1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static struct kvm_device_ops kvm_arm_vgic_its_ops; 27 28 static int vgic_its_save_tables_v0(struct vgic_its *its); 29 static int vgic_its_restore_tables_v0(struct vgic_its *its); 30 static int vgic_its_commit_v0(struct vgic_its *its); 31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 32 struct kvm_vcpu *filter_vcpu, bool needs_inv); 33 34 /* 35 * Creates a new (reference to a) struct vgic_irq for a given LPI. 36 * If this LPI is already mapped on another ITS, we increase its refcount 37 * and return a pointer to the existing structure. 38 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 39 * This function returns a pointer to the _unlocked_ structure. 40 */ 41 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 42 struct kvm_vcpu *vcpu) 43 { 44 struct vgic_dist *dist = &kvm->arch.vgic; 45 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; 46 unsigned long flags; 47 int ret; 48 49 /* In this case there is no put, since we keep the reference. */ 50 if (irq) 51 return irq; 52 53 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 54 if (!irq) 55 return ERR_PTR(-ENOMEM); 56 57 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT); 58 if (ret) { 59 kfree(irq); 60 return ERR_PTR(ret); 61 } 62 63 INIT_LIST_HEAD(&irq->ap_list); 64 raw_spin_lock_init(&irq->irq_lock); 65 66 irq->config = VGIC_CONFIG_EDGE; 67 kref_init(&irq->refcount); 68 irq->intid = intid; 69 irq->target_vcpu = vcpu; 70 irq->group = 1; 71 72 xa_lock_irqsave(&dist->lpi_xa, flags); 73 74 /* 75 * There could be a race with another vgic_add_lpi(), so we need to 76 * check that we don't add a second list entry with the same LPI. 77 */ 78 oldirq = xa_load(&dist->lpi_xa, intid); 79 if (vgic_try_get_irq_kref(oldirq)) { 80 /* Someone was faster with adding this LPI, lets use that. */ 81 kfree(irq); 82 irq = oldirq; 83 84 goto out_unlock; 85 } 86 87 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0)); 88 if (ret) { 89 xa_release(&dist->lpi_xa, intid); 90 kfree(irq); 91 } 92 93 out_unlock: 94 xa_unlock_irqrestore(&dist->lpi_xa, flags); 95 96 if (ret) 97 return ERR_PTR(ret); 98 99 /* 100 * We "cache" the configuration table entries in our struct vgic_irq's. 101 * However we only have those structs for mapped IRQs, so we read in 102 * the respective config data from memory here upon mapping the LPI. 103 * 104 * Should any of these fail, behave as if we couldn't create the LPI 105 * by dropping the refcount and returning the error. 106 */ 107 ret = update_lpi_config(kvm, irq, NULL, false); 108 if (ret) { 109 vgic_put_irq(kvm, irq); 110 return ERR_PTR(ret); 111 } 112 113 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 114 if (ret) { 115 vgic_put_irq(kvm, irq); 116 return ERR_PTR(ret); 117 } 118 119 return irq; 120 } 121 122 struct its_device { 123 struct list_head dev_list; 124 125 /* the head for the list of ITTEs */ 126 struct list_head itt_head; 127 u32 num_eventid_bits; 128 gpa_t itt_addr; 129 u32 device_id; 130 }; 131 132 #define COLLECTION_NOT_MAPPED ((u32)~0) 133 134 struct its_collection { 135 struct list_head coll_list; 136 137 u32 collection_id; 138 u32 target_addr; 139 }; 140 141 #define its_is_collection_mapped(coll) ((coll) && \ 142 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 143 144 struct its_ite { 145 struct list_head ite_list; 146 147 struct vgic_irq *irq; 148 struct its_collection *collection; 149 u32 event_id; 150 }; 151 152 /** 153 * struct vgic_its_abi - ITS abi ops and settings 154 * @cte_esz: collection table entry size 155 * @dte_esz: device table entry size 156 * @ite_esz: interrupt translation table entry size 157 * @save_tables: save the ITS tables into guest RAM 158 * @restore_tables: restore the ITS internal structs from tables 159 * stored in guest RAM 160 * @commit: initialize the registers which expose the ABI settings, 161 * especially the entry sizes 162 */ 163 struct vgic_its_abi { 164 int cte_esz; 165 int dte_esz; 166 int ite_esz; 167 int (*save_tables)(struct vgic_its *its); 168 int (*restore_tables)(struct vgic_its *its); 169 int (*commit)(struct vgic_its *its); 170 }; 171 172 #define ABI_0_ESZ 8 173 #define ESZ_MAX ABI_0_ESZ 174 175 static const struct vgic_its_abi its_table_abi_versions[] = { 176 [0] = { 177 .cte_esz = ABI_0_ESZ, 178 .dte_esz = ABI_0_ESZ, 179 .ite_esz = ABI_0_ESZ, 180 .save_tables = vgic_its_save_tables_v0, 181 .restore_tables = vgic_its_restore_tables_v0, 182 .commit = vgic_its_commit_v0, 183 }, 184 }; 185 186 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 187 188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 189 { 190 return &its_table_abi_versions[its->abi_rev]; 191 } 192 193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 194 { 195 const struct vgic_its_abi *abi; 196 197 its->abi_rev = rev; 198 abi = vgic_its_get_abi(its); 199 return abi->commit(its); 200 } 201 202 /* 203 * Find and returns a device in the device table for an ITS. 204 * Must be called with the its_lock mutex held. 205 */ 206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 207 { 208 struct its_device *device; 209 210 list_for_each_entry(device, &its->device_list, dev_list) 211 if (device_id == device->device_id) 212 return device; 213 214 return NULL; 215 } 216 217 /* 218 * Find and returns an interrupt translation table entry (ITTE) for a given 219 * Device ID/Event ID pair on an ITS. 220 * Must be called with the its_lock mutex held. 221 */ 222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 223 u32 event_id) 224 { 225 struct its_device *device; 226 struct its_ite *ite; 227 228 device = find_its_device(its, device_id); 229 if (device == NULL) 230 return NULL; 231 232 list_for_each_entry(ite, &device->itt_head, ite_list) 233 if (ite->event_id == event_id) 234 return ite; 235 236 return NULL; 237 } 238 239 /* To be used as an iterator this macro misses the enclosing parentheses */ 240 #define for_each_lpi_its(dev, ite, its) \ 241 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 242 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 243 244 #define GIC_LPI_OFFSET 8192 245 246 #define VITS_TYPER_IDBITS 16 247 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1) 248 #define VITS_TYPER_DEVBITS 16 249 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1) 250 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 251 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 252 253 /* 254 * Finds and returns a collection in the ITS collection table. 255 * Must be called with the its_lock mutex held. 256 */ 257 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 258 { 259 struct its_collection *collection; 260 261 list_for_each_entry(collection, &its->collection_list, coll_list) { 262 if (coll_id == collection->collection_id) 263 return collection; 264 } 265 266 return NULL; 267 } 268 269 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 270 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 271 272 /* 273 * Reads the configuration data for a given LPI from guest memory and 274 * updates the fields in struct vgic_irq. 275 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 276 * VCPU. Unconditionally applies if filter_vcpu is NULL. 277 */ 278 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 279 struct kvm_vcpu *filter_vcpu, bool needs_inv) 280 { 281 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 282 u8 prop; 283 int ret; 284 unsigned long flags; 285 286 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 287 &prop, 1); 288 289 if (ret) 290 return ret; 291 292 raw_spin_lock_irqsave(&irq->irq_lock, flags); 293 294 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 295 irq->priority = LPI_PROP_PRIORITY(prop); 296 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 297 298 if (!irq->hw) { 299 vgic_queue_irq_unlock(kvm, irq, flags); 300 return 0; 301 } 302 } 303 304 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 305 306 if (irq->hw) 307 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 308 309 return 0; 310 } 311 312 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 313 { 314 int ret = 0; 315 unsigned long flags; 316 317 raw_spin_lock_irqsave(&irq->irq_lock, flags); 318 irq->target_vcpu = vcpu; 319 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 320 321 if (irq->hw) { 322 struct its_vlpi_map map; 323 324 ret = its_get_vlpi(irq->host_irq, &map); 325 if (ret) 326 return ret; 327 328 if (map.vpe) 329 atomic_dec(&map.vpe->vlpi_count); 330 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 331 atomic_inc(&map.vpe->vlpi_count); 332 333 ret = its_map_vlpi(irq->host_irq, &map); 334 } 335 336 return ret; 337 } 338 339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm, 340 struct its_collection *col) 341 { 342 return kvm_get_vcpu_by_id(kvm, col->target_addr); 343 } 344 345 /* 346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 347 * is targeting) to the VGIC's view, which deals with target VCPUs. 348 * Needs to be called whenever either the collection for a LPIs has 349 * changed or the collection itself got retargeted. 350 */ 351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 352 { 353 struct kvm_vcpu *vcpu; 354 355 if (!its_is_collection_mapped(ite->collection)) 356 return; 357 358 vcpu = collection_to_vcpu(kvm, ite->collection); 359 update_affinity(ite->irq, vcpu); 360 } 361 362 /* 363 * Updates the target VCPU for every LPI targeting this collection. 364 * Must be called with the its_lock mutex held. 365 */ 366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 367 struct its_collection *coll) 368 { 369 struct its_device *device; 370 struct its_ite *ite; 371 372 for_each_lpi_its(device, ite, its) { 373 if (ite->collection != coll) 374 continue; 375 376 update_affinity_ite(kvm, ite); 377 } 378 } 379 380 static u32 max_lpis_propbaser(u64 propbaser) 381 { 382 int nr_idbits = (propbaser & 0x1f) + 1; 383 384 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 385 } 386 387 /* 388 * Sync the pending table pending bit of LPIs targeting @vcpu 389 * with our own data structures. This relies on the LPI being 390 * mapped before. 391 */ 392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 393 { 394 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 395 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 396 unsigned long intid, flags; 397 struct vgic_irq *irq; 398 int last_byte_offset = -1; 399 int ret = 0; 400 u8 pendmask; 401 402 xa_for_each(&dist->lpi_xa, intid, irq) { 403 int byte_offset, bit_nr; 404 405 byte_offset = intid / BITS_PER_BYTE; 406 bit_nr = intid % BITS_PER_BYTE; 407 408 /* 409 * For contiguously allocated LPIs chances are we just read 410 * this very same byte in the last iteration. Reuse that. 411 */ 412 if (byte_offset != last_byte_offset) { 413 ret = kvm_read_guest_lock(vcpu->kvm, 414 pendbase + byte_offset, 415 &pendmask, 1); 416 if (ret) 417 return ret; 418 419 last_byte_offset = byte_offset; 420 } 421 422 irq = vgic_get_irq(vcpu->kvm, NULL, intid); 423 if (!irq) 424 continue; 425 426 raw_spin_lock_irqsave(&irq->irq_lock, flags); 427 if (irq->target_vcpu == vcpu) 428 irq->pending_latch = pendmask & (1U << bit_nr); 429 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 430 vgic_put_irq(vcpu->kvm, irq); 431 } 432 433 return ret; 434 } 435 436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 437 struct vgic_its *its, 438 gpa_t addr, unsigned int len) 439 { 440 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 441 u64 reg = GITS_TYPER_PLPIS; 442 443 /* 444 * We use linear CPU numbers for redistributor addressing, 445 * so GITS_TYPER.PTA is 0. 446 * Also we force all PROPBASER registers to be the same, so 447 * CommonLPIAff is 0 as well. 448 * To avoid memory waste in the guest, we keep the number of IDBits and 449 * DevBits low - as least for the time being. 450 */ 451 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 452 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 453 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 454 455 return extract_bytes(reg, addr & 7, len); 456 } 457 458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 459 struct vgic_its *its, 460 gpa_t addr, unsigned int len) 461 { 462 u32 val; 463 464 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 465 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 466 return val; 467 } 468 469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 470 struct vgic_its *its, 471 gpa_t addr, unsigned int len, 472 unsigned long val) 473 { 474 u32 rev = GITS_IIDR_REV(val); 475 476 if (rev >= NR_ITS_ABIS) 477 return -EINVAL; 478 return vgic_its_set_abi(its, rev); 479 } 480 481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 482 struct vgic_its *its, 483 gpa_t addr, unsigned int len) 484 { 485 switch (addr & 0xffff) { 486 case GITS_PIDR0: 487 return 0x92; /* part number, bits[7:0] */ 488 case GITS_PIDR1: 489 return 0xb4; /* part number, bits[11:8] */ 490 case GITS_PIDR2: 491 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 492 case GITS_PIDR4: 493 return 0x40; /* This is a 64K software visible page */ 494 /* The following are the ID registers for (any) GIC. */ 495 case GITS_CIDR0: 496 return 0x0d; 497 case GITS_CIDR1: 498 return 0xf0; 499 case GITS_CIDR2: 500 return 0x05; 501 case GITS_CIDR3: 502 return 0xb1; 503 } 504 505 return 0; 506 } 507 508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db) 509 { 510 struct kvm_io_device *kvm_io_dev; 511 struct vgic_io_device *iodev; 512 513 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db); 514 if (!kvm_io_dev) 515 return ERR_PTR(-EINVAL); 516 517 if (kvm_io_dev->ops != &kvm_io_gic_ops) 518 return ERR_PTR(-EINVAL); 519 520 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 521 if (iodev->iodev_type != IODEV_ITS) 522 return ERR_PTR(-EINVAL); 523 524 return iodev->its; 525 } 526 527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid) 528 { 529 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid; 530 531 } 532 533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 534 u32 devid, u32 eventid) 535 { 536 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 537 struct vgic_its *its; 538 struct vgic_irq *irq; 539 540 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID) 541 return NULL; 542 543 its = __vgic_doorbell_to_its(kvm, db); 544 if (IS_ERR(its)) 545 return NULL; 546 547 rcu_read_lock(); 548 549 irq = xa_load(&its->translation_cache, cache_key); 550 if (!vgic_try_get_irq_kref(irq)) 551 irq = NULL; 552 553 rcu_read_unlock(); 554 555 return irq; 556 } 557 558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 559 u32 devid, u32 eventid, 560 struct vgic_irq *irq) 561 { 562 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 563 struct vgic_irq *old; 564 565 /* Do not cache a directly injected interrupt */ 566 if (irq->hw) 567 return; 568 569 /* 570 * The irq refcount is guaranteed to be nonzero while holding the 571 * its_lock, as the ITE (and the reference it holds) cannot be freed. 572 */ 573 lockdep_assert_held(&its->its_lock); 574 vgic_get_irq_kref(irq); 575 576 /* 577 * We could have raced with another CPU caching the same 578 * translation behind our back, ensure we don't leak a 579 * reference if that is the case. 580 */ 581 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT); 582 if (old) 583 vgic_put_irq(kvm, old); 584 } 585 586 static void vgic_its_invalidate_cache(struct vgic_its *its) 587 { 588 struct kvm *kvm = its->dev->kvm; 589 struct vgic_irq *irq; 590 unsigned long idx; 591 592 xa_for_each(&its->translation_cache, idx, irq) { 593 xa_erase(&its->translation_cache, idx); 594 vgic_put_irq(kvm, irq); 595 } 596 } 597 598 void vgic_its_invalidate_all_caches(struct kvm *kvm) 599 { 600 struct kvm_device *dev; 601 struct vgic_its *its; 602 603 rcu_read_lock(); 604 605 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) { 606 if (dev->ops != &kvm_arm_vgic_its_ops) 607 continue; 608 609 its = dev->private; 610 vgic_its_invalidate_cache(its); 611 } 612 613 rcu_read_unlock(); 614 } 615 616 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 617 u32 devid, u32 eventid, struct vgic_irq **irq) 618 { 619 struct kvm_vcpu *vcpu; 620 struct its_ite *ite; 621 622 if (!its->enabled) 623 return -EBUSY; 624 625 ite = find_ite(its, devid, eventid); 626 if (!ite || !its_is_collection_mapped(ite->collection)) 627 return E_ITS_INT_UNMAPPED_INTERRUPT; 628 629 vcpu = collection_to_vcpu(kvm, ite->collection); 630 if (!vcpu) 631 return E_ITS_INT_UNMAPPED_INTERRUPT; 632 633 if (!vgic_lpis_enabled(vcpu)) 634 return -EBUSY; 635 636 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 637 638 *irq = ite->irq; 639 return 0; 640 } 641 642 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 643 { 644 u64 address; 645 646 if (!vgic_has_its(kvm)) 647 return ERR_PTR(-ENODEV); 648 649 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 650 return ERR_PTR(-EINVAL); 651 652 address = (u64)msi->address_hi << 32 | msi->address_lo; 653 654 return __vgic_doorbell_to_its(kvm, address); 655 } 656 657 /* 658 * Find the target VCPU and the LPI number for a given devid/eventid pair 659 * and make this IRQ pending, possibly injecting it. 660 * Must be called with the its_lock mutex held. 661 * Returns 0 on success, a positive error value for any ITS mapping 662 * related errors and negative error values for generic errors. 663 */ 664 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 665 u32 devid, u32 eventid) 666 { 667 struct vgic_irq *irq = NULL; 668 unsigned long flags; 669 int err; 670 671 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 672 if (err) 673 return err; 674 675 if (irq->hw) 676 return irq_set_irqchip_state(irq->host_irq, 677 IRQCHIP_STATE_PENDING, true); 678 679 raw_spin_lock_irqsave(&irq->irq_lock, flags); 680 irq->pending_latch = true; 681 vgic_queue_irq_unlock(kvm, irq, flags); 682 683 return 0; 684 } 685 686 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 687 { 688 struct vgic_irq *irq; 689 unsigned long flags; 690 phys_addr_t db; 691 692 db = (u64)msi->address_hi << 32 | msi->address_lo; 693 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 694 if (!irq) 695 return -EWOULDBLOCK; 696 697 raw_spin_lock_irqsave(&irq->irq_lock, flags); 698 irq->pending_latch = true; 699 vgic_queue_irq_unlock(kvm, irq, flags); 700 vgic_put_irq(kvm, irq); 701 702 return 0; 703 } 704 705 /* 706 * Queries the KVM IO bus framework to get the ITS pointer from the given 707 * doorbell address. 708 * We then call vgic_its_trigger_msi() with the decoded data. 709 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 710 */ 711 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 712 { 713 struct vgic_its *its; 714 int ret; 715 716 if (!vgic_its_inject_cached_translation(kvm, msi)) 717 return 1; 718 719 its = vgic_msi_to_its(kvm, msi); 720 if (IS_ERR(its)) 721 return PTR_ERR(its); 722 723 mutex_lock(&its->its_lock); 724 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 725 mutex_unlock(&its->its_lock); 726 727 if (ret < 0) 728 return ret; 729 730 /* 731 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 732 * if the guest has blocked the MSI. So we map any LPI mapping 733 * related error to that. 734 */ 735 if (ret) 736 return 0; 737 else 738 return 1; 739 } 740 741 /* Requires the its_lock to be held. */ 742 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 743 { 744 list_del(&ite->ite_list); 745 746 /* This put matches the get in vgic_add_lpi. */ 747 if (ite->irq) { 748 if (ite->irq->hw) 749 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 750 751 vgic_put_irq(kvm, ite->irq); 752 } 753 754 kfree(ite); 755 } 756 757 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 758 { 759 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 760 } 761 762 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 763 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 764 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 765 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 766 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 767 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 768 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 769 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 770 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 771 772 /* 773 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 774 * Must be called with the its_lock mutex held. 775 */ 776 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 777 u64 *its_cmd) 778 { 779 u32 device_id = its_cmd_get_deviceid(its_cmd); 780 u32 event_id = its_cmd_get_id(its_cmd); 781 struct its_ite *ite; 782 783 ite = find_ite(its, device_id, event_id); 784 if (ite && its_is_collection_mapped(ite->collection)) { 785 struct its_device *device = find_its_device(its, device_id); 786 int ite_esz = vgic_its_get_abi(its)->ite_esz; 787 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz; 788 /* 789 * Though the spec talks about removing the pending state, we 790 * don't bother here since we clear the ITTE anyway and the 791 * pending state is a property of the ITTE struct. 792 */ 793 vgic_its_invalidate_cache(its); 794 795 its_free_ite(kvm, ite); 796 797 return vgic_its_write_entry_lock(its, gpa, 0, ite_esz); 798 } 799 800 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 801 } 802 803 /* 804 * The MOVI command moves an ITTE to a different collection. 805 * Must be called with the its_lock mutex held. 806 */ 807 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 808 u64 *its_cmd) 809 { 810 u32 device_id = its_cmd_get_deviceid(its_cmd); 811 u32 event_id = its_cmd_get_id(its_cmd); 812 u32 coll_id = its_cmd_get_collection(its_cmd); 813 struct kvm_vcpu *vcpu; 814 struct its_ite *ite; 815 struct its_collection *collection; 816 817 ite = find_ite(its, device_id, event_id); 818 if (!ite) 819 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 820 821 if (!its_is_collection_mapped(ite->collection)) 822 return E_ITS_MOVI_UNMAPPED_COLLECTION; 823 824 collection = find_collection(its, coll_id); 825 if (!its_is_collection_mapped(collection)) 826 return E_ITS_MOVI_UNMAPPED_COLLECTION; 827 828 ite->collection = collection; 829 vcpu = collection_to_vcpu(kvm, collection); 830 831 vgic_its_invalidate_cache(its); 832 833 return update_affinity(ite->irq, vcpu); 834 } 835 836 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 837 { 838 gfn_t gfn = gpa >> PAGE_SHIFT; 839 int idx; 840 bool ret; 841 842 idx = srcu_read_lock(&its->dev->kvm->srcu); 843 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 844 srcu_read_unlock(&its->dev->kvm->srcu, idx); 845 return ret; 846 } 847 848 /* 849 * Check whether an ID can be stored into the corresponding guest table. 850 * For a direct table this is pretty easy, but gets a bit nasty for 851 * indirect tables. We check whether the resulting guest physical address 852 * is actually valid (covered by a memslot and guest accessible). 853 * For this we have to read the respective first level entry. 854 */ 855 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 856 gpa_t *eaddr) 857 { 858 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 859 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 860 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 861 int esz = GITS_BASER_ENTRY_SIZE(baser); 862 int index; 863 864 switch (type) { 865 case GITS_BASER_TYPE_DEVICE: 866 if (id > VITS_MAX_DEVID) 867 return false; 868 break; 869 case GITS_BASER_TYPE_COLLECTION: 870 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 871 if (id >= BIT_ULL(16)) 872 return false; 873 break; 874 default: 875 return false; 876 } 877 878 if (!(baser & GITS_BASER_INDIRECT)) { 879 phys_addr_t addr; 880 881 if (id >= (l1_tbl_size / esz)) 882 return false; 883 884 addr = base + id * esz; 885 886 if (eaddr) 887 *eaddr = addr; 888 889 return __is_visible_gfn_locked(its, addr); 890 } 891 892 /* calculate and check the index into the 1st level */ 893 index = id / (SZ_64K / esz); 894 if (index >= (l1_tbl_size / sizeof(u64))) 895 return false; 896 897 /* Each 1st level entry is represented by a 64-bit value. */ 898 if (kvm_read_guest_lock(its->dev->kvm, 899 base + index * sizeof(indirect_ptr), 900 &indirect_ptr, sizeof(indirect_ptr))) 901 return false; 902 903 indirect_ptr = le64_to_cpu(indirect_ptr); 904 905 /* check the valid bit of the first level entry */ 906 if (!(indirect_ptr & BIT_ULL(63))) 907 return false; 908 909 /* Mask the guest physical address and calculate the frame number. */ 910 indirect_ptr &= GENMASK_ULL(51, 16); 911 912 /* Find the address of the actual entry */ 913 index = id % (SZ_64K / esz); 914 indirect_ptr += index * esz; 915 916 if (eaddr) 917 *eaddr = indirect_ptr; 918 919 return __is_visible_gfn_locked(its, indirect_ptr); 920 } 921 922 /* 923 * Check whether an event ID can be stored in the corresponding Interrupt 924 * Translation Table, which starts at device->itt_addr. 925 */ 926 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 927 u32 event_id) 928 { 929 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 930 int ite_esz = abi->ite_esz; 931 gpa_t gpa; 932 933 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 934 if (event_id >= BIT_ULL(device->num_eventid_bits)) 935 return false; 936 937 gpa = device->itt_addr + event_id * ite_esz; 938 return __is_visible_gfn_locked(its, gpa); 939 } 940 941 /* 942 * Add a new collection into the ITS collection table. 943 * Returns 0 on success, and a negative error value for generic errors. 944 */ 945 static int vgic_its_alloc_collection(struct vgic_its *its, 946 struct its_collection **colp, 947 u32 coll_id) 948 { 949 struct its_collection *collection; 950 951 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 952 if (!collection) 953 return -ENOMEM; 954 955 collection->collection_id = coll_id; 956 collection->target_addr = COLLECTION_NOT_MAPPED; 957 958 list_add_tail(&collection->coll_list, &its->collection_list); 959 *colp = collection; 960 961 return 0; 962 } 963 964 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 965 { 966 struct its_collection *collection; 967 struct its_device *device; 968 struct its_ite *ite; 969 970 /* 971 * Clearing the mapping for that collection ID removes the 972 * entry from the list. If there wasn't any before, we can 973 * go home early. 974 */ 975 collection = find_collection(its, coll_id); 976 if (!collection) 977 return; 978 979 for_each_lpi_its(device, ite, its) 980 if (ite->collection && 981 ite->collection->collection_id == coll_id) 982 ite->collection = NULL; 983 984 list_del(&collection->coll_list); 985 kfree(collection); 986 } 987 988 /* Must be called with its_lock mutex held */ 989 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 990 struct its_collection *collection, 991 u32 event_id) 992 { 993 struct its_ite *ite; 994 995 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 996 if (!ite) 997 return ERR_PTR(-ENOMEM); 998 999 ite->event_id = event_id; 1000 ite->collection = collection; 1001 1002 list_add_tail(&ite->ite_list, &device->itt_head); 1003 return ite; 1004 } 1005 1006 /* 1007 * The MAPTI and MAPI commands map LPIs to ITTEs. 1008 * Must be called with its_lock mutex held. 1009 */ 1010 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1011 u64 *its_cmd) 1012 { 1013 u32 device_id = its_cmd_get_deviceid(its_cmd); 1014 u32 event_id = its_cmd_get_id(its_cmd); 1015 u32 coll_id = its_cmd_get_collection(its_cmd); 1016 struct its_ite *ite; 1017 struct kvm_vcpu *vcpu = NULL; 1018 struct its_device *device; 1019 struct its_collection *collection, *new_coll = NULL; 1020 struct vgic_irq *irq; 1021 int lpi_nr; 1022 1023 device = find_its_device(its, device_id); 1024 if (!device) 1025 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1026 1027 if (!vgic_its_check_event_id(its, device, event_id)) 1028 return E_ITS_MAPTI_ID_OOR; 1029 1030 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1031 lpi_nr = its_cmd_get_physical_id(its_cmd); 1032 else 1033 lpi_nr = event_id; 1034 if (lpi_nr < GIC_LPI_OFFSET || 1035 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1036 return E_ITS_MAPTI_PHYSICALID_OOR; 1037 1038 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1039 if (find_ite(its, device_id, event_id)) 1040 return 0; 1041 1042 collection = find_collection(its, coll_id); 1043 if (!collection) { 1044 int ret; 1045 1046 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1047 return E_ITS_MAPC_COLLECTION_OOR; 1048 1049 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1050 if (ret) 1051 return ret; 1052 new_coll = collection; 1053 } 1054 1055 ite = vgic_its_alloc_ite(device, collection, event_id); 1056 if (IS_ERR(ite)) { 1057 if (new_coll) 1058 vgic_its_free_collection(its, coll_id); 1059 return PTR_ERR(ite); 1060 } 1061 1062 if (its_is_collection_mapped(collection)) 1063 vcpu = collection_to_vcpu(kvm, collection); 1064 1065 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1066 if (IS_ERR(irq)) { 1067 if (new_coll) 1068 vgic_its_free_collection(its, coll_id); 1069 its_free_ite(kvm, ite); 1070 return PTR_ERR(irq); 1071 } 1072 ite->irq = irq; 1073 1074 return 0; 1075 } 1076 1077 /* Requires the its_lock to be held. */ 1078 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its, 1079 struct its_device *device) 1080 { 1081 struct its_ite *ite, *temp; 1082 1083 /* 1084 * The spec says that unmapping a device with still valid 1085 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1086 * since we cannot leave the memory unreferenced. 1087 */ 1088 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1089 its_free_ite(kvm, ite); 1090 1091 vgic_its_invalidate_cache(its); 1092 1093 list_del(&device->dev_list); 1094 kfree(device); 1095 } 1096 1097 /* its lock must be held */ 1098 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1099 { 1100 struct its_device *cur, *temp; 1101 1102 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1103 vgic_its_free_device(kvm, its, cur); 1104 } 1105 1106 /* its lock must be held */ 1107 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1108 { 1109 struct its_collection *cur, *temp; 1110 1111 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1112 vgic_its_free_collection(its, cur->collection_id); 1113 } 1114 1115 /* Must be called with its_lock mutex held */ 1116 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1117 u32 device_id, gpa_t itt_addr, 1118 u8 num_eventid_bits) 1119 { 1120 struct its_device *device; 1121 1122 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1123 if (!device) 1124 return ERR_PTR(-ENOMEM); 1125 1126 device->device_id = device_id; 1127 device->itt_addr = itt_addr; 1128 device->num_eventid_bits = num_eventid_bits; 1129 INIT_LIST_HEAD(&device->itt_head); 1130 1131 list_add_tail(&device->dev_list, &its->device_list); 1132 return device; 1133 } 1134 1135 /* 1136 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1137 * Must be called with the its_lock mutex held. 1138 */ 1139 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1140 u64 *its_cmd) 1141 { 1142 u32 device_id = its_cmd_get_deviceid(its_cmd); 1143 bool valid = its_cmd_get_validbit(its_cmd); 1144 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1145 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1146 int dte_esz = vgic_its_get_abi(its)->dte_esz; 1147 struct its_device *device; 1148 gpa_t gpa; 1149 1150 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa)) 1151 return E_ITS_MAPD_DEVICE_OOR; 1152 1153 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1154 return E_ITS_MAPD_ITTSIZE_OOR; 1155 1156 device = find_its_device(its, device_id); 1157 1158 /* 1159 * The spec says that calling MAPD on an already mapped device 1160 * invalidates all cached data for this device. We implement this 1161 * by removing the mapping and re-establishing it. 1162 */ 1163 if (device) 1164 vgic_its_free_device(kvm, its, device); 1165 1166 /* 1167 * The spec does not say whether unmapping a not-mapped device 1168 * is an error, so we are done in any case. 1169 */ 1170 if (!valid) 1171 return vgic_its_write_entry_lock(its, gpa, 0, dte_esz); 1172 1173 device = vgic_its_alloc_device(its, device_id, itt_addr, 1174 num_eventid_bits); 1175 1176 return PTR_ERR_OR_ZERO(device); 1177 } 1178 1179 /* 1180 * The MAPC command maps collection IDs to redistributors. 1181 * Must be called with the its_lock mutex held. 1182 */ 1183 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1184 u64 *its_cmd) 1185 { 1186 u16 coll_id; 1187 struct its_collection *collection; 1188 bool valid; 1189 1190 valid = its_cmd_get_validbit(its_cmd); 1191 coll_id = its_cmd_get_collection(its_cmd); 1192 1193 if (!valid) { 1194 vgic_its_free_collection(its, coll_id); 1195 vgic_its_invalidate_cache(its); 1196 } else { 1197 struct kvm_vcpu *vcpu; 1198 1199 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1200 if (!vcpu) 1201 return E_ITS_MAPC_PROCNUM_OOR; 1202 1203 collection = find_collection(its, coll_id); 1204 1205 if (!collection) { 1206 int ret; 1207 1208 if (!vgic_its_check_id(its, its->baser_coll_table, 1209 coll_id, NULL)) 1210 return E_ITS_MAPC_COLLECTION_OOR; 1211 1212 ret = vgic_its_alloc_collection(its, &collection, 1213 coll_id); 1214 if (ret) 1215 return ret; 1216 collection->target_addr = vcpu->vcpu_id; 1217 } else { 1218 collection->target_addr = vcpu->vcpu_id; 1219 update_affinity_collection(kvm, its, collection); 1220 } 1221 } 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * The CLEAR command removes the pending state for a particular LPI. 1228 * Must be called with the its_lock mutex held. 1229 */ 1230 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1231 u64 *its_cmd) 1232 { 1233 u32 device_id = its_cmd_get_deviceid(its_cmd); 1234 u32 event_id = its_cmd_get_id(its_cmd); 1235 struct its_ite *ite; 1236 1237 1238 ite = find_ite(its, device_id, event_id); 1239 if (!ite) 1240 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1241 1242 ite->irq->pending_latch = false; 1243 1244 if (ite->irq->hw) 1245 return irq_set_irqchip_state(ite->irq->host_irq, 1246 IRQCHIP_STATE_PENDING, false); 1247 1248 return 0; 1249 } 1250 1251 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1252 { 1253 return update_lpi_config(kvm, irq, NULL, true); 1254 } 1255 1256 /* 1257 * The INV command syncs the configuration bits from the memory table. 1258 * Must be called with the its_lock mutex held. 1259 */ 1260 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1261 u64 *its_cmd) 1262 { 1263 u32 device_id = its_cmd_get_deviceid(its_cmd); 1264 u32 event_id = its_cmd_get_id(its_cmd); 1265 struct its_ite *ite; 1266 1267 1268 ite = find_ite(its, device_id, event_id); 1269 if (!ite) 1270 return E_ITS_INV_UNMAPPED_INTERRUPT; 1271 1272 return vgic_its_inv_lpi(kvm, ite->irq); 1273 } 1274 1275 /** 1276 * vgic_its_invall - invalidate all LPIs targeting a given vcpu 1277 * @vcpu: the vcpu for which the RD is targeted by an invalidation 1278 * 1279 * Contrary to the INVALL command, this targets a RD instead of a 1280 * collection, and we don't need to hold the its_lock, since no ITS is 1281 * involved here. 1282 */ 1283 int vgic_its_invall(struct kvm_vcpu *vcpu) 1284 { 1285 struct kvm *kvm = vcpu->kvm; 1286 struct vgic_dist *dist = &kvm->arch.vgic; 1287 struct vgic_irq *irq; 1288 unsigned long intid; 1289 1290 xa_for_each(&dist->lpi_xa, intid, irq) { 1291 irq = vgic_get_irq(kvm, NULL, intid); 1292 if (!irq) 1293 continue; 1294 1295 update_lpi_config(kvm, irq, vcpu, false); 1296 vgic_put_irq(kvm, irq); 1297 } 1298 1299 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1300 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1301 1302 return 0; 1303 } 1304 1305 /* 1306 * The INVALL command requests flushing of all IRQ data in this collection. 1307 * Find the VCPU mapped to that collection, then iterate over the VM's list 1308 * of mapped LPIs and update the configuration for each IRQ which targets 1309 * the specified vcpu. The configuration will be read from the in-memory 1310 * configuration table. 1311 * Must be called with the its_lock mutex held. 1312 */ 1313 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1314 u64 *its_cmd) 1315 { 1316 u32 coll_id = its_cmd_get_collection(its_cmd); 1317 struct its_collection *collection; 1318 struct kvm_vcpu *vcpu; 1319 1320 collection = find_collection(its, coll_id); 1321 if (!its_is_collection_mapped(collection)) 1322 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1323 1324 vcpu = collection_to_vcpu(kvm, collection); 1325 vgic_its_invall(vcpu); 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * The MOVALL command moves the pending state of all IRQs targeting one 1332 * redistributor to another. We don't hold the pending state in the VCPUs, 1333 * but in the IRQs instead, so there is really not much to do for us here. 1334 * However the spec says that no IRQ must target the old redistributor 1335 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1336 * This command affects all LPIs in the system that target that redistributor. 1337 */ 1338 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1339 u64 *its_cmd) 1340 { 1341 struct vgic_dist *dist = &kvm->arch.vgic; 1342 struct kvm_vcpu *vcpu1, *vcpu2; 1343 struct vgic_irq *irq; 1344 unsigned long intid; 1345 1346 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */ 1347 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1348 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32)); 1349 1350 if (!vcpu1 || !vcpu2) 1351 return E_ITS_MOVALL_PROCNUM_OOR; 1352 1353 if (vcpu1 == vcpu2) 1354 return 0; 1355 1356 xa_for_each(&dist->lpi_xa, intid, irq) { 1357 irq = vgic_get_irq(kvm, NULL, intid); 1358 if (!irq) 1359 continue; 1360 1361 update_affinity(irq, vcpu2); 1362 1363 vgic_put_irq(kvm, irq); 1364 } 1365 1366 vgic_its_invalidate_cache(its); 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * The INT command injects the LPI associated with that DevID/EvID pair. 1373 * Must be called with the its_lock mutex held. 1374 */ 1375 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1376 u64 *its_cmd) 1377 { 1378 u32 msi_data = its_cmd_get_id(its_cmd); 1379 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1380 1381 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1382 } 1383 1384 /* 1385 * This function is called with the its_cmd lock held, but the ITS data 1386 * structure lock dropped. 1387 */ 1388 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1389 u64 *its_cmd) 1390 { 1391 int ret = -ENODEV; 1392 1393 mutex_lock(&its->its_lock); 1394 switch (its_cmd_get_command(its_cmd)) { 1395 case GITS_CMD_MAPD: 1396 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1397 break; 1398 case GITS_CMD_MAPC: 1399 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1400 break; 1401 case GITS_CMD_MAPI: 1402 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1403 break; 1404 case GITS_CMD_MAPTI: 1405 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1406 break; 1407 case GITS_CMD_MOVI: 1408 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1409 break; 1410 case GITS_CMD_DISCARD: 1411 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1412 break; 1413 case GITS_CMD_CLEAR: 1414 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1415 break; 1416 case GITS_CMD_MOVALL: 1417 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1418 break; 1419 case GITS_CMD_INT: 1420 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1421 break; 1422 case GITS_CMD_INV: 1423 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1424 break; 1425 case GITS_CMD_INVALL: 1426 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1427 break; 1428 case GITS_CMD_SYNC: 1429 /* we ignore this command: we are in sync all of the time */ 1430 ret = 0; 1431 break; 1432 } 1433 mutex_unlock(&its->its_lock); 1434 1435 return ret; 1436 } 1437 1438 static u64 vgic_sanitise_its_baser(u64 reg) 1439 { 1440 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1441 GITS_BASER_SHAREABILITY_SHIFT, 1442 vgic_sanitise_shareability); 1443 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1444 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1445 vgic_sanitise_inner_cacheability); 1446 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1447 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1448 vgic_sanitise_outer_cacheability); 1449 1450 /* We support only one (ITS) page size: 64K */ 1451 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1452 1453 return reg; 1454 } 1455 1456 static u64 vgic_sanitise_its_cbaser(u64 reg) 1457 { 1458 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1459 GITS_CBASER_SHAREABILITY_SHIFT, 1460 vgic_sanitise_shareability); 1461 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1462 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1463 vgic_sanitise_inner_cacheability); 1464 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1465 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1466 vgic_sanitise_outer_cacheability); 1467 1468 /* Sanitise the physical address to be 64k aligned. */ 1469 reg &= ~GENMASK_ULL(15, 12); 1470 1471 return reg; 1472 } 1473 1474 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1475 struct vgic_its *its, 1476 gpa_t addr, unsigned int len) 1477 { 1478 return extract_bytes(its->cbaser, addr & 7, len); 1479 } 1480 1481 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1482 gpa_t addr, unsigned int len, 1483 unsigned long val) 1484 { 1485 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1486 if (its->enabled) 1487 return; 1488 1489 mutex_lock(&its->cmd_lock); 1490 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1491 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1492 its->creadr = 0; 1493 /* 1494 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1495 * it to CREADR to make sure we start with an empty command buffer. 1496 */ 1497 its->cwriter = its->creadr; 1498 mutex_unlock(&its->cmd_lock); 1499 } 1500 1501 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1502 #define ITS_CMD_SIZE 32 1503 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1504 1505 /* Must be called with the cmd_lock held. */ 1506 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1507 { 1508 gpa_t cbaser; 1509 u64 cmd_buf[4]; 1510 1511 /* Commands are only processed when the ITS is enabled. */ 1512 if (!its->enabled) 1513 return; 1514 1515 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1516 1517 while (its->cwriter != its->creadr) { 1518 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1519 cmd_buf, ITS_CMD_SIZE); 1520 /* 1521 * If kvm_read_guest() fails, this could be due to the guest 1522 * programming a bogus value in CBASER or something else going 1523 * wrong from which we cannot easily recover. 1524 * According to section 6.3.2 in the GICv3 spec we can just 1525 * ignore that command then. 1526 */ 1527 if (!ret) 1528 vgic_its_handle_command(kvm, its, cmd_buf); 1529 1530 its->creadr += ITS_CMD_SIZE; 1531 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1532 its->creadr = 0; 1533 } 1534 } 1535 1536 /* 1537 * By writing to CWRITER the guest announces new commands to be processed. 1538 * To avoid any races in the first place, we take the its_cmd lock, which 1539 * protects our ring buffer variables, so that there is only one user 1540 * per ITS handling commands at a given time. 1541 */ 1542 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1543 gpa_t addr, unsigned int len, 1544 unsigned long val) 1545 { 1546 u64 reg; 1547 1548 if (!its) 1549 return; 1550 1551 mutex_lock(&its->cmd_lock); 1552 1553 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1554 reg = ITS_CMD_OFFSET(reg); 1555 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1556 mutex_unlock(&its->cmd_lock); 1557 return; 1558 } 1559 its->cwriter = reg; 1560 1561 vgic_its_process_commands(kvm, its); 1562 1563 mutex_unlock(&its->cmd_lock); 1564 } 1565 1566 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1567 struct vgic_its *its, 1568 gpa_t addr, unsigned int len) 1569 { 1570 return extract_bytes(its->cwriter, addr & 0x7, len); 1571 } 1572 1573 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1574 struct vgic_its *its, 1575 gpa_t addr, unsigned int len) 1576 { 1577 return extract_bytes(its->creadr, addr & 0x7, len); 1578 } 1579 1580 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1581 struct vgic_its *its, 1582 gpa_t addr, unsigned int len, 1583 unsigned long val) 1584 { 1585 u32 cmd_offset; 1586 int ret = 0; 1587 1588 mutex_lock(&its->cmd_lock); 1589 1590 if (its->enabled) { 1591 ret = -EBUSY; 1592 goto out; 1593 } 1594 1595 cmd_offset = ITS_CMD_OFFSET(val); 1596 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1597 ret = -EINVAL; 1598 goto out; 1599 } 1600 1601 its->creadr = cmd_offset; 1602 out: 1603 mutex_unlock(&its->cmd_lock); 1604 return ret; 1605 } 1606 1607 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1608 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1609 struct vgic_its *its, 1610 gpa_t addr, unsigned int len) 1611 { 1612 u64 reg; 1613 1614 switch (BASER_INDEX(addr)) { 1615 case 0: 1616 reg = its->baser_device_table; 1617 break; 1618 case 1: 1619 reg = its->baser_coll_table; 1620 break; 1621 default: 1622 reg = 0; 1623 break; 1624 } 1625 1626 return extract_bytes(reg, addr & 7, len); 1627 } 1628 1629 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1630 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1631 struct vgic_its *its, 1632 gpa_t addr, unsigned int len, 1633 unsigned long val) 1634 { 1635 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1636 u64 entry_size, table_type; 1637 u64 reg, *regptr, clearbits = 0; 1638 1639 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1640 if (its->enabled) 1641 return; 1642 1643 switch (BASER_INDEX(addr)) { 1644 case 0: 1645 regptr = &its->baser_device_table; 1646 entry_size = abi->dte_esz; 1647 table_type = GITS_BASER_TYPE_DEVICE; 1648 break; 1649 case 1: 1650 regptr = &its->baser_coll_table; 1651 entry_size = abi->cte_esz; 1652 table_type = GITS_BASER_TYPE_COLLECTION; 1653 clearbits = GITS_BASER_INDIRECT; 1654 break; 1655 default: 1656 return; 1657 } 1658 1659 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1660 reg &= ~GITS_BASER_RO_MASK; 1661 reg &= ~clearbits; 1662 1663 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1664 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1665 reg = vgic_sanitise_its_baser(reg); 1666 1667 *regptr = reg; 1668 1669 if (!(reg & GITS_BASER_VALID)) { 1670 /* Take the its_lock to prevent a race with a save/restore */ 1671 mutex_lock(&its->its_lock); 1672 switch (table_type) { 1673 case GITS_BASER_TYPE_DEVICE: 1674 vgic_its_free_device_list(kvm, its); 1675 break; 1676 case GITS_BASER_TYPE_COLLECTION: 1677 vgic_its_free_collection_list(kvm, its); 1678 break; 1679 } 1680 mutex_unlock(&its->its_lock); 1681 } 1682 } 1683 1684 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1685 struct vgic_its *its, 1686 gpa_t addr, unsigned int len) 1687 { 1688 u32 reg = 0; 1689 1690 mutex_lock(&its->cmd_lock); 1691 if (its->creadr == its->cwriter) 1692 reg |= GITS_CTLR_QUIESCENT; 1693 if (its->enabled) 1694 reg |= GITS_CTLR_ENABLE; 1695 mutex_unlock(&its->cmd_lock); 1696 1697 return reg; 1698 } 1699 1700 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1701 gpa_t addr, unsigned int len, 1702 unsigned long val) 1703 { 1704 mutex_lock(&its->cmd_lock); 1705 1706 /* 1707 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1708 * device/collection BASER are invalid 1709 */ 1710 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1711 (!(its->baser_device_table & GITS_BASER_VALID) || 1712 !(its->baser_coll_table & GITS_BASER_VALID) || 1713 !(its->cbaser & GITS_CBASER_VALID))) 1714 goto out; 1715 1716 its->enabled = !!(val & GITS_CTLR_ENABLE); 1717 if (!its->enabled) 1718 vgic_its_invalidate_cache(its); 1719 1720 /* 1721 * Try to process any pending commands. This function bails out early 1722 * if the ITS is disabled or no commands have been queued. 1723 */ 1724 vgic_its_process_commands(kvm, its); 1725 1726 out: 1727 mutex_unlock(&its->cmd_lock); 1728 } 1729 1730 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1731 { \ 1732 .reg_offset = off, \ 1733 .len = length, \ 1734 .access_flags = acc, \ 1735 .its_read = rd, \ 1736 .its_write = wr, \ 1737 } 1738 1739 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1740 { \ 1741 .reg_offset = off, \ 1742 .len = length, \ 1743 .access_flags = acc, \ 1744 .its_read = rd, \ 1745 .its_write = wr, \ 1746 .uaccess_its_write = uwr, \ 1747 } 1748 1749 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1750 gpa_t addr, unsigned int len, unsigned long val) 1751 { 1752 /* Ignore */ 1753 } 1754 1755 static struct vgic_register_region its_registers[] = { 1756 REGISTER_ITS_DESC(GITS_CTLR, 1757 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1758 VGIC_ACCESS_32bit), 1759 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1760 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1761 vgic_mmio_uaccess_write_its_iidr, 4, 1762 VGIC_ACCESS_32bit), 1763 REGISTER_ITS_DESC(GITS_TYPER, 1764 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1765 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1766 REGISTER_ITS_DESC(GITS_CBASER, 1767 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1768 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1769 REGISTER_ITS_DESC(GITS_CWRITER, 1770 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1771 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1772 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1773 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1774 vgic_mmio_uaccess_write_its_creadr, 8, 1775 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1776 REGISTER_ITS_DESC(GITS_BASER, 1777 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1778 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1779 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1780 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1781 VGIC_ACCESS_32bit), 1782 }; 1783 1784 /* This is called on setting the LPI enable bit in the redistributor. */ 1785 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1786 { 1787 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1788 its_sync_lpi_pending_table(vcpu); 1789 } 1790 1791 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1792 u64 addr) 1793 { 1794 struct vgic_io_device *iodev = &its->iodev; 1795 int ret; 1796 1797 mutex_lock(&kvm->slots_lock); 1798 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1799 ret = -EBUSY; 1800 goto out; 1801 } 1802 1803 its->vgic_its_base = addr; 1804 iodev->regions = its_registers; 1805 iodev->nr_regions = ARRAY_SIZE(its_registers); 1806 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1807 1808 iodev->base_addr = its->vgic_its_base; 1809 iodev->iodev_type = IODEV_ITS; 1810 iodev->its = its; 1811 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1812 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1813 out: 1814 mutex_unlock(&kvm->slots_lock); 1815 1816 return ret; 1817 } 1818 1819 #define INITIAL_BASER_VALUE \ 1820 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1821 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1822 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1823 GITS_BASER_PAGE_SIZE_64K) 1824 1825 #define INITIAL_PROPBASER_VALUE \ 1826 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1827 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1828 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1829 1830 static int vgic_its_create(struct kvm_device *dev, u32 type) 1831 { 1832 int ret; 1833 struct vgic_its *its; 1834 1835 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1836 return -ENODEV; 1837 1838 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1839 if (!its) 1840 return -ENOMEM; 1841 1842 mutex_lock(&dev->kvm->arch.config_lock); 1843 1844 if (vgic_initialized(dev->kvm)) { 1845 ret = vgic_v4_init(dev->kvm); 1846 if (ret < 0) { 1847 mutex_unlock(&dev->kvm->arch.config_lock); 1848 kfree(its); 1849 return ret; 1850 } 1851 } 1852 1853 mutex_init(&its->its_lock); 1854 mutex_init(&its->cmd_lock); 1855 1856 /* Yep, even more trickery for lock ordering... */ 1857 #ifdef CONFIG_LOCKDEP 1858 mutex_lock(&its->cmd_lock); 1859 mutex_lock(&its->its_lock); 1860 mutex_unlock(&its->its_lock); 1861 mutex_unlock(&its->cmd_lock); 1862 #endif 1863 1864 its->vgic_its_base = VGIC_ADDR_UNDEF; 1865 1866 INIT_LIST_HEAD(&its->device_list); 1867 INIT_LIST_HEAD(&its->collection_list); 1868 xa_init(&its->translation_cache); 1869 1870 dev->kvm->arch.vgic.msis_require_devid = true; 1871 dev->kvm->arch.vgic.has_its = true; 1872 its->enabled = false; 1873 its->dev = dev; 1874 1875 its->baser_device_table = INITIAL_BASER_VALUE | 1876 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1877 its->baser_coll_table = INITIAL_BASER_VALUE | 1878 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1879 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1880 1881 dev->private = its; 1882 1883 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1884 1885 mutex_unlock(&dev->kvm->arch.config_lock); 1886 1887 return ret; 1888 } 1889 1890 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1891 { 1892 struct kvm *kvm = kvm_dev->kvm; 1893 struct vgic_its *its = kvm_dev->private; 1894 1895 mutex_lock(&its->its_lock); 1896 1897 vgic_its_free_device_list(kvm, its); 1898 vgic_its_free_collection_list(kvm, its); 1899 vgic_its_invalidate_cache(its); 1900 xa_destroy(&its->translation_cache); 1901 1902 mutex_unlock(&its->its_lock); 1903 kfree(its); 1904 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1905 } 1906 1907 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1908 struct kvm_device_attr *attr) 1909 { 1910 const struct vgic_register_region *region; 1911 gpa_t offset = attr->attr; 1912 int align; 1913 1914 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1915 1916 if (offset & align) 1917 return -EINVAL; 1918 1919 region = vgic_find_mmio_region(its_registers, 1920 ARRAY_SIZE(its_registers), 1921 offset); 1922 if (!region) 1923 return -ENXIO; 1924 1925 return 0; 1926 } 1927 1928 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1929 struct kvm_device_attr *attr, 1930 u64 *reg, bool is_write) 1931 { 1932 const struct vgic_register_region *region; 1933 struct vgic_its *its; 1934 gpa_t addr, offset; 1935 unsigned int len; 1936 int align, ret = 0; 1937 1938 its = dev->private; 1939 offset = attr->attr; 1940 1941 /* 1942 * Although the spec supports upper/lower 32-bit accesses to 1943 * 64-bit ITS registers, the userspace ABI requires 64-bit 1944 * accesses to all 64-bit wide registers. We therefore only 1945 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1946 * registers 1947 */ 1948 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1949 align = 0x3; 1950 else 1951 align = 0x7; 1952 1953 if (offset & align) 1954 return -EINVAL; 1955 1956 mutex_lock(&dev->kvm->lock); 1957 1958 if (!lock_all_vcpus(dev->kvm)) { 1959 mutex_unlock(&dev->kvm->lock); 1960 return -EBUSY; 1961 } 1962 1963 mutex_lock(&dev->kvm->arch.config_lock); 1964 1965 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1966 ret = -ENXIO; 1967 goto out; 1968 } 1969 1970 region = vgic_find_mmio_region(its_registers, 1971 ARRAY_SIZE(its_registers), 1972 offset); 1973 if (!region) { 1974 ret = -ENXIO; 1975 goto out; 1976 } 1977 1978 addr = its->vgic_its_base + offset; 1979 1980 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 1981 1982 if (is_write) { 1983 if (region->uaccess_its_write) 1984 ret = region->uaccess_its_write(dev->kvm, its, addr, 1985 len, *reg); 1986 else 1987 region->its_write(dev->kvm, its, addr, len, *reg); 1988 } else { 1989 *reg = region->its_read(dev->kvm, its, addr, len); 1990 } 1991 out: 1992 mutex_unlock(&dev->kvm->arch.config_lock); 1993 unlock_all_vcpus(dev->kvm); 1994 mutex_unlock(&dev->kvm->lock); 1995 return ret; 1996 } 1997 1998 static u32 compute_next_devid_offset(struct list_head *h, 1999 struct its_device *dev) 2000 { 2001 struct its_device *next; 2002 u32 next_offset; 2003 2004 if (list_is_last(&dev->dev_list, h)) 2005 return 0; 2006 next = list_next_entry(dev, dev_list); 2007 next_offset = next->device_id - dev->device_id; 2008 2009 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2010 } 2011 2012 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2013 { 2014 struct its_ite *next; 2015 u32 next_offset; 2016 2017 if (list_is_last(&ite->ite_list, h)) 2018 return 0; 2019 next = list_next_entry(ite, ite_list); 2020 next_offset = next->event_id - ite->event_id; 2021 2022 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2023 } 2024 2025 /** 2026 * typedef entry_fn_t - Callback called on a table entry restore path 2027 * @its: its handle 2028 * @id: id of the entry 2029 * @entry: pointer to the entry 2030 * @opaque: pointer to an opaque data 2031 * 2032 * Return: < 0 on error, 0 if last element was identified, id offset to next 2033 * element otherwise 2034 */ 2035 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2036 void *opaque); 2037 2038 /** 2039 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2040 * to each entry 2041 * 2042 * @its: its handle 2043 * @base: base gpa of the table 2044 * @size: size of the table in bytes 2045 * @esz: entry size in bytes 2046 * @start_id: the ID of the first entry in the table 2047 * (non zero for 2d level tables) 2048 * @fn: function to apply on each entry 2049 * @opaque: pointer to opaque data 2050 * 2051 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2052 * (the last element may not be found on second level tables) 2053 */ 2054 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2055 int start_id, entry_fn_t fn, void *opaque) 2056 { 2057 struct kvm *kvm = its->dev->kvm; 2058 unsigned long len = size; 2059 int id = start_id; 2060 gpa_t gpa = base; 2061 char entry[ESZ_MAX]; 2062 int ret; 2063 2064 memset(entry, 0, esz); 2065 2066 while (true) { 2067 int next_offset; 2068 size_t byte_offset; 2069 2070 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2071 if (ret) 2072 return ret; 2073 2074 next_offset = fn(its, id, entry, opaque); 2075 if (next_offset <= 0) 2076 return next_offset; 2077 2078 byte_offset = next_offset * esz; 2079 if (byte_offset >= len) 2080 break; 2081 2082 id += next_offset; 2083 gpa += byte_offset; 2084 len -= byte_offset; 2085 } 2086 return 1; 2087 } 2088 2089 /* 2090 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2091 */ 2092 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2093 struct its_ite *ite, gpa_t gpa, int ite_esz) 2094 { 2095 u32 next_offset; 2096 u64 val; 2097 2098 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2099 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2100 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2101 ite->collection->collection_id; 2102 val = cpu_to_le64(val); 2103 2104 return vgic_its_write_entry_lock(its, gpa, val, ite_esz); 2105 } 2106 2107 /** 2108 * vgic_its_restore_ite - restore an interrupt translation entry 2109 * 2110 * @its: its handle 2111 * @event_id: id used for indexing 2112 * @ptr: pointer to the ITE entry 2113 * @opaque: pointer to the its_device 2114 */ 2115 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2116 void *ptr, void *opaque) 2117 { 2118 struct its_device *dev = opaque; 2119 struct its_collection *collection; 2120 struct kvm *kvm = its->dev->kvm; 2121 struct kvm_vcpu *vcpu = NULL; 2122 u64 val; 2123 u64 *p = (u64 *)ptr; 2124 struct vgic_irq *irq; 2125 u32 coll_id, lpi_id; 2126 struct its_ite *ite; 2127 u32 offset; 2128 2129 val = *p; 2130 2131 val = le64_to_cpu(val); 2132 2133 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2134 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2135 2136 if (!lpi_id) 2137 return 1; /* invalid entry, no choice but to scan next entry */ 2138 2139 if (lpi_id < VGIC_MIN_LPI) 2140 return -EINVAL; 2141 2142 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2143 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2144 return -EINVAL; 2145 2146 collection = find_collection(its, coll_id); 2147 if (!collection) 2148 return -EINVAL; 2149 2150 if (!vgic_its_check_event_id(its, dev, event_id)) 2151 return -EINVAL; 2152 2153 ite = vgic_its_alloc_ite(dev, collection, event_id); 2154 if (IS_ERR(ite)) 2155 return PTR_ERR(ite); 2156 2157 if (its_is_collection_mapped(collection)) 2158 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr); 2159 2160 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2161 if (IS_ERR(irq)) { 2162 its_free_ite(kvm, ite); 2163 return PTR_ERR(irq); 2164 } 2165 ite->irq = irq; 2166 2167 return offset; 2168 } 2169 2170 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2171 const struct list_head *b) 2172 { 2173 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2174 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2175 2176 if (itea->event_id < iteb->event_id) 2177 return -1; 2178 else 2179 return 1; 2180 } 2181 2182 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2183 { 2184 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2185 gpa_t base = device->itt_addr; 2186 struct its_ite *ite; 2187 int ret; 2188 int ite_esz = abi->ite_esz; 2189 2190 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2191 2192 list_for_each_entry(ite, &device->itt_head, ite_list) { 2193 gpa_t gpa = base + ite->event_id * ite_esz; 2194 2195 /* 2196 * If an LPI carries the HW bit, this means that this 2197 * interrupt is controlled by GICv4, and we do not 2198 * have direct access to that state without GICv4.1. 2199 * Let's simply fail the save operation... 2200 */ 2201 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2202 return -EACCES; 2203 2204 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); 2205 if (ret) 2206 return ret; 2207 } 2208 return 0; 2209 } 2210 2211 /** 2212 * vgic_its_restore_itt - restore the ITT of a device 2213 * 2214 * @its: its handle 2215 * @dev: device handle 2216 * 2217 * Return 0 on success, < 0 on error 2218 */ 2219 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2220 { 2221 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2222 gpa_t base = dev->itt_addr; 2223 int ret; 2224 int ite_esz = abi->ite_esz; 2225 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2226 2227 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2228 vgic_its_restore_ite, dev); 2229 2230 /* scan_its_table returns +1 if all ITEs are invalid */ 2231 if (ret > 0) 2232 ret = 0; 2233 2234 return ret; 2235 } 2236 2237 /** 2238 * vgic_its_save_dte - Save a device table entry at a given GPA 2239 * 2240 * @its: ITS handle 2241 * @dev: ITS device 2242 * @ptr: GPA 2243 * @dte_esz: device table entry size 2244 */ 2245 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2246 gpa_t ptr, int dte_esz) 2247 { 2248 u64 val, itt_addr_field; 2249 u32 next_offset; 2250 2251 itt_addr_field = dev->itt_addr >> 8; 2252 next_offset = compute_next_devid_offset(&its->device_list, dev); 2253 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2254 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2255 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2256 (dev->num_eventid_bits - 1)); 2257 val = cpu_to_le64(val); 2258 2259 return vgic_its_write_entry_lock(its, ptr, val, dte_esz); 2260 } 2261 2262 /** 2263 * vgic_its_restore_dte - restore a device table entry 2264 * 2265 * @its: its handle 2266 * @id: device id the DTE corresponds to 2267 * @ptr: kernel VA where the 8 byte DTE is located 2268 * @opaque: unused 2269 * 2270 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2271 * next dte otherwise 2272 */ 2273 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2274 void *ptr, void *opaque) 2275 { 2276 struct its_device *dev; 2277 u64 baser = its->baser_device_table; 2278 gpa_t itt_addr; 2279 u8 num_eventid_bits; 2280 u64 entry = *(u64 *)ptr; 2281 bool valid; 2282 u32 offset; 2283 int ret; 2284 2285 entry = le64_to_cpu(entry); 2286 2287 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2288 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2289 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2290 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2291 2292 if (!valid) 2293 return 1; 2294 2295 /* dte entry is valid */ 2296 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2297 2298 if (!vgic_its_check_id(its, baser, id, NULL)) 2299 return -EINVAL; 2300 2301 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2302 if (IS_ERR(dev)) 2303 return PTR_ERR(dev); 2304 2305 ret = vgic_its_restore_itt(its, dev); 2306 if (ret) { 2307 vgic_its_free_device(its->dev->kvm, its, dev); 2308 return ret; 2309 } 2310 2311 return offset; 2312 } 2313 2314 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2315 const struct list_head *b) 2316 { 2317 struct its_device *deva = container_of(a, struct its_device, dev_list); 2318 struct its_device *devb = container_of(b, struct its_device, dev_list); 2319 2320 if (deva->device_id < devb->device_id) 2321 return -1; 2322 else 2323 return 1; 2324 } 2325 2326 /* 2327 * vgic_its_save_device_tables - Save the device table and all ITT 2328 * into guest RAM 2329 * 2330 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2331 * returns the GPA of the device entry 2332 */ 2333 static int vgic_its_save_device_tables(struct vgic_its *its) 2334 { 2335 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2336 u64 baser = its->baser_device_table; 2337 struct its_device *dev; 2338 int dte_esz = abi->dte_esz; 2339 2340 if (!(baser & GITS_BASER_VALID)) 2341 return 0; 2342 2343 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2344 2345 list_for_each_entry(dev, &its->device_list, dev_list) { 2346 int ret; 2347 gpa_t eaddr; 2348 2349 if (!vgic_its_check_id(its, baser, 2350 dev->device_id, &eaddr)) 2351 return -EINVAL; 2352 2353 ret = vgic_its_save_itt(its, dev); 2354 if (ret) 2355 return ret; 2356 2357 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); 2358 if (ret) 2359 return ret; 2360 } 2361 return 0; 2362 } 2363 2364 /** 2365 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2366 * 2367 * @its: its handle 2368 * @id: index of the entry in the L1 table 2369 * @addr: kernel VA 2370 * @opaque: unused 2371 * 2372 * L1 table entries are scanned by steps of 1 entry 2373 * Return < 0 if error, 0 if last dte was found when scanning the L2 2374 * table, +1 otherwise (meaning next L1 entry must be scanned) 2375 */ 2376 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2377 void *opaque) 2378 { 2379 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2380 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2381 u64 entry = *(u64 *)addr; 2382 int dte_esz = abi->dte_esz; 2383 gpa_t gpa; 2384 int ret; 2385 2386 entry = le64_to_cpu(entry); 2387 2388 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2389 return 1; 2390 2391 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2392 2393 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2394 l2_start_id, vgic_its_restore_dte, NULL); 2395 2396 return ret; 2397 } 2398 2399 /* 2400 * vgic_its_restore_device_tables - Restore the device table and all ITT 2401 * from guest RAM to internal data structs 2402 */ 2403 static int vgic_its_restore_device_tables(struct vgic_its *its) 2404 { 2405 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2406 u64 baser = its->baser_device_table; 2407 int l1_esz, ret; 2408 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2409 gpa_t l1_gpa; 2410 2411 if (!(baser & GITS_BASER_VALID)) 2412 return 0; 2413 2414 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2415 2416 if (baser & GITS_BASER_INDIRECT) { 2417 l1_esz = GITS_LVL1_ENTRY_SIZE; 2418 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2419 handle_l1_dte, NULL); 2420 } else { 2421 l1_esz = abi->dte_esz; 2422 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2423 vgic_its_restore_dte, NULL); 2424 } 2425 2426 /* scan_its_table returns +1 if all entries are invalid */ 2427 if (ret > 0) 2428 ret = 0; 2429 2430 if (ret < 0) 2431 vgic_its_free_device_list(its->dev->kvm, its); 2432 2433 return ret; 2434 } 2435 2436 static int vgic_its_save_cte(struct vgic_its *its, 2437 struct its_collection *collection, 2438 gpa_t gpa, int esz) 2439 { 2440 u64 val; 2441 2442 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2443 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2444 collection->collection_id); 2445 val = cpu_to_le64(val); 2446 2447 return vgic_its_write_entry_lock(its, gpa, val, esz); 2448 } 2449 2450 /* 2451 * Restore a collection entry into the ITS collection table. 2452 * Return +1 on success, 0 if the entry was invalid (which should be 2453 * interpreted as end-of-table), and a negative error value for generic errors. 2454 */ 2455 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) 2456 { 2457 struct its_collection *collection; 2458 struct kvm *kvm = its->dev->kvm; 2459 u32 target_addr, coll_id; 2460 u64 val; 2461 int ret; 2462 2463 ret = vgic_its_read_entry_lock(its, gpa, &val, esz); 2464 if (ret) 2465 return ret; 2466 val = le64_to_cpu(val); 2467 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2468 return 0; 2469 2470 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2471 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2472 2473 if (target_addr != COLLECTION_NOT_MAPPED && 2474 !kvm_get_vcpu_by_id(kvm, target_addr)) 2475 return -EINVAL; 2476 2477 collection = find_collection(its, coll_id); 2478 if (collection) 2479 return -EEXIST; 2480 2481 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2482 return -EINVAL; 2483 2484 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2485 if (ret) 2486 return ret; 2487 collection->target_addr = target_addr; 2488 return 1; 2489 } 2490 2491 /* 2492 * vgic_its_save_collection_table - Save the collection table into 2493 * guest RAM 2494 */ 2495 static int vgic_its_save_collection_table(struct vgic_its *its) 2496 { 2497 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2498 u64 baser = its->baser_coll_table; 2499 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2500 struct its_collection *collection; 2501 size_t max_size, filled = 0; 2502 int ret, cte_esz = abi->cte_esz; 2503 2504 if (!(baser & GITS_BASER_VALID)) 2505 return 0; 2506 2507 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2508 2509 list_for_each_entry(collection, &its->collection_list, coll_list) { 2510 ret = vgic_its_save_cte(its, collection, gpa, cte_esz); 2511 if (ret) 2512 return ret; 2513 gpa += cte_esz; 2514 filled += cte_esz; 2515 } 2516 2517 if (filled == max_size) 2518 return 0; 2519 2520 /* 2521 * table is not fully filled, add a last dummy element 2522 * with valid bit unset 2523 */ 2524 return vgic_its_write_entry_lock(its, gpa, 0, cte_esz); 2525 } 2526 2527 /* 2528 * vgic_its_restore_collection_table - reads the collection table 2529 * in guest memory and restores the ITS internal state. Requires the 2530 * BASER registers to be restored before. 2531 */ 2532 static int vgic_its_restore_collection_table(struct vgic_its *its) 2533 { 2534 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2535 u64 baser = its->baser_coll_table; 2536 int cte_esz = abi->cte_esz; 2537 size_t max_size, read = 0; 2538 gpa_t gpa; 2539 int ret; 2540 2541 if (!(baser & GITS_BASER_VALID)) 2542 return 0; 2543 2544 gpa = GITS_BASER_ADDR_48_to_52(baser); 2545 2546 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2547 2548 while (read < max_size) { 2549 ret = vgic_its_restore_cte(its, gpa, cte_esz); 2550 if (ret <= 0) 2551 break; 2552 gpa += cte_esz; 2553 read += cte_esz; 2554 } 2555 2556 if (ret > 0) 2557 return 0; 2558 2559 if (ret < 0) 2560 vgic_its_free_collection_list(its->dev->kvm, its); 2561 2562 return ret; 2563 } 2564 2565 /* 2566 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2567 * according to v0 ABI 2568 */ 2569 static int vgic_its_save_tables_v0(struct vgic_its *its) 2570 { 2571 int ret; 2572 2573 ret = vgic_its_save_device_tables(its); 2574 if (ret) 2575 return ret; 2576 2577 return vgic_its_save_collection_table(its); 2578 } 2579 2580 /* 2581 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2582 * to internal data structs according to V0 ABI 2583 * 2584 */ 2585 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2586 { 2587 int ret; 2588 2589 ret = vgic_its_restore_collection_table(its); 2590 if (ret) 2591 return ret; 2592 2593 ret = vgic_its_restore_device_tables(its); 2594 if (ret) 2595 vgic_its_free_collection_list(its->dev->kvm, its); 2596 return ret; 2597 } 2598 2599 static int vgic_its_commit_v0(struct vgic_its *its) 2600 { 2601 const struct vgic_its_abi *abi; 2602 2603 abi = vgic_its_get_abi(its); 2604 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2605 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2606 2607 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2608 << GITS_BASER_ENTRY_SIZE_SHIFT); 2609 2610 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2611 << GITS_BASER_ENTRY_SIZE_SHIFT); 2612 return 0; 2613 } 2614 2615 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2616 { 2617 /* We need to keep the ABI specific field values */ 2618 its->baser_coll_table &= ~GITS_BASER_VALID; 2619 its->baser_device_table &= ~GITS_BASER_VALID; 2620 its->cbaser = 0; 2621 its->creadr = 0; 2622 its->cwriter = 0; 2623 its->enabled = 0; 2624 vgic_its_free_device_list(kvm, its); 2625 vgic_its_free_collection_list(kvm, its); 2626 } 2627 2628 static int vgic_its_has_attr(struct kvm_device *dev, 2629 struct kvm_device_attr *attr) 2630 { 2631 switch (attr->group) { 2632 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2633 switch (attr->attr) { 2634 case KVM_VGIC_ITS_ADDR_TYPE: 2635 return 0; 2636 } 2637 break; 2638 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2639 switch (attr->attr) { 2640 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2641 return 0; 2642 case KVM_DEV_ARM_ITS_CTRL_RESET: 2643 return 0; 2644 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2645 return 0; 2646 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2647 return 0; 2648 } 2649 break; 2650 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2651 return vgic_its_has_attr_regs(dev, attr); 2652 } 2653 return -ENXIO; 2654 } 2655 2656 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2657 { 2658 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2659 int ret = 0; 2660 2661 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2662 return 0; 2663 2664 mutex_lock(&kvm->lock); 2665 2666 if (!lock_all_vcpus(kvm)) { 2667 mutex_unlock(&kvm->lock); 2668 return -EBUSY; 2669 } 2670 2671 mutex_lock(&kvm->arch.config_lock); 2672 mutex_lock(&its->its_lock); 2673 2674 switch (attr) { 2675 case KVM_DEV_ARM_ITS_CTRL_RESET: 2676 vgic_its_reset(kvm, its); 2677 break; 2678 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2679 ret = abi->save_tables(its); 2680 break; 2681 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2682 ret = abi->restore_tables(its); 2683 break; 2684 } 2685 2686 mutex_unlock(&its->its_lock); 2687 mutex_unlock(&kvm->arch.config_lock); 2688 unlock_all_vcpus(kvm); 2689 mutex_unlock(&kvm->lock); 2690 return ret; 2691 } 2692 2693 /* 2694 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2695 * without the running VCPU when dirty ring is enabled. 2696 * 2697 * The running VCPU is required to track dirty guest pages when dirty ring 2698 * is enabled. Otherwise, the backup bitmap should be used to track the 2699 * dirty guest pages. When vgic/its tables are being saved, the backup 2700 * bitmap is used to track the dirty guest pages due to the missed running 2701 * VCPU in the period. 2702 */ 2703 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2704 { 2705 struct vgic_dist *dist = &kvm->arch.vgic; 2706 2707 return dist->table_write_in_progress; 2708 } 2709 2710 static int vgic_its_set_attr(struct kvm_device *dev, 2711 struct kvm_device_attr *attr) 2712 { 2713 struct vgic_its *its = dev->private; 2714 int ret; 2715 2716 switch (attr->group) { 2717 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2718 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2719 unsigned long type = (unsigned long)attr->attr; 2720 u64 addr; 2721 2722 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2723 return -ENODEV; 2724 2725 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2726 return -EFAULT; 2727 2728 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2729 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2730 if (ret) 2731 return ret; 2732 2733 return vgic_register_its_iodev(dev->kvm, its, addr); 2734 } 2735 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2736 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2737 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2738 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2739 u64 reg; 2740 2741 if (get_user(reg, uaddr)) 2742 return -EFAULT; 2743 2744 return vgic_its_attr_regs_access(dev, attr, ®, true); 2745 } 2746 } 2747 return -ENXIO; 2748 } 2749 2750 static int vgic_its_get_attr(struct kvm_device *dev, 2751 struct kvm_device_attr *attr) 2752 { 2753 switch (attr->group) { 2754 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2755 struct vgic_its *its = dev->private; 2756 u64 addr = its->vgic_its_base; 2757 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2758 unsigned long type = (unsigned long)attr->attr; 2759 2760 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2761 return -ENODEV; 2762 2763 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2764 return -EFAULT; 2765 break; 2766 } 2767 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2768 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2769 u64 reg; 2770 int ret; 2771 2772 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2773 if (ret) 2774 return ret; 2775 return put_user(reg, uaddr); 2776 } 2777 default: 2778 return -ENXIO; 2779 } 2780 2781 return 0; 2782 } 2783 2784 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2785 .name = "kvm-arm-vgic-its", 2786 .create = vgic_its_create, 2787 .destroy = vgic_its_destroy, 2788 .set_attr = vgic_its_set_attr, 2789 .get_attr = vgic_its_get_attr, 2790 .has_attr = vgic_its_has_attr, 2791 }; 2792 2793 int kvm_vgic_register_its_device(void) 2794 { 2795 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2796 KVM_DEV_TYPE_ARM_VGIC_ITS); 2797 } 2798