xref: /linux/arch/arm64/kvm/vgic/vgic-its.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
31 
32 /*
33  * Creates a new (reference to a) struct vgic_irq for a given LPI.
34  * If this LPI is already mapped on another ITS, we increase its refcount
35  * and return a pointer to the existing structure.
36  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37  * This function returns a pointer to the _unlocked_ structure.
38  */
39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 				     struct kvm_vcpu *vcpu)
41 {
42 	struct vgic_dist *dist = &kvm->arch.vgic;
43 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 	unsigned long flags;
45 	int ret;
46 
47 	/* In this case there is no put, since we keep the reference. */
48 	if (irq)
49 		return irq;
50 
51 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 	if (!irq)
53 		return ERR_PTR(-ENOMEM);
54 
55 	ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
56 	if (ret) {
57 		kfree(irq);
58 		return ERR_PTR(ret);
59 	}
60 
61 	INIT_LIST_HEAD(&irq->ap_list);
62 	raw_spin_lock_init(&irq->irq_lock);
63 
64 	irq->config = VGIC_CONFIG_EDGE;
65 	kref_init(&irq->refcount);
66 	irq->intid = intid;
67 	irq->target_vcpu = vcpu;
68 	irq->group = 1;
69 
70 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
71 
72 	/*
73 	 * There could be a race with another vgic_add_lpi(), so we need to
74 	 * check that we don't add a second list entry with the same LPI.
75 	 */
76 	oldirq = xa_load(&dist->lpi_xa, intid);
77 	if (vgic_try_get_irq_kref(oldirq)) {
78 		/* Someone was faster with adding this LPI, lets use that. */
79 		kfree(irq);
80 		irq = oldirq;
81 
82 		goto out_unlock;
83 	}
84 
85 	ret = xa_err(xa_store(&dist->lpi_xa, intid, irq, 0));
86 	if (ret) {
87 		xa_release(&dist->lpi_xa, intid);
88 		kfree(irq);
89 		goto out_unlock;
90 	}
91 
92 	atomic_inc(&dist->lpi_count);
93 
94 out_unlock:
95 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
96 
97 	if (ret)
98 		return ERR_PTR(ret);
99 
100 	/*
101 	 * We "cache" the configuration table entries in our struct vgic_irq's.
102 	 * However we only have those structs for mapped IRQs, so we read in
103 	 * the respective config data from memory here upon mapping the LPI.
104 	 *
105 	 * Should any of these fail, behave as if we couldn't create the LPI
106 	 * by dropping the refcount and returning the error.
107 	 */
108 	ret = update_lpi_config(kvm, irq, NULL, false);
109 	if (ret) {
110 		vgic_put_irq(kvm, irq);
111 		return ERR_PTR(ret);
112 	}
113 
114 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
115 	if (ret) {
116 		vgic_put_irq(kvm, irq);
117 		return ERR_PTR(ret);
118 	}
119 
120 	return irq;
121 }
122 
123 struct its_device {
124 	struct list_head dev_list;
125 
126 	/* the head for the list of ITTEs */
127 	struct list_head itt_head;
128 	u32 num_eventid_bits;
129 	gpa_t itt_addr;
130 	u32 device_id;
131 };
132 
133 #define COLLECTION_NOT_MAPPED ((u32)~0)
134 
135 struct its_collection {
136 	struct list_head coll_list;
137 
138 	u32 collection_id;
139 	u32 target_addr;
140 };
141 
142 #define its_is_collection_mapped(coll) ((coll) && \
143 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
144 
145 struct its_ite {
146 	struct list_head ite_list;
147 
148 	struct vgic_irq *irq;
149 	struct its_collection *collection;
150 	u32 event_id;
151 };
152 
153 struct vgic_translation_cache_entry {
154 	struct list_head	entry;
155 	phys_addr_t		db;
156 	u32			devid;
157 	u32			eventid;
158 	struct vgic_irq		*irq;
159 };
160 
161 /**
162  * struct vgic_its_abi - ITS abi ops and settings
163  * @cte_esz: collection table entry size
164  * @dte_esz: device table entry size
165  * @ite_esz: interrupt translation table entry size
166  * @save_tables: save the ITS tables into guest RAM
167  * @restore_tables: restore the ITS internal structs from tables
168  *  stored in guest RAM
169  * @commit: initialize the registers which expose the ABI settings,
170  *  especially the entry sizes
171  */
172 struct vgic_its_abi {
173 	int cte_esz;
174 	int dte_esz;
175 	int ite_esz;
176 	int (*save_tables)(struct vgic_its *its);
177 	int (*restore_tables)(struct vgic_its *its);
178 	int (*commit)(struct vgic_its *its);
179 };
180 
181 #define ABI_0_ESZ	8
182 #define ESZ_MAX		ABI_0_ESZ
183 
184 static const struct vgic_its_abi its_table_abi_versions[] = {
185 	[0] = {
186 	 .cte_esz = ABI_0_ESZ,
187 	 .dte_esz = ABI_0_ESZ,
188 	 .ite_esz = ABI_0_ESZ,
189 	 .save_tables = vgic_its_save_tables_v0,
190 	 .restore_tables = vgic_its_restore_tables_v0,
191 	 .commit = vgic_its_commit_v0,
192 	},
193 };
194 
195 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
196 
197 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
198 {
199 	return &its_table_abi_versions[its->abi_rev];
200 }
201 
202 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
203 {
204 	const struct vgic_its_abi *abi;
205 
206 	its->abi_rev = rev;
207 	abi = vgic_its_get_abi(its);
208 	return abi->commit(its);
209 }
210 
211 /*
212  * Find and returns a device in the device table for an ITS.
213  * Must be called with the its_lock mutex held.
214  */
215 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
216 {
217 	struct its_device *device;
218 
219 	list_for_each_entry(device, &its->device_list, dev_list)
220 		if (device_id == device->device_id)
221 			return device;
222 
223 	return NULL;
224 }
225 
226 /*
227  * Find and returns an interrupt translation table entry (ITTE) for a given
228  * Device ID/Event ID pair on an ITS.
229  * Must be called with the its_lock mutex held.
230  */
231 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
232 				  u32 event_id)
233 {
234 	struct its_device *device;
235 	struct its_ite *ite;
236 
237 	device = find_its_device(its, device_id);
238 	if (device == NULL)
239 		return NULL;
240 
241 	list_for_each_entry(ite, &device->itt_head, ite_list)
242 		if (ite->event_id == event_id)
243 			return ite;
244 
245 	return NULL;
246 }
247 
248 /* To be used as an iterator this macro misses the enclosing parentheses */
249 #define for_each_lpi_its(dev, ite, its) \
250 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
251 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
252 
253 #define GIC_LPI_OFFSET 8192
254 
255 #define VITS_TYPER_IDBITS 16
256 #define VITS_TYPER_DEVBITS 16
257 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
258 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
259 
260 /*
261  * Finds and returns a collection in the ITS collection table.
262  * Must be called with the its_lock mutex held.
263  */
264 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
265 {
266 	struct its_collection *collection;
267 
268 	list_for_each_entry(collection, &its->collection_list, coll_list) {
269 		if (coll_id == collection->collection_id)
270 			return collection;
271 	}
272 
273 	return NULL;
274 }
275 
276 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
277 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
278 
279 /*
280  * Reads the configuration data for a given LPI from guest memory and
281  * updates the fields in struct vgic_irq.
282  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
283  * VCPU. Unconditionally applies if filter_vcpu is NULL.
284  */
285 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
286 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
287 {
288 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
289 	u8 prop;
290 	int ret;
291 	unsigned long flags;
292 
293 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
294 				  &prop, 1);
295 
296 	if (ret)
297 		return ret;
298 
299 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
300 
301 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
302 		irq->priority = LPI_PROP_PRIORITY(prop);
303 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
304 
305 		if (!irq->hw) {
306 			vgic_queue_irq_unlock(kvm, irq, flags);
307 			return 0;
308 		}
309 	}
310 
311 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
312 
313 	if (irq->hw)
314 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
315 
316 	return 0;
317 }
318 
319 #define GIC_LPI_MAX_INTID	((1 << INTERRUPT_ID_BITS_ITS) - 1)
320 
321 /*
322  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
323  * enumerate those LPIs without holding any lock.
324  * Returns their number and puts the kmalloc'ed array into intid_ptr.
325  */
326 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
327 {
328 	struct vgic_dist *dist = &kvm->arch.vgic;
329 	XA_STATE(xas, &dist->lpi_xa, GIC_LPI_OFFSET);
330 	struct vgic_irq *irq;
331 	unsigned long flags;
332 	u32 *intids;
333 	int irq_count, i = 0;
334 
335 	/*
336 	 * There is an obvious race between allocating the array and LPIs
337 	 * being mapped/unmapped. If we ended up here as a result of a
338 	 * command, we're safe (locks are held, preventing another
339 	 * command). If coming from another path (such as enabling LPIs),
340 	 * we must be careful not to overrun the array.
341 	 */
342 	irq_count = atomic_read(&dist->lpi_count);
343 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
344 	if (!intids)
345 		return -ENOMEM;
346 
347 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
348 	rcu_read_lock();
349 
350 	xas_for_each(&xas, irq, GIC_LPI_MAX_INTID) {
351 		if (i == irq_count)
352 			break;
353 		/* We don't need to "get" the IRQ, as we hold the list lock. */
354 		if (vcpu && irq->target_vcpu != vcpu)
355 			continue;
356 		intids[i++] = irq->intid;
357 	}
358 
359 	rcu_read_unlock();
360 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
361 
362 	*intid_ptr = intids;
363 	return i;
364 }
365 
366 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
367 {
368 	int ret = 0;
369 	unsigned long flags;
370 
371 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
372 	irq->target_vcpu = vcpu;
373 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
374 
375 	if (irq->hw) {
376 		struct its_vlpi_map map;
377 
378 		ret = its_get_vlpi(irq->host_irq, &map);
379 		if (ret)
380 			return ret;
381 
382 		if (map.vpe)
383 			atomic_dec(&map.vpe->vlpi_count);
384 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
385 		atomic_inc(&map.vpe->vlpi_count);
386 
387 		ret = its_map_vlpi(irq->host_irq, &map);
388 	}
389 
390 	return ret;
391 }
392 
393 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
394 					   struct its_collection *col)
395 {
396 	return kvm_get_vcpu_by_id(kvm, col->target_addr);
397 }
398 
399 /*
400  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
401  * is targeting) to the VGIC's view, which deals with target VCPUs.
402  * Needs to be called whenever either the collection for a LPIs has
403  * changed or the collection itself got retargeted.
404  */
405 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
406 {
407 	struct kvm_vcpu *vcpu;
408 
409 	if (!its_is_collection_mapped(ite->collection))
410 		return;
411 
412 	vcpu = collection_to_vcpu(kvm, ite->collection);
413 	update_affinity(ite->irq, vcpu);
414 }
415 
416 /*
417  * Updates the target VCPU for every LPI targeting this collection.
418  * Must be called with the its_lock mutex held.
419  */
420 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
421 				       struct its_collection *coll)
422 {
423 	struct its_device *device;
424 	struct its_ite *ite;
425 
426 	for_each_lpi_its(device, ite, its) {
427 		if (ite->collection != coll)
428 			continue;
429 
430 		update_affinity_ite(kvm, ite);
431 	}
432 }
433 
434 static u32 max_lpis_propbaser(u64 propbaser)
435 {
436 	int nr_idbits = (propbaser & 0x1f) + 1;
437 
438 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
439 }
440 
441 /*
442  * Sync the pending table pending bit of LPIs targeting @vcpu
443  * with our own data structures. This relies on the LPI being
444  * mapped before.
445  */
446 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
447 {
448 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
449 	struct vgic_irq *irq;
450 	int last_byte_offset = -1;
451 	int ret = 0;
452 	u32 *intids;
453 	int nr_irqs, i;
454 	unsigned long flags;
455 	u8 pendmask;
456 
457 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
458 	if (nr_irqs < 0)
459 		return nr_irqs;
460 
461 	for (i = 0; i < nr_irqs; i++) {
462 		int byte_offset, bit_nr;
463 
464 		byte_offset = intids[i] / BITS_PER_BYTE;
465 		bit_nr = intids[i] % BITS_PER_BYTE;
466 
467 		/*
468 		 * For contiguously allocated LPIs chances are we just read
469 		 * this very same byte in the last iteration. Reuse that.
470 		 */
471 		if (byte_offset != last_byte_offset) {
472 			ret = kvm_read_guest_lock(vcpu->kvm,
473 						  pendbase + byte_offset,
474 						  &pendmask, 1);
475 			if (ret) {
476 				kfree(intids);
477 				return ret;
478 			}
479 			last_byte_offset = byte_offset;
480 		}
481 
482 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
483 		if (!irq)
484 			continue;
485 
486 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
487 		irq->pending_latch = pendmask & (1U << bit_nr);
488 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
489 		vgic_put_irq(vcpu->kvm, irq);
490 	}
491 
492 	kfree(intids);
493 
494 	return ret;
495 }
496 
497 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
498 					      struct vgic_its *its,
499 					      gpa_t addr, unsigned int len)
500 {
501 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
502 	u64 reg = GITS_TYPER_PLPIS;
503 
504 	/*
505 	 * We use linear CPU numbers for redistributor addressing,
506 	 * so GITS_TYPER.PTA is 0.
507 	 * Also we force all PROPBASER registers to be the same, so
508 	 * CommonLPIAff is 0 as well.
509 	 * To avoid memory waste in the guest, we keep the number of IDBits and
510 	 * DevBits low - as least for the time being.
511 	 */
512 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
513 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
514 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
515 
516 	return extract_bytes(reg, addr & 7, len);
517 }
518 
519 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
520 					     struct vgic_its *its,
521 					     gpa_t addr, unsigned int len)
522 {
523 	u32 val;
524 
525 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
526 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
527 	return val;
528 }
529 
530 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
531 					    struct vgic_its *its,
532 					    gpa_t addr, unsigned int len,
533 					    unsigned long val)
534 {
535 	u32 rev = GITS_IIDR_REV(val);
536 
537 	if (rev >= NR_ITS_ABIS)
538 		return -EINVAL;
539 	return vgic_its_set_abi(its, rev);
540 }
541 
542 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
543 					       struct vgic_its *its,
544 					       gpa_t addr, unsigned int len)
545 {
546 	switch (addr & 0xffff) {
547 	case GITS_PIDR0:
548 		return 0x92;	/* part number, bits[7:0] */
549 	case GITS_PIDR1:
550 		return 0xb4;	/* part number, bits[11:8] */
551 	case GITS_PIDR2:
552 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
553 	case GITS_PIDR4:
554 		return 0x40;	/* This is a 64K software visible page */
555 	/* The following are the ID registers for (any) GIC. */
556 	case GITS_CIDR0:
557 		return 0x0d;
558 	case GITS_CIDR1:
559 		return 0xf0;
560 	case GITS_CIDR2:
561 		return 0x05;
562 	case GITS_CIDR3:
563 		return 0xb1;
564 	}
565 
566 	return 0;
567 }
568 
569 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
570 					       phys_addr_t db,
571 					       u32 devid, u32 eventid)
572 {
573 	struct vgic_translation_cache_entry *cte;
574 
575 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
576 		/*
577 		 * If we hit a NULL entry, there is nothing after this
578 		 * point.
579 		 */
580 		if (!cte->irq)
581 			break;
582 
583 		if (cte->db != db || cte->devid != devid ||
584 		    cte->eventid != eventid)
585 			continue;
586 
587 		/*
588 		 * Move this entry to the head, as it is the most
589 		 * recently used.
590 		 */
591 		if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
592 			list_move(&cte->entry, &dist->lpi_translation_cache);
593 
594 		return cte->irq;
595 	}
596 
597 	return NULL;
598 }
599 
600 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
601 					     u32 devid, u32 eventid)
602 {
603 	struct vgic_dist *dist = &kvm->arch.vgic;
604 	struct vgic_irq *irq;
605 	unsigned long flags;
606 
607 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
608 
609 	irq = __vgic_its_check_cache(dist, db, devid, eventid);
610 	if (!vgic_try_get_irq_kref(irq))
611 		irq = NULL;
612 
613 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
614 
615 	return irq;
616 }
617 
618 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
619 				       u32 devid, u32 eventid,
620 				       struct vgic_irq *irq)
621 {
622 	struct vgic_dist *dist = &kvm->arch.vgic;
623 	struct vgic_translation_cache_entry *cte;
624 	unsigned long flags;
625 	phys_addr_t db;
626 
627 	/* Do not cache a directly injected interrupt */
628 	if (irq->hw)
629 		return;
630 
631 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
632 
633 	if (unlikely(list_empty(&dist->lpi_translation_cache)))
634 		goto out;
635 
636 	/*
637 	 * We could have raced with another CPU caching the same
638 	 * translation behind our back, so let's check it is not in
639 	 * already
640 	 */
641 	db = its->vgic_its_base + GITS_TRANSLATER;
642 	if (__vgic_its_check_cache(dist, db, devid, eventid))
643 		goto out;
644 
645 	/* Always reuse the last entry (LRU policy) */
646 	cte = list_last_entry(&dist->lpi_translation_cache,
647 			      typeof(*cte), entry);
648 
649 	/*
650 	 * Caching the translation implies having an extra reference
651 	 * to the interrupt, so drop the potential reference on what
652 	 * was in the cache, and increment it on the new interrupt.
653 	 */
654 	if (cte->irq)
655 		vgic_put_irq(kvm, cte->irq);
656 
657 	/*
658 	 * The irq refcount is guaranteed to be nonzero while holding the
659 	 * its_lock, as the ITE (and the reference it holds) cannot be freed.
660 	 */
661 	lockdep_assert_held(&its->its_lock);
662 	vgic_get_irq_kref(irq);
663 
664 	cte->db		= db;
665 	cte->devid	= devid;
666 	cte->eventid	= eventid;
667 	cte->irq	= irq;
668 
669 	/* Move the new translation to the head of the list */
670 	list_move(&cte->entry, &dist->lpi_translation_cache);
671 
672 out:
673 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
674 }
675 
676 void vgic_its_invalidate_cache(struct kvm *kvm)
677 {
678 	struct vgic_dist *dist = &kvm->arch.vgic;
679 	struct vgic_translation_cache_entry *cte;
680 	unsigned long flags;
681 
682 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
683 
684 	list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
685 		/*
686 		 * If we hit a NULL entry, there is nothing after this
687 		 * point.
688 		 */
689 		if (!cte->irq)
690 			break;
691 
692 		vgic_put_irq(kvm, cte->irq);
693 		cte->irq = NULL;
694 	}
695 
696 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
697 }
698 
699 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
700 			 u32 devid, u32 eventid, struct vgic_irq **irq)
701 {
702 	struct kvm_vcpu *vcpu;
703 	struct its_ite *ite;
704 
705 	if (!its->enabled)
706 		return -EBUSY;
707 
708 	ite = find_ite(its, devid, eventid);
709 	if (!ite || !its_is_collection_mapped(ite->collection))
710 		return E_ITS_INT_UNMAPPED_INTERRUPT;
711 
712 	vcpu = collection_to_vcpu(kvm, ite->collection);
713 	if (!vcpu)
714 		return E_ITS_INT_UNMAPPED_INTERRUPT;
715 
716 	if (!vgic_lpis_enabled(vcpu))
717 		return -EBUSY;
718 
719 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
720 
721 	*irq = ite->irq;
722 	return 0;
723 }
724 
725 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
726 {
727 	u64 address;
728 	struct kvm_io_device *kvm_io_dev;
729 	struct vgic_io_device *iodev;
730 
731 	if (!vgic_has_its(kvm))
732 		return ERR_PTR(-ENODEV);
733 
734 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
735 		return ERR_PTR(-EINVAL);
736 
737 	address = (u64)msi->address_hi << 32 | msi->address_lo;
738 
739 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
740 	if (!kvm_io_dev)
741 		return ERR_PTR(-EINVAL);
742 
743 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
744 		return ERR_PTR(-EINVAL);
745 
746 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
747 	if (iodev->iodev_type != IODEV_ITS)
748 		return ERR_PTR(-EINVAL);
749 
750 	return iodev->its;
751 }
752 
753 /*
754  * Find the target VCPU and the LPI number for a given devid/eventid pair
755  * and make this IRQ pending, possibly injecting it.
756  * Must be called with the its_lock mutex held.
757  * Returns 0 on success, a positive error value for any ITS mapping
758  * related errors and negative error values for generic errors.
759  */
760 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
761 				u32 devid, u32 eventid)
762 {
763 	struct vgic_irq *irq = NULL;
764 	unsigned long flags;
765 	int err;
766 
767 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
768 	if (err)
769 		return err;
770 
771 	if (irq->hw)
772 		return irq_set_irqchip_state(irq->host_irq,
773 					     IRQCHIP_STATE_PENDING, true);
774 
775 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
776 	irq->pending_latch = true;
777 	vgic_queue_irq_unlock(kvm, irq, flags);
778 
779 	return 0;
780 }
781 
782 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
783 {
784 	struct vgic_irq *irq;
785 	unsigned long flags;
786 	phys_addr_t db;
787 
788 	db = (u64)msi->address_hi << 32 | msi->address_lo;
789 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
790 	if (!irq)
791 		return -EWOULDBLOCK;
792 
793 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
794 	irq->pending_latch = true;
795 	vgic_queue_irq_unlock(kvm, irq, flags);
796 	vgic_put_irq(kvm, irq);
797 
798 	return 0;
799 }
800 
801 /*
802  * Queries the KVM IO bus framework to get the ITS pointer from the given
803  * doorbell address.
804  * We then call vgic_its_trigger_msi() with the decoded data.
805  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
806  */
807 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
808 {
809 	struct vgic_its *its;
810 	int ret;
811 
812 	if (!vgic_its_inject_cached_translation(kvm, msi))
813 		return 1;
814 
815 	its = vgic_msi_to_its(kvm, msi);
816 	if (IS_ERR(its))
817 		return PTR_ERR(its);
818 
819 	mutex_lock(&its->its_lock);
820 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
821 	mutex_unlock(&its->its_lock);
822 
823 	if (ret < 0)
824 		return ret;
825 
826 	/*
827 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
828 	 * if the guest has blocked the MSI. So we map any LPI mapping
829 	 * related error to that.
830 	 */
831 	if (ret)
832 		return 0;
833 	else
834 		return 1;
835 }
836 
837 /* Requires the its_lock to be held. */
838 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
839 {
840 	list_del(&ite->ite_list);
841 
842 	/* This put matches the get in vgic_add_lpi. */
843 	if (ite->irq) {
844 		if (ite->irq->hw)
845 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
846 
847 		vgic_put_irq(kvm, ite->irq);
848 	}
849 
850 	kfree(ite);
851 }
852 
853 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
854 {
855 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
856 }
857 
858 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
859 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
860 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
861 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
862 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
863 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
864 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
865 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
866 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
867 
868 /*
869  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
870  * Must be called with the its_lock mutex held.
871  */
872 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
873 				       u64 *its_cmd)
874 {
875 	u32 device_id = its_cmd_get_deviceid(its_cmd);
876 	u32 event_id = its_cmd_get_id(its_cmd);
877 	struct its_ite *ite;
878 
879 	ite = find_ite(its, device_id, event_id);
880 	if (ite && its_is_collection_mapped(ite->collection)) {
881 		/*
882 		 * Though the spec talks about removing the pending state, we
883 		 * don't bother here since we clear the ITTE anyway and the
884 		 * pending state is a property of the ITTE struct.
885 		 */
886 		vgic_its_invalidate_cache(kvm);
887 
888 		its_free_ite(kvm, ite);
889 		return 0;
890 	}
891 
892 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
893 }
894 
895 /*
896  * The MOVI command moves an ITTE to a different collection.
897  * Must be called with the its_lock mutex held.
898  */
899 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
900 				    u64 *its_cmd)
901 {
902 	u32 device_id = its_cmd_get_deviceid(its_cmd);
903 	u32 event_id = its_cmd_get_id(its_cmd);
904 	u32 coll_id = its_cmd_get_collection(its_cmd);
905 	struct kvm_vcpu *vcpu;
906 	struct its_ite *ite;
907 	struct its_collection *collection;
908 
909 	ite = find_ite(its, device_id, event_id);
910 	if (!ite)
911 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
912 
913 	if (!its_is_collection_mapped(ite->collection))
914 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
915 
916 	collection = find_collection(its, coll_id);
917 	if (!its_is_collection_mapped(collection))
918 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
919 
920 	ite->collection = collection;
921 	vcpu = collection_to_vcpu(kvm, collection);
922 
923 	vgic_its_invalidate_cache(kvm);
924 
925 	return update_affinity(ite->irq, vcpu);
926 }
927 
928 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
929 {
930 	gfn_t gfn = gpa >> PAGE_SHIFT;
931 	int idx;
932 	bool ret;
933 
934 	idx = srcu_read_lock(&its->dev->kvm->srcu);
935 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
936 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
937 	return ret;
938 }
939 
940 /*
941  * Check whether an ID can be stored into the corresponding guest table.
942  * For a direct table this is pretty easy, but gets a bit nasty for
943  * indirect tables. We check whether the resulting guest physical address
944  * is actually valid (covered by a memslot and guest accessible).
945  * For this we have to read the respective first level entry.
946  */
947 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
948 			      gpa_t *eaddr)
949 {
950 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
951 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
952 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
953 	int esz = GITS_BASER_ENTRY_SIZE(baser);
954 	int index;
955 
956 	switch (type) {
957 	case GITS_BASER_TYPE_DEVICE:
958 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
959 			return false;
960 		break;
961 	case GITS_BASER_TYPE_COLLECTION:
962 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
963 		if (id >= BIT_ULL(16))
964 			return false;
965 		break;
966 	default:
967 		return false;
968 	}
969 
970 	if (!(baser & GITS_BASER_INDIRECT)) {
971 		phys_addr_t addr;
972 
973 		if (id >= (l1_tbl_size / esz))
974 			return false;
975 
976 		addr = base + id * esz;
977 
978 		if (eaddr)
979 			*eaddr = addr;
980 
981 		return __is_visible_gfn_locked(its, addr);
982 	}
983 
984 	/* calculate and check the index into the 1st level */
985 	index = id / (SZ_64K / esz);
986 	if (index >= (l1_tbl_size / sizeof(u64)))
987 		return false;
988 
989 	/* Each 1st level entry is represented by a 64-bit value. */
990 	if (kvm_read_guest_lock(its->dev->kvm,
991 			   base + index * sizeof(indirect_ptr),
992 			   &indirect_ptr, sizeof(indirect_ptr)))
993 		return false;
994 
995 	indirect_ptr = le64_to_cpu(indirect_ptr);
996 
997 	/* check the valid bit of the first level entry */
998 	if (!(indirect_ptr & BIT_ULL(63)))
999 		return false;
1000 
1001 	/* Mask the guest physical address and calculate the frame number. */
1002 	indirect_ptr &= GENMASK_ULL(51, 16);
1003 
1004 	/* Find the address of the actual entry */
1005 	index = id % (SZ_64K / esz);
1006 	indirect_ptr += index * esz;
1007 
1008 	if (eaddr)
1009 		*eaddr = indirect_ptr;
1010 
1011 	return __is_visible_gfn_locked(its, indirect_ptr);
1012 }
1013 
1014 /*
1015  * Check whether an event ID can be stored in the corresponding Interrupt
1016  * Translation Table, which starts at device->itt_addr.
1017  */
1018 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
1019 		u32 event_id)
1020 {
1021 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1022 	int ite_esz = abi->ite_esz;
1023 	gpa_t gpa;
1024 
1025 	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
1026 	if (event_id >= BIT_ULL(device->num_eventid_bits))
1027 		return false;
1028 
1029 	gpa = device->itt_addr + event_id * ite_esz;
1030 	return __is_visible_gfn_locked(its, gpa);
1031 }
1032 
1033 /*
1034  * Add a new collection into the ITS collection table.
1035  * Returns 0 on success, and a negative error value for generic errors.
1036  */
1037 static int vgic_its_alloc_collection(struct vgic_its *its,
1038 				     struct its_collection **colp,
1039 				     u32 coll_id)
1040 {
1041 	struct its_collection *collection;
1042 
1043 	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1044 	if (!collection)
1045 		return -ENOMEM;
1046 
1047 	collection->collection_id = coll_id;
1048 	collection->target_addr = COLLECTION_NOT_MAPPED;
1049 
1050 	list_add_tail(&collection->coll_list, &its->collection_list);
1051 	*colp = collection;
1052 
1053 	return 0;
1054 }
1055 
1056 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1057 {
1058 	struct its_collection *collection;
1059 	struct its_device *device;
1060 	struct its_ite *ite;
1061 
1062 	/*
1063 	 * Clearing the mapping for that collection ID removes the
1064 	 * entry from the list. If there wasn't any before, we can
1065 	 * go home early.
1066 	 */
1067 	collection = find_collection(its, coll_id);
1068 	if (!collection)
1069 		return;
1070 
1071 	for_each_lpi_its(device, ite, its)
1072 		if (ite->collection &&
1073 		    ite->collection->collection_id == coll_id)
1074 			ite->collection = NULL;
1075 
1076 	list_del(&collection->coll_list);
1077 	kfree(collection);
1078 }
1079 
1080 /* Must be called with its_lock mutex held */
1081 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1082 					  struct its_collection *collection,
1083 					  u32 event_id)
1084 {
1085 	struct its_ite *ite;
1086 
1087 	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1088 	if (!ite)
1089 		return ERR_PTR(-ENOMEM);
1090 
1091 	ite->event_id	= event_id;
1092 	ite->collection = collection;
1093 
1094 	list_add_tail(&ite->ite_list, &device->itt_head);
1095 	return ite;
1096 }
1097 
1098 /*
1099  * The MAPTI and MAPI commands map LPIs to ITTEs.
1100  * Must be called with its_lock mutex held.
1101  */
1102 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1103 				    u64 *its_cmd)
1104 {
1105 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1106 	u32 event_id = its_cmd_get_id(its_cmd);
1107 	u32 coll_id = its_cmd_get_collection(its_cmd);
1108 	struct its_ite *ite;
1109 	struct kvm_vcpu *vcpu = NULL;
1110 	struct its_device *device;
1111 	struct its_collection *collection, *new_coll = NULL;
1112 	struct vgic_irq *irq;
1113 	int lpi_nr;
1114 
1115 	device = find_its_device(its, device_id);
1116 	if (!device)
1117 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1118 
1119 	if (!vgic_its_check_event_id(its, device, event_id))
1120 		return E_ITS_MAPTI_ID_OOR;
1121 
1122 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1123 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1124 	else
1125 		lpi_nr = event_id;
1126 	if (lpi_nr < GIC_LPI_OFFSET ||
1127 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1128 		return E_ITS_MAPTI_PHYSICALID_OOR;
1129 
1130 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1131 	if (find_ite(its, device_id, event_id))
1132 		return 0;
1133 
1134 	collection = find_collection(its, coll_id);
1135 	if (!collection) {
1136 		int ret;
1137 
1138 		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1139 			return E_ITS_MAPC_COLLECTION_OOR;
1140 
1141 		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1142 		if (ret)
1143 			return ret;
1144 		new_coll = collection;
1145 	}
1146 
1147 	ite = vgic_its_alloc_ite(device, collection, event_id);
1148 	if (IS_ERR(ite)) {
1149 		if (new_coll)
1150 			vgic_its_free_collection(its, coll_id);
1151 		return PTR_ERR(ite);
1152 	}
1153 
1154 	if (its_is_collection_mapped(collection))
1155 		vcpu = collection_to_vcpu(kvm, collection);
1156 
1157 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1158 	if (IS_ERR(irq)) {
1159 		if (new_coll)
1160 			vgic_its_free_collection(its, coll_id);
1161 		its_free_ite(kvm, ite);
1162 		return PTR_ERR(irq);
1163 	}
1164 	ite->irq = irq;
1165 
1166 	return 0;
1167 }
1168 
1169 /* Requires the its_lock to be held. */
1170 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1171 {
1172 	struct its_ite *ite, *temp;
1173 
1174 	/*
1175 	 * The spec says that unmapping a device with still valid
1176 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1177 	 * since we cannot leave the memory unreferenced.
1178 	 */
1179 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1180 		its_free_ite(kvm, ite);
1181 
1182 	vgic_its_invalidate_cache(kvm);
1183 
1184 	list_del(&device->dev_list);
1185 	kfree(device);
1186 }
1187 
1188 /* its lock must be held */
1189 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1190 {
1191 	struct its_device *cur, *temp;
1192 
1193 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1194 		vgic_its_free_device(kvm, cur);
1195 }
1196 
1197 /* its lock must be held */
1198 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1199 {
1200 	struct its_collection *cur, *temp;
1201 
1202 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1203 		vgic_its_free_collection(its, cur->collection_id);
1204 }
1205 
1206 /* Must be called with its_lock mutex held */
1207 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1208 						u32 device_id, gpa_t itt_addr,
1209 						u8 num_eventid_bits)
1210 {
1211 	struct its_device *device;
1212 
1213 	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1214 	if (!device)
1215 		return ERR_PTR(-ENOMEM);
1216 
1217 	device->device_id = device_id;
1218 	device->itt_addr = itt_addr;
1219 	device->num_eventid_bits = num_eventid_bits;
1220 	INIT_LIST_HEAD(&device->itt_head);
1221 
1222 	list_add_tail(&device->dev_list, &its->device_list);
1223 	return device;
1224 }
1225 
1226 /*
1227  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1228  * Must be called with the its_lock mutex held.
1229  */
1230 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1231 				    u64 *its_cmd)
1232 {
1233 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1234 	bool valid = its_cmd_get_validbit(its_cmd);
1235 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1236 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1237 	struct its_device *device;
1238 
1239 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1240 		return E_ITS_MAPD_DEVICE_OOR;
1241 
1242 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1243 		return E_ITS_MAPD_ITTSIZE_OOR;
1244 
1245 	device = find_its_device(its, device_id);
1246 
1247 	/*
1248 	 * The spec says that calling MAPD on an already mapped device
1249 	 * invalidates all cached data for this device. We implement this
1250 	 * by removing the mapping and re-establishing it.
1251 	 */
1252 	if (device)
1253 		vgic_its_free_device(kvm, device);
1254 
1255 	/*
1256 	 * The spec does not say whether unmapping a not-mapped device
1257 	 * is an error, so we are done in any case.
1258 	 */
1259 	if (!valid)
1260 		return 0;
1261 
1262 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1263 				       num_eventid_bits);
1264 
1265 	return PTR_ERR_OR_ZERO(device);
1266 }
1267 
1268 /*
1269  * The MAPC command maps collection IDs to redistributors.
1270  * Must be called with the its_lock mutex held.
1271  */
1272 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1273 				    u64 *its_cmd)
1274 {
1275 	u16 coll_id;
1276 	struct its_collection *collection;
1277 	bool valid;
1278 
1279 	valid = its_cmd_get_validbit(its_cmd);
1280 	coll_id = its_cmd_get_collection(its_cmd);
1281 
1282 	if (!valid) {
1283 		vgic_its_free_collection(its, coll_id);
1284 		vgic_its_invalidate_cache(kvm);
1285 	} else {
1286 		struct kvm_vcpu *vcpu;
1287 
1288 		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1289 		if (!vcpu)
1290 			return E_ITS_MAPC_PROCNUM_OOR;
1291 
1292 		collection = find_collection(its, coll_id);
1293 
1294 		if (!collection) {
1295 			int ret;
1296 
1297 			if (!vgic_its_check_id(its, its->baser_coll_table,
1298 						coll_id, NULL))
1299 				return E_ITS_MAPC_COLLECTION_OOR;
1300 
1301 			ret = vgic_its_alloc_collection(its, &collection,
1302 							coll_id);
1303 			if (ret)
1304 				return ret;
1305 			collection->target_addr = vcpu->vcpu_id;
1306 		} else {
1307 			collection->target_addr = vcpu->vcpu_id;
1308 			update_affinity_collection(kvm, its, collection);
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 /*
1316  * The CLEAR command removes the pending state for a particular LPI.
1317  * Must be called with the its_lock mutex held.
1318  */
1319 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1320 				     u64 *its_cmd)
1321 {
1322 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1323 	u32 event_id = its_cmd_get_id(its_cmd);
1324 	struct its_ite *ite;
1325 
1326 
1327 	ite = find_ite(its, device_id, event_id);
1328 	if (!ite)
1329 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1330 
1331 	ite->irq->pending_latch = false;
1332 
1333 	if (ite->irq->hw)
1334 		return irq_set_irqchip_state(ite->irq->host_irq,
1335 					     IRQCHIP_STATE_PENDING, false);
1336 
1337 	return 0;
1338 }
1339 
1340 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1341 {
1342 	return update_lpi_config(kvm, irq, NULL, true);
1343 }
1344 
1345 /*
1346  * The INV command syncs the configuration bits from the memory table.
1347  * Must be called with the its_lock mutex held.
1348  */
1349 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1350 				   u64 *its_cmd)
1351 {
1352 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1353 	u32 event_id = its_cmd_get_id(its_cmd);
1354 	struct its_ite *ite;
1355 
1356 
1357 	ite = find_ite(its, device_id, event_id);
1358 	if (!ite)
1359 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1360 
1361 	return vgic_its_inv_lpi(kvm, ite->irq);
1362 }
1363 
1364 /**
1365  * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1366  * @vcpu: the vcpu for which the RD is targeted by an invalidation
1367  *
1368  * Contrary to the INVALL command, this targets a RD instead of a
1369  * collection, and we don't need to hold the its_lock, since no ITS is
1370  * involved here.
1371  */
1372 int vgic_its_invall(struct kvm_vcpu *vcpu)
1373 {
1374 	struct kvm *kvm = vcpu->kvm;
1375 	int irq_count, i = 0;
1376 	u32 *intids;
1377 
1378 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1379 	if (irq_count < 0)
1380 		return irq_count;
1381 
1382 	for (i = 0; i < irq_count; i++) {
1383 		struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1384 		if (!irq)
1385 			continue;
1386 		update_lpi_config(kvm, irq, vcpu, false);
1387 		vgic_put_irq(kvm, irq);
1388 	}
1389 
1390 	kfree(intids);
1391 
1392 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1393 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1394 
1395 	return 0;
1396 }
1397 
1398 /*
1399  * The INVALL command requests flushing of all IRQ data in this collection.
1400  * Find the VCPU mapped to that collection, then iterate over the VM's list
1401  * of mapped LPIs and update the configuration for each IRQ which targets
1402  * the specified vcpu. The configuration will be read from the in-memory
1403  * configuration table.
1404  * Must be called with the its_lock mutex held.
1405  */
1406 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1407 				      u64 *its_cmd)
1408 {
1409 	u32 coll_id = its_cmd_get_collection(its_cmd);
1410 	struct its_collection *collection;
1411 	struct kvm_vcpu *vcpu;
1412 
1413 	collection = find_collection(its, coll_id);
1414 	if (!its_is_collection_mapped(collection))
1415 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1416 
1417 	vcpu = collection_to_vcpu(kvm, collection);
1418 	vgic_its_invall(vcpu);
1419 
1420 	return 0;
1421 }
1422 
1423 /*
1424  * The MOVALL command moves the pending state of all IRQs targeting one
1425  * redistributor to another. We don't hold the pending state in the VCPUs,
1426  * but in the IRQs instead, so there is really not much to do for us here.
1427  * However the spec says that no IRQ must target the old redistributor
1428  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1429  * This command affects all LPIs in the system that target that redistributor.
1430  */
1431 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1432 				      u64 *its_cmd)
1433 {
1434 	struct kvm_vcpu *vcpu1, *vcpu2;
1435 	struct vgic_irq *irq;
1436 	u32 *intids;
1437 	int irq_count, i;
1438 
1439 	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1440 	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1441 	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1442 
1443 	if (!vcpu1 || !vcpu2)
1444 		return E_ITS_MOVALL_PROCNUM_OOR;
1445 
1446 	if (vcpu1 == vcpu2)
1447 		return 0;
1448 
1449 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1450 	if (irq_count < 0)
1451 		return irq_count;
1452 
1453 	for (i = 0; i < irq_count; i++) {
1454 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1455 		if (!irq)
1456 			continue;
1457 
1458 		update_affinity(irq, vcpu2);
1459 
1460 		vgic_put_irq(kvm, irq);
1461 	}
1462 
1463 	vgic_its_invalidate_cache(kvm);
1464 
1465 	kfree(intids);
1466 	return 0;
1467 }
1468 
1469 /*
1470  * The INT command injects the LPI associated with that DevID/EvID pair.
1471  * Must be called with the its_lock mutex held.
1472  */
1473 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1474 				   u64 *its_cmd)
1475 {
1476 	u32 msi_data = its_cmd_get_id(its_cmd);
1477 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1478 
1479 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1480 }
1481 
1482 /*
1483  * This function is called with the its_cmd lock held, but the ITS data
1484  * structure lock dropped.
1485  */
1486 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1487 				   u64 *its_cmd)
1488 {
1489 	int ret = -ENODEV;
1490 
1491 	mutex_lock(&its->its_lock);
1492 	switch (its_cmd_get_command(its_cmd)) {
1493 	case GITS_CMD_MAPD:
1494 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1495 		break;
1496 	case GITS_CMD_MAPC:
1497 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1498 		break;
1499 	case GITS_CMD_MAPI:
1500 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1501 		break;
1502 	case GITS_CMD_MAPTI:
1503 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1504 		break;
1505 	case GITS_CMD_MOVI:
1506 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1507 		break;
1508 	case GITS_CMD_DISCARD:
1509 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1510 		break;
1511 	case GITS_CMD_CLEAR:
1512 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1513 		break;
1514 	case GITS_CMD_MOVALL:
1515 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1516 		break;
1517 	case GITS_CMD_INT:
1518 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1519 		break;
1520 	case GITS_CMD_INV:
1521 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1522 		break;
1523 	case GITS_CMD_INVALL:
1524 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1525 		break;
1526 	case GITS_CMD_SYNC:
1527 		/* we ignore this command: we are in sync all of the time */
1528 		ret = 0;
1529 		break;
1530 	}
1531 	mutex_unlock(&its->its_lock);
1532 
1533 	return ret;
1534 }
1535 
1536 static u64 vgic_sanitise_its_baser(u64 reg)
1537 {
1538 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1539 				  GITS_BASER_SHAREABILITY_SHIFT,
1540 				  vgic_sanitise_shareability);
1541 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1542 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1543 				  vgic_sanitise_inner_cacheability);
1544 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1545 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1546 				  vgic_sanitise_outer_cacheability);
1547 
1548 	/* We support only one (ITS) page size: 64K */
1549 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1550 
1551 	return reg;
1552 }
1553 
1554 static u64 vgic_sanitise_its_cbaser(u64 reg)
1555 {
1556 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1557 				  GITS_CBASER_SHAREABILITY_SHIFT,
1558 				  vgic_sanitise_shareability);
1559 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1560 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1561 				  vgic_sanitise_inner_cacheability);
1562 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1563 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1564 				  vgic_sanitise_outer_cacheability);
1565 
1566 	/* Sanitise the physical address to be 64k aligned. */
1567 	reg &= ~GENMASK_ULL(15, 12);
1568 
1569 	return reg;
1570 }
1571 
1572 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1573 					       struct vgic_its *its,
1574 					       gpa_t addr, unsigned int len)
1575 {
1576 	return extract_bytes(its->cbaser, addr & 7, len);
1577 }
1578 
1579 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1580 				       gpa_t addr, unsigned int len,
1581 				       unsigned long val)
1582 {
1583 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1584 	if (its->enabled)
1585 		return;
1586 
1587 	mutex_lock(&its->cmd_lock);
1588 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1589 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1590 	its->creadr = 0;
1591 	/*
1592 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1593 	 * it to CREADR to make sure we start with an empty command buffer.
1594 	 */
1595 	its->cwriter = its->creadr;
1596 	mutex_unlock(&its->cmd_lock);
1597 }
1598 
1599 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1600 #define ITS_CMD_SIZE			32
1601 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1602 
1603 /* Must be called with the cmd_lock held. */
1604 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1605 {
1606 	gpa_t cbaser;
1607 	u64 cmd_buf[4];
1608 
1609 	/* Commands are only processed when the ITS is enabled. */
1610 	if (!its->enabled)
1611 		return;
1612 
1613 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1614 
1615 	while (its->cwriter != its->creadr) {
1616 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1617 					      cmd_buf, ITS_CMD_SIZE);
1618 		/*
1619 		 * If kvm_read_guest() fails, this could be due to the guest
1620 		 * programming a bogus value in CBASER or something else going
1621 		 * wrong from which we cannot easily recover.
1622 		 * According to section 6.3.2 in the GICv3 spec we can just
1623 		 * ignore that command then.
1624 		 */
1625 		if (!ret)
1626 			vgic_its_handle_command(kvm, its, cmd_buf);
1627 
1628 		its->creadr += ITS_CMD_SIZE;
1629 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1630 			its->creadr = 0;
1631 	}
1632 }
1633 
1634 /*
1635  * By writing to CWRITER the guest announces new commands to be processed.
1636  * To avoid any races in the first place, we take the its_cmd lock, which
1637  * protects our ring buffer variables, so that there is only one user
1638  * per ITS handling commands at a given time.
1639  */
1640 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1641 					gpa_t addr, unsigned int len,
1642 					unsigned long val)
1643 {
1644 	u64 reg;
1645 
1646 	if (!its)
1647 		return;
1648 
1649 	mutex_lock(&its->cmd_lock);
1650 
1651 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1652 	reg = ITS_CMD_OFFSET(reg);
1653 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1654 		mutex_unlock(&its->cmd_lock);
1655 		return;
1656 	}
1657 	its->cwriter = reg;
1658 
1659 	vgic_its_process_commands(kvm, its);
1660 
1661 	mutex_unlock(&its->cmd_lock);
1662 }
1663 
1664 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1665 						struct vgic_its *its,
1666 						gpa_t addr, unsigned int len)
1667 {
1668 	return extract_bytes(its->cwriter, addr & 0x7, len);
1669 }
1670 
1671 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1672 					       struct vgic_its *its,
1673 					       gpa_t addr, unsigned int len)
1674 {
1675 	return extract_bytes(its->creadr, addr & 0x7, len);
1676 }
1677 
1678 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1679 					      struct vgic_its *its,
1680 					      gpa_t addr, unsigned int len,
1681 					      unsigned long val)
1682 {
1683 	u32 cmd_offset;
1684 	int ret = 0;
1685 
1686 	mutex_lock(&its->cmd_lock);
1687 
1688 	if (its->enabled) {
1689 		ret = -EBUSY;
1690 		goto out;
1691 	}
1692 
1693 	cmd_offset = ITS_CMD_OFFSET(val);
1694 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1695 		ret = -EINVAL;
1696 		goto out;
1697 	}
1698 
1699 	its->creadr = cmd_offset;
1700 out:
1701 	mutex_unlock(&its->cmd_lock);
1702 	return ret;
1703 }
1704 
1705 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1706 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1707 					      struct vgic_its *its,
1708 					      gpa_t addr, unsigned int len)
1709 {
1710 	u64 reg;
1711 
1712 	switch (BASER_INDEX(addr)) {
1713 	case 0:
1714 		reg = its->baser_device_table;
1715 		break;
1716 	case 1:
1717 		reg = its->baser_coll_table;
1718 		break;
1719 	default:
1720 		reg = 0;
1721 		break;
1722 	}
1723 
1724 	return extract_bytes(reg, addr & 7, len);
1725 }
1726 
1727 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1728 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1729 				      struct vgic_its *its,
1730 				      gpa_t addr, unsigned int len,
1731 				      unsigned long val)
1732 {
1733 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1734 	u64 entry_size, table_type;
1735 	u64 reg, *regptr, clearbits = 0;
1736 
1737 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1738 	if (its->enabled)
1739 		return;
1740 
1741 	switch (BASER_INDEX(addr)) {
1742 	case 0:
1743 		regptr = &its->baser_device_table;
1744 		entry_size = abi->dte_esz;
1745 		table_type = GITS_BASER_TYPE_DEVICE;
1746 		break;
1747 	case 1:
1748 		regptr = &its->baser_coll_table;
1749 		entry_size = abi->cte_esz;
1750 		table_type = GITS_BASER_TYPE_COLLECTION;
1751 		clearbits = GITS_BASER_INDIRECT;
1752 		break;
1753 	default:
1754 		return;
1755 	}
1756 
1757 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1758 	reg &= ~GITS_BASER_RO_MASK;
1759 	reg &= ~clearbits;
1760 
1761 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1762 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1763 	reg = vgic_sanitise_its_baser(reg);
1764 
1765 	*regptr = reg;
1766 
1767 	if (!(reg & GITS_BASER_VALID)) {
1768 		/* Take the its_lock to prevent a race with a save/restore */
1769 		mutex_lock(&its->its_lock);
1770 		switch (table_type) {
1771 		case GITS_BASER_TYPE_DEVICE:
1772 			vgic_its_free_device_list(kvm, its);
1773 			break;
1774 		case GITS_BASER_TYPE_COLLECTION:
1775 			vgic_its_free_collection_list(kvm, its);
1776 			break;
1777 		}
1778 		mutex_unlock(&its->its_lock);
1779 	}
1780 }
1781 
1782 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1783 					     struct vgic_its *its,
1784 					     gpa_t addr, unsigned int len)
1785 {
1786 	u32 reg = 0;
1787 
1788 	mutex_lock(&its->cmd_lock);
1789 	if (its->creadr == its->cwriter)
1790 		reg |= GITS_CTLR_QUIESCENT;
1791 	if (its->enabled)
1792 		reg |= GITS_CTLR_ENABLE;
1793 	mutex_unlock(&its->cmd_lock);
1794 
1795 	return reg;
1796 }
1797 
1798 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1799 				     gpa_t addr, unsigned int len,
1800 				     unsigned long val)
1801 {
1802 	mutex_lock(&its->cmd_lock);
1803 
1804 	/*
1805 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1806 	 * device/collection BASER are invalid
1807 	 */
1808 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1809 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1810 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1811 		 !(its->cbaser & GITS_CBASER_VALID)))
1812 		goto out;
1813 
1814 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1815 	if (!its->enabled)
1816 		vgic_its_invalidate_cache(kvm);
1817 
1818 	/*
1819 	 * Try to process any pending commands. This function bails out early
1820 	 * if the ITS is disabled or no commands have been queued.
1821 	 */
1822 	vgic_its_process_commands(kvm, its);
1823 
1824 out:
1825 	mutex_unlock(&its->cmd_lock);
1826 }
1827 
1828 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1829 {								\
1830 	.reg_offset = off,					\
1831 	.len = length,						\
1832 	.access_flags = acc,					\
1833 	.its_read = rd,						\
1834 	.its_write = wr,					\
1835 }
1836 
1837 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1838 {								\
1839 	.reg_offset = off,					\
1840 	.len = length,						\
1841 	.access_flags = acc,					\
1842 	.its_read = rd,						\
1843 	.its_write = wr,					\
1844 	.uaccess_its_write = uwr,				\
1845 }
1846 
1847 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1848 			      gpa_t addr, unsigned int len, unsigned long val)
1849 {
1850 	/* Ignore */
1851 }
1852 
1853 static struct vgic_register_region its_registers[] = {
1854 	REGISTER_ITS_DESC(GITS_CTLR,
1855 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1856 		VGIC_ACCESS_32bit),
1857 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1858 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1859 		vgic_mmio_uaccess_write_its_iidr, 4,
1860 		VGIC_ACCESS_32bit),
1861 	REGISTER_ITS_DESC(GITS_TYPER,
1862 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1863 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1864 	REGISTER_ITS_DESC(GITS_CBASER,
1865 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1866 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1867 	REGISTER_ITS_DESC(GITS_CWRITER,
1868 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1869 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1870 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1871 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1872 		vgic_mmio_uaccess_write_its_creadr, 8,
1873 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1874 	REGISTER_ITS_DESC(GITS_BASER,
1875 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1876 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1877 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1878 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1879 		VGIC_ACCESS_32bit),
1880 };
1881 
1882 /* This is called on setting the LPI enable bit in the redistributor. */
1883 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1884 {
1885 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1886 		its_sync_lpi_pending_table(vcpu);
1887 }
1888 
1889 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1890 				   u64 addr)
1891 {
1892 	struct vgic_io_device *iodev = &its->iodev;
1893 	int ret;
1894 
1895 	mutex_lock(&kvm->slots_lock);
1896 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1897 		ret = -EBUSY;
1898 		goto out;
1899 	}
1900 
1901 	its->vgic_its_base = addr;
1902 	iodev->regions = its_registers;
1903 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1904 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1905 
1906 	iodev->base_addr = its->vgic_its_base;
1907 	iodev->iodev_type = IODEV_ITS;
1908 	iodev->its = its;
1909 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1910 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1911 out:
1912 	mutex_unlock(&kvm->slots_lock);
1913 
1914 	return ret;
1915 }
1916 
1917 /* Default is 16 cached LPIs per vcpu */
1918 #define LPI_DEFAULT_PCPU_CACHE_SIZE	16
1919 
1920 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1921 {
1922 	struct vgic_dist *dist = &kvm->arch.vgic;
1923 	unsigned int sz;
1924 	int i;
1925 
1926 	if (!list_empty(&dist->lpi_translation_cache))
1927 		return;
1928 
1929 	sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1930 
1931 	for (i = 0; i < sz; i++) {
1932 		struct vgic_translation_cache_entry *cte;
1933 
1934 		/* An allocation failure is not fatal */
1935 		cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1936 		if (WARN_ON(!cte))
1937 			break;
1938 
1939 		INIT_LIST_HEAD(&cte->entry);
1940 		list_add(&cte->entry, &dist->lpi_translation_cache);
1941 	}
1942 }
1943 
1944 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1945 {
1946 	struct vgic_dist *dist = &kvm->arch.vgic;
1947 	struct vgic_translation_cache_entry *cte, *tmp;
1948 
1949 	vgic_its_invalidate_cache(kvm);
1950 
1951 	list_for_each_entry_safe(cte, tmp,
1952 				 &dist->lpi_translation_cache, entry) {
1953 		list_del(&cte->entry);
1954 		kfree(cte);
1955 	}
1956 }
1957 
1958 #define INITIAL_BASER_VALUE						  \
1959 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1960 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1961 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1962 	 GITS_BASER_PAGE_SIZE_64K)
1963 
1964 #define INITIAL_PROPBASER_VALUE						  \
1965 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1966 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1967 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1968 
1969 static int vgic_its_create(struct kvm_device *dev, u32 type)
1970 {
1971 	int ret;
1972 	struct vgic_its *its;
1973 
1974 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1975 		return -ENODEV;
1976 
1977 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1978 	if (!its)
1979 		return -ENOMEM;
1980 
1981 	mutex_lock(&dev->kvm->arch.config_lock);
1982 
1983 	if (vgic_initialized(dev->kvm)) {
1984 		ret = vgic_v4_init(dev->kvm);
1985 		if (ret < 0) {
1986 			mutex_unlock(&dev->kvm->arch.config_lock);
1987 			kfree(its);
1988 			return ret;
1989 		}
1990 
1991 		vgic_lpi_translation_cache_init(dev->kvm);
1992 	}
1993 
1994 	mutex_init(&its->its_lock);
1995 	mutex_init(&its->cmd_lock);
1996 
1997 	/* Yep, even more trickery for lock ordering... */
1998 #ifdef CONFIG_LOCKDEP
1999 	mutex_lock(&its->cmd_lock);
2000 	mutex_lock(&its->its_lock);
2001 	mutex_unlock(&its->its_lock);
2002 	mutex_unlock(&its->cmd_lock);
2003 #endif
2004 
2005 	its->vgic_its_base = VGIC_ADDR_UNDEF;
2006 
2007 	INIT_LIST_HEAD(&its->device_list);
2008 	INIT_LIST_HEAD(&its->collection_list);
2009 
2010 	dev->kvm->arch.vgic.msis_require_devid = true;
2011 	dev->kvm->arch.vgic.has_its = true;
2012 	its->enabled = false;
2013 	its->dev = dev;
2014 
2015 	its->baser_device_table = INITIAL_BASER_VALUE			|
2016 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
2017 	its->baser_coll_table = INITIAL_BASER_VALUE |
2018 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
2019 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
2020 
2021 	dev->private = its;
2022 
2023 	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
2024 
2025 	mutex_unlock(&dev->kvm->arch.config_lock);
2026 
2027 	return ret;
2028 }
2029 
2030 static void vgic_its_destroy(struct kvm_device *kvm_dev)
2031 {
2032 	struct kvm *kvm = kvm_dev->kvm;
2033 	struct vgic_its *its = kvm_dev->private;
2034 
2035 	mutex_lock(&its->its_lock);
2036 
2037 	vgic_its_free_device_list(kvm, its);
2038 	vgic_its_free_collection_list(kvm, its);
2039 
2040 	mutex_unlock(&its->its_lock);
2041 	kfree(its);
2042 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2043 }
2044 
2045 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2046 				  struct kvm_device_attr *attr)
2047 {
2048 	const struct vgic_register_region *region;
2049 	gpa_t offset = attr->attr;
2050 	int align;
2051 
2052 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2053 
2054 	if (offset & align)
2055 		return -EINVAL;
2056 
2057 	region = vgic_find_mmio_region(its_registers,
2058 				       ARRAY_SIZE(its_registers),
2059 				       offset);
2060 	if (!region)
2061 		return -ENXIO;
2062 
2063 	return 0;
2064 }
2065 
2066 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2067 				     struct kvm_device_attr *attr,
2068 				     u64 *reg, bool is_write)
2069 {
2070 	const struct vgic_register_region *region;
2071 	struct vgic_its *its;
2072 	gpa_t addr, offset;
2073 	unsigned int len;
2074 	int align, ret = 0;
2075 
2076 	its = dev->private;
2077 	offset = attr->attr;
2078 
2079 	/*
2080 	 * Although the spec supports upper/lower 32-bit accesses to
2081 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
2082 	 * accesses to all 64-bit wide registers. We therefore only
2083 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2084 	 * registers
2085 	 */
2086 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2087 		align = 0x3;
2088 	else
2089 		align = 0x7;
2090 
2091 	if (offset & align)
2092 		return -EINVAL;
2093 
2094 	mutex_lock(&dev->kvm->lock);
2095 
2096 	if (!lock_all_vcpus(dev->kvm)) {
2097 		mutex_unlock(&dev->kvm->lock);
2098 		return -EBUSY;
2099 	}
2100 
2101 	mutex_lock(&dev->kvm->arch.config_lock);
2102 
2103 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2104 		ret = -ENXIO;
2105 		goto out;
2106 	}
2107 
2108 	region = vgic_find_mmio_region(its_registers,
2109 				       ARRAY_SIZE(its_registers),
2110 				       offset);
2111 	if (!region) {
2112 		ret = -ENXIO;
2113 		goto out;
2114 	}
2115 
2116 	addr = its->vgic_its_base + offset;
2117 
2118 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2119 
2120 	if (is_write) {
2121 		if (region->uaccess_its_write)
2122 			ret = region->uaccess_its_write(dev->kvm, its, addr,
2123 							len, *reg);
2124 		else
2125 			region->its_write(dev->kvm, its, addr, len, *reg);
2126 	} else {
2127 		*reg = region->its_read(dev->kvm, its, addr, len);
2128 	}
2129 out:
2130 	mutex_unlock(&dev->kvm->arch.config_lock);
2131 	unlock_all_vcpus(dev->kvm);
2132 	mutex_unlock(&dev->kvm->lock);
2133 	return ret;
2134 }
2135 
2136 static u32 compute_next_devid_offset(struct list_head *h,
2137 				     struct its_device *dev)
2138 {
2139 	struct its_device *next;
2140 	u32 next_offset;
2141 
2142 	if (list_is_last(&dev->dev_list, h))
2143 		return 0;
2144 	next = list_next_entry(dev, dev_list);
2145 	next_offset = next->device_id - dev->device_id;
2146 
2147 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2148 }
2149 
2150 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2151 {
2152 	struct its_ite *next;
2153 	u32 next_offset;
2154 
2155 	if (list_is_last(&ite->ite_list, h))
2156 		return 0;
2157 	next = list_next_entry(ite, ite_list);
2158 	next_offset = next->event_id - ite->event_id;
2159 
2160 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2161 }
2162 
2163 /**
2164  * typedef entry_fn_t - Callback called on a table entry restore path
2165  * @its: its handle
2166  * @id: id of the entry
2167  * @entry: pointer to the entry
2168  * @opaque: pointer to an opaque data
2169  *
2170  * Return: < 0 on error, 0 if last element was identified, id offset to next
2171  * element otherwise
2172  */
2173 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2174 			  void *opaque);
2175 
2176 /**
2177  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2178  * to each entry
2179  *
2180  * @its: its handle
2181  * @base: base gpa of the table
2182  * @size: size of the table in bytes
2183  * @esz: entry size in bytes
2184  * @start_id: the ID of the first entry in the table
2185  * (non zero for 2d level tables)
2186  * @fn: function to apply on each entry
2187  *
2188  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2189  * (the last element may not be found on second level tables)
2190  */
2191 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2192 			  int start_id, entry_fn_t fn, void *opaque)
2193 {
2194 	struct kvm *kvm = its->dev->kvm;
2195 	unsigned long len = size;
2196 	int id = start_id;
2197 	gpa_t gpa = base;
2198 	char entry[ESZ_MAX];
2199 	int ret;
2200 
2201 	memset(entry, 0, esz);
2202 
2203 	while (true) {
2204 		int next_offset;
2205 		size_t byte_offset;
2206 
2207 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2208 		if (ret)
2209 			return ret;
2210 
2211 		next_offset = fn(its, id, entry, opaque);
2212 		if (next_offset <= 0)
2213 			return next_offset;
2214 
2215 		byte_offset = next_offset * esz;
2216 		if (byte_offset >= len)
2217 			break;
2218 
2219 		id += next_offset;
2220 		gpa += byte_offset;
2221 		len -= byte_offset;
2222 	}
2223 	return 1;
2224 }
2225 
2226 /**
2227  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2228  */
2229 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2230 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2231 {
2232 	struct kvm *kvm = its->dev->kvm;
2233 	u32 next_offset;
2234 	u64 val;
2235 
2236 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2237 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2238 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2239 		ite->collection->collection_id;
2240 	val = cpu_to_le64(val);
2241 	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2242 }
2243 
2244 /**
2245  * vgic_its_restore_ite - restore an interrupt translation entry
2246  * @event_id: id used for indexing
2247  * @ptr: pointer to the ITE entry
2248  * @opaque: pointer to the its_device
2249  */
2250 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2251 				void *ptr, void *opaque)
2252 {
2253 	struct its_device *dev = opaque;
2254 	struct its_collection *collection;
2255 	struct kvm *kvm = its->dev->kvm;
2256 	struct kvm_vcpu *vcpu = NULL;
2257 	u64 val;
2258 	u64 *p = (u64 *)ptr;
2259 	struct vgic_irq *irq;
2260 	u32 coll_id, lpi_id;
2261 	struct its_ite *ite;
2262 	u32 offset;
2263 
2264 	val = *p;
2265 
2266 	val = le64_to_cpu(val);
2267 
2268 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2269 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2270 
2271 	if (!lpi_id)
2272 		return 1; /* invalid entry, no choice but to scan next entry */
2273 
2274 	if (lpi_id < VGIC_MIN_LPI)
2275 		return -EINVAL;
2276 
2277 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2278 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2279 		return -EINVAL;
2280 
2281 	collection = find_collection(its, coll_id);
2282 	if (!collection)
2283 		return -EINVAL;
2284 
2285 	if (!vgic_its_check_event_id(its, dev, event_id))
2286 		return -EINVAL;
2287 
2288 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2289 	if (IS_ERR(ite))
2290 		return PTR_ERR(ite);
2291 
2292 	if (its_is_collection_mapped(collection))
2293 		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2294 
2295 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2296 	if (IS_ERR(irq)) {
2297 		its_free_ite(kvm, ite);
2298 		return PTR_ERR(irq);
2299 	}
2300 	ite->irq = irq;
2301 
2302 	return offset;
2303 }
2304 
2305 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2306 			    const struct list_head *b)
2307 {
2308 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2309 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2310 
2311 	if (itea->event_id < iteb->event_id)
2312 		return -1;
2313 	else
2314 		return 1;
2315 }
2316 
2317 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2318 {
2319 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2320 	gpa_t base = device->itt_addr;
2321 	struct its_ite *ite;
2322 	int ret;
2323 	int ite_esz = abi->ite_esz;
2324 
2325 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2326 
2327 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2328 		gpa_t gpa = base + ite->event_id * ite_esz;
2329 
2330 		/*
2331 		 * If an LPI carries the HW bit, this means that this
2332 		 * interrupt is controlled by GICv4, and we do not
2333 		 * have direct access to that state without GICv4.1.
2334 		 * Let's simply fail the save operation...
2335 		 */
2336 		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2337 			return -EACCES;
2338 
2339 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2340 		if (ret)
2341 			return ret;
2342 	}
2343 	return 0;
2344 }
2345 
2346 /**
2347  * vgic_its_restore_itt - restore the ITT of a device
2348  *
2349  * @its: its handle
2350  * @dev: device handle
2351  *
2352  * Return 0 on success, < 0 on error
2353  */
2354 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2355 {
2356 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2357 	gpa_t base = dev->itt_addr;
2358 	int ret;
2359 	int ite_esz = abi->ite_esz;
2360 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2361 
2362 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2363 			     vgic_its_restore_ite, dev);
2364 
2365 	/* scan_its_table returns +1 if all ITEs are invalid */
2366 	if (ret > 0)
2367 		ret = 0;
2368 
2369 	return ret;
2370 }
2371 
2372 /**
2373  * vgic_its_save_dte - Save a device table entry at a given GPA
2374  *
2375  * @its: ITS handle
2376  * @dev: ITS device
2377  * @ptr: GPA
2378  */
2379 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2380 			     gpa_t ptr, int dte_esz)
2381 {
2382 	struct kvm *kvm = its->dev->kvm;
2383 	u64 val, itt_addr_field;
2384 	u32 next_offset;
2385 
2386 	itt_addr_field = dev->itt_addr >> 8;
2387 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2388 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2389 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2390 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2391 		(dev->num_eventid_bits - 1));
2392 	val = cpu_to_le64(val);
2393 	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2394 }
2395 
2396 /**
2397  * vgic_its_restore_dte - restore a device table entry
2398  *
2399  * @its: its handle
2400  * @id: device id the DTE corresponds to
2401  * @ptr: kernel VA where the 8 byte DTE is located
2402  * @opaque: unused
2403  *
2404  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2405  * next dte otherwise
2406  */
2407 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2408 				void *ptr, void *opaque)
2409 {
2410 	struct its_device *dev;
2411 	u64 baser = its->baser_device_table;
2412 	gpa_t itt_addr;
2413 	u8 num_eventid_bits;
2414 	u64 entry = *(u64 *)ptr;
2415 	bool valid;
2416 	u32 offset;
2417 	int ret;
2418 
2419 	entry = le64_to_cpu(entry);
2420 
2421 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2422 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2423 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2424 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2425 
2426 	if (!valid)
2427 		return 1;
2428 
2429 	/* dte entry is valid */
2430 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2431 
2432 	if (!vgic_its_check_id(its, baser, id, NULL))
2433 		return -EINVAL;
2434 
2435 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2436 	if (IS_ERR(dev))
2437 		return PTR_ERR(dev);
2438 
2439 	ret = vgic_its_restore_itt(its, dev);
2440 	if (ret) {
2441 		vgic_its_free_device(its->dev->kvm, dev);
2442 		return ret;
2443 	}
2444 
2445 	return offset;
2446 }
2447 
2448 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2449 			       const struct list_head *b)
2450 {
2451 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2452 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2453 
2454 	if (deva->device_id < devb->device_id)
2455 		return -1;
2456 	else
2457 		return 1;
2458 }
2459 
2460 /**
2461  * vgic_its_save_device_tables - Save the device table and all ITT
2462  * into guest RAM
2463  *
2464  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2465  * returns the GPA of the device entry
2466  */
2467 static int vgic_its_save_device_tables(struct vgic_its *its)
2468 {
2469 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2470 	u64 baser = its->baser_device_table;
2471 	struct its_device *dev;
2472 	int dte_esz = abi->dte_esz;
2473 
2474 	if (!(baser & GITS_BASER_VALID))
2475 		return 0;
2476 
2477 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2478 
2479 	list_for_each_entry(dev, &its->device_list, dev_list) {
2480 		int ret;
2481 		gpa_t eaddr;
2482 
2483 		if (!vgic_its_check_id(its, baser,
2484 				       dev->device_id, &eaddr))
2485 			return -EINVAL;
2486 
2487 		ret = vgic_its_save_itt(its, dev);
2488 		if (ret)
2489 			return ret;
2490 
2491 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2492 		if (ret)
2493 			return ret;
2494 	}
2495 	return 0;
2496 }
2497 
2498 /**
2499  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2500  *
2501  * @its: its handle
2502  * @id: index of the entry in the L1 table
2503  * @addr: kernel VA
2504  * @opaque: unused
2505  *
2506  * L1 table entries are scanned by steps of 1 entry
2507  * Return < 0 if error, 0 if last dte was found when scanning the L2
2508  * table, +1 otherwise (meaning next L1 entry must be scanned)
2509  */
2510 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2511 			 void *opaque)
2512 {
2513 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2514 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2515 	u64 entry = *(u64 *)addr;
2516 	int dte_esz = abi->dte_esz;
2517 	gpa_t gpa;
2518 	int ret;
2519 
2520 	entry = le64_to_cpu(entry);
2521 
2522 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2523 		return 1;
2524 
2525 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2526 
2527 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2528 			     l2_start_id, vgic_its_restore_dte, NULL);
2529 
2530 	return ret;
2531 }
2532 
2533 /**
2534  * vgic_its_restore_device_tables - Restore the device table and all ITT
2535  * from guest RAM to internal data structs
2536  */
2537 static int vgic_its_restore_device_tables(struct vgic_its *its)
2538 {
2539 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2540 	u64 baser = its->baser_device_table;
2541 	int l1_esz, ret;
2542 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2543 	gpa_t l1_gpa;
2544 
2545 	if (!(baser & GITS_BASER_VALID))
2546 		return 0;
2547 
2548 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2549 
2550 	if (baser & GITS_BASER_INDIRECT) {
2551 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2552 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2553 				     handle_l1_dte, NULL);
2554 	} else {
2555 		l1_esz = abi->dte_esz;
2556 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2557 				     vgic_its_restore_dte, NULL);
2558 	}
2559 
2560 	/* scan_its_table returns +1 if all entries are invalid */
2561 	if (ret > 0)
2562 		ret = 0;
2563 
2564 	if (ret < 0)
2565 		vgic_its_free_device_list(its->dev->kvm, its);
2566 
2567 	return ret;
2568 }
2569 
2570 static int vgic_its_save_cte(struct vgic_its *its,
2571 			     struct its_collection *collection,
2572 			     gpa_t gpa, int esz)
2573 {
2574 	u64 val;
2575 
2576 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2577 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2578 	       collection->collection_id);
2579 	val = cpu_to_le64(val);
2580 	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2581 }
2582 
2583 /*
2584  * Restore a collection entry into the ITS collection table.
2585  * Return +1 on success, 0 if the entry was invalid (which should be
2586  * interpreted as end-of-table), and a negative error value for generic errors.
2587  */
2588 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2589 {
2590 	struct its_collection *collection;
2591 	struct kvm *kvm = its->dev->kvm;
2592 	u32 target_addr, coll_id;
2593 	u64 val;
2594 	int ret;
2595 
2596 	BUG_ON(esz > sizeof(val));
2597 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2598 	if (ret)
2599 		return ret;
2600 	val = le64_to_cpu(val);
2601 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2602 		return 0;
2603 
2604 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2605 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2606 
2607 	if (target_addr != COLLECTION_NOT_MAPPED &&
2608 	    !kvm_get_vcpu_by_id(kvm, target_addr))
2609 		return -EINVAL;
2610 
2611 	collection = find_collection(its, coll_id);
2612 	if (collection)
2613 		return -EEXIST;
2614 
2615 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2616 		return -EINVAL;
2617 
2618 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2619 	if (ret)
2620 		return ret;
2621 	collection->target_addr = target_addr;
2622 	return 1;
2623 }
2624 
2625 /**
2626  * vgic_its_save_collection_table - Save the collection table into
2627  * guest RAM
2628  */
2629 static int vgic_its_save_collection_table(struct vgic_its *its)
2630 {
2631 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2632 	u64 baser = its->baser_coll_table;
2633 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2634 	struct its_collection *collection;
2635 	u64 val;
2636 	size_t max_size, filled = 0;
2637 	int ret, cte_esz = abi->cte_esz;
2638 
2639 	if (!(baser & GITS_BASER_VALID))
2640 		return 0;
2641 
2642 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2643 
2644 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2645 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2646 		if (ret)
2647 			return ret;
2648 		gpa += cte_esz;
2649 		filled += cte_esz;
2650 	}
2651 
2652 	if (filled == max_size)
2653 		return 0;
2654 
2655 	/*
2656 	 * table is not fully filled, add a last dummy element
2657 	 * with valid bit unset
2658 	 */
2659 	val = 0;
2660 	BUG_ON(cte_esz > sizeof(val));
2661 	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2662 	return ret;
2663 }
2664 
2665 /**
2666  * vgic_its_restore_collection_table - reads the collection table
2667  * in guest memory and restores the ITS internal state. Requires the
2668  * BASER registers to be restored before.
2669  */
2670 static int vgic_its_restore_collection_table(struct vgic_its *its)
2671 {
2672 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2673 	u64 baser = its->baser_coll_table;
2674 	int cte_esz = abi->cte_esz;
2675 	size_t max_size, read = 0;
2676 	gpa_t gpa;
2677 	int ret;
2678 
2679 	if (!(baser & GITS_BASER_VALID))
2680 		return 0;
2681 
2682 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2683 
2684 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2685 
2686 	while (read < max_size) {
2687 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2688 		if (ret <= 0)
2689 			break;
2690 		gpa += cte_esz;
2691 		read += cte_esz;
2692 	}
2693 
2694 	if (ret > 0)
2695 		return 0;
2696 
2697 	if (ret < 0)
2698 		vgic_its_free_collection_list(its->dev->kvm, its);
2699 
2700 	return ret;
2701 }
2702 
2703 /**
2704  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2705  * according to v0 ABI
2706  */
2707 static int vgic_its_save_tables_v0(struct vgic_its *its)
2708 {
2709 	int ret;
2710 
2711 	ret = vgic_its_save_device_tables(its);
2712 	if (ret)
2713 		return ret;
2714 
2715 	return vgic_its_save_collection_table(its);
2716 }
2717 
2718 /**
2719  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2720  * to internal data structs according to V0 ABI
2721  *
2722  */
2723 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2724 {
2725 	int ret;
2726 
2727 	ret = vgic_its_restore_collection_table(its);
2728 	if (ret)
2729 		return ret;
2730 
2731 	ret = vgic_its_restore_device_tables(its);
2732 	if (ret)
2733 		vgic_its_free_collection_list(its->dev->kvm, its);
2734 	return ret;
2735 }
2736 
2737 static int vgic_its_commit_v0(struct vgic_its *its)
2738 {
2739 	const struct vgic_its_abi *abi;
2740 
2741 	abi = vgic_its_get_abi(its);
2742 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2743 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2744 
2745 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2746 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2747 
2748 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2749 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2750 	return 0;
2751 }
2752 
2753 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2754 {
2755 	/* We need to keep the ABI specific field values */
2756 	its->baser_coll_table &= ~GITS_BASER_VALID;
2757 	its->baser_device_table &= ~GITS_BASER_VALID;
2758 	its->cbaser = 0;
2759 	its->creadr = 0;
2760 	its->cwriter = 0;
2761 	its->enabled = 0;
2762 	vgic_its_free_device_list(kvm, its);
2763 	vgic_its_free_collection_list(kvm, its);
2764 }
2765 
2766 static int vgic_its_has_attr(struct kvm_device *dev,
2767 			     struct kvm_device_attr *attr)
2768 {
2769 	switch (attr->group) {
2770 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2771 		switch (attr->attr) {
2772 		case KVM_VGIC_ITS_ADDR_TYPE:
2773 			return 0;
2774 		}
2775 		break;
2776 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2777 		switch (attr->attr) {
2778 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2779 			return 0;
2780 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2781 			return 0;
2782 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2783 			return 0;
2784 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2785 			return 0;
2786 		}
2787 		break;
2788 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2789 		return vgic_its_has_attr_regs(dev, attr);
2790 	}
2791 	return -ENXIO;
2792 }
2793 
2794 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2795 {
2796 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2797 	int ret = 0;
2798 
2799 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2800 		return 0;
2801 
2802 	mutex_lock(&kvm->lock);
2803 
2804 	if (!lock_all_vcpus(kvm)) {
2805 		mutex_unlock(&kvm->lock);
2806 		return -EBUSY;
2807 	}
2808 
2809 	mutex_lock(&kvm->arch.config_lock);
2810 	mutex_lock(&its->its_lock);
2811 
2812 	switch (attr) {
2813 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2814 		vgic_its_reset(kvm, its);
2815 		break;
2816 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2817 		ret = abi->save_tables(its);
2818 		break;
2819 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2820 		ret = abi->restore_tables(its);
2821 		break;
2822 	}
2823 
2824 	mutex_unlock(&its->its_lock);
2825 	mutex_unlock(&kvm->arch.config_lock);
2826 	unlock_all_vcpus(kvm);
2827 	mutex_unlock(&kvm->lock);
2828 	return ret;
2829 }
2830 
2831 /*
2832  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2833  * without the running VCPU when dirty ring is enabled.
2834  *
2835  * The running VCPU is required to track dirty guest pages when dirty ring
2836  * is enabled. Otherwise, the backup bitmap should be used to track the
2837  * dirty guest pages. When vgic/its tables are being saved, the backup
2838  * bitmap is used to track the dirty guest pages due to the missed running
2839  * VCPU in the period.
2840  */
2841 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2842 {
2843 	struct vgic_dist *dist = &kvm->arch.vgic;
2844 
2845 	return dist->table_write_in_progress;
2846 }
2847 
2848 static int vgic_its_set_attr(struct kvm_device *dev,
2849 			     struct kvm_device_attr *attr)
2850 {
2851 	struct vgic_its *its = dev->private;
2852 	int ret;
2853 
2854 	switch (attr->group) {
2855 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2856 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2857 		unsigned long type = (unsigned long)attr->attr;
2858 		u64 addr;
2859 
2860 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2861 			return -ENODEV;
2862 
2863 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2864 			return -EFAULT;
2865 
2866 		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2867 					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2868 		if (ret)
2869 			return ret;
2870 
2871 		return vgic_register_its_iodev(dev->kvm, its, addr);
2872 	}
2873 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2874 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2875 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2876 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2877 		u64 reg;
2878 
2879 		if (get_user(reg, uaddr))
2880 			return -EFAULT;
2881 
2882 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2883 	}
2884 	}
2885 	return -ENXIO;
2886 }
2887 
2888 static int vgic_its_get_attr(struct kvm_device *dev,
2889 			     struct kvm_device_attr *attr)
2890 {
2891 	switch (attr->group) {
2892 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2893 		struct vgic_its *its = dev->private;
2894 		u64 addr = its->vgic_its_base;
2895 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2896 		unsigned long type = (unsigned long)attr->attr;
2897 
2898 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2899 			return -ENODEV;
2900 
2901 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2902 			return -EFAULT;
2903 		break;
2904 	}
2905 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2906 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2907 		u64 reg;
2908 		int ret;
2909 
2910 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2911 		if (ret)
2912 			return ret;
2913 		return put_user(reg, uaddr);
2914 	}
2915 	default:
2916 		return -ENXIO;
2917 	}
2918 
2919 	return 0;
2920 }
2921 
2922 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2923 	.name = "kvm-arm-vgic-its",
2924 	.create = vgic_its_create,
2925 	.destroy = vgic_its_destroy,
2926 	.set_attr = vgic_its_set_attr,
2927 	.get_attr = vgic_its_get_attr,
2928 	.has_attr = vgic_its_has_attr,
2929 };
2930 
2931 int kvm_vgic_register_its_device(void)
2932 {
2933 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2934 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2935 }
2936