xref: /linux/arch/arm64/kvm/vgic/vgic-its.c (revision 8e1bb4a41aa78d6105e59186af3dcd545fc66e70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27 
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
33 
34 /*
35  * Creates a new (reference to a) struct vgic_irq for a given LPI.
36  * If this LPI is already mapped on another ITS, we increase its refcount
37  * and return a pointer to the existing structure.
38  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
39  * This function returns a pointer to the _unlocked_ structure.
40  */
41 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
42 				     struct kvm_vcpu *vcpu)
43 {
44 	struct vgic_dist *dist = &kvm->arch.vgic;
45 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
46 	unsigned long flags;
47 	int ret;
48 
49 	/* In this case there is no put, since we keep the reference. */
50 	if (irq)
51 		return irq;
52 
53 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
54 	if (!irq)
55 		return ERR_PTR(-ENOMEM);
56 
57 	ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
58 	if (ret) {
59 		kfree(irq);
60 		return ERR_PTR(ret);
61 	}
62 
63 	INIT_LIST_HEAD(&irq->ap_list);
64 	raw_spin_lock_init(&irq->irq_lock);
65 
66 	irq->config = VGIC_CONFIG_EDGE;
67 	kref_init(&irq->refcount);
68 	irq->intid = intid;
69 	irq->target_vcpu = vcpu;
70 	irq->group = 1;
71 
72 	xa_lock_irqsave(&dist->lpi_xa, flags);
73 
74 	/*
75 	 * There could be a race with another vgic_add_lpi(), so we need to
76 	 * check that we don't add a second list entry with the same LPI.
77 	 */
78 	oldirq = xa_load(&dist->lpi_xa, intid);
79 	if (vgic_try_get_irq_kref(oldirq)) {
80 		/* Someone was faster with adding this LPI, lets use that. */
81 		kfree(irq);
82 		irq = oldirq;
83 
84 		goto out_unlock;
85 	}
86 
87 	ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
88 	if (ret) {
89 		xa_release(&dist->lpi_xa, intid);
90 		kfree(irq);
91 	}
92 
93 out_unlock:
94 	xa_unlock_irqrestore(&dist->lpi_xa, flags);
95 
96 	if (ret)
97 		return ERR_PTR(ret);
98 
99 	/*
100 	 * We "cache" the configuration table entries in our struct vgic_irq's.
101 	 * However we only have those structs for mapped IRQs, so we read in
102 	 * the respective config data from memory here upon mapping the LPI.
103 	 *
104 	 * Should any of these fail, behave as if we couldn't create the LPI
105 	 * by dropping the refcount and returning the error.
106 	 */
107 	ret = update_lpi_config(kvm, irq, NULL, false);
108 	if (ret) {
109 		vgic_put_irq(kvm, irq);
110 		return ERR_PTR(ret);
111 	}
112 
113 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114 	if (ret) {
115 		vgic_put_irq(kvm, irq);
116 		return ERR_PTR(ret);
117 	}
118 
119 	return irq;
120 }
121 
122 struct its_device {
123 	struct list_head dev_list;
124 
125 	/* the head for the list of ITTEs */
126 	struct list_head itt_head;
127 	u32 num_eventid_bits;
128 	gpa_t itt_addr;
129 	u32 device_id;
130 };
131 
132 #define COLLECTION_NOT_MAPPED ((u32)~0)
133 
134 struct its_collection {
135 	struct list_head coll_list;
136 
137 	u32 collection_id;
138 	u32 target_addr;
139 };
140 
141 #define its_is_collection_mapped(coll) ((coll) && \
142 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
143 
144 struct its_ite {
145 	struct list_head ite_list;
146 
147 	struct vgic_irq *irq;
148 	struct its_collection *collection;
149 	u32 event_id;
150 };
151 
152 /**
153  * struct vgic_its_abi - ITS abi ops and settings
154  * @cte_esz: collection table entry size
155  * @dte_esz: device table entry size
156  * @ite_esz: interrupt translation table entry size
157  * @save_tables: save the ITS tables into guest RAM
158  * @restore_tables: restore the ITS internal structs from tables
159  *  stored in guest RAM
160  * @commit: initialize the registers which expose the ABI settings,
161  *  especially the entry sizes
162  */
163 struct vgic_its_abi {
164 	int cte_esz;
165 	int dte_esz;
166 	int ite_esz;
167 	int (*save_tables)(struct vgic_its *its);
168 	int (*restore_tables)(struct vgic_its *its);
169 	int (*commit)(struct vgic_its *its);
170 };
171 
172 #define ABI_0_ESZ	8
173 #define ESZ_MAX		ABI_0_ESZ
174 
175 static const struct vgic_its_abi its_table_abi_versions[] = {
176 	[0] = {
177 	 .cte_esz = ABI_0_ESZ,
178 	 .dte_esz = ABI_0_ESZ,
179 	 .ite_esz = ABI_0_ESZ,
180 	 .save_tables = vgic_its_save_tables_v0,
181 	 .restore_tables = vgic_its_restore_tables_v0,
182 	 .commit = vgic_its_commit_v0,
183 	},
184 };
185 
186 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
187 
188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189 {
190 	return &its_table_abi_versions[its->abi_rev];
191 }
192 
193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 {
195 	const struct vgic_its_abi *abi;
196 
197 	its->abi_rev = rev;
198 	abi = vgic_its_get_abi(its);
199 	return abi->commit(its);
200 }
201 
202 /*
203  * Find and returns a device in the device table for an ITS.
204  * Must be called with the its_lock mutex held.
205  */
206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207 {
208 	struct its_device *device;
209 
210 	list_for_each_entry(device, &its->device_list, dev_list)
211 		if (device_id == device->device_id)
212 			return device;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Find and returns an interrupt translation table entry (ITTE) for a given
219  * Device ID/Event ID pair on an ITS.
220  * Must be called with the its_lock mutex held.
221  */
222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 				  u32 event_id)
224 {
225 	struct its_device *device;
226 	struct its_ite *ite;
227 
228 	device = find_its_device(its, device_id);
229 	if (device == NULL)
230 		return NULL;
231 
232 	list_for_each_entry(ite, &device->itt_head, ite_list)
233 		if (ite->event_id == event_id)
234 			return ite;
235 
236 	return NULL;
237 }
238 
239 /* To be used as an iterator this macro misses the enclosing parentheses */
240 #define for_each_lpi_its(dev, ite, its) \
241 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
242 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243 
244 #define GIC_LPI_OFFSET 8192
245 
246 #define VITS_TYPER_IDBITS		16
247 #define VITS_MAX_EVENTID		(BIT(VITS_TYPER_IDBITS) - 1)
248 #define VITS_TYPER_DEVBITS		16
249 #define VITS_MAX_DEVID			(BIT(VITS_TYPER_DEVBITS) - 1)
250 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
251 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
252 
253 /*
254  * Finds and returns a collection in the ITS collection table.
255  * Must be called with the its_lock mutex held.
256  */
257 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
258 {
259 	struct its_collection *collection;
260 
261 	list_for_each_entry(collection, &its->collection_list, coll_list) {
262 		if (coll_id == collection->collection_id)
263 			return collection;
264 	}
265 
266 	return NULL;
267 }
268 
269 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
270 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
271 
272 /*
273  * Reads the configuration data for a given LPI from guest memory and
274  * updates the fields in struct vgic_irq.
275  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
276  * VCPU. Unconditionally applies if filter_vcpu is NULL.
277  */
278 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
279 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
280 {
281 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
282 	u8 prop;
283 	int ret;
284 	unsigned long flags;
285 
286 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
287 				  &prop, 1);
288 
289 	if (ret)
290 		return ret;
291 
292 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
293 
294 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
295 		irq->priority = LPI_PROP_PRIORITY(prop);
296 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
297 
298 		if (!irq->hw) {
299 			vgic_queue_irq_unlock(kvm, irq, flags);
300 			return 0;
301 		}
302 	}
303 
304 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
305 
306 	if (irq->hw)
307 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
308 
309 	return 0;
310 }
311 
312 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
313 {
314 	int ret = 0;
315 	unsigned long flags;
316 
317 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
318 	irq->target_vcpu = vcpu;
319 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
320 
321 	if (irq->hw) {
322 		struct its_vlpi_map map;
323 
324 		ret = its_get_vlpi(irq->host_irq, &map);
325 		if (ret)
326 			return ret;
327 
328 		if (map.vpe)
329 			atomic_dec(&map.vpe->vlpi_count);
330 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
331 		atomic_inc(&map.vpe->vlpi_count);
332 
333 		ret = its_map_vlpi(irq->host_irq, &map);
334 	}
335 
336 	return ret;
337 }
338 
339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340 					   struct its_collection *col)
341 {
342 	return kvm_get_vcpu_by_id(kvm, col->target_addr);
343 }
344 
345 /*
346  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347  * is targeting) to the VGIC's view, which deals with target VCPUs.
348  * Needs to be called whenever either the collection for a LPIs has
349  * changed or the collection itself got retargeted.
350  */
351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352 {
353 	struct kvm_vcpu *vcpu;
354 
355 	if (!its_is_collection_mapped(ite->collection))
356 		return;
357 
358 	vcpu = collection_to_vcpu(kvm, ite->collection);
359 	update_affinity(ite->irq, vcpu);
360 }
361 
362 /*
363  * Updates the target VCPU for every LPI targeting this collection.
364  * Must be called with the its_lock mutex held.
365  */
366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367 				       struct its_collection *coll)
368 {
369 	struct its_device *device;
370 	struct its_ite *ite;
371 
372 	for_each_lpi_its(device, ite, its) {
373 		if (ite->collection != coll)
374 			continue;
375 
376 		update_affinity_ite(kvm, ite);
377 	}
378 }
379 
380 static u32 max_lpis_propbaser(u64 propbaser)
381 {
382 	int nr_idbits = (propbaser & 0x1f) + 1;
383 
384 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385 }
386 
387 /*
388  * Sync the pending table pending bit of LPIs targeting @vcpu
389  * with our own data structures. This relies on the LPI being
390  * mapped before.
391  */
392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393 {
394 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396 	unsigned long intid, flags;
397 	struct vgic_irq *irq;
398 	int last_byte_offset = -1;
399 	int ret = 0;
400 	u8 pendmask;
401 
402 	xa_for_each(&dist->lpi_xa, intid, irq) {
403 		int byte_offset, bit_nr;
404 
405 		byte_offset = intid / BITS_PER_BYTE;
406 		bit_nr = intid % BITS_PER_BYTE;
407 
408 		/*
409 		 * For contiguously allocated LPIs chances are we just read
410 		 * this very same byte in the last iteration. Reuse that.
411 		 */
412 		if (byte_offset != last_byte_offset) {
413 			ret = kvm_read_guest_lock(vcpu->kvm,
414 						  pendbase + byte_offset,
415 						  &pendmask, 1);
416 			if (ret)
417 				return ret;
418 
419 			last_byte_offset = byte_offset;
420 		}
421 
422 		irq = vgic_get_irq(vcpu->kvm, NULL, intid);
423 		if (!irq)
424 			continue;
425 
426 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
427 		if (irq->target_vcpu == vcpu)
428 			irq->pending_latch = pendmask & (1U << bit_nr);
429 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430 		vgic_put_irq(vcpu->kvm, irq);
431 	}
432 
433 	return ret;
434 }
435 
436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437 					      struct vgic_its *its,
438 					      gpa_t addr, unsigned int len)
439 {
440 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441 	u64 reg = GITS_TYPER_PLPIS;
442 
443 	/*
444 	 * We use linear CPU numbers for redistributor addressing,
445 	 * so GITS_TYPER.PTA is 0.
446 	 * Also we force all PROPBASER registers to be the same, so
447 	 * CommonLPIAff is 0 as well.
448 	 * To avoid memory waste in the guest, we keep the number of IDBits and
449 	 * DevBits low - as least for the time being.
450 	 */
451 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454 
455 	return extract_bytes(reg, addr & 7, len);
456 }
457 
458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459 					     struct vgic_its *its,
460 					     gpa_t addr, unsigned int len)
461 {
462 	u32 val;
463 
464 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466 	return val;
467 }
468 
469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470 					    struct vgic_its *its,
471 					    gpa_t addr, unsigned int len,
472 					    unsigned long val)
473 {
474 	u32 rev = GITS_IIDR_REV(val);
475 
476 	if (rev >= NR_ITS_ABIS)
477 		return -EINVAL;
478 	return vgic_its_set_abi(its, rev);
479 }
480 
481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482 					       struct vgic_its *its,
483 					       gpa_t addr, unsigned int len)
484 {
485 	switch (addr & 0xffff) {
486 	case GITS_PIDR0:
487 		return 0x92;	/* part number, bits[7:0] */
488 	case GITS_PIDR1:
489 		return 0xb4;	/* part number, bits[11:8] */
490 	case GITS_PIDR2:
491 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492 	case GITS_PIDR4:
493 		return 0x40;	/* This is a 64K software visible page */
494 	/* The following are the ID registers for (any) GIC. */
495 	case GITS_CIDR0:
496 		return 0x0d;
497 	case GITS_CIDR1:
498 		return 0xf0;
499 	case GITS_CIDR2:
500 		return 0x05;
501 	case GITS_CIDR3:
502 		return 0xb1;
503 	}
504 
505 	return 0;
506 }
507 
508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509 {
510 	struct kvm_io_device *kvm_io_dev;
511 	struct vgic_io_device *iodev;
512 
513 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514 	if (!kvm_io_dev)
515 		return ERR_PTR(-EINVAL);
516 
517 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
518 		return ERR_PTR(-EINVAL);
519 
520 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521 	if (iodev->iodev_type != IODEV_ITS)
522 		return ERR_PTR(-EINVAL);
523 
524 	return iodev->its;
525 }
526 
527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528 {
529 	return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530 
531 }
532 
533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534 					     u32 devid, u32 eventid)
535 {
536 	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537 	struct vgic_its *its;
538 	struct vgic_irq *irq;
539 
540 	if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541 		return NULL;
542 
543 	its = __vgic_doorbell_to_its(kvm, db);
544 	if (IS_ERR(its))
545 		return NULL;
546 
547 	rcu_read_lock();
548 
549 	irq = xa_load(&its->translation_cache, cache_key);
550 	if (!vgic_try_get_irq_kref(irq))
551 		irq = NULL;
552 
553 	rcu_read_unlock();
554 
555 	return irq;
556 }
557 
558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559 				       u32 devid, u32 eventid,
560 				       struct vgic_irq *irq)
561 {
562 	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563 	struct vgic_irq *old;
564 
565 	/* Do not cache a directly injected interrupt */
566 	if (irq->hw)
567 		return;
568 
569 	/*
570 	 * The irq refcount is guaranteed to be nonzero while holding the
571 	 * its_lock, as the ITE (and the reference it holds) cannot be freed.
572 	 */
573 	lockdep_assert_held(&its->its_lock);
574 	vgic_get_irq_kref(irq);
575 
576 	/*
577 	 * We could have raced with another CPU caching the same
578 	 * translation behind our back, ensure we don't leak a
579 	 * reference if that is the case.
580 	 */
581 	old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
582 	if (old)
583 		vgic_put_irq(kvm, old);
584 }
585 
586 static void vgic_its_invalidate_cache(struct vgic_its *its)
587 {
588 	struct kvm *kvm = its->dev->kvm;
589 	struct vgic_irq *irq;
590 	unsigned long idx;
591 
592 	xa_for_each(&its->translation_cache, idx, irq) {
593 		xa_erase(&its->translation_cache, idx);
594 		vgic_put_irq(kvm, irq);
595 	}
596 }
597 
598 void vgic_its_invalidate_all_caches(struct kvm *kvm)
599 {
600 	struct kvm_device *dev;
601 	struct vgic_its *its;
602 
603 	rcu_read_lock();
604 
605 	list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
606 		if (dev->ops != &kvm_arm_vgic_its_ops)
607 			continue;
608 
609 		its = dev->private;
610 		vgic_its_invalidate_cache(its);
611 	}
612 
613 	rcu_read_unlock();
614 }
615 
616 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
617 			 u32 devid, u32 eventid, struct vgic_irq **irq)
618 {
619 	struct kvm_vcpu *vcpu;
620 	struct its_ite *ite;
621 
622 	if (!its->enabled)
623 		return -EBUSY;
624 
625 	ite = find_ite(its, devid, eventid);
626 	if (!ite || !its_is_collection_mapped(ite->collection))
627 		return E_ITS_INT_UNMAPPED_INTERRUPT;
628 
629 	vcpu = collection_to_vcpu(kvm, ite->collection);
630 	if (!vcpu)
631 		return E_ITS_INT_UNMAPPED_INTERRUPT;
632 
633 	if (!vgic_lpis_enabled(vcpu))
634 		return -EBUSY;
635 
636 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
637 
638 	*irq = ite->irq;
639 	return 0;
640 }
641 
642 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
643 {
644 	u64 address;
645 
646 	if (!vgic_has_its(kvm))
647 		return ERR_PTR(-ENODEV);
648 
649 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
650 		return ERR_PTR(-EINVAL);
651 
652 	address = (u64)msi->address_hi << 32 | msi->address_lo;
653 
654 	return __vgic_doorbell_to_its(kvm, address);
655 }
656 
657 /*
658  * Find the target VCPU and the LPI number for a given devid/eventid pair
659  * and make this IRQ pending, possibly injecting it.
660  * Must be called with the its_lock mutex held.
661  * Returns 0 on success, a positive error value for any ITS mapping
662  * related errors and negative error values for generic errors.
663  */
664 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
665 				u32 devid, u32 eventid)
666 {
667 	struct vgic_irq *irq = NULL;
668 	unsigned long flags;
669 	int err;
670 
671 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
672 	if (err)
673 		return err;
674 
675 	if (irq->hw)
676 		return irq_set_irqchip_state(irq->host_irq,
677 					     IRQCHIP_STATE_PENDING, true);
678 
679 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
680 	irq->pending_latch = true;
681 	vgic_queue_irq_unlock(kvm, irq, flags);
682 
683 	return 0;
684 }
685 
686 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
687 {
688 	struct vgic_irq *irq;
689 	unsigned long flags;
690 	phys_addr_t db;
691 
692 	db = (u64)msi->address_hi << 32 | msi->address_lo;
693 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
694 	if (!irq)
695 		return -EWOULDBLOCK;
696 
697 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
698 	irq->pending_latch = true;
699 	vgic_queue_irq_unlock(kvm, irq, flags);
700 	vgic_put_irq(kvm, irq);
701 
702 	return 0;
703 }
704 
705 /*
706  * Queries the KVM IO bus framework to get the ITS pointer from the given
707  * doorbell address.
708  * We then call vgic_its_trigger_msi() with the decoded data.
709  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
710  */
711 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
712 {
713 	struct vgic_its *its;
714 	int ret;
715 
716 	if (!vgic_its_inject_cached_translation(kvm, msi))
717 		return 1;
718 
719 	its = vgic_msi_to_its(kvm, msi);
720 	if (IS_ERR(its))
721 		return PTR_ERR(its);
722 
723 	mutex_lock(&its->its_lock);
724 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
725 	mutex_unlock(&its->its_lock);
726 
727 	if (ret < 0)
728 		return ret;
729 
730 	/*
731 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
732 	 * if the guest has blocked the MSI. So we map any LPI mapping
733 	 * related error to that.
734 	 */
735 	if (ret)
736 		return 0;
737 	else
738 		return 1;
739 }
740 
741 /* Requires the its_lock to be held. */
742 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
743 {
744 	list_del(&ite->ite_list);
745 
746 	/* This put matches the get in vgic_add_lpi. */
747 	if (ite->irq) {
748 		if (ite->irq->hw)
749 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
750 
751 		vgic_put_irq(kvm, ite->irq);
752 	}
753 
754 	kfree(ite);
755 }
756 
757 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
758 {
759 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
760 }
761 
762 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
763 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
764 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
765 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
766 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
767 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
768 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
769 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
770 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
771 
772 /*
773  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
774  * Must be called with the its_lock mutex held.
775  */
776 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
777 				       u64 *its_cmd)
778 {
779 	u32 device_id = its_cmd_get_deviceid(its_cmd);
780 	u32 event_id = its_cmd_get_id(its_cmd);
781 	struct its_ite *ite;
782 
783 	ite = find_ite(its, device_id, event_id);
784 	if (ite && its_is_collection_mapped(ite->collection)) {
785 		/*
786 		 * Though the spec talks about removing the pending state, we
787 		 * don't bother here since we clear the ITTE anyway and the
788 		 * pending state is a property of the ITTE struct.
789 		 */
790 		vgic_its_invalidate_cache(its);
791 
792 		its_free_ite(kvm, ite);
793 		return 0;
794 	}
795 
796 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
797 }
798 
799 /*
800  * The MOVI command moves an ITTE to a different collection.
801  * Must be called with the its_lock mutex held.
802  */
803 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
804 				    u64 *its_cmd)
805 {
806 	u32 device_id = its_cmd_get_deviceid(its_cmd);
807 	u32 event_id = its_cmd_get_id(its_cmd);
808 	u32 coll_id = its_cmd_get_collection(its_cmd);
809 	struct kvm_vcpu *vcpu;
810 	struct its_ite *ite;
811 	struct its_collection *collection;
812 
813 	ite = find_ite(its, device_id, event_id);
814 	if (!ite)
815 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
816 
817 	if (!its_is_collection_mapped(ite->collection))
818 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
819 
820 	collection = find_collection(its, coll_id);
821 	if (!its_is_collection_mapped(collection))
822 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
823 
824 	ite->collection = collection;
825 	vcpu = collection_to_vcpu(kvm, collection);
826 
827 	vgic_its_invalidate_cache(its);
828 
829 	return update_affinity(ite->irq, vcpu);
830 }
831 
832 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
833 {
834 	gfn_t gfn = gpa >> PAGE_SHIFT;
835 	int idx;
836 	bool ret;
837 
838 	idx = srcu_read_lock(&its->dev->kvm->srcu);
839 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
840 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
841 	return ret;
842 }
843 
844 /*
845  * Check whether an ID can be stored into the corresponding guest table.
846  * For a direct table this is pretty easy, but gets a bit nasty for
847  * indirect tables. We check whether the resulting guest physical address
848  * is actually valid (covered by a memslot and guest accessible).
849  * For this we have to read the respective first level entry.
850  */
851 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
852 			      gpa_t *eaddr)
853 {
854 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
855 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
856 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
857 	int esz = GITS_BASER_ENTRY_SIZE(baser);
858 	int index;
859 
860 	switch (type) {
861 	case GITS_BASER_TYPE_DEVICE:
862 		if (id > VITS_MAX_DEVID)
863 			return false;
864 		break;
865 	case GITS_BASER_TYPE_COLLECTION:
866 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
867 		if (id >= BIT_ULL(16))
868 			return false;
869 		break;
870 	default:
871 		return false;
872 	}
873 
874 	if (!(baser & GITS_BASER_INDIRECT)) {
875 		phys_addr_t addr;
876 
877 		if (id >= (l1_tbl_size / esz))
878 			return false;
879 
880 		addr = base + id * esz;
881 
882 		if (eaddr)
883 			*eaddr = addr;
884 
885 		return __is_visible_gfn_locked(its, addr);
886 	}
887 
888 	/* calculate and check the index into the 1st level */
889 	index = id / (SZ_64K / esz);
890 	if (index >= (l1_tbl_size / sizeof(u64)))
891 		return false;
892 
893 	/* Each 1st level entry is represented by a 64-bit value. */
894 	if (kvm_read_guest_lock(its->dev->kvm,
895 			   base + index * sizeof(indirect_ptr),
896 			   &indirect_ptr, sizeof(indirect_ptr)))
897 		return false;
898 
899 	indirect_ptr = le64_to_cpu(indirect_ptr);
900 
901 	/* check the valid bit of the first level entry */
902 	if (!(indirect_ptr & BIT_ULL(63)))
903 		return false;
904 
905 	/* Mask the guest physical address and calculate the frame number. */
906 	indirect_ptr &= GENMASK_ULL(51, 16);
907 
908 	/* Find the address of the actual entry */
909 	index = id % (SZ_64K / esz);
910 	indirect_ptr += index * esz;
911 
912 	if (eaddr)
913 		*eaddr = indirect_ptr;
914 
915 	return __is_visible_gfn_locked(its, indirect_ptr);
916 }
917 
918 /*
919  * Check whether an event ID can be stored in the corresponding Interrupt
920  * Translation Table, which starts at device->itt_addr.
921  */
922 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
923 		u32 event_id)
924 {
925 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
926 	int ite_esz = abi->ite_esz;
927 	gpa_t gpa;
928 
929 	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
930 	if (event_id >= BIT_ULL(device->num_eventid_bits))
931 		return false;
932 
933 	gpa = device->itt_addr + event_id * ite_esz;
934 	return __is_visible_gfn_locked(its, gpa);
935 }
936 
937 /*
938  * Add a new collection into the ITS collection table.
939  * Returns 0 on success, and a negative error value for generic errors.
940  */
941 static int vgic_its_alloc_collection(struct vgic_its *its,
942 				     struct its_collection **colp,
943 				     u32 coll_id)
944 {
945 	struct its_collection *collection;
946 
947 	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
948 	if (!collection)
949 		return -ENOMEM;
950 
951 	collection->collection_id = coll_id;
952 	collection->target_addr = COLLECTION_NOT_MAPPED;
953 
954 	list_add_tail(&collection->coll_list, &its->collection_list);
955 	*colp = collection;
956 
957 	return 0;
958 }
959 
960 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
961 {
962 	struct its_collection *collection;
963 	struct its_device *device;
964 	struct its_ite *ite;
965 
966 	/*
967 	 * Clearing the mapping for that collection ID removes the
968 	 * entry from the list. If there wasn't any before, we can
969 	 * go home early.
970 	 */
971 	collection = find_collection(its, coll_id);
972 	if (!collection)
973 		return;
974 
975 	for_each_lpi_its(device, ite, its)
976 		if (ite->collection &&
977 		    ite->collection->collection_id == coll_id)
978 			ite->collection = NULL;
979 
980 	list_del(&collection->coll_list);
981 	kfree(collection);
982 }
983 
984 /* Must be called with its_lock mutex held */
985 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
986 					  struct its_collection *collection,
987 					  u32 event_id)
988 {
989 	struct its_ite *ite;
990 
991 	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
992 	if (!ite)
993 		return ERR_PTR(-ENOMEM);
994 
995 	ite->event_id	= event_id;
996 	ite->collection = collection;
997 
998 	list_add_tail(&ite->ite_list, &device->itt_head);
999 	return ite;
1000 }
1001 
1002 /*
1003  * The MAPTI and MAPI commands map LPIs to ITTEs.
1004  * Must be called with its_lock mutex held.
1005  */
1006 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1007 				    u64 *its_cmd)
1008 {
1009 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1010 	u32 event_id = its_cmd_get_id(its_cmd);
1011 	u32 coll_id = its_cmd_get_collection(its_cmd);
1012 	struct its_ite *ite;
1013 	struct kvm_vcpu *vcpu = NULL;
1014 	struct its_device *device;
1015 	struct its_collection *collection, *new_coll = NULL;
1016 	struct vgic_irq *irq;
1017 	int lpi_nr;
1018 
1019 	device = find_its_device(its, device_id);
1020 	if (!device)
1021 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1022 
1023 	if (!vgic_its_check_event_id(its, device, event_id))
1024 		return E_ITS_MAPTI_ID_OOR;
1025 
1026 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1027 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1028 	else
1029 		lpi_nr = event_id;
1030 	if (lpi_nr < GIC_LPI_OFFSET ||
1031 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1032 		return E_ITS_MAPTI_PHYSICALID_OOR;
1033 
1034 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1035 	if (find_ite(its, device_id, event_id))
1036 		return 0;
1037 
1038 	collection = find_collection(its, coll_id);
1039 	if (!collection) {
1040 		int ret;
1041 
1042 		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1043 			return E_ITS_MAPC_COLLECTION_OOR;
1044 
1045 		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1046 		if (ret)
1047 			return ret;
1048 		new_coll = collection;
1049 	}
1050 
1051 	ite = vgic_its_alloc_ite(device, collection, event_id);
1052 	if (IS_ERR(ite)) {
1053 		if (new_coll)
1054 			vgic_its_free_collection(its, coll_id);
1055 		return PTR_ERR(ite);
1056 	}
1057 
1058 	if (its_is_collection_mapped(collection))
1059 		vcpu = collection_to_vcpu(kvm, collection);
1060 
1061 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1062 	if (IS_ERR(irq)) {
1063 		if (new_coll)
1064 			vgic_its_free_collection(its, coll_id);
1065 		its_free_ite(kvm, ite);
1066 		return PTR_ERR(irq);
1067 	}
1068 	ite->irq = irq;
1069 
1070 	return 0;
1071 }
1072 
1073 /* Requires the its_lock to be held. */
1074 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1075 				 struct its_device *device)
1076 {
1077 	struct its_ite *ite, *temp;
1078 
1079 	/*
1080 	 * The spec says that unmapping a device with still valid
1081 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1082 	 * since we cannot leave the memory unreferenced.
1083 	 */
1084 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1085 		its_free_ite(kvm, ite);
1086 
1087 	vgic_its_invalidate_cache(its);
1088 
1089 	list_del(&device->dev_list);
1090 	kfree(device);
1091 }
1092 
1093 /* its lock must be held */
1094 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1095 {
1096 	struct its_device *cur, *temp;
1097 
1098 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1099 		vgic_its_free_device(kvm, its, cur);
1100 }
1101 
1102 /* its lock must be held */
1103 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1104 {
1105 	struct its_collection *cur, *temp;
1106 
1107 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1108 		vgic_its_free_collection(its, cur->collection_id);
1109 }
1110 
1111 /* Must be called with its_lock mutex held */
1112 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1113 						u32 device_id, gpa_t itt_addr,
1114 						u8 num_eventid_bits)
1115 {
1116 	struct its_device *device;
1117 
1118 	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1119 	if (!device)
1120 		return ERR_PTR(-ENOMEM);
1121 
1122 	device->device_id = device_id;
1123 	device->itt_addr = itt_addr;
1124 	device->num_eventid_bits = num_eventid_bits;
1125 	INIT_LIST_HEAD(&device->itt_head);
1126 
1127 	list_add_tail(&device->dev_list, &its->device_list);
1128 	return device;
1129 }
1130 
1131 /*
1132  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1133  * Must be called with the its_lock mutex held.
1134  */
1135 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1136 				    u64 *its_cmd)
1137 {
1138 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1139 	bool valid = its_cmd_get_validbit(its_cmd);
1140 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1141 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1142 	struct its_device *device;
1143 
1144 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1145 		return E_ITS_MAPD_DEVICE_OOR;
1146 
1147 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1148 		return E_ITS_MAPD_ITTSIZE_OOR;
1149 
1150 	device = find_its_device(its, device_id);
1151 
1152 	/*
1153 	 * The spec says that calling MAPD on an already mapped device
1154 	 * invalidates all cached data for this device. We implement this
1155 	 * by removing the mapping and re-establishing it.
1156 	 */
1157 	if (device)
1158 		vgic_its_free_device(kvm, its, device);
1159 
1160 	/*
1161 	 * The spec does not say whether unmapping a not-mapped device
1162 	 * is an error, so we are done in any case.
1163 	 */
1164 	if (!valid)
1165 		return 0;
1166 
1167 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1168 				       num_eventid_bits);
1169 
1170 	return PTR_ERR_OR_ZERO(device);
1171 }
1172 
1173 /*
1174  * The MAPC command maps collection IDs to redistributors.
1175  * Must be called with the its_lock mutex held.
1176  */
1177 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1178 				    u64 *its_cmd)
1179 {
1180 	u16 coll_id;
1181 	struct its_collection *collection;
1182 	bool valid;
1183 
1184 	valid = its_cmd_get_validbit(its_cmd);
1185 	coll_id = its_cmd_get_collection(its_cmd);
1186 
1187 	if (!valid) {
1188 		vgic_its_free_collection(its, coll_id);
1189 		vgic_its_invalidate_cache(its);
1190 	} else {
1191 		struct kvm_vcpu *vcpu;
1192 
1193 		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1194 		if (!vcpu)
1195 			return E_ITS_MAPC_PROCNUM_OOR;
1196 
1197 		collection = find_collection(its, coll_id);
1198 
1199 		if (!collection) {
1200 			int ret;
1201 
1202 			if (!vgic_its_check_id(its, its->baser_coll_table,
1203 						coll_id, NULL))
1204 				return E_ITS_MAPC_COLLECTION_OOR;
1205 
1206 			ret = vgic_its_alloc_collection(its, &collection,
1207 							coll_id);
1208 			if (ret)
1209 				return ret;
1210 			collection->target_addr = vcpu->vcpu_id;
1211 		} else {
1212 			collection->target_addr = vcpu->vcpu_id;
1213 			update_affinity_collection(kvm, its, collection);
1214 		}
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * The CLEAR command removes the pending state for a particular LPI.
1222  * Must be called with the its_lock mutex held.
1223  */
1224 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1225 				     u64 *its_cmd)
1226 {
1227 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1228 	u32 event_id = its_cmd_get_id(its_cmd);
1229 	struct its_ite *ite;
1230 
1231 
1232 	ite = find_ite(its, device_id, event_id);
1233 	if (!ite)
1234 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1235 
1236 	ite->irq->pending_latch = false;
1237 
1238 	if (ite->irq->hw)
1239 		return irq_set_irqchip_state(ite->irq->host_irq,
1240 					     IRQCHIP_STATE_PENDING, false);
1241 
1242 	return 0;
1243 }
1244 
1245 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1246 {
1247 	return update_lpi_config(kvm, irq, NULL, true);
1248 }
1249 
1250 /*
1251  * The INV command syncs the configuration bits from the memory table.
1252  * Must be called with the its_lock mutex held.
1253  */
1254 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1255 				   u64 *its_cmd)
1256 {
1257 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1258 	u32 event_id = its_cmd_get_id(its_cmd);
1259 	struct its_ite *ite;
1260 
1261 
1262 	ite = find_ite(its, device_id, event_id);
1263 	if (!ite)
1264 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1265 
1266 	return vgic_its_inv_lpi(kvm, ite->irq);
1267 }
1268 
1269 /**
1270  * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1271  * @vcpu: the vcpu for which the RD is targeted by an invalidation
1272  *
1273  * Contrary to the INVALL command, this targets a RD instead of a
1274  * collection, and we don't need to hold the its_lock, since no ITS is
1275  * involved here.
1276  */
1277 int vgic_its_invall(struct kvm_vcpu *vcpu)
1278 {
1279 	struct kvm *kvm = vcpu->kvm;
1280 	struct vgic_dist *dist = &kvm->arch.vgic;
1281 	struct vgic_irq *irq;
1282 	unsigned long intid;
1283 
1284 	xa_for_each(&dist->lpi_xa, intid, irq) {
1285 		irq = vgic_get_irq(kvm, NULL, intid);
1286 		if (!irq)
1287 			continue;
1288 
1289 		update_lpi_config(kvm, irq, vcpu, false);
1290 		vgic_put_irq(kvm, irq);
1291 	}
1292 
1293 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1294 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * The INVALL command requests flushing of all IRQ data in this collection.
1301  * Find the VCPU mapped to that collection, then iterate over the VM's list
1302  * of mapped LPIs and update the configuration for each IRQ which targets
1303  * the specified vcpu. The configuration will be read from the in-memory
1304  * configuration table.
1305  * Must be called with the its_lock mutex held.
1306  */
1307 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1308 				      u64 *its_cmd)
1309 {
1310 	u32 coll_id = its_cmd_get_collection(its_cmd);
1311 	struct its_collection *collection;
1312 	struct kvm_vcpu *vcpu;
1313 
1314 	collection = find_collection(its, coll_id);
1315 	if (!its_is_collection_mapped(collection))
1316 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1317 
1318 	vcpu = collection_to_vcpu(kvm, collection);
1319 	vgic_its_invall(vcpu);
1320 
1321 	return 0;
1322 }
1323 
1324 /*
1325  * The MOVALL command moves the pending state of all IRQs targeting one
1326  * redistributor to another. We don't hold the pending state in the VCPUs,
1327  * but in the IRQs instead, so there is really not much to do for us here.
1328  * However the spec says that no IRQ must target the old redistributor
1329  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1330  * This command affects all LPIs in the system that target that redistributor.
1331  */
1332 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1333 				      u64 *its_cmd)
1334 {
1335 	struct vgic_dist *dist = &kvm->arch.vgic;
1336 	struct kvm_vcpu *vcpu1, *vcpu2;
1337 	struct vgic_irq *irq;
1338 	unsigned long intid;
1339 
1340 	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1341 	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1342 	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1343 
1344 	if (!vcpu1 || !vcpu2)
1345 		return E_ITS_MOVALL_PROCNUM_OOR;
1346 
1347 	if (vcpu1 == vcpu2)
1348 		return 0;
1349 
1350 	xa_for_each(&dist->lpi_xa, intid, irq) {
1351 		irq = vgic_get_irq(kvm, NULL, intid);
1352 		if (!irq)
1353 			continue;
1354 
1355 		update_affinity(irq, vcpu2);
1356 
1357 		vgic_put_irq(kvm, irq);
1358 	}
1359 
1360 	vgic_its_invalidate_cache(its);
1361 
1362 	return 0;
1363 }
1364 
1365 /*
1366  * The INT command injects the LPI associated with that DevID/EvID pair.
1367  * Must be called with the its_lock mutex held.
1368  */
1369 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1370 				   u64 *its_cmd)
1371 {
1372 	u32 msi_data = its_cmd_get_id(its_cmd);
1373 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1374 
1375 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1376 }
1377 
1378 /*
1379  * This function is called with the its_cmd lock held, but the ITS data
1380  * structure lock dropped.
1381  */
1382 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1383 				   u64 *its_cmd)
1384 {
1385 	int ret = -ENODEV;
1386 
1387 	mutex_lock(&its->its_lock);
1388 	switch (its_cmd_get_command(its_cmd)) {
1389 	case GITS_CMD_MAPD:
1390 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1391 		break;
1392 	case GITS_CMD_MAPC:
1393 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1394 		break;
1395 	case GITS_CMD_MAPI:
1396 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1397 		break;
1398 	case GITS_CMD_MAPTI:
1399 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1400 		break;
1401 	case GITS_CMD_MOVI:
1402 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1403 		break;
1404 	case GITS_CMD_DISCARD:
1405 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1406 		break;
1407 	case GITS_CMD_CLEAR:
1408 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1409 		break;
1410 	case GITS_CMD_MOVALL:
1411 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1412 		break;
1413 	case GITS_CMD_INT:
1414 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1415 		break;
1416 	case GITS_CMD_INV:
1417 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1418 		break;
1419 	case GITS_CMD_INVALL:
1420 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1421 		break;
1422 	case GITS_CMD_SYNC:
1423 		/* we ignore this command: we are in sync all of the time */
1424 		ret = 0;
1425 		break;
1426 	}
1427 	mutex_unlock(&its->its_lock);
1428 
1429 	return ret;
1430 }
1431 
1432 static u64 vgic_sanitise_its_baser(u64 reg)
1433 {
1434 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1435 				  GITS_BASER_SHAREABILITY_SHIFT,
1436 				  vgic_sanitise_shareability);
1437 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1438 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1439 				  vgic_sanitise_inner_cacheability);
1440 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1441 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1442 				  vgic_sanitise_outer_cacheability);
1443 
1444 	/* We support only one (ITS) page size: 64K */
1445 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1446 
1447 	return reg;
1448 }
1449 
1450 static u64 vgic_sanitise_its_cbaser(u64 reg)
1451 {
1452 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1453 				  GITS_CBASER_SHAREABILITY_SHIFT,
1454 				  vgic_sanitise_shareability);
1455 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1456 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1457 				  vgic_sanitise_inner_cacheability);
1458 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1459 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1460 				  vgic_sanitise_outer_cacheability);
1461 
1462 	/* Sanitise the physical address to be 64k aligned. */
1463 	reg &= ~GENMASK_ULL(15, 12);
1464 
1465 	return reg;
1466 }
1467 
1468 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1469 					       struct vgic_its *its,
1470 					       gpa_t addr, unsigned int len)
1471 {
1472 	return extract_bytes(its->cbaser, addr & 7, len);
1473 }
1474 
1475 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1476 				       gpa_t addr, unsigned int len,
1477 				       unsigned long val)
1478 {
1479 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1480 	if (its->enabled)
1481 		return;
1482 
1483 	mutex_lock(&its->cmd_lock);
1484 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1485 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1486 	its->creadr = 0;
1487 	/*
1488 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1489 	 * it to CREADR to make sure we start with an empty command buffer.
1490 	 */
1491 	its->cwriter = its->creadr;
1492 	mutex_unlock(&its->cmd_lock);
1493 }
1494 
1495 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1496 #define ITS_CMD_SIZE			32
1497 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1498 
1499 /* Must be called with the cmd_lock held. */
1500 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1501 {
1502 	gpa_t cbaser;
1503 	u64 cmd_buf[4];
1504 
1505 	/* Commands are only processed when the ITS is enabled. */
1506 	if (!its->enabled)
1507 		return;
1508 
1509 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1510 
1511 	while (its->cwriter != its->creadr) {
1512 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1513 					      cmd_buf, ITS_CMD_SIZE);
1514 		/*
1515 		 * If kvm_read_guest() fails, this could be due to the guest
1516 		 * programming a bogus value in CBASER or something else going
1517 		 * wrong from which we cannot easily recover.
1518 		 * According to section 6.3.2 in the GICv3 spec we can just
1519 		 * ignore that command then.
1520 		 */
1521 		if (!ret)
1522 			vgic_its_handle_command(kvm, its, cmd_buf);
1523 
1524 		its->creadr += ITS_CMD_SIZE;
1525 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1526 			its->creadr = 0;
1527 	}
1528 }
1529 
1530 /*
1531  * By writing to CWRITER the guest announces new commands to be processed.
1532  * To avoid any races in the first place, we take the its_cmd lock, which
1533  * protects our ring buffer variables, so that there is only one user
1534  * per ITS handling commands at a given time.
1535  */
1536 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1537 					gpa_t addr, unsigned int len,
1538 					unsigned long val)
1539 {
1540 	u64 reg;
1541 
1542 	if (!its)
1543 		return;
1544 
1545 	mutex_lock(&its->cmd_lock);
1546 
1547 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1548 	reg = ITS_CMD_OFFSET(reg);
1549 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1550 		mutex_unlock(&its->cmd_lock);
1551 		return;
1552 	}
1553 	its->cwriter = reg;
1554 
1555 	vgic_its_process_commands(kvm, its);
1556 
1557 	mutex_unlock(&its->cmd_lock);
1558 }
1559 
1560 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1561 						struct vgic_its *its,
1562 						gpa_t addr, unsigned int len)
1563 {
1564 	return extract_bytes(its->cwriter, addr & 0x7, len);
1565 }
1566 
1567 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1568 					       struct vgic_its *its,
1569 					       gpa_t addr, unsigned int len)
1570 {
1571 	return extract_bytes(its->creadr, addr & 0x7, len);
1572 }
1573 
1574 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1575 					      struct vgic_its *its,
1576 					      gpa_t addr, unsigned int len,
1577 					      unsigned long val)
1578 {
1579 	u32 cmd_offset;
1580 	int ret = 0;
1581 
1582 	mutex_lock(&its->cmd_lock);
1583 
1584 	if (its->enabled) {
1585 		ret = -EBUSY;
1586 		goto out;
1587 	}
1588 
1589 	cmd_offset = ITS_CMD_OFFSET(val);
1590 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1591 		ret = -EINVAL;
1592 		goto out;
1593 	}
1594 
1595 	its->creadr = cmd_offset;
1596 out:
1597 	mutex_unlock(&its->cmd_lock);
1598 	return ret;
1599 }
1600 
1601 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1602 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1603 					      struct vgic_its *its,
1604 					      gpa_t addr, unsigned int len)
1605 {
1606 	u64 reg;
1607 
1608 	switch (BASER_INDEX(addr)) {
1609 	case 0:
1610 		reg = its->baser_device_table;
1611 		break;
1612 	case 1:
1613 		reg = its->baser_coll_table;
1614 		break;
1615 	default:
1616 		reg = 0;
1617 		break;
1618 	}
1619 
1620 	return extract_bytes(reg, addr & 7, len);
1621 }
1622 
1623 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1624 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1625 				      struct vgic_its *its,
1626 				      gpa_t addr, unsigned int len,
1627 				      unsigned long val)
1628 {
1629 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1630 	u64 entry_size, table_type;
1631 	u64 reg, *regptr, clearbits = 0;
1632 
1633 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1634 	if (its->enabled)
1635 		return;
1636 
1637 	switch (BASER_INDEX(addr)) {
1638 	case 0:
1639 		regptr = &its->baser_device_table;
1640 		entry_size = abi->dte_esz;
1641 		table_type = GITS_BASER_TYPE_DEVICE;
1642 		break;
1643 	case 1:
1644 		regptr = &its->baser_coll_table;
1645 		entry_size = abi->cte_esz;
1646 		table_type = GITS_BASER_TYPE_COLLECTION;
1647 		clearbits = GITS_BASER_INDIRECT;
1648 		break;
1649 	default:
1650 		return;
1651 	}
1652 
1653 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1654 	reg &= ~GITS_BASER_RO_MASK;
1655 	reg &= ~clearbits;
1656 
1657 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1658 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1659 	reg = vgic_sanitise_its_baser(reg);
1660 
1661 	*regptr = reg;
1662 
1663 	if (!(reg & GITS_BASER_VALID)) {
1664 		/* Take the its_lock to prevent a race with a save/restore */
1665 		mutex_lock(&its->its_lock);
1666 		switch (table_type) {
1667 		case GITS_BASER_TYPE_DEVICE:
1668 			vgic_its_free_device_list(kvm, its);
1669 			break;
1670 		case GITS_BASER_TYPE_COLLECTION:
1671 			vgic_its_free_collection_list(kvm, its);
1672 			break;
1673 		}
1674 		mutex_unlock(&its->its_lock);
1675 	}
1676 }
1677 
1678 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1679 					     struct vgic_its *its,
1680 					     gpa_t addr, unsigned int len)
1681 {
1682 	u32 reg = 0;
1683 
1684 	mutex_lock(&its->cmd_lock);
1685 	if (its->creadr == its->cwriter)
1686 		reg |= GITS_CTLR_QUIESCENT;
1687 	if (its->enabled)
1688 		reg |= GITS_CTLR_ENABLE;
1689 	mutex_unlock(&its->cmd_lock);
1690 
1691 	return reg;
1692 }
1693 
1694 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1695 				     gpa_t addr, unsigned int len,
1696 				     unsigned long val)
1697 {
1698 	mutex_lock(&its->cmd_lock);
1699 
1700 	/*
1701 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1702 	 * device/collection BASER are invalid
1703 	 */
1704 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1705 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1706 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1707 		 !(its->cbaser & GITS_CBASER_VALID)))
1708 		goto out;
1709 
1710 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1711 	if (!its->enabled)
1712 		vgic_its_invalidate_cache(its);
1713 
1714 	/*
1715 	 * Try to process any pending commands. This function bails out early
1716 	 * if the ITS is disabled or no commands have been queued.
1717 	 */
1718 	vgic_its_process_commands(kvm, its);
1719 
1720 out:
1721 	mutex_unlock(&its->cmd_lock);
1722 }
1723 
1724 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1725 {								\
1726 	.reg_offset = off,					\
1727 	.len = length,						\
1728 	.access_flags = acc,					\
1729 	.its_read = rd,						\
1730 	.its_write = wr,					\
1731 }
1732 
1733 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1734 {								\
1735 	.reg_offset = off,					\
1736 	.len = length,						\
1737 	.access_flags = acc,					\
1738 	.its_read = rd,						\
1739 	.its_write = wr,					\
1740 	.uaccess_its_write = uwr,				\
1741 }
1742 
1743 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1744 			      gpa_t addr, unsigned int len, unsigned long val)
1745 {
1746 	/* Ignore */
1747 }
1748 
1749 static struct vgic_register_region its_registers[] = {
1750 	REGISTER_ITS_DESC(GITS_CTLR,
1751 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1752 		VGIC_ACCESS_32bit),
1753 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1754 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1755 		vgic_mmio_uaccess_write_its_iidr, 4,
1756 		VGIC_ACCESS_32bit),
1757 	REGISTER_ITS_DESC(GITS_TYPER,
1758 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1759 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1760 	REGISTER_ITS_DESC(GITS_CBASER,
1761 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1762 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1763 	REGISTER_ITS_DESC(GITS_CWRITER,
1764 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1765 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1766 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1767 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1768 		vgic_mmio_uaccess_write_its_creadr, 8,
1769 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1770 	REGISTER_ITS_DESC(GITS_BASER,
1771 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1772 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1773 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1774 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1775 		VGIC_ACCESS_32bit),
1776 };
1777 
1778 /* This is called on setting the LPI enable bit in the redistributor. */
1779 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1780 {
1781 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1782 		its_sync_lpi_pending_table(vcpu);
1783 }
1784 
1785 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1786 				   u64 addr)
1787 {
1788 	struct vgic_io_device *iodev = &its->iodev;
1789 	int ret;
1790 
1791 	mutex_lock(&kvm->slots_lock);
1792 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1793 		ret = -EBUSY;
1794 		goto out;
1795 	}
1796 
1797 	its->vgic_its_base = addr;
1798 	iodev->regions = its_registers;
1799 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1800 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1801 
1802 	iodev->base_addr = its->vgic_its_base;
1803 	iodev->iodev_type = IODEV_ITS;
1804 	iodev->its = its;
1805 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1806 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1807 out:
1808 	mutex_unlock(&kvm->slots_lock);
1809 
1810 	return ret;
1811 }
1812 
1813 #define INITIAL_BASER_VALUE						  \
1814 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1815 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1816 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1817 	 GITS_BASER_PAGE_SIZE_64K)
1818 
1819 #define INITIAL_PROPBASER_VALUE						  \
1820 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1821 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1822 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1823 
1824 static int vgic_its_create(struct kvm_device *dev, u32 type)
1825 {
1826 	int ret;
1827 	struct vgic_its *its;
1828 
1829 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1830 		return -ENODEV;
1831 
1832 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1833 	if (!its)
1834 		return -ENOMEM;
1835 
1836 	mutex_lock(&dev->kvm->arch.config_lock);
1837 
1838 	if (vgic_initialized(dev->kvm)) {
1839 		ret = vgic_v4_init(dev->kvm);
1840 		if (ret < 0) {
1841 			mutex_unlock(&dev->kvm->arch.config_lock);
1842 			kfree(its);
1843 			return ret;
1844 		}
1845 	}
1846 
1847 	mutex_init(&its->its_lock);
1848 	mutex_init(&its->cmd_lock);
1849 
1850 	/* Yep, even more trickery for lock ordering... */
1851 #ifdef CONFIG_LOCKDEP
1852 	mutex_lock(&its->cmd_lock);
1853 	mutex_lock(&its->its_lock);
1854 	mutex_unlock(&its->its_lock);
1855 	mutex_unlock(&its->cmd_lock);
1856 #endif
1857 
1858 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1859 
1860 	INIT_LIST_HEAD(&its->device_list);
1861 	INIT_LIST_HEAD(&its->collection_list);
1862 	xa_init(&its->translation_cache);
1863 
1864 	dev->kvm->arch.vgic.msis_require_devid = true;
1865 	dev->kvm->arch.vgic.has_its = true;
1866 	its->enabled = false;
1867 	its->dev = dev;
1868 
1869 	its->baser_device_table = INITIAL_BASER_VALUE			|
1870 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1871 	its->baser_coll_table = INITIAL_BASER_VALUE |
1872 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1873 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1874 
1875 	dev->private = its;
1876 
1877 	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1878 
1879 	mutex_unlock(&dev->kvm->arch.config_lock);
1880 
1881 	return ret;
1882 }
1883 
1884 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1885 {
1886 	struct kvm *kvm = kvm_dev->kvm;
1887 	struct vgic_its *its = kvm_dev->private;
1888 
1889 	mutex_lock(&its->its_lock);
1890 
1891 	vgic_its_free_device_list(kvm, its);
1892 	vgic_its_free_collection_list(kvm, its);
1893 	vgic_its_invalidate_cache(its);
1894 	xa_destroy(&its->translation_cache);
1895 
1896 	mutex_unlock(&its->its_lock);
1897 	kfree(its);
1898 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1899 }
1900 
1901 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1902 				  struct kvm_device_attr *attr)
1903 {
1904 	const struct vgic_register_region *region;
1905 	gpa_t offset = attr->attr;
1906 	int align;
1907 
1908 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1909 
1910 	if (offset & align)
1911 		return -EINVAL;
1912 
1913 	region = vgic_find_mmio_region(its_registers,
1914 				       ARRAY_SIZE(its_registers),
1915 				       offset);
1916 	if (!region)
1917 		return -ENXIO;
1918 
1919 	return 0;
1920 }
1921 
1922 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1923 				     struct kvm_device_attr *attr,
1924 				     u64 *reg, bool is_write)
1925 {
1926 	const struct vgic_register_region *region;
1927 	struct vgic_its *its;
1928 	gpa_t addr, offset;
1929 	unsigned int len;
1930 	int align, ret = 0;
1931 
1932 	its = dev->private;
1933 	offset = attr->attr;
1934 
1935 	/*
1936 	 * Although the spec supports upper/lower 32-bit accesses to
1937 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1938 	 * accesses to all 64-bit wide registers. We therefore only
1939 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1940 	 * registers
1941 	 */
1942 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1943 		align = 0x3;
1944 	else
1945 		align = 0x7;
1946 
1947 	if (offset & align)
1948 		return -EINVAL;
1949 
1950 	mutex_lock(&dev->kvm->lock);
1951 
1952 	if (!lock_all_vcpus(dev->kvm)) {
1953 		mutex_unlock(&dev->kvm->lock);
1954 		return -EBUSY;
1955 	}
1956 
1957 	mutex_lock(&dev->kvm->arch.config_lock);
1958 
1959 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1960 		ret = -ENXIO;
1961 		goto out;
1962 	}
1963 
1964 	region = vgic_find_mmio_region(its_registers,
1965 				       ARRAY_SIZE(its_registers),
1966 				       offset);
1967 	if (!region) {
1968 		ret = -ENXIO;
1969 		goto out;
1970 	}
1971 
1972 	addr = its->vgic_its_base + offset;
1973 
1974 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1975 
1976 	if (is_write) {
1977 		if (region->uaccess_its_write)
1978 			ret = region->uaccess_its_write(dev->kvm, its, addr,
1979 							len, *reg);
1980 		else
1981 			region->its_write(dev->kvm, its, addr, len, *reg);
1982 	} else {
1983 		*reg = region->its_read(dev->kvm, its, addr, len);
1984 	}
1985 out:
1986 	mutex_unlock(&dev->kvm->arch.config_lock);
1987 	unlock_all_vcpus(dev->kvm);
1988 	mutex_unlock(&dev->kvm->lock);
1989 	return ret;
1990 }
1991 
1992 static u32 compute_next_devid_offset(struct list_head *h,
1993 				     struct its_device *dev)
1994 {
1995 	struct its_device *next;
1996 	u32 next_offset;
1997 
1998 	if (list_is_last(&dev->dev_list, h))
1999 		return 0;
2000 	next = list_next_entry(dev, dev_list);
2001 	next_offset = next->device_id - dev->device_id;
2002 
2003 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2004 }
2005 
2006 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2007 {
2008 	struct its_ite *next;
2009 	u32 next_offset;
2010 
2011 	if (list_is_last(&ite->ite_list, h))
2012 		return 0;
2013 	next = list_next_entry(ite, ite_list);
2014 	next_offset = next->event_id - ite->event_id;
2015 
2016 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2017 }
2018 
2019 /**
2020  * typedef entry_fn_t - Callback called on a table entry restore path
2021  * @its: its handle
2022  * @id: id of the entry
2023  * @entry: pointer to the entry
2024  * @opaque: pointer to an opaque data
2025  *
2026  * Return: < 0 on error, 0 if last element was identified, id offset to next
2027  * element otherwise
2028  */
2029 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2030 			  void *opaque);
2031 
2032 /**
2033  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2034  * to each entry
2035  *
2036  * @its: its handle
2037  * @base: base gpa of the table
2038  * @size: size of the table in bytes
2039  * @esz: entry size in bytes
2040  * @start_id: the ID of the first entry in the table
2041  * (non zero for 2d level tables)
2042  * @fn: function to apply on each entry
2043  *
2044  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2045  * (the last element may not be found on second level tables)
2046  */
2047 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2048 			  int start_id, entry_fn_t fn, void *opaque)
2049 {
2050 	struct kvm *kvm = its->dev->kvm;
2051 	unsigned long len = size;
2052 	int id = start_id;
2053 	gpa_t gpa = base;
2054 	char entry[ESZ_MAX];
2055 	int ret;
2056 
2057 	memset(entry, 0, esz);
2058 
2059 	while (true) {
2060 		int next_offset;
2061 		size_t byte_offset;
2062 
2063 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2064 		if (ret)
2065 			return ret;
2066 
2067 		next_offset = fn(its, id, entry, opaque);
2068 		if (next_offset <= 0)
2069 			return next_offset;
2070 
2071 		byte_offset = next_offset * esz;
2072 		if (byte_offset >= len)
2073 			break;
2074 
2075 		id += next_offset;
2076 		gpa += byte_offset;
2077 		len -= byte_offset;
2078 	}
2079 	return 1;
2080 }
2081 
2082 /**
2083  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2084  */
2085 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2086 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2087 {
2088 	struct kvm *kvm = its->dev->kvm;
2089 	u32 next_offset;
2090 	u64 val;
2091 
2092 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2093 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2094 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2095 		ite->collection->collection_id;
2096 	val = cpu_to_le64(val);
2097 	return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2098 }
2099 
2100 /**
2101  * vgic_its_restore_ite - restore an interrupt translation entry
2102  * @event_id: id used for indexing
2103  * @ptr: pointer to the ITE entry
2104  * @opaque: pointer to the its_device
2105  */
2106 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2107 				void *ptr, void *opaque)
2108 {
2109 	struct its_device *dev = opaque;
2110 	struct its_collection *collection;
2111 	struct kvm *kvm = its->dev->kvm;
2112 	struct kvm_vcpu *vcpu = NULL;
2113 	u64 val;
2114 	u64 *p = (u64 *)ptr;
2115 	struct vgic_irq *irq;
2116 	u32 coll_id, lpi_id;
2117 	struct its_ite *ite;
2118 	u32 offset;
2119 
2120 	val = *p;
2121 
2122 	val = le64_to_cpu(val);
2123 
2124 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2125 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2126 
2127 	if (!lpi_id)
2128 		return 1; /* invalid entry, no choice but to scan next entry */
2129 
2130 	if (lpi_id < VGIC_MIN_LPI)
2131 		return -EINVAL;
2132 
2133 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2134 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2135 		return -EINVAL;
2136 
2137 	collection = find_collection(its, coll_id);
2138 	if (!collection)
2139 		return -EINVAL;
2140 
2141 	if (!vgic_its_check_event_id(its, dev, event_id))
2142 		return -EINVAL;
2143 
2144 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2145 	if (IS_ERR(ite))
2146 		return PTR_ERR(ite);
2147 
2148 	if (its_is_collection_mapped(collection))
2149 		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2150 
2151 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2152 	if (IS_ERR(irq)) {
2153 		its_free_ite(kvm, ite);
2154 		return PTR_ERR(irq);
2155 	}
2156 	ite->irq = irq;
2157 
2158 	return offset;
2159 }
2160 
2161 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2162 			    const struct list_head *b)
2163 {
2164 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2165 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2166 
2167 	if (itea->event_id < iteb->event_id)
2168 		return -1;
2169 	else
2170 		return 1;
2171 }
2172 
2173 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2174 {
2175 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2176 	gpa_t base = device->itt_addr;
2177 	struct its_ite *ite;
2178 	int ret;
2179 	int ite_esz = abi->ite_esz;
2180 
2181 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2182 
2183 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2184 		gpa_t gpa = base + ite->event_id * ite_esz;
2185 
2186 		/*
2187 		 * If an LPI carries the HW bit, this means that this
2188 		 * interrupt is controlled by GICv4, and we do not
2189 		 * have direct access to that state without GICv4.1.
2190 		 * Let's simply fail the save operation...
2191 		 */
2192 		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2193 			return -EACCES;
2194 
2195 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2196 		if (ret)
2197 			return ret;
2198 	}
2199 	return 0;
2200 }
2201 
2202 /**
2203  * vgic_its_restore_itt - restore the ITT of a device
2204  *
2205  * @its: its handle
2206  * @dev: device handle
2207  *
2208  * Return 0 on success, < 0 on error
2209  */
2210 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2211 {
2212 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2213 	gpa_t base = dev->itt_addr;
2214 	int ret;
2215 	int ite_esz = abi->ite_esz;
2216 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2217 
2218 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2219 			     vgic_its_restore_ite, dev);
2220 
2221 	/* scan_its_table returns +1 if all ITEs are invalid */
2222 	if (ret > 0)
2223 		ret = 0;
2224 
2225 	return ret;
2226 }
2227 
2228 /**
2229  * vgic_its_save_dte - Save a device table entry at a given GPA
2230  *
2231  * @its: ITS handle
2232  * @dev: ITS device
2233  * @ptr: GPA
2234  */
2235 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2236 			     gpa_t ptr, int dte_esz)
2237 {
2238 	struct kvm *kvm = its->dev->kvm;
2239 	u64 val, itt_addr_field;
2240 	u32 next_offset;
2241 
2242 	itt_addr_field = dev->itt_addr >> 8;
2243 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2244 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2245 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2246 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2247 		(dev->num_eventid_bits - 1));
2248 	val = cpu_to_le64(val);
2249 	return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2250 }
2251 
2252 /**
2253  * vgic_its_restore_dte - restore a device table entry
2254  *
2255  * @its: its handle
2256  * @id: device id the DTE corresponds to
2257  * @ptr: kernel VA where the 8 byte DTE is located
2258  * @opaque: unused
2259  *
2260  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2261  * next dte otherwise
2262  */
2263 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2264 				void *ptr, void *opaque)
2265 {
2266 	struct its_device *dev;
2267 	u64 baser = its->baser_device_table;
2268 	gpa_t itt_addr;
2269 	u8 num_eventid_bits;
2270 	u64 entry = *(u64 *)ptr;
2271 	bool valid;
2272 	u32 offset;
2273 	int ret;
2274 
2275 	entry = le64_to_cpu(entry);
2276 
2277 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2278 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2279 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2280 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2281 
2282 	if (!valid)
2283 		return 1;
2284 
2285 	/* dte entry is valid */
2286 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2287 
2288 	if (!vgic_its_check_id(its, baser, id, NULL))
2289 		return -EINVAL;
2290 
2291 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2292 	if (IS_ERR(dev))
2293 		return PTR_ERR(dev);
2294 
2295 	ret = vgic_its_restore_itt(its, dev);
2296 	if (ret) {
2297 		vgic_its_free_device(its->dev->kvm, its, dev);
2298 		return ret;
2299 	}
2300 
2301 	return offset;
2302 }
2303 
2304 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2305 			       const struct list_head *b)
2306 {
2307 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2308 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2309 
2310 	if (deva->device_id < devb->device_id)
2311 		return -1;
2312 	else
2313 		return 1;
2314 }
2315 
2316 /**
2317  * vgic_its_save_device_tables - Save the device table and all ITT
2318  * into guest RAM
2319  *
2320  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2321  * returns the GPA of the device entry
2322  */
2323 static int vgic_its_save_device_tables(struct vgic_its *its)
2324 {
2325 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2326 	u64 baser = its->baser_device_table;
2327 	struct its_device *dev;
2328 	int dte_esz = abi->dte_esz;
2329 
2330 	if (!(baser & GITS_BASER_VALID))
2331 		return 0;
2332 
2333 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2334 
2335 	list_for_each_entry(dev, &its->device_list, dev_list) {
2336 		int ret;
2337 		gpa_t eaddr;
2338 
2339 		if (!vgic_its_check_id(its, baser,
2340 				       dev->device_id, &eaddr))
2341 			return -EINVAL;
2342 
2343 		ret = vgic_its_save_itt(its, dev);
2344 		if (ret)
2345 			return ret;
2346 
2347 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2348 		if (ret)
2349 			return ret;
2350 	}
2351 	return 0;
2352 }
2353 
2354 /**
2355  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2356  *
2357  * @its: its handle
2358  * @id: index of the entry in the L1 table
2359  * @addr: kernel VA
2360  * @opaque: unused
2361  *
2362  * L1 table entries are scanned by steps of 1 entry
2363  * Return < 0 if error, 0 if last dte was found when scanning the L2
2364  * table, +1 otherwise (meaning next L1 entry must be scanned)
2365  */
2366 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2367 			 void *opaque)
2368 {
2369 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2370 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2371 	u64 entry = *(u64 *)addr;
2372 	int dte_esz = abi->dte_esz;
2373 	gpa_t gpa;
2374 	int ret;
2375 
2376 	entry = le64_to_cpu(entry);
2377 
2378 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2379 		return 1;
2380 
2381 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2382 
2383 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2384 			     l2_start_id, vgic_its_restore_dte, NULL);
2385 
2386 	return ret;
2387 }
2388 
2389 /**
2390  * vgic_its_restore_device_tables - Restore the device table and all ITT
2391  * from guest RAM to internal data structs
2392  */
2393 static int vgic_its_restore_device_tables(struct vgic_its *its)
2394 {
2395 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2396 	u64 baser = its->baser_device_table;
2397 	int l1_esz, ret;
2398 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2399 	gpa_t l1_gpa;
2400 
2401 	if (!(baser & GITS_BASER_VALID))
2402 		return 0;
2403 
2404 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2405 
2406 	if (baser & GITS_BASER_INDIRECT) {
2407 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2408 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2409 				     handle_l1_dte, NULL);
2410 	} else {
2411 		l1_esz = abi->dte_esz;
2412 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2413 				     vgic_its_restore_dte, NULL);
2414 	}
2415 
2416 	/* scan_its_table returns +1 if all entries are invalid */
2417 	if (ret > 0)
2418 		ret = 0;
2419 
2420 	if (ret < 0)
2421 		vgic_its_free_device_list(its->dev->kvm, its);
2422 
2423 	return ret;
2424 }
2425 
2426 static int vgic_its_save_cte(struct vgic_its *its,
2427 			     struct its_collection *collection,
2428 			     gpa_t gpa, int esz)
2429 {
2430 	u64 val;
2431 
2432 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2433 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2434 	       collection->collection_id);
2435 	val = cpu_to_le64(val);
2436 	return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2437 }
2438 
2439 /*
2440  * Restore a collection entry into the ITS collection table.
2441  * Return +1 on success, 0 if the entry was invalid (which should be
2442  * interpreted as end-of-table), and a negative error value for generic errors.
2443  */
2444 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2445 {
2446 	struct its_collection *collection;
2447 	struct kvm *kvm = its->dev->kvm;
2448 	u32 target_addr, coll_id;
2449 	u64 val;
2450 	int ret;
2451 
2452 	BUG_ON(esz > sizeof(val));
2453 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2454 	if (ret)
2455 		return ret;
2456 	val = le64_to_cpu(val);
2457 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2458 		return 0;
2459 
2460 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2461 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2462 
2463 	if (target_addr != COLLECTION_NOT_MAPPED &&
2464 	    !kvm_get_vcpu_by_id(kvm, target_addr))
2465 		return -EINVAL;
2466 
2467 	collection = find_collection(its, coll_id);
2468 	if (collection)
2469 		return -EEXIST;
2470 
2471 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2472 		return -EINVAL;
2473 
2474 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2475 	if (ret)
2476 		return ret;
2477 	collection->target_addr = target_addr;
2478 	return 1;
2479 }
2480 
2481 /**
2482  * vgic_its_save_collection_table - Save the collection table into
2483  * guest RAM
2484  */
2485 static int vgic_its_save_collection_table(struct vgic_its *its)
2486 {
2487 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2488 	u64 baser = its->baser_coll_table;
2489 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2490 	struct its_collection *collection;
2491 	u64 val;
2492 	size_t max_size, filled = 0;
2493 	int ret, cte_esz = abi->cte_esz;
2494 
2495 	if (!(baser & GITS_BASER_VALID))
2496 		return 0;
2497 
2498 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2499 
2500 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2501 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2502 		if (ret)
2503 			return ret;
2504 		gpa += cte_esz;
2505 		filled += cte_esz;
2506 	}
2507 
2508 	if (filled == max_size)
2509 		return 0;
2510 
2511 	/*
2512 	 * table is not fully filled, add a last dummy element
2513 	 * with valid bit unset
2514 	 */
2515 	val = 0;
2516 	BUG_ON(cte_esz > sizeof(val));
2517 	ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2518 	return ret;
2519 }
2520 
2521 /**
2522  * vgic_its_restore_collection_table - reads the collection table
2523  * in guest memory and restores the ITS internal state. Requires the
2524  * BASER registers to be restored before.
2525  */
2526 static int vgic_its_restore_collection_table(struct vgic_its *its)
2527 {
2528 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2529 	u64 baser = its->baser_coll_table;
2530 	int cte_esz = abi->cte_esz;
2531 	size_t max_size, read = 0;
2532 	gpa_t gpa;
2533 	int ret;
2534 
2535 	if (!(baser & GITS_BASER_VALID))
2536 		return 0;
2537 
2538 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2539 
2540 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2541 
2542 	while (read < max_size) {
2543 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2544 		if (ret <= 0)
2545 			break;
2546 		gpa += cte_esz;
2547 		read += cte_esz;
2548 	}
2549 
2550 	if (ret > 0)
2551 		return 0;
2552 
2553 	if (ret < 0)
2554 		vgic_its_free_collection_list(its->dev->kvm, its);
2555 
2556 	return ret;
2557 }
2558 
2559 /**
2560  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2561  * according to v0 ABI
2562  */
2563 static int vgic_its_save_tables_v0(struct vgic_its *its)
2564 {
2565 	int ret;
2566 
2567 	ret = vgic_its_save_device_tables(its);
2568 	if (ret)
2569 		return ret;
2570 
2571 	return vgic_its_save_collection_table(its);
2572 }
2573 
2574 /**
2575  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2576  * to internal data structs according to V0 ABI
2577  *
2578  */
2579 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2580 {
2581 	int ret;
2582 
2583 	ret = vgic_its_restore_collection_table(its);
2584 	if (ret)
2585 		return ret;
2586 
2587 	ret = vgic_its_restore_device_tables(its);
2588 	if (ret)
2589 		vgic_its_free_collection_list(its->dev->kvm, its);
2590 	return ret;
2591 }
2592 
2593 static int vgic_its_commit_v0(struct vgic_its *its)
2594 {
2595 	const struct vgic_its_abi *abi;
2596 
2597 	abi = vgic_its_get_abi(its);
2598 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2599 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2600 
2601 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2602 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2603 
2604 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2605 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2606 	return 0;
2607 }
2608 
2609 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2610 {
2611 	/* We need to keep the ABI specific field values */
2612 	its->baser_coll_table &= ~GITS_BASER_VALID;
2613 	its->baser_device_table &= ~GITS_BASER_VALID;
2614 	its->cbaser = 0;
2615 	its->creadr = 0;
2616 	its->cwriter = 0;
2617 	its->enabled = 0;
2618 	vgic_its_free_device_list(kvm, its);
2619 	vgic_its_free_collection_list(kvm, its);
2620 }
2621 
2622 static int vgic_its_has_attr(struct kvm_device *dev,
2623 			     struct kvm_device_attr *attr)
2624 {
2625 	switch (attr->group) {
2626 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2627 		switch (attr->attr) {
2628 		case KVM_VGIC_ITS_ADDR_TYPE:
2629 			return 0;
2630 		}
2631 		break;
2632 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2633 		switch (attr->attr) {
2634 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2635 			return 0;
2636 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2637 			return 0;
2638 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2639 			return 0;
2640 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2641 			return 0;
2642 		}
2643 		break;
2644 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2645 		return vgic_its_has_attr_regs(dev, attr);
2646 	}
2647 	return -ENXIO;
2648 }
2649 
2650 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2651 {
2652 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2653 	int ret = 0;
2654 
2655 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2656 		return 0;
2657 
2658 	mutex_lock(&kvm->lock);
2659 
2660 	if (!lock_all_vcpus(kvm)) {
2661 		mutex_unlock(&kvm->lock);
2662 		return -EBUSY;
2663 	}
2664 
2665 	mutex_lock(&kvm->arch.config_lock);
2666 	mutex_lock(&its->its_lock);
2667 
2668 	switch (attr) {
2669 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2670 		vgic_its_reset(kvm, its);
2671 		break;
2672 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2673 		ret = abi->save_tables(its);
2674 		break;
2675 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2676 		ret = abi->restore_tables(its);
2677 		break;
2678 	}
2679 
2680 	mutex_unlock(&its->its_lock);
2681 	mutex_unlock(&kvm->arch.config_lock);
2682 	unlock_all_vcpus(kvm);
2683 	mutex_unlock(&kvm->lock);
2684 	return ret;
2685 }
2686 
2687 /*
2688  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2689  * without the running VCPU when dirty ring is enabled.
2690  *
2691  * The running VCPU is required to track dirty guest pages when dirty ring
2692  * is enabled. Otherwise, the backup bitmap should be used to track the
2693  * dirty guest pages. When vgic/its tables are being saved, the backup
2694  * bitmap is used to track the dirty guest pages due to the missed running
2695  * VCPU in the period.
2696  */
2697 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2698 {
2699 	struct vgic_dist *dist = &kvm->arch.vgic;
2700 
2701 	return dist->table_write_in_progress;
2702 }
2703 
2704 static int vgic_its_set_attr(struct kvm_device *dev,
2705 			     struct kvm_device_attr *attr)
2706 {
2707 	struct vgic_its *its = dev->private;
2708 	int ret;
2709 
2710 	switch (attr->group) {
2711 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2712 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2713 		unsigned long type = (unsigned long)attr->attr;
2714 		u64 addr;
2715 
2716 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2717 			return -ENODEV;
2718 
2719 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2720 			return -EFAULT;
2721 
2722 		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2723 					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2724 		if (ret)
2725 			return ret;
2726 
2727 		return vgic_register_its_iodev(dev->kvm, its, addr);
2728 	}
2729 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2730 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2731 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2732 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2733 		u64 reg;
2734 
2735 		if (get_user(reg, uaddr))
2736 			return -EFAULT;
2737 
2738 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2739 	}
2740 	}
2741 	return -ENXIO;
2742 }
2743 
2744 static int vgic_its_get_attr(struct kvm_device *dev,
2745 			     struct kvm_device_attr *attr)
2746 {
2747 	switch (attr->group) {
2748 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2749 		struct vgic_its *its = dev->private;
2750 		u64 addr = its->vgic_its_base;
2751 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2752 		unsigned long type = (unsigned long)attr->attr;
2753 
2754 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2755 			return -ENODEV;
2756 
2757 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2758 			return -EFAULT;
2759 		break;
2760 	}
2761 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2762 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2763 		u64 reg;
2764 		int ret;
2765 
2766 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2767 		if (ret)
2768 			return ret;
2769 		return put_user(reg, uaddr);
2770 	}
2771 	default:
2772 		return -ENXIO;
2773 	}
2774 
2775 	return 0;
2776 }
2777 
2778 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2779 	.name = "kvm-arm-vgic-its",
2780 	.create = vgic_its_create,
2781 	.destroy = vgic_its_destroy,
2782 	.set_attr = vgic_its_set_attr,
2783 	.get_attr = vgic_its_get_attr,
2784 	.has_attr = vgic_its_has_attr,
2785 };
2786 
2787 int kvm_vgic_register_its_device(void)
2788 {
2789 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2790 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2791 }
2792