1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static struct kvm_device_ops kvm_arm_vgic_its_ops; 27 28 static int vgic_its_save_tables_v0(struct vgic_its *its); 29 static int vgic_its_restore_tables_v0(struct vgic_its *its); 30 static int vgic_its_commit_v0(struct vgic_its *its); 31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 32 struct kvm_vcpu *filter_vcpu, bool needs_inv); 33 34 /* 35 * Creates a new (reference to a) struct vgic_irq for a given LPI. 36 * If this LPI is already mapped on another ITS, we increase its refcount 37 * and return a pointer to the existing structure. 38 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 39 * This function returns a pointer to the _unlocked_ structure. 40 */ 41 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 42 struct kvm_vcpu *vcpu) 43 { 44 struct vgic_dist *dist = &kvm->arch.vgic; 45 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 46 unsigned long flags; 47 int ret; 48 49 /* In this case there is no put, since we keep the reference. */ 50 if (irq) 51 return irq; 52 53 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 54 if (!irq) 55 return ERR_PTR(-ENOMEM); 56 57 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT); 58 if (ret) { 59 kfree(irq); 60 return ERR_PTR(ret); 61 } 62 63 INIT_LIST_HEAD(&irq->ap_list); 64 raw_spin_lock_init(&irq->irq_lock); 65 66 irq->config = VGIC_CONFIG_EDGE; 67 kref_init(&irq->refcount); 68 irq->intid = intid; 69 irq->target_vcpu = vcpu; 70 irq->group = 1; 71 72 xa_lock_irqsave(&dist->lpi_xa, flags); 73 74 /* 75 * There could be a race with another vgic_add_lpi(), so we need to 76 * check that we don't add a second list entry with the same LPI. 77 */ 78 oldirq = xa_load(&dist->lpi_xa, intid); 79 if (vgic_try_get_irq_kref(oldirq)) { 80 /* Someone was faster with adding this LPI, lets use that. */ 81 kfree(irq); 82 irq = oldirq; 83 84 goto out_unlock; 85 } 86 87 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0)); 88 if (ret) { 89 xa_release(&dist->lpi_xa, intid); 90 kfree(irq); 91 } 92 93 out_unlock: 94 xa_unlock_irqrestore(&dist->lpi_xa, flags); 95 96 if (ret) 97 return ERR_PTR(ret); 98 99 /* 100 * We "cache" the configuration table entries in our struct vgic_irq's. 101 * However we only have those structs for mapped IRQs, so we read in 102 * the respective config data from memory here upon mapping the LPI. 103 * 104 * Should any of these fail, behave as if we couldn't create the LPI 105 * by dropping the refcount and returning the error. 106 */ 107 ret = update_lpi_config(kvm, irq, NULL, false); 108 if (ret) { 109 vgic_put_irq(kvm, irq); 110 return ERR_PTR(ret); 111 } 112 113 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 114 if (ret) { 115 vgic_put_irq(kvm, irq); 116 return ERR_PTR(ret); 117 } 118 119 return irq; 120 } 121 122 struct its_device { 123 struct list_head dev_list; 124 125 /* the head for the list of ITTEs */ 126 struct list_head itt_head; 127 u32 num_eventid_bits; 128 gpa_t itt_addr; 129 u32 device_id; 130 }; 131 132 #define COLLECTION_NOT_MAPPED ((u32)~0) 133 134 struct its_collection { 135 struct list_head coll_list; 136 137 u32 collection_id; 138 u32 target_addr; 139 }; 140 141 #define its_is_collection_mapped(coll) ((coll) && \ 142 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 143 144 struct its_ite { 145 struct list_head ite_list; 146 147 struct vgic_irq *irq; 148 struct its_collection *collection; 149 u32 event_id; 150 }; 151 152 /** 153 * struct vgic_its_abi - ITS abi ops and settings 154 * @cte_esz: collection table entry size 155 * @dte_esz: device table entry size 156 * @ite_esz: interrupt translation table entry size 157 * @save_tables: save the ITS tables into guest RAM 158 * @restore_tables: restore the ITS internal structs from tables 159 * stored in guest RAM 160 * @commit: initialize the registers which expose the ABI settings, 161 * especially the entry sizes 162 */ 163 struct vgic_its_abi { 164 int cte_esz; 165 int dte_esz; 166 int ite_esz; 167 int (*save_tables)(struct vgic_its *its); 168 int (*restore_tables)(struct vgic_its *its); 169 int (*commit)(struct vgic_its *its); 170 }; 171 172 #define ABI_0_ESZ 8 173 #define ESZ_MAX ABI_0_ESZ 174 175 static const struct vgic_its_abi its_table_abi_versions[] = { 176 [0] = { 177 .cte_esz = ABI_0_ESZ, 178 .dte_esz = ABI_0_ESZ, 179 .ite_esz = ABI_0_ESZ, 180 .save_tables = vgic_its_save_tables_v0, 181 .restore_tables = vgic_its_restore_tables_v0, 182 .commit = vgic_its_commit_v0, 183 }, 184 }; 185 186 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 187 188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 189 { 190 return &its_table_abi_versions[its->abi_rev]; 191 } 192 193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 194 { 195 const struct vgic_its_abi *abi; 196 197 its->abi_rev = rev; 198 abi = vgic_its_get_abi(its); 199 return abi->commit(its); 200 } 201 202 /* 203 * Find and returns a device in the device table for an ITS. 204 * Must be called with the its_lock mutex held. 205 */ 206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 207 { 208 struct its_device *device; 209 210 list_for_each_entry(device, &its->device_list, dev_list) 211 if (device_id == device->device_id) 212 return device; 213 214 return NULL; 215 } 216 217 /* 218 * Find and returns an interrupt translation table entry (ITTE) for a given 219 * Device ID/Event ID pair on an ITS. 220 * Must be called with the its_lock mutex held. 221 */ 222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 223 u32 event_id) 224 { 225 struct its_device *device; 226 struct its_ite *ite; 227 228 device = find_its_device(its, device_id); 229 if (device == NULL) 230 return NULL; 231 232 list_for_each_entry(ite, &device->itt_head, ite_list) 233 if (ite->event_id == event_id) 234 return ite; 235 236 return NULL; 237 } 238 239 /* To be used as an iterator this macro misses the enclosing parentheses */ 240 #define for_each_lpi_its(dev, ite, its) \ 241 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 242 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 243 244 #define GIC_LPI_OFFSET 8192 245 246 #define VITS_TYPER_IDBITS 16 247 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1) 248 #define VITS_TYPER_DEVBITS 16 249 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1) 250 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 251 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 252 253 /* 254 * Finds and returns a collection in the ITS collection table. 255 * Must be called with the its_lock mutex held. 256 */ 257 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 258 { 259 struct its_collection *collection; 260 261 list_for_each_entry(collection, &its->collection_list, coll_list) { 262 if (coll_id == collection->collection_id) 263 return collection; 264 } 265 266 return NULL; 267 } 268 269 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 270 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 271 272 /* 273 * Reads the configuration data for a given LPI from guest memory and 274 * updates the fields in struct vgic_irq. 275 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 276 * VCPU. Unconditionally applies if filter_vcpu is NULL. 277 */ 278 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 279 struct kvm_vcpu *filter_vcpu, bool needs_inv) 280 { 281 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 282 u8 prop; 283 int ret; 284 unsigned long flags; 285 286 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 287 &prop, 1); 288 289 if (ret) 290 return ret; 291 292 raw_spin_lock_irqsave(&irq->irq_lock, flags); 293 294 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 295 irq->priority = LPI_PROP_PRIORITY(prop); 296 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 297 298 if (!irq->hw) { 299 vgic_queue_irq_unlock(kvm, irq, flags); 300 return 0; 301 } 302 } 303 304 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 305 306 if (irq->hw) 307 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 308 309 return 0; 310 } 311 312 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 313 { 314 int ret = 0; 315 unsigned long flags; 316 317 raw_spin_lock_irqsave(&irq->irq_lock, flags); 318 irq->target_vcpu = vcpu; 319 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 320 321 if (irq->hw) { 322 struct its_vlpi_map map; 323 324 ret = its_get_vlpi(irq->host_irq, &map); 325 if (ret) 326 return ret; 327 328 if (map.vpe) 329 atomic_dec(&map.vpe->vlpi_count); 330 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 331 atomic_inc(&map.vpe->vlpi_count); 332 333 ret = its_map_vlpi(irq->host_irq, &map); 334 } 335 336 return ret; 337 } 338 339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm, 340 struct its_collection *col) 341 { 342 return kvm_get_vcpu_by_id(kvm, col->target_addr); 343 } 344 345 /* 346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 347 * is targeting) to the VGIC's view, which deals with target VCPUs. 348 * Needs to be called whenever either the collection for a LPIs has 349 * changed or the collection itself got retargeted. 350 */ 351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 352 { 353 struct kvm_vcpu *vcpu; 354 355 if (!its_is_collection_mapped(ite->collection)) 356 return; 357 358 vcpu = collection_to_vcpu(kvm, ite->collection); 359 update_affinity(ite->irq, vcpu); 360 } 361 362 /* 363 * Updates the target VCPU for every LPI targeting this collection. 364 * Must be called with the its_lock mutex held. 365 */ 366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 367 struct its_collection *coll) 368 { 369 struct its_device *device; 370 struct its_ite *ite; 371 372 for_each_lpi_its(device, ite, its) { 373 if (ite->collection != coll) 374 continue; 375 376 update_affinity_ite(kvm, ite); 377 } 378 } 379 380 static u32 max_lpis_propbaser(u64 propbaser) 381 { 382 int nr_idbits = (propbaser & 0x1f) + 1; 383 384 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 385 } 386 387 /* 388 * Sync the pending table pending bit of LPIs targeting @vcpu 389 * with our own data structures. This relies on the LPI being 390 * mapped before. 391 */ 392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 393 { 394 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 395 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 396 unsigned long intid, flags; 397 struct vgic_irq *irq; 398 int last_byte_offset = -1; 399 int ret = 0; 400 u8 pendmask; 401 402 xa_for_each(&dist->lpi_xa, intid, irq) { 403 int byte_offset, bit_nr; 404 405 byte_offset = intid / BITS_PER_BYTE; 406 bit_nr = intid % BITS_PER_BYTE; 407 408 /* 409 * For contiguously allocated LPIs chances are we just read 410 * this very same byte in the last iteration. Reuse that. 411 */ 412 if (byte_offset != last_byte_offset) { 413 ret = kvm_read_guest_lock(vcpu->kvm, 414 pendbase + byte_offset, 415 &pendmask, 1); 416 if (ret) 417 return ret; 418 419 last_byte_offset = byte_offset; 420 } 421 422 irq = vgic_get_irq(vcpu->kvm, NULL, intid); 423 if (!irq) 424 continue; 425 426 raw_spin_lock_irqsave(&irq->irq_lock, flags); 427 if (irq->target_vcpu == vcpu) 428 irq->pending_latch = pendmask & (1U << bit_nr); 429 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 430 vgic_put_irq(vcpu->kvm, irq); 431 } 432 433 return ret; 434 } 435 436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 437 struct vgic_its *its, 438 gpa_t addr, unsigned int len) 439 { 440 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 441 u64 reg = GITS_TYPER_PLPIS; 442 443 /* 444 * We use linear CPU numbers for redistributor addressing, 445 * so GITS_TYPER.PTA is 0. 446 * Also we force all PROPBASER registers to be the same, so 447 * CommonLPIAff is 0 as well. 448 * To avoid memory waste in the guest, we keep the number of IDBits and 449 * DevBits low - as least for the time being. 450 */ 451 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 452 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 453 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 454 455 return extract_bytes(reg, addr & 7, len); 456 } 457 458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 459 struct vgic_its *its, 460 gpa_t addr, unsigned int len) 461 { 462 u32 val; 463 464 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 465 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 466 return val; 467 } 468 469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 470 struct vgic_its *its, 471 gpa_t addr, unsigned int len, 472 unsigned long val) 473 { 474 u32 rev = GITS_IIDR_REV(val); 475 476 if (rev >= NR_ITS_ABIS) 477 return -EINVAL; 478 return vgic_its_set_abi(its, rev); 479 } 480 481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 482 struct vgic_its *its, 483 gpa_t addr, unsigned int len) 484 { 485 switch (addr & 0xffff) { 486 case GITS_PIDR0: 487 return 0x92; /* part number, bits[7:0] */ 488 case GITS_PIDR1: 489 return 0xb4; /* part number, bits[11:8] */ 490 case GITS_PIDR2: 491 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 492 case GITS_PIDR4: 493 return 0x40; /* This is a 64K software visible page */ 494 /* The following are the ID registers for (any) GIC. */ 495 case GITS_CIDR0: 496 return 0x0d; 497 case GITS_CIDR1: 498 return 0xf0; 499 case GITS_CIDR2: 500 return 0x05; 501 case GITS_CIDR3: 502 return 0xb1; 503 } 504 505 return 0; 506 } 507 508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db) 509 { 510 struct kvm_io_device *kvm_io_dev; 511 struct vgic_io_device *iodev; 512 513 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db); 514 if (!kvm_io_dev) 515 return ERR_PTR(-EINVAL); 516 517 if (kvm_io_dev->ops != &kvm_io_gic_ops) 518 return ERR_PTR(-EINVAL); 519 520 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 521 if (iodev->iodev_type != IODEV_ITS) 522 return ERR_PTR(-EINVAL); 523 524 return iodev->its; 525 } 526 527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid) 528 { 529 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid; 530 531 } 532 533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 534 u32 devid, u32 eventid) 535 { 536 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 537 struct vgic_its *its; 538 struct vgic_irq *irq; 539 540 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID) 541 return NULL; 542 543 its = __vgic_doorbell_to_its(kvm, db); 544 if (IS_ERR(its)) 545 return NULL; 546 547 rcu_read_lock(); 548 549 irq = xa_load(&its->translation_cache, cache_key); 550 if (!vgic_try_get_irq_kref(irq)) 551 irq = NULL; 552 553 rcu_read_unlock(); 554 555 return irq; 556 } 557 558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 559 u32 devid, u32 eventid, 560 struct vgic_irq *irq) 561 { 562 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 563 struct vgic_irq *old; 564 565 /* Do not cache a directly injected interrupt */ 566 if (irq->hw) 567 return; 568 569 /* 570 * The irq refcount is guaranteed to be nonzero while holding the 571 * its_lock, as the ITE (and the reference it holds) cannot be freed. 572 */ 573 lockdep_assert_held(&its->its_lock); 574 vgic_get_irq_kref(irq); 575 576 /* 577 * We could have raced with another CPU caching the same 578 * translation behind our back, ensure we don't leak a 579 * reference if that is the case. 580 */ 581 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT); 582 if (old) 583 vgic_put_irq(kvm, old); 584 } 585 586 static void vgic_its_invalidate_cache(struct vgic_its *its) 587 { 588 struct kvm *kvm = its->dev->kvm; 589 struct vgic_irq *irq; 590 unsigned long idx; 591 592 xa_for_each(&its->translation_cache, idx, irq) { 593 xa_erase(&its->translation_cache, idx); 594 vgic_put_irq(kvm, irq); 595 } 596 } 597 598 void vgic_its_invalidate_all_caches(struct kvm *kvm) 599 { 600 struct kvm_device *dev; 601 struct vgic_its *its; 602 603 rcu_read_lock(); 604 605 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) { 606 if (dev->ops != &kvm_arm_vgic_its_ops) 607 continue; 608 609 its = dev->private; 610 vgic_its_invalidate_cache(its); 611 } 612 613 rcu_read_unlock(); 614 } 615 616 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 617 u32 devid, u32 eventid, struct vgic_irq **irq) 618 { 619 struct kvm_vcpu *vcpu; 620 struct its_ite *ite; 621 622 if (!its->enabled) 623 return -EBUSY; 624 625 ite = find_ite(its, devid, eventid); 626 if (!ite || !its_is_collection_mapped(ite->collection)) 627 return E_ITS_INT_UNMAPPED_INTERRUPT; 628 629 vcpu = collection_to_vcpu(kvm, ite->collection); 630 if (!vcpu) 631 return E_ITS_INT_UNMAPPED_INTERRUPT; 632 633 if (!vgic_lpis_enabled(vcpu)) 634 return -EBUSY; 635 636 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 637 638 *irq = ite->irq; 639 return 0; 640 } 641 642 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 643 { 644 u64 address; 645 646 if (!vgic_has_its(kvm)) 647 return ERR_PTR(-ENODEV); 648 649 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 650 return ERR_PTR(-EINVAL); 651 652 address = (u64)msi->address_hi << 32 | msi->address_lo; 653 654 return __vgic_doorbell_to_its(kvm, address); 655 } 656 657 /* 658 * Find the target VCPU and the LPI number for a given devid/eventid pair 659 * and make this IRQ pending, possibly injecting it. 660 * Must be called with the its_lock mutex held. 661 * Returns 0 on success, a positive error value for any ITS mapping 662 * related errors and negative error values for generic errors. 663 */ 664 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 665 u32 devid, u32 eventid) 666 { 667 struct vgic_irq *irq = NULL; 668 unsigned long flags; 669 int err; 670 671 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 672 if (err) 673 return err; 674 675 if (irq->hw) 676 return irq_set_irqchip_state(irq->host_irq, 677 IRQCHIP_STATE_PENDING, true); 678 679 raw_spin_lock_irqsave(&irq->irq_lock, flags); 680 irq->pending_latch = true; 681 vgic_queue_irq_unlock(kvm, irq, flags); 682 683 return 0; 684 } 685 686 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 687 { 688 struct vgic_irq *irq; 689 unsigned long flags; 690 phys_addr_t db; 691 692 db = (u64)msi->address_hi << 32 | msi->address_lo; 693 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 694 if (!irq) 695 return -EWOULDBLOCK; 696 697 raw_spin_lock_irqsave(&irq->irq_lock, flags); 698 irq->pending_latch = true; 699 vgic_queue_irq_unlock(kvm, irq, flags); 700 vgic_put_irq(kvm, irq); 701 702 return 0; 703 } 704 705 /* 706 * Queries the KVM IO bus framework to get the ITS pointer from the given 707 * doorbell address. 708 * We then call vgic_its_trigger_msi() with the decoded data. 709 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 710 */ 711 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 712 { 713 struct vgic_its *its; 714 int ret; 715 716 if (!vgic_its_inject_cached_translation(kvm, msi)) 717 return 1; 718 719 its = vgic_msi_to_its(kvm, msi); 720 if (IS_ERR(its)) 721 return PTR_ERR(its); 722 723 mutex_lock(&its->its_lock); 724 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 725 mutex_unlock(&its->its_lock); 726 727 if (ret < 0) 728 return ret; 729 730 /* 731 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 732 * if the guest has blocked the MSI. So we map any LPI mapping 733 * related error to that. 734 */ 735 if (ret) 736 return 0; 737 else 738 return 1; 739 } 740 741 /* Requires the its_lock to be held. */ 742 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 743 { 744 list_del(&ite->ite_list); 745 746 /* This put matches the get in vgic_add_lpi. */ 747 if (ite->irq) { 748 if (ite->irq->hw) 749 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 750 751 vgic_put_irq(kvm, ite->irq); 752 } 753 754 kfree(ite); 755 } 756 757 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 758 { 759 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 760 } 761 762 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 763 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 764 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 765 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 766 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 767 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 768 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 769 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 770 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 771 772 /* 773 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 774 * Must be called with the its_lock mutex held. 775 */ 776 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 777 u64 *its_cmd) 778 { 779 u32 device_id = its_cmd_get_deviceid(its_cmd); 780 u32 event_id = its_cmd_get_id(its_cmd); 781 struct its_ite *ite; 782 783 ite = find_ite(its, device_id, event_id); 784 if (ite && its_is_collection_mapped(ite->collection)) { 785 /* 786 * Though the spec talks about removing the pending state, we 787 * don't bother here since we clear the ITTE anyway and the 788 * pending state is a property of the ITTE struct. 789 */ 790 vgic_its_invalidate_cache(its); 791 792 its_free_ite(kvm, ite); 793 return 0; 794 } 795 796 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 797 } 798 799 /* 800 * The MOVI command moves an ITTE to a different collection. 801 * Must be called with the its_lock mutex held. 802 */ 803 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 804 u64 *its_cmd) 805 { 806 u32 device_id = its_cmd_get_deviceid(its_cmd); 807 u32 event_id = its_cmd_get_id(its_cmd); 808 u32 coll_id = its_cmd_get_collection(its_cmd); 809 struct kvm_vcpu *vcpu; 810 struct its_ite *ite; 811 struct its_collection *collection; 812 813 ite = find_ite(its, device_id, event_id); 814 if (!ite) 815 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 816 817 if (!its_is_collection_mapped(ite->collection)) 818 return E_ITS_MOVI_UNMAPPED_COLLECTION; 819 820 collection = find_collection(its, coll_id); 821 if (!its_is_collection_mapped(collection)) 822 return E_ITS_MOVI_UNMAPPED_COLLECTION; 823 824 ite->collection = collection; 825 vcpu = collection_to_vcpu(kvm, collection); 826 827 vgic_its_invalidate_cache(its); 828 829 return update_affinity(ite->irq, vcpu); 830 } 831 832 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 833 { 834 gfn_t gfn = gpa >> PAGE_SHIFT; 835 int idx; 836 bool ret; 837 838 idx = srcu_read_lock(&its->dev->kvm->srcu); 839 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 840 srcu_read_unlock(&its->dev->kvm->srcu, idx); 841 return ret; 842 } 843 844 /* 845 * Check whether an ID can be stored into the corresponding guest table. 846 * For a direct table this is pretty easy, but gets a bit nasty for 847 * indirect tables. We check whether the resulting guest physical address 848 * is actually valid (covered by a memslot and guest accessible). 849 * For this we have to read the respective first level entry. 850 */ 851 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 852 gpa_t *eaddr) 853 { 854 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 855 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 856 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 857 int esz = GITS_BASER_ENTRY_SIZE(baser); 858 int index; 859 860 switch (type) { 861 case GITS_BASER_TYPE_DEVICE: 862 if (id > VITS_MAX_DEVID) 863 return false; 864 break; 865 case GITS_BASER_TYPE_COLLECTION: 866 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 867 if (id >= BIT_ULL(16)) 868 return false; 869 break; 870 default: 871 return false; 872 } 873 874 if (!(baser & GITS_BASER_INDIRECT)) { 875 phys_addr_t addr; 876 877 if (id >= (l1_tbl_size / esz)) 878 return false; 879 880 addr = base + id * esz; 881 882 if (eaddr) 883 *eaddr = addr; 884 885 return __is_visible_gfn_locked(its, addr); 886 } 887 888 /* calculate and check the index into the 1st level */ 889 index = id / (SZ_64K / esz); 890 if (index >= (l1_tbl_size / sizeof(u64))) 891 return false; 892 893 /* Each 1st level entry is represented by a 64-bit value. */ 894 if (kvm_read_guest_lock(its->dev->kvm, 895 base + index * sizeof(indirect_ptr), 896 &indirect_ptr, sizeof(indirect_ptr))) 897 return false; 898 899 indirect_ptr = le64_to_cpu(indirect_ptr); 900 901 /* check the valid bit of the first level entry */ 902 if (!(indirect_ptr & BIT_ULL(63))) 903 return false; 904 905 /* Mask the guest physical address and calculate the frame number. */ 906 indirect_ptr &= GENMASK_ULL(51, 16); 907 908 /* Find the address of the actual entry */ 909 index = id % (SZ_64K / esz); 910 indirect_ptr += index * esz; 911 912 if (eaddr) 913 *eaddr = indirect_ptr; 914 915 return __is_visible_gfn_locked(its, indirect_ptr); 916 } 917 918 /* 919 * Check whether an event ID can be stored in the corresponding Interrupt 920 * Translation Table, which starts at device->itt_addr. 921 */ 922 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 923 u32 event_id) 924 { 925 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 926 int ite_esz = abi->ite_esz; 927 gpa_t gpa; 928 929 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 930 if (event_id >= BIT_ULL(device->num_eventid_bits)) 931 return false; 932 933 gpa = device->itt_addr + event_id * ite_esz; 934 return __is_visible_gfn_locked(its, gpa); 935 } 936 937 /* 938 * Add a new collection into the ITS collection table. 939 * Returns 0 on success, and a negative error value for generic errors. 940 */ 941 static int vgic_its_alloc_collection(struct vgic_its *its, 942 struct its_collection **colp, 943 u32 coll_id) 944 { 945 struct its_collection *collection; 946 947 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 948 if (!collection) 949 return -ENOMEM; 950 951 collection->collection_id = coll_id; 952 collection->target_addr = COLLECTION_NOT_MAPPED; 953 954 list_add_tail(&collection->coll_list, &its->collection_list); 955 *colp = collection; 956 957 return 0; 958 } 959 960 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 961 { 962 struct its_collection *collection; 963 struct its_device *device; 964 struct its_ite *ite; 965 966 /* 967 * Clearing the mapping for that collection ID removes the 968 * entry from the list. If there wasn't any before, we can 969 * go home early. 970 */ 971 collection = find_collection(its, coll_id); 972 if (!collection) 973 return; 974 975 for_each_lpi_its(device, ite, its) 976 if (ite->collection && 977 ite->collection->collection_id == coll_id) 978 ite->collection = NULL; 979 980 list_del(&collection->coll_list); 981 kfree(collection); 982 } 983 984 /* Must be called with its_lock mutex held */ 985 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 986 struct its_collection *collection, 987 u32 event_id) 988 { 989 struct its_ite *ite; 990 991 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 992 if (!ite) 993 return ERR_PTR(-ENOMEM); 994 995 ite->event_id = event_id; 996 ite->collection = collection; 997 998 list_add_tail(&ite->ite_list, &device->itt_head); 999 return ite; 1000 } 1001 1002 /* 1003 * The MAPTI and MAPI commands map LPIs to ITTEs. 1004 * Must be called with its_lock mutex held. 1005 */ 1006 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1007 u64 *its_cmd) 1008 { 1009 u32 device_id = its_cmd_get_deviceid(its_cmd); 1010 u32 event_id = its_cmd_get_id(its_cmd); 1011 u32 coll_id = its_cmd_get_collection(its_cmd); 1012 struct its_ite *ite; 1013 struct kvm_vcpu *vcpu = NULL; 1014 struct its_device *device; 1015 struct its_collection *collection, *new_coll = NULL; 1016 struct vgic_irq *irq; 1017 int lpi_nr; 1018 1019 device = find_its_device(its, device_id); 1020 if (!device) 1021 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1022 1023 if (!vgic_its_check_event_id(its, device, event_id)) 1024 return E_ITS_MAPTI_ID_OOR; 1025 1026 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1027 lpi_nr = its_cmd_get_physical_id(its_cmd); 1028 else 1029 lpi_nr = event_id; 1030 if (lpi_nr < GIC_LPI_OFFSET || 1031 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1032 return E_ITS_MAPTI_PHYSICALID_OOR; 1033 1034 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1035 if (find_ite(its, device_id, event_id)) 1036 return 0; 1037 1038 collection = find_collection(its, coll_id); 1039 if (!collection) { 1040 int ret; 1041 1042 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1043 return E_ITS_MAPC_COLLECTION_OOR; 1044 1045 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1046 if (ret) 1047 return ret; 1048 new_coll = collection; 1049 } 1050 1051 ite = vgic_its_alloc_ite(device, collection, event_id); 1052 if (IS_ERR(ite)) { 1053 if (new_coll) 1054 vgic_its_free_collection(its, coll_id); 1055 return PTR_ERR(ite); 1056 } 1057 1058 if (its_is_collection_mapped(collection)) 1059 vcpu = collection_to_vcpu(kvm, collection); 1060 1061 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1062 if (IS_ERR(irq)) { 1063 if (new_coll) 1064 vgic_its_free_collection(its, coll_id); 1065 its_free_ite(kvm, ite); 1066 return PTR_ERR(irq); 1067 } 1068 ite->irq = irq; 1069 1070 return 0; 1071 } 1072 1073 /* Requires the its_lock to be held. */ 1074 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its, 1075 struct its_device *device) 1076 { 1077 struct its_ite *ite, *temp; 1078 1079 /* 1080 * The spec says that unmapping a device with still valid 1081 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1082 * since we cannot leave the memory unreferenced. 1083 */ 1084 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1085 its_free_ite(kvm, ite); 1086 1087 vgic_its_invalidate_cache(its); 1088 1089 list_del(&device->dev_list); 1090 kfree(device); 1091 } 1092 1093 /* its lock must be held */ 1094 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1095 { 1096 struct its_device *cur, *temp; 1097 1098 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1099 vgic_its_free_device(kvm, its, cur); 1100 } 1101 1102 /* its lock must be held */ 1103 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1104 { 1105 struct its_collection *cur, *temp; 1106 1107 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1108 vgic_its_free_collection(its, cur->collection_id); 1109 } 1110 1111 /* Must be called with its_lock mutex held */ 1112 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1113 u32 device_id, gpa_t itt_addr, 1114 u8 num_eventid_bits) 1115 { 1116 struct its_device *device; 1117 1118 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1119 if (!device) 1120 return ERR_PTR(-ENOMEM); 1121 1122 device->device_id = device_id; 1123 device->itt_addr = itt_addr; 1124 device->num_eventid_bits = num_eventid_bits; 1125 INIT_LIST_HEAD(&device->itt_head); 1126 1127 list_add_tail(&device->dev_list, &its->device_list); 1128 return device; 1129 } 1130 1131 /* 1132 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1133 * Must be called with the its_lock mutex held. 1134 */ 1135 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1136 u64 *its_cmd) 1137 { 1138 u32 device_id = its_cmd_get_deviceid(its_cmd); 1139 bool valid = its_cmd_get_validbit(its_cmd); 1140 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1141 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1142 struct its_device *device; 1143 1144 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) 1145 return E_ITS_MAPD_DEVICE_OOR; 1146 1147 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1148 return E_ITS_MAPD_ITTSIZE_OOR; 1149 1150 device = find_its_device(its, device_id); 1151 1152 /* 1153 * The spec says that calling MAPD on an already mapped device 1154 * invalidates all cached data for this device. We implement this 1155 * by removing the mapping and re-establishing it. 1156 */ 1157 if (device) 1158 vgic_its_free_device(kvm, its, device); 1159 1160 /* 1161 * The spec does not say whether unmapping a not-mapped device 1162 * is an error, so we are done in any case. 1163 */ 1164 if (!valid) 1165 return 0; 1166 1167 device = vgic_its_alloc_device(its, device_id, itt_addr, 1168 num_eventid_bits); 1169 1170 return PTR_ERR_OR_ZERO(device); 1171 } 1172 1173 /* 1174 * The MAPC command maps collection IDs to redistributors. 1175 * Must be called with the its_lock mutex held. 1176 */ 1177 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1178 u64 *its_cmd) 1179 { 1180 u16 coll_id; 1181 struct its_collection *collection; 1182 bool valid; 1183 1184 valid = its_cmd_get_validbit(its_cmd); 1185 coll_id = its_cmd_get_collection(its_cmd); 1186 1187 if (!valid) { 1188 vgic_its_free_collection(its, coll_id); 1189 vgic_its_invalidate_cache(its); 1190 } else { 1191 struct kvm_vcpu *vcpu; 1192 1193 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1194 if (!vcpu) 1195 return E_ITS_MAPC_PROCNUM_OOR; 1196 1197 collection = find_collection(its, coll_id); 1198 1199 if (!collection) { 1200 int ret; 1201 1202 if (!vgic_its_check_id(its, its->baser_coll_table, 1203 coll_id, NULL)) 1204 return E_ITS_MAPC_COLLECTION_OOR; 1205 1206 ret = vgic_its_alloc_collection(its, &collection, 1207 coll_id); 1208 if (ret) 1209 return ret; 1210 collection->target_addr = vcpu->vcpu_id; 1211 } else { 1212 collection->target_addr = vcpu->vcpu_id; 1213 update_affinity_collection(kvm, its, collection); 1214 } 1215 } 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * The CLEAR command removes the pending state for a particular LPI. 1222 * Must be called with the its_lock mutex held. 1223 */ 1224 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1225 u64 *its_cmd) 1226 { 1227 u32 device_id = its_cmd_get_deviceid(its_cmd); 1228 u32 event_id = its_cmd_get_id(its_cmd); 1229 struct its_ite *ite; 1230 1231 1232 ite = find_ite(its, device_id, event_id); 1233 if (!ite) 1234 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1235 1236 ite->irq->pending_latch = false; 1237 1238 if (ite->irq->hw) 1239 return irq_set_irqchip_state(ite->irq->host_irq, 1240 IRQCHIP_STATE_PENDING, false); 1241 1242 return 0; 1243 } 1244 1245 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1246 { 1247 return update_lpi_config(kvm, irq, NULL, true); 1248 } 1249 1250 /* 1251 * The INV command syncs the configuration bits from the memory table. 1252 * Must be called with the its_lock mutex held. 1253 */ 1254 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1255 u64 *its_cmd) 1256 { 1257 u32 device_id = its_cmd_get_deviceid(its_cmd); 1258 u32 event_id = its_cmd_get_id(its_cmd); 1259 struct its_ite *ite; 1260 1261 1262 ite = find_ite(its, device_id, event_id); 1263 if (!ite) 1264 return E_ITS_INV_UNMAPPED_INTERRUPT; 1265 1266 return vgic_its_inv_lpi(kvm, ite->irq); 1267 } 1268 1269 /** 1270 * vgic_its_invall - invalidate all LPIs targeting a given vcpu 1271 * @vcpu: the vcpu for which the RD is targeted by an invalidation 1272 * 1273 * Contrary to the INVALL command, this targets a RD instead of a 1274 * collection, and we don't need to hold the its_lock, since no ITS is 1275 * involved here. 1276 */ 1277 int vgic_its_invall(struct kvm_vcpu *vcpu) 1278 { 1279 struct kvm *kvm = vcpu->kvm; 1280 struct vgic_dist *dist = &kvm->arch.vgic; 1281 struct vgic_irq *irq; 1282 unsigned long intid; 1283 1284 xa_for_each(&dist->lpi_xa, intid, irq) { 1285 irq = vgic_get_irq(kvm, NULL, intid); 1286 if (!irq) 1287 continue; 1288 1289 update_lpi_config(kvm, irq, vcpu, false); 1290 vgic_put_irq(kvm, irq); 1291 } 1292 1293 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1294 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1295 1296 return 0; 1297 } 1298 1299 /* 1300 * The INVALL command requests flushing of all IRQ data in this collection. 1301 * Find the VCPU mapped to that collection, then iterate over the VM's list 1302 * of mapped LPIs and update the configuration for each IRQ which targets 1303 * the specified vcpu. The configuration will be read from the in-memory 1304 * configuration table. 1305 * Must be called with the its_lock mutex held. 1306 */ 1307 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1308 u64 *its_cmd) 1309 { 1310 u32 coll_id = its_cmd_get_collection(its_cmd); 1311 struct its_collection *collection; 1312 struct kvm_vcpu *vcpu; 1313 1314 collection = find_collection(its, coll_id); 1315 if (!its_is_collection_mapped(collection)) 1316 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1317 1318 vcpu = collection_to_vcpu(kvm, collection); 1319 vgic_its_invall(vcpu); 1320 1321 return 0; 1322 } 1323 1324 /* 1325 * The MOVALL command moves the pending state of all IRQs targeting one 1326 * redistributor to another. We don't hold the pending state in the VCPUs, 1327 * but in the IRQs instead, so there is really not much to do for us here. 1328 * However the spec says that no IRQ must target the old redistributor 1329 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1330 * This command affects all LPIs in the system that target that redistributor. 1331 */ 1332 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1333 u64 *its_cmd) 1334 { 1335 struct vgic_dist *dist = &kvm->arch.vgic; 1336 struct kvm_vcpu *vcpu1, *vcpu2; 1337 struct vgic_irq *irq; 1338 unsigned long intid; 1339 1340 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */ 1341 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1342 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32)); 1343 1344 if (!vcpu1 || !vcpu2) 1345 return E_ITS_MOVALL_PROCNUM_OOR; 1346 1347 if (vcpu1 == vcpu2) 1348 return 0; 1349 1350 xa_for_each(&dist->lpi_xa, intid, irq) { 1351 irq = vgic_get_irq(kvm, NULL, intid); 1352 if (!irq) 1353 continue; 1354 1355 update_affinity(irq, vcpu2); 1356 1357 vgic_put_irq(kvm, irq); 1358 } 1359 1360 vgic_its_invalidate_cache(its); 1361 1362 return 0; 1363 } 1364 1365 /* 1366 * The INT command injects the LPI associated with that DevID/EvID pair. 1367 * Must be called with the its_lock mutex held. 1368 */ 1369 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1370 u64 *its_cmd) 1371 { 1372 u32 msi_data = its_cmd_get_id(its_cmd); 1373 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1374 1375 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1376 } 1377 1378 /* 1379 * This function is called with the its_cmd lock held, but the ITS data 1380 * structure lock dropped. 1381 */ 1382 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1383 u64 *its_cmd) 1384 { 1385 int ret = -ENODEV; 1386 1387 mutex_lock(&its->its_lock); 1388 switch (its_cmd_get_command(its_cmd)) { 1389 case GITS_CMD_MAPD: 1390 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1391 break; 1392 case GITS_CMD_MAPC: 1393 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1394 break; 1395 case GITS_CMD_MAPI: 1396 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1397 break; 1398 case GITS_CMD_MAPTI: 1399 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1400 break; 1401 case GITS_CMD_MOVI: 1402 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1403 break; 1404 case GITS_CMD_DISCARD: 1405 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1406 break; 1407 case GITS_CMD_CLEAR: 1408 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1409 break; 1410 case GITS_CMD_MOVALL: 1411 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1412 break; 1413 case GITS_CMD_INT: 1414 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1415 break; 1416 case GITS_CMD_INV: 1417 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1418 break; 1419 case GITS_CMD_INVALL: 1420 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1421 break; 1422 case GITS_CMD_SYNC: 1423 /* we ignore this command: we are in sync all of the time */ 1424 ret = 0; 1425 break; 1426 } 1427 mutex_unlock(&its->its_lock); 1428 1429 return ret; 1430 } 1431 1432 static u64 vgic_sanitise_its_baser(u64 reg) 1433 { 1434 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1435 GITS_BASER_SHAREABILITY_SHIFT, 1436 vgic_sanitise_shareability); 1437 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1438 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1439 vgic_sanitise_inner_cacheability); 1440 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1441 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1442 vgic_sanitise_outer_cacheability); 1443 1444 /* We support only one (ITS) page size: 64K */ 1445 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1446 1447 return reg; 1448 } 1449 1450 static u64 vgic_sanitise_its_cbaser(u64 reg) 1451 { 1452 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1453 GITS_CBASER_SHAREABILITY_SHIFT, 1454 vgic_sanitise_shareability); 1455 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1456 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1457 vgic_sanitise_inner_cacheability); 1458 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1459 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1460 vgic_sanitise_outer_cacheability); 1461 1462 /* Sanitise the physical address to be 64k aligned. */ 1463 reg &= ~GENMASK_ULL(15, 12); 1464 1465 return reg; 1466 } 1467 1468 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1469 struct vgic_its *its, 1470 gpa_t addr, unsigned int len) 1471 { 1472 return extract_bytes(its->cbaser, addr & 7, len); 1473 } 1474 1475 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1476 gpa_t addr, unsigned int len, 1477 unsigned long val) 1478 { 1479 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1480 if (its->enabled) 1481 return; 1482 1483 mutex_lock(&its->cmd_lock); 1484 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1485 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1486 its->creadr = 0; 1487 /* 1488 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1489 * it to CREADR to make sure we start with an empty command buffer. 1490 */ 1491 its->cwriter = its->creadr; 1492 mutex_unlock(&its->cmd_lock); 1493 } 1494 1495 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1496 #define ITS_CMD_SIZE 32 1497 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1498 1499 /* Must be called with the cmd_lock held. */ 1500 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1501 { 1502 gpa_t cbaser; 1503 u64 cmd_buf[4]; 1504 1505 /* Commands are only processed when the ITS is enabled. */ 1506 if (!its->enabled) 1507 return; 1508 1509 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1510 1511 while (its->cwriter != its->creadr) { 1512 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1513 cmd_buf, ITS_CMD_SIZE); 1514 /* 1515 * If kvm_read_guest() fails, this could be due to the guest 1516 * programming a bogus value in CBASER or something else going 1517 * wrong from which we cannot easily recover. 1518 * According to section 6.3.2 in the GICv3 spec we can just 1519 * ignore that command then. 1520 */ 1521 if (!ret) 1522 vgic_its_handle_command(kvm, its, cmd_buf); 1523 1524 its->creadr += ITS_CMD_SIZE; 1525 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1526 its->creadr = 0; 1527 } 1528 } 1529 1530 /* 1531 * By writing to CWRITER the guest announces new commands to be processed. 1532 * To avoid any races in the first place, we take the its_cmd lock, which 1533 * protects our ring buffer variables, so that there is only one user 1534 * per ITS handling commands at a given time. 1535 */ 1536 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1537 gpa_t addr, unsigned int len, 1538 unsigned long val) 1539 { 1540 u64 reg; 1541 1542 if (!its) 1543 return; 1544 1545 mutex_lock(&its->cmd_lock); 1546 1547 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1548 reg = ITS_CMD_OFFSET(reg); 1549 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1550 mutex_unlock(&its->cmd_lock); 1551 return; 1552 } 1553 its->cwriter = reg; 1554 1555 vgic_its_process_commands(kvm, its); 1556 1557 mutex_unlock(&its->cmd_lock); 1558 } 1559 1560 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1561 struct vgic_its *its, 1562 gpa_t addr, unsigned int len) 1563 { 1564 return extract_bytes(its->cwriter, addr & 0x7, len); 1565 } 1566 1567 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1568 struct vgic_its *its, 1569 gpa_t addr, unsigned int len) 1570 { 1571 return extract_bytes(its->creadr, addr & 0x7, len); 1572 } 1573 1574 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1575 struct vgic_its *its, 1576 gpa_t addr, unsigned int len, 1577 unsigned long val) 1578 { 1579 u32 cmd_offset; 1580 int ret = 0; 1581 1582 mutex_lock(&its->cmd_lock); 1583 1584 if (its->enabled) { 1585 ret = -EBUSY; 1586 goto out; 1587 } 1588 1589 cmd_offset = ITS_CMD_OFFSET(val); 1590 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1591 ret = -EINVAL; 1592 goto out; 1593 } 1594 1595 its->creadr = cmd_offset; 1596 out: 1597 mutex_unlock(&its->cmd_lock); 1598 return ret; 1599 } 1600 1601 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1602 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1603 struct vgic_its *its, 1604 gpa_t addr, unsigned int len) 1605 { 1606 u64 reg; 1607 1608 switch (BASER_INDEX(addr)) { 1609 case 0: 1610 reg = its->baser_device_table; 1611 break; 1612 case 1: 1613 reg = its->baser_coll_table; 1614 break; 1615 default: 1616 reg = 0; 1617 break; 1618 } 1619 1620 return extract_bytes(reg, addr & 7, len); 1621 } 1622 1623 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1624 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1625 struct vgic_its *its, 1626 gpa_t addr, unsigned int len, 1627 unsigned long val) 1628 { 1629 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1630 u64 entry_size, table_type; 1631 u64 reg, *regptr, clearbits = 0; 1632 1633 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1634 if (its->enabled) 1635 return; 1636 1637 switch (BASER_INDEX(addr)) { 1638 case 0: 1639 regptr = &its->baser_device_table; 1640 entry_size = abi->dte_esz; 1641 table_type = GITS_BASER_TYPE_DEVICE; 1642 break; 1643 case 1: 1644 regptr = &its->baser_coll_table; 1645 entry_size = abi->cte_esz; 1646 table_type = GITS_BASER_TYPE_COLLECTION; 1647 clearbits = GITS_BASER_INDIRECT; 1648 break; 1649 default: 1650 return; 1651 } 1652 1653 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1654 reg &= ~GITS_BASER_RO_MASK; 1655 reg &= ~clearbits; 1656 1657 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1658 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1659 reg = vgic_sanitise_its_baser(reg); 1660 1661 *regptr = reg; 1662 1663 if (!(reg & GITS_BASER_VALID)) { 1664 /* Take the its_lock to prevent a race with a save/restore */ 1665 mutex_lock(&its->its_lock); 1666 switch (table_type) { 1667 case GITS_BASER_TYPE_DEVICE: 1668 vgic_its_free_device_list(kvm, its); 1669 break; 1670 case GITS_BASER_TYPE_COLLECTION: 1671 vgic_its_free_collection_list(kvm, its); 1672 break; 1673 } 1674 mutex_unlock(&its->its_lock); 1675 } 1676 } 1677 1678 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1679 struct vgic_its *its, 1680 gpa_t addr, unsigned int len) 1681 { 1682 u32 reg = 0; 1683 1684 mutex_lock(&its->cmd_lock); 1685 if (its->creadr == its->cwriter) 1686 reg |= GITS_CTLR_QUIESCENT; 1687 if (its->enabled) 1688 reg |= GITS_CTLR_ENABLE; 1689 mutex_unlock(&its->cmd_lock); 1690 1691 return reg; 1692 } 1693 1694 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1695 gpa_t addr, unsigned int len, 1696 unsigned long val) 1697 { 1698 mutex_lock(&its->cmd_lock); 1699 1700 /* 1701 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1702 * device/collection BASER are invalid 1703 */ 1704 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1705 (!(its->baser_device_table & GITS_BASER_VALID) || 1706 !(its->baser_coll_table & GITS_BASER_VALID) || 1707 !(its->cbaser & GITS_CBASER_VALID))) 1708 goto out; 1709 1710 its->enabled = !!(val & GITS_CTLR_ENABLE); 1711 if (!its->enabled) 1712 vgic_its_invalidate_cache(its); 1713 1714 /* 1715 * Try to process any pending commands. This function bails out early 1716 * if the ITS is disabled or no commands have been queued. 1717 */ 1718 vgic_its_process_commands(kvm, its); 1719 1720 out: 1721 mutex_unlock(&its->cmd_lock); 1722 } 1723 1724 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1725 { \ 1726 .reg_offset = off, \ 1727 .len = length, \ 1728 .access_flags = acc, \ 1729 .its_read = rd, \ 1730 .its_write = wr, \ 1731 } 1732 1733 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1734 { \ 1735 .reg_offset = off, \ 1736 .len = length, \ 1737 .access_flags = acc, \ 1738 .its_read = rd, \ 1739 .its_write = wr, \ 1740 .uaccess_its_write = uwr, \ 1741 } 1742 1743 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1744 gpa_t addr, unsigned int len, unsigned long val) 1745 { 1746 /* Ignore */ 1747 } 1748 1749 static struct vgic_register_region its_registers[] = { 1750 REGISTER_ITS_DESC(GITS_CTLR, 1751 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1752 VGIC_ACCESS_32bit), 1753 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1754 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1755 vgic_mmio_uaccess_write_its_iidr, 4, 1756 VGIC_ACCESS_32bit), 1757 REGISTER_ITS_DESC(GITS_TYPER, 1758 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1759 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1760 REGISTER_ITS_DESC(GITS_CBASER, 1761 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1762 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1763 REGISTER_ITS_DESC(GITS_CWRITER, 1764 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1765 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1766 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1767 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1768 vgic_mmio_uaccess_write_its_creadr, 8, 1769 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1770 REGISTER_ITS_DESC(GITS_BASER, 1771 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1772 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1773 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1774 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1775 VGIC_ACCESS_32bit), 1776 }; 1777 1778 /* This is called on setting the LPI enable bit in the redistributor. */ 1779 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1780 { 1781 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1782 its_sync_lpi_pending_table(vcpu); 1783 } 1784 1785 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1786 u64 addr) 1787 { 1788 struct vgic_io_device *iodev = &its->iodev; 1789 int ret; 1790 1791 mutex_lock(&kvm->slots_lock); 1792 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1793 ret = -EBUSY; 1794 goto out; 1795 } 1796 1797 its->vgic_its_base = addr; 1798 iodev->regions = its_registers; 1799 iodev->nr_regions = ARRAY_SIZE(its_registers); 1800 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1801 1802 iodev->base_addr = its->vgic_its_base; 1803 iodev->iodev_type = IODEV_ITS; 1804 iodev->its = its; 1805 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1806 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1807 out: 1808 mutex_unlock(&kvm->slots_lock); 1809 1810 return ret; 1811 } 1812 1813 #define INITIAL_BASER_VALUE \ 1814 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1815 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1816 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1817 GITS_BASER_PAGE_SIZE_64K) 1818 1819 #define INITIAL_PROPBASER_VALUE \ 1820 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1821 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1822 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1823 1824 static int vgic_its_create(struct kvm_device *dev, u32 type) 1825 { 1826 int ret; 1827 struct vgic_its *its; 1828 1829 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1830 return -ENODEV; 1831 1832 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1833 if (!its) 1834 return -ENOMEM; 1835 1836 mutex_lock(&dev->kvm->arch.config_lock); 1837 1838 if (vgic_initialized(dev->kvm)) { 1839 ret = vgic_v4_init(dev->kvm); 1840 if (ret < 0) { 1841 mutex_unlock(&dev->kvm->arch.config_lock); 1842 kfree(its); 1843 return ret; 1844 } 1845 } 1846 1847 mutex_init(&its->its_lock); 1848 mutex_init(&its->cmd_lock); 1849 1850 /* Yep, even more trickery for lock ordering... */ 1851 #ifdef CONFIG_LOCKDEP 1852 mutex_lock(&its->cmd_lock); 1853 mutex_lock(&its->its_lock); 1854 mutex_unlock(&its->its_lock); 1855 mutex_unlock(&its->cmd_lock); 1856 #endif 1857 1858 its->vgic_its_base = VGIC_ADDR_UNDEF; 1859 1860 INIT_LIST_HEAD(&its->device_list); 1861 INIT_LIST_HEAD(&its->collection_list); 1862 xa_init(&its->translation_cache); 1863 1864 dev->kvm->arch.vgic.msis_require_devid = true; 1865 dev->kvm->arch.vgic.has_its = true; 1866 its->enabled = false; 1867 its->dev = dev; 1868 1869 its->baser_device_table = INITIAL_BASER_VALUE | 1870 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1871 its->baser_coll_table = INITIAL_BASER_VALUE | 1872 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1873 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1874 1875 dev->private = its; 1876 1877 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1878 1879 mutex_unlock(&dev->kvm->arch.config_lock); 1880 1881 return ret; 1882 } 1883 1884 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1885 { 1886 struct kvm *kvm = kvm_dev->kvm; 1887 struct vgic_its *its = kvm_dev->private; 1888 1889 mutex_lock(&its->its_lock); 1890 1891 vgic_its_free_device_list(kvm, its); 1892 vgic_its_free_collection_list(kvm, its); 1893 vgic_its_invalidate_cache(its); 1894 xa_destroy(&its->translation_cache); 1895 1896 mutex_unlock(&its->its_lock); 1897 kfree(its); 1898 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1899 } 1900 1901 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1902 struct kvm_device_attr *attr) 1903 { 1904 const struct vgic_register_region *region; 1905 gpa_t offset = attr->attr; 1906 int align; 1907 1908 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1909 1910 if (offset & align) 1911 return -EINVAL; 1912 1913 region = vgic_find_mmio_region(its_registers, 1914 ARRAY_SIZE(its_registers), 1915 offset); 1916 if (!region) 1917 return -ENXIO; 1918 1919 return 0; 1920 } 1921 1922 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1923 struct kvm_device_attr *attr, 1924 u64 *reg, bool is_write) 1925 { 1926 const struct vgic_register_region *region; 1927 struct vgic_its *its; 1928 gpa_t addr, offset; 1929 unsigned int len; 1930 int align, ret = 0; 1931 1932 its = dev->private; 1933 offset = attr->attr; 1934 1935 /* 1936 * Although the spec supports upper/lower 32-bit accesses to 1937 * 64-bit ITS registers, the userspace ABI requires 64-bit 1938 * accesses to all 64-bit wide registers. We therefore only 1939 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1940 * registers 1941 */ 1942 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1943 align = 0x3; 1944 else 1945 align = 0x7; 1946 1947 if (offset & align) 1948 return -EINVAL; 1949 1950 mutex_lock(&dev->kvm->lock); 1951 1952 if (!lock_all_vcpus(dev->kvm)) { 1953 mutex_unlock(&dev->kvm->lock); 1954 return -EBUSY; 1955 } 1956 1957 mutex_lock(&dev->kvm->arch.config_lock); 1958 1959 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1960 ret = -ENXIO; 1961 goto out; 1962 } 1963 1964 region = vgic_find_mmio_region(its_registers, 1965 ARRAY_SIZE(its_registers), 1966 offset); 1967 if (!region) { 1968 ret = -ENXIO; 1969 goto out; 1970 } 1971 1972 addr = its->vgic_its_base + offset; 1973 1974 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 1975 1976 if (is_write) { 1977 if (region->uaccess_its_write) 1978 ret = region->uaccess_its_write(dev->kvm, its, addr, 1979 len, *reg); 1980 else 1981 region->its_write(dev->kvm, its, addr, len, *reg); 1982 } else { 1983 *reg = region->its_read(dev->kvm, its, addr, len); 1984 } 1985 out: 1986 mutex_unlock(&dev->kvm->arch.config_lock); 1987 unlock_all_vcpus(dev->kvm); 1988 mutex_unlock(&dev->kvm->lock); 1989 return ret; 1990 } 1991 1992 static u32 compute_next_devid_offset(struct list_head *h, 1993 struct its_device *dev) 1994 { 1995 struct its_device *next; 1996 u32 next_offset; 1997 1998 if (list_is_last(&dev->dev_list, h)) 1999 return 0; 2000 next = list_next_entry(dev, dev_list); 2001 next_offset = next->device_id - dev->device_id; 2002 2003 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2004 } 2005 2006 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2007 { 2008 struct its_ite *next; 2009 u32 next_offset; 2010 2011 if (list_is_last(&ite->ite_list, h)) 2012 return 0; 2013 next = list_next_entry(ite, ite_list); 2014 next_offset = next->event_id - ite->event_id; 2015 2016 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2017 } 2018 2019 /** 2020 * typedef entry_fn_t - Callback called on a table entry restore path 2021 * @its: its handle 2022 * @id: id of the entry 2023 * @entry: pointer to the entry 2024 * @opaque: pointer to an opaque data 2025 * 2026 * Return: < 0 on error, 0 if last element was identified, id offset to next 2027 * element otherwise 2028 */ 2029 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2030 void *opaque); 2031 2032 /** 2033 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2034 * to each entry 2035 * 2036 * @its: its handle 2037 * @base: base gpa of the table 2038 * @size: size of the table in bytes 2039 * @esz: entry size in bytes 2040 * @start_id: the ID of the first entry in the table 2041 * (non zero for 2d level tables) 2042 * @fn: function to apply on each entry 2043 * @opaque: pointer to opaque data 2044 * 2045 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2046 * (the last element may not be found on second level tables) 2047 */ 2048 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2049 int start_id, entry_fn_t fn, void *opaque) 2050 { 2051 struct kvm *kvm = its->dev->kvm; 2052 unsigned long len = size; 2053 int id = start_id; 2054 gpa_t gpa = base; 2055 char entry[ESZ_MAX]; 2056 int ret; 2057 2058 memset(entry, 0, esz); 2059 2060 while (true) { 2061 int next_offset; 2062 size_t byte_offset; 2063 2064 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2065 if (ret) 2066 return ret; 2067 2068 next_offset = fn(its, id, entry, opaque); 2069 if (next_offset <= 0) 2070 return next_offset; 2071 2072 byte_offset = next_offset * esz; 2073 if (byte_offset >= len) 2074 break; 2075 2076 id += next_offset; 2077 gpa += byte_offset; 2078 len -= byte_offset; 2079 } 2080 return 1; 2081 } 2082 2083 /* 2084 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2085 */ 2086 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2087 struct its_ite *ite, gpa_t gpa, int ite_esz) 2088 { 2089 struct kvm *kvm = its->dev->kvm; 2090 u32 next_offset; 2091 u64 val; 2092 2093 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2094 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2095 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2096 ite->collection->collection_id; 2097 val = cpu_to_le64(val); 2098 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz); 2099 } 2100 2101 /** 2102 * vgic_its_restore_ite - restore an interrupt translation entry 2103 * 2104 * @its: its handle 2105 * @event_id: id used for indexing 2106 * @ptr: pointer to the ITE entry 2107 * @opaque: pointer to the its_device 2108 */ 2109 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2110 void *ptr, void *opaque) 2111 { 2112 struct its_device *dev = opaque; 2113 struct its_collection *collection; 2114 struct kvm *kvm = its->dev->kvm; 2115 struct kvm_vcpu *vcpu = NULL; 2116 u64 val; 2117 u64 *p = (u64 *)ptr; 2118 struct vgic_irq *irq; 2119 u32 coll_id, lpi_id; 2120 struct its_ite *ite; 2121 u32 offset; 2122 2123 val = *p; 2124 2125 val = le64_to_cpu(val); 2126 2127 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2128 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2129 2130 if (!lpi_id) 2131 return 1; /* invalid entry, no choice but to scan next entry */ 2132 2133 if (lpi_id < VGIC_MIN_LPI) 2134 return -EINVAL; 2135 2136 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2137 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2138 return -EINVAL; 2139 2140 collection = find_collection(its, coll_id); 2141 if (!collection) 2142 return -EINVAL; 2143 2144 if (!vgic_its_check_event_id(its, dev, event_id)) 2145 return -EINVAL; 2146 2147 ite = vgic_its_alloc_ite(dev, collection, event_id); 2148 if (IS_ERR(ite)) 2149 return PTR_ERR(ite); 2150 2151 if (its_is_collection_mapped(collection)) 2152 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr); 2153 2154 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2155 if (IS_ERR(irq)) { 2156 its_free_ite(kvm, ite); 2157 return PTR_ERR(irq); 2158 } 2159 ite->irq = irq; 2160 2161 return offset; 2162 } 2163 2164 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2165 const struct list_head *b) 2166 { 2167 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2168 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2169 2170 if (itea->event_id < iteb->event_id) 2171 return -1; 2172 else 2173 return 1; 2174 } 2175 2176 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2177 { 2178 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2179 gpa_t base = device->itt_addr; 2180 struct its_ite *ite; 2181 int ret; 2182 int ite_esz = abi->ite_esz; 2183 2184 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2185 2186 list_for_each_entry(ite, &device->itt_head, ite_list) { 2187 gpa_t gpa = base + ite->event_id * ite_esz; 2188 2189 /* 2190 * If an LPI carries the HW bit, this means that this 2191 * interrupt is controlled by GICv4, and we do not 2192 * have direct access to that state without GICv4.1. 2193 * Let's simply fail the save operation... 2194 */ 2195 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2196 return -EACCES; 2197 2198 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2199 if (ret) 2200 return ret; 2201 } 2202 return 0; 2203 } 2204 2205 /** 2206 * vgic_its_restore_itt - restore the ITT of a device 2207 * 2208 * @its: its handle 2209 * @dev: device handle 2210 * 2211 * Return 0 on success, < 0 on error 2212 */ 2213 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2214 { 2215 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2216 gpa_t base = dev->itt_addr; 2217 int ret; 2218 int ite_esz = abi->ite_esz; 2219 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2220 2221 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2222 vgic_its_restore_ite, dev); 2223 2224 /* scan_its_table returns +1 if all ITEs are invalid */ 2225 if (ret > 0) 2226 ret = 0; 2227 2228 return ret; 2229 } 2230 2231 /** 2232 * vgic_its_save_dte - Save a device table entry at a given GPA 2233 * 2234 * @its: ITS handle 2235 * @dev: ITS device 2236 * @ptr: GPA 2237 * @dte_esz: device table entry size 2238 */ 2239 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2240 gpa_t ptr, int dte_esz) 2241 { 2242 struct kvm *kvm = its->dev->kvm; 2243 u64 val, itt_addr_field; 2244 u32 next_offset; 2245 2246 itt_addr_field = dev->itt_addr >> 8; 2247 next_offset = compute_next_devid_offset(&its->device_list, dev); 2248 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2249 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2250 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2251 (dev->num_eventid_bits - 1)); 2252 val = cpu_to_le64(val); 2253 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz); 2254 } 2255 2256 /** 2257 * vgic_its_restore_dte - restore a device table entry 2258 * 2259 * @its: its handle 2260 * @id: device id the DTE corresponds to 2261 * @ptr: kernel VA where the 8 byte DTE is located 2262 * @opaque: unused 2263 * 2264 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2265 * next dte otherwise 2266 */ 2267 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2268 void *ptr, void *opaque) 2269 { 2270 struct its_device *dev; 2271 u64 baser = its->baser_device_table; 2272 gpa_t itt_addr; 2273 u8 num_eventid_bits; 2274 u64 entry = *(u64 *)ptr; 2275 bool valid; 2276 u32 offset; 2277 int ret; 2278 2279 entry = le64_to_cpu(entry); 2280 2281 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2282 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2283 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2284 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2285 2286 if (!valid) 2287 return 1; 2288 2289 /* dte entry is valid */ 2290 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2291 2292 if (!vgic_its_check_id(its, baser, id, NULL)) 2293 return -EINVAL; 2294 2295 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2296 if (IS_ERR(dev)) 2297 return PTR_ERR(dev); 2298 2299 ret = vgic_its_restore_itt(its, dev); 2300 if (ret) { 2301 vgic_its_free_device(its->dev->kvm, its, dev); 2302 return ret; 2303 } 2304 2305 return offset; 2306 } 2307 2308 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2309 const struct list_head *b) 2310 { 2311 struct its_device *deva = container_of(a, struct its_device, dev_list); 2312 struct its_device *devb = container_of(b, struct its_device, dev_list); 2313 2314 if (deva->device_id < devb->device_id) 2315 return -1; 2316 else 2317 return 1; 2318 } 2319 2320 /* 2321 * vgic_its_save_device_tables - Save the device table and all ITT 2322 * into guest RAM 2323 * 2324 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2325 * returns the GPA of the device entry 2326 */ 2327 static int vgic_its_save_device_tables(struct vgic_its *its) 2328 { 2329 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2330 u64 baser = its->baser_device_table; 2331 struct its_device *dev; 2332 int dte_esz = abi->dte_esz; 2333 2334 if (!(baser & GITS_BASER_VALID)) 2335 return 0; 2336 2337 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2338 2339 list_for_each_entry(dev, &its->device_list, dev_list) { 2340 int ret; 2341 gpa_t eaddr; 2342 2343 if (!vgic_its_check_id(its, baser, 2344 dev->device_id, &eaddr)) 2345 return -EINVAL; 2346 2347 ret = vgic_its_save_itt(its, dev); 2348 if (ret) 2349 return ret; 2350 2351 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2352 if (ret) 2353 return ret; 2354 } 2355 return 0; 2356 } 2357 2358 /** 2359 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2360 * 2361 * @its: its handle 2362 * @id: index of the entry in the L1 table 2363 * @addr: kernel VA 2364 * @opaque: unused 2365 * 2366 * L1 table entries are scanned by steps of 1 entry 2367 * Return < 0 if error, 0 if last dte was found when scanning the L2 2368 * table, +1 otherwise (meaning next L1 entry must be scanned) 2369 */ 2370 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2371 void *opaque) 2372 { 2373 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2374 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2375 u64 entry = *(u64 *)addr; 2376 int dte_esz = abi->dte_esz; 2377 gpa_t gpa; 2378 int ret; 2379 2380 entry = le64_to_cpu(entry); 2381 2382 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2383 return 1; 2384 2385 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2386 2387 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2388 l2_start_id, vgic_its_restore_dte, NULL); 2389 2390 return ret; 2391 } 2392 2393 /* 2394 * vgic_its_restore_device_tables - Restore the device table and all ITT 2395 * from guest RAM to internal data structs 2396 */ 2397 static int vgic_its_restore_device_tables(struct vgic_its *its) 2398 { 2399 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2400 u64 baser = its->baser_device_table; 2401 int l1_esz, ret; 2402 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2403 gpa_t l1_gpa; 2404 2405 if (!(baser & GITS_BASER_VALID)) 2406 return 0; 2407 2408 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2409 2410 if (baser & GITS_BASER_INDIRECT) { 2411 l1_esz = GITS_LVL1_ENTRY_SIZE; 2412 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2413 handle_l1_dte, NULL); 2414 } else { 2415 l1_esz = abi->dte_esz; 2416 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2417 vgic_its_restore_dte, NULL); 2418 } 2419 2420 /* scan_its_table returns +1 if all entries are invalid */ 2421 if (ret > 0) 2422 ret = 0; 2423 2424 if (ret < 0) 2425 vgic_its_free_device_list(its->dev->kvm, its); 2426 2427 return ret; 2428 } 2429 2430 static int vgic_its_save_cte(struct vgic_its *its, 2431 struct its_collection *collection, 2432 gpa_t gpa, int esz) 2433 { 2434 u64 val; 2435 2436 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2437 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2438 collection->collection_id); 2439 val = cpu_to_le64(val); 2440 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz); 2441 } 2442 2443 /* 2444 * Restore a collection entry into the ITS collection table. 2445 * Return +1 on success, 0 if the entry was invalid (which should be 2446 * interpreted as end-of-table), and a negative error value for generic errors. 2447 */ 2448 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2449 { 2450 struct its_collection *collection; 2451 struct kvm *kvm = its->dev->kvm; 2452 u32 target_addr, coll_id; 2453 u64 val; 2454 int ret; 2455 2456 BUG_ON(esz > sizeof(val)); 2457 ret = kvm_read_guest_lock(kvm, gpa, &val, esz); 2458 if (ret) 2459 return ret; 2460 val = le64_to_cpu(val); 2461 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2462 return 0; 2463 2464 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2465 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2466 2467 if (target_addr != COLLECTION_NOT_MAPPED && 2468 !kvm_get_vcpu_by_id(kvm, target_addr)) 2469 return -EINVAL; 2470 2471 collection = find_collection(its, coll_id); 2472 if (collection) 2473 return -EEXIST; 2474 2475 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2476 return -EINVAL; 2477 2478 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2479 if (ret) 2480 return ret; 2481 collection->target_addr = target_addr; 2482 return 1; 2483 } 2484 2485 /* 2486 * vgic_its_save_collection_table - Save the collection table into 2487 * guest RAM 2488 */ 2489 static int vgic_its_save_collection_table(struct vgic_its *its) 2490 { 2491 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2492 u64 baser = its->baser_coll_table; 2493 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2494 struct its_collection *collection; 2495 u64 val; 2496 size_t max_size, filled = 0; 2497 int ret, cte_esz = abi->cte_esz; 2498 2499 if (!(baser & GITS_BASER_VALID)) 2500 return 0; 2501 2502 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2503 2504 list_for_each_entry(collection, &its->collection_list, coll_list) { 2505 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2506 if (ret) 2507 return ret; 2508 gpa += cte_esz; 2509 filled += cte_esz; 2510 } 2511 2512 if (filled == max_size) 2513 return 0; 2514 2515 /* 2516 * table is not fully filled, add a last dummy element 2517 * with valid bit unset 2518 */ 2519 val = 0; 2520 BUG_ON(cte_esz > sizeof(val)); 2521 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); 2522 return ret; 2523 } 2524 2525 /* 2526 * vgic_its_restore_collection_table - reads the collection table 2527 * in guest memory and restores the ITS internal state. Requires the 2528 * BASER registers to be restored before. 2529 */ 2530 static int vgic_its_restore_collection_table(struct vgic_its *its) 2531 { 2532 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2533 u64 baser = its->baser_coll_table; 2534 int cte_esz = abi->cte_esz; 2535 size_t max_size, read = 0; 2536 gpa_t gpa; 2537 int ret; 2538 2539 if (!(baser & GITS_BASER_VALID)) 2540 return 0; 2541 2542 gpa = GITS_BASER_ADDR_48_to_52(baser); 2543 2544 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2545 2546 while (read < max_size) { 2547 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2548 if (ret <= 0) 2549 break; 2550 gpa += cte_esz; 2551 read += cte_esz; 2552 } 2553 2554 if (ret > 0) 2555 return 0; 2556 2557 if (ret < 0) 2558 vgic_its_free_collection_list(its->dev->kvm, its); 2559 2560 return ret; 2561 } 2562 2563 /* 2564 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2565 * according to v0 ABI 2566 */ 2567 static int vgic_its_save_tables_v0(struct vgic_its *its) 2568 { 2569 int ret; 2570 2571 ret = vgic_its_save_device_tables(its); 2572 if (ret) 2573 return ret; 2574 2575 return vgic_its_save_collection_table(its); 2576 } 2577 2578 /* 2579 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2580 * to internal data structs according to V0 ABI 2581 * 2582 */ 2583 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2584 { 2585 int ret; 2586 2587 ret = vgic_its_restore_collection_table(its); 2588 if (ret) 2589 return ret; 2590 2591 ret = vgic_its_restore_device_tables(its); 2592 if (ret) 2593 vgic_its_free_collection_list(its->dev->kvm, its); 2594 return ret; 2595 } 2596 2597 static int vgic_its_commit_v0(struct vgic_its *its) 2598 { 2599 const struct vgic_its_abi *abi; 2600 2601 abi = vgic_its_get_abi(its); 2602 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2603 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2604 2605 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2606 << GITS_BASER_ENTRY_SIZE_SHIFT); 2607 2608 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2609 << GITS_BASER_ENTRY_SIZE_SHIFT); 2610 return 0; 2611 } 2612 2613 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2614 { 2615 /* We need to keep the ABI specific field values */ 2616 its->baser_coll_table &= ~GITS_BASER_VALID; 2617 its->baser_device_table &= ~GITS_BASER_VALID; 2618 its->cbaser = 0; 2619 its->creadr = 0; 2620 its->cwriter = 0; 2621 its->enabled = 0; 2622 vgic_its_free_device_list(kvm, its); 2623 vgic_its_free_collection_list(kvm, its); 2624 } 2625 2626 static int vgic_its_has_attr(struct kvm_device *dev, 2627 struct kvm_device_attr *attr) 2628 { 2629 switch (attr->group) { 2630 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2631 switch (attr->attr) { 2632 case KVM_VGIC_ITS_ADDR_TYPE: 2633 return 0; 2634 } 2635 break; 2636 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2637 switch (attr->attr) { 2638 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2639 return 0; 2640 case KVM_DEV_ARM_ITS_CTRL_RESET: 2641 return 0; 2642 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2643 return 0; 2644 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2645 return 0; 2646 } 2647 break; 2648 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2649 return vgic_its_has_attr_regs(dev, attr); 2650 } 2651 return -ENXIO; 2652 } 2653 2654 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2655 { 2656 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2657 int ret = 0; 2658 2659 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2660 return 0; 2661 2662 mutex_lock(&kvm->lock); 2663 2664 if (!lock_all_vcpus(kvm)) { 2665 mutex_unlock(&kvm->lock); 2666 return -EBUSY; 2667 } 2668 2669 mutex_lock(&kvm->arch.config_lock); 2670 mutex_lock(&its->its_lock); 2671 2672 switch (attr) { 2673 case KVM_DEV_ARM_ITS_CTRL_RESET: 2674 vgic_its_reset(kvm, its); 2675 break; 2676 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2677 ret = abi->save_tables(its); 2678 break; 2679 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2680 ret = abi->restore_tables(its); 2681 break; 2682 } 2683 2684 mutex_unlock(&its->its_lock); 2685 mutex_unlock(&kvm->arch.config_lock); 2686 unlock_all_vcpus(kvm); 2687 mutex_unlock(&kvm->lock); 2688 return ret; 2689 } 2690 2691 /* 2692 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2693 * without the running VCPU when dirty ring is enabled. 2694 * 2695 * The running VCPU is required to track dirty guest pages when dirty ring 2696 * is enabled. Otherwise, the backup bitmap should be used to track the 2697 * dirty guest pages. When vgic/its tables are being saved, the backup 2698 * bitmap is used to track the dirty guest pages due to the missed running 2699 * VCPU in the period. 2700 */ 2701 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2702 { 2703 struct vgic_dist *dist = &kvm->arch.vgic; 2704 2705 return dist->table_write_in_progress; 2706 } 2707 2708 static int vgic_its_set_attr(struct kvm_device *dev, 2709 struct kvm_device_attr *attr) 2710 { 2711 struct vgic_its *its = dev->private; 2712 int ret; 2713 2714 switch (attr->group) { 2715 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2716 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2717 unsigned long type = (unsigned long)attr->attr; 2718 u64 addr; 2719 2720 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2721 return -ENODEV; 2722 2723 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2724 return -EFAULT; 2725 2726 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2727 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2728 if (ret) 2729 return ret; 2730 2731 return vgic_register_its_iodev(dev->kvm, its, addr); 2732 } 2733 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2734 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2735 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2736 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2737 u64 reg; 2738 2739 if (get_user(reg, uaddr)) 2740 return -EFAULT; 2741 2742 return vgic_its_attr_regs_access(dev, attr, ®, true); 2743 } 2744 } 2745 return -ENXIO; 2746 } 2747 2748 static int vgic_its_get_attr(struct kvm_device *dev, 2749 struct kvm_device_attr *attr) 2750 { 2751 switch (attr->group) { 2752 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2753 struct vgic_its *its = dev->private; 2754 u64 addr = its->vgic_its_base; 2755 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2756 unsigned long type = (unsigned long)attr->attr; 2757 2758 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2759 return -ENODEV; 2760 2761 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2762 return -EFAULT; 2763 break; 2764 } 2765 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2766 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2767 u64 reg; 2768 int ret; 2769 2770 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2771 if (ret) 2772 return ret; 2773 return put_user(reg, uaddr); 2774 } 2775 default: 2776 return -ENXIO; 2777 } 2778 2779 return 0; 2780 } 2781 2782 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2783 .name = "kvm-arm-vgic-its", 2784 .create = vgic_its_create, 2785 .destroy = vgic_its_destroy, 2786 .set_attr = vgic_its_set_attr, 2787 .get_attr = vgic_its_get_attr, 2788 .has_attr = vgic_its_has_attr, 2789 }; 2790 2791 int kvm_vgic_register_its_device(void) 2792 { 2793 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2794 KVM_DEV_TYPE_ARM_VGIC_ITS); 2795 } 2796