_id;
2576 	u64 val;
2577 	int ret;
2578 
2579 	BUG_ON(esz > sizeof(val));
2580 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2581 	if (ret)
2582 		return ret;
2583 	val = le64_to_cpu(val);
2584 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2585 		return 0;
2586 
2587 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2588 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2589 
2590 	if (target_addr != COLLECTION_NOT_MAPPED &&
2591 	    !kvm_get_vcpu_by_id(kvm, target_addr))
2592 		return -EINVAL;
2593 
2594 	collection = find_collection(its, coll_id);
2595 	if (collection)
2596 		return -EEXIST;
2597 
2598 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2599 		return -EINVAL;
2600 
2601 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2602 	if (ret)
2603 		return ret;
2604 	collection->target_addr = target_addr;
2605 	return 1;
2606 }
2607 
2608 /**
2609  * vgic_its_save_collection_table - Save the collection table into
2610  * guest RAM
2611  */
2612 static int vgic_its_save_collection_table(struct vgic_its *its)
2613 {
2614 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2615 	u64 baser = its->baser_coll_table;
2616 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2617 	struct its_collection *collection;
2618 	u64 val;
2619 	size_t max_size, filled = 0;
2620 	int ret, cte_esz = abi->cte_esz;
2621 
2622 	if (!(baser & GITS_BASER_VALID))
2623 		return 0;
2624 
2625 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2626 
2627 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2628 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2629 		if (ret)
2630 			return ret;
2631 		gpa += cte_esz;
2632 		filled += cte_esz;
2633 	}
2634 
2635 	if (filled == max_size)
2636 		return 0;
2637 
2638 	/*
2639 	 * table is not fully filled, add a last dummy element
2640 	 * with valid bit unset
2641 	 */
2642 	val = 0;
2643 	BUG_ON(cte_esz > sizeof(val));
2644 	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2645 	return ret;
2646 }
2647 
2648 /**
2649  * vgic_its_restore_collection_table - reads the collection table
2650  * in guest memory and restores the ITS internal state. Requires the
2651  * BASER registers to be restored before.
2652  */
2653 static int vgic_its_restore_collection_table(struct vgic_its *its)
2654 {
2655 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2656 	u64 baser = its->baser_coll_table;
2657 	int cte_esz = abi->cte_esz;
2658 	size_t max_size, read = 0;
2659 	gpa_t gpa;
2660 	int ret;
2661 
2662 	if (!(baser & GITS_BASER_VALID))
2663 		return 0;
2664 
2665 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2666 
2667 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2668 
2669 	while (read < max_size) {
2670 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2671 		if (ret <= 0)
2672 			break;
2673 		gpa += cte_esz;
2674 		read += cte_esz;
2675 	}
2676 
2677 	if (ret > 0)
2678 		return 0;
2679 
2680 	if (ret < 0)
2681 		vgic_its_free_collection_list(its->dev->kvm, its);
2682 
2683 	return ret;
2684 }
2685 
2686 /**
2687  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2688  * according to v0 ABI
2689  */
2690 static int vgic_its_save_tables_v0(struct vgic_its *its)
2691 {
2692 	int ret;
2693 
2694 	ret = vgic_its_save_device_tables(its);
2695 	if (ret)
2696 		return ret;
2697 
2698 	return vgic_its_save_collection_table(its);
2699 }
2700 
2701 /**
2702  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2703  * to internal data structs according to V0 ABI
2704  *
2705  */
2706 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2707 {
2708 	int ret;
2709 
2710 	ret = vgic_its_restore_collection_table(its);
2711 	if (ret)
2712 		return ret;
2713 
2714 	ret = vgic_its_restore_device_tables(its);
2715 	if (ret)
2716 		vgic_its_free_collection_list(its->dev->kvm, its);
2717 	return ret;
2718 }
2719 
2720 static int vgic_its_commit_v0(struct vgic_its *its)
2721 {
2722 	const struct vgic_its_abi *abi;
2723 
2724 	abi = vgic_its_get_abi(its);
2725 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2726 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2727 
2728 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2729 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2730 
2731 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2732 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2733 	return 0;
2734 }
2735 
2736 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2737 {
2738 	/* We need to keep the ABI specific field values */
2739 	its->baser_coll_table &= ~GITS_BASER_VALID;
2740 	its->baser_device_table &= ~GITS_BASER_VALID;
2741 	its->cbaser = 0;
2742 	its->creadr = 0;
2743 	its->cwriter = 0;
2744 	its->enabled = 0;
2745 	vgic_its_free_device_list(kvm, its);
2746 	vgic_its_free_collection_list(kvm, its);
2747 }
2748 
2749 static int vgic_its_has_attr(struct kvm_device *dev,
2750 			     struct kvm_device_attr *attr)
2751 {
2752 	switch (attr->group) {
2753 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2754 		switch (attr->attr) {
2755 		case KVM_VGIC_ITS_ADDR_TYPE:
2756 			return 0;
2757 		}
2758 		break;
2759 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2760 		switch (attr->attr) {
2761 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2762 			return 0;
2763 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2764 			return 0;
2765 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2766 			return 0;
2767 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2768 			return 0;
2769 		}
2770 		break;
2771 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2772 		return vgic_its_has_attr_regs(dev, attr);
2773 	}
2774 	return -ENXIO;
2775 }
2776 
2777 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2778 {
2779 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2780 	int ret = 0;
2781 
2782 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2783 		return 0;
2784 
2785 	mutex_lock(&kvm->lock);
2786 
2787 	if (!lock_all_vcpus(kvm)) {
2788 		mutex_unlock(&kvm->lock);
2789 		return -EBUSY;
2790 	}
2791 
2792 	mutex_lock(&kvm->arch.config_lock);
2793 	mutex_lock(&its->its_lock);
2794 
2795 	switch (attr) {
2796 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2797 		vgic_its_reset(kvm, its);
2798 		break;
2799 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2800 		ret = abi->save_tables(its);
2801 		break;
2802 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2803 		ret = abi->restore_tables(its);
2804 		break;
2805 	}
2806 
2807 	mutex_unlock(&its->its_lock);
2808 	mutex_unlock(&kvm->arch.config_lock);
2809 	unlock_all_vcpus(kvm);
2810 	mutex_unlock(&kvm->lock);
2811 	return ret;
2812 }
2813 
2814 /*
2815  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2816  * without the running VCPU when dirty ring is enabled.
2817  *
2818  * The running VCPU is required to track dirty guest pages when dirty ring
2819  * is enabled. Otherwise, the backup bitmap should be used to track the
2820  * dirty guest pages. When vgic/its tables are being saved, the backup
2821  * bitmap is used to track the dirty guest pages due to the missed running
2822  * VCPU in the period.
2823  */
2824 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2825 {
2826 	struct vgic_dist *dist = &kvm->arch.vgic;
2827 
2828 	return dist->table_write_in_progress;
2829 }
2830 
2831 static int vgic_its_set_attr(struct kvm_device *dev,
2832 			     struct kvm_device_attr *attr)
2833 {
2834 	struct vgic_its *its = dev->private;
2835 	int ret;
2836 
2837 	switch (attr->group) {
2838 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2839 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2840 		unsigned long type = (unsigned long)attr->attr;
2841 		u64 addr;
2842 
2843 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2844 			return -ENODEV;
2845 
2846 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2847 			return -EFAULT;
2848 
2849 		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2850 					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2851 		if (ret)
2852 			return ret;
2853 
2854 		return vgic_register_its_iodev(dev->kvm, its, addr);
2855 	}
2856 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2857 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2858 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2859 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2860 		u64 reg;
2861 
2862 		if (get_user(reg, uaddr))
2863 			return -EFAULT;
2864 
2865 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2866 	}
2867 	}
2868 	return -ENXIO;
2869 }
2870 
2871 static int vgic_its_get_attr(struct kvm_device *dev,
2872 			     struct kvm_device_attr *attr)
2873 {
2874 	switch (attr->group) {
2875 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2876 		struct vgic_its *its = dev->private;
2877 		u64 addr = its->vgic_its_base;
2878 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2879 		unsigned long type = (unsigned long)attr->attr;
2880 
2881 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2882 			return -ENODEV;
2883 
2884 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2885 			return -EFAULT;
2886 		break;
2887 	}
2888 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2889 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2890 		u64 reg;
2891 		int ret;
2892 
2893 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2894 		if (ret)
2895 			return ret;
2896 		return put_user(reg, uaddr);
2897 	}
2898 	default:
2899 		return -ENXIO;
2900 	}
2901 
2902 	return 0;
2903 }
2904 
2905 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2906 	.name = "kvm-arm-vgic-its",
2907 	.create = vgic_its_create,
2908 	.destroy = vgic_its_destroy,
2909 	.set_attr = vgic_its_set_attr,
2910 	.get_attr = vgic_its_get_attr,
2911 	.has_attr = vgic_its_has_attr,
2912 };
2913 
2914 int kvm_vgic_register_its_device(void)
2915 {
2916 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2917 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2918 }
2919