xref: /linux/arch/arm64/kvm/vgic/vgic-its.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * GICv3 ITS emulation
4  *
5  * Copyright (C) 2015,2016 ARM Ltd.
6  * Author: Andre Przywara <andre.przywara@arm.com>
7  */
8 
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16 
17 #include <linux/irqchip/arm-gic-v3.h>
18 
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22 
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25 
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27 
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
33 
34 /*
35  * Creates a new (reference to a) struct vgic_irq for a given LPI.
36  * If this LPI is already mapped on another ITS, we increase its refcount
37  * and return a pointer to the existing structure.
38  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
39  * This function returns a pointer to the _unlocked_ structure.
40  */
41 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
42 				     struct kvm_vcpu *vcpu)
43 {
44 	struct vgic_dist *dist = &kvm->arch.vgic;
45 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
46 	unsigned long flags;
47 	int ret;
48 
49 	/* In this case there is no put, since we keep the reference. */
50 	if (irq)
51 		return irq;
52 
53 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
54 	if (!irq)
55 		return ERR_PTR(-ENOMEM);
56 
57 	ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
58 	if (ret) {
59 		kfree(irq);
60 		return ERR_PTR(ret);
61 	}
62 
63 	INIT_LIST_HEAD(&irq->ap_list);
64 	raw_spin_lock_init(&irq->irq_lock);
65 
66 	irq->config = VGIC_CONFIG_EDGE;
67 	kref_init(&irq->refcount);
68 	irq->intid = intid;
69 	irq->target_vcpu = vcpu;
70 	irq->group = 1;
71 
72 	xa_lock_irqsave(&dist->lpi_xa, flags);
73 
74 	/*
75 	 * There could be a race with another vgic_add_lpi(), so we need to
76 	 * check that we don't add a second list entry with the same LPI.
77 	 */
78 	oldirq = xa_load(&dist->lpi_xa, intid);
79 	if (vgic_try_get_irq_kref(oldirq)) {
80 		/* Someone was faster with adding this LPI, lets use that. */
81 		kfree(irq);
82 		irq = oldirq;
83 
84 		goto out_unlock;
85 	}
86 
87 	ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
88 	if (ret) {
89 		xa_release(&dist->lpi_xa, intid);
90 		kfree(irq);
91 	}
92 
93 out_unlock:
94 	xa_unlock_irqrestore(&dist->lpi_xa, flags);
95 
96 	if (ret)
97 		return ERR_PTR(ret);
98 
99 	/*
100 	 * We "cache" the configuration table entries in our struct vgic_irq's.
101 	 * However we only have those structs for mapped IRQs, so we read in
102 	 * the respective config data from memory here upon mapping the LPI.
103 	 *
104 	 * Should any of these fail, behave as if we couldn't create the LPI
105 	 * by dropping the refcount and returning the error.
106 	 */
107 	ret = update_lpi_config(kvm, irq, NULL, false);
108 	if (ret) {
109 		vgic_put_irq(kvm, irq);
110 		return ERR_PTR(ret);
111 	}
112 
113 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
114 	if (ret) {
115 		vgic_put_irq(kvm, irq);
116 		return ERR_PTR(ret);
117 	}
118 
119 	return irq;
120 }
121 
122 struct its_device {
123 	struct list_head dev_list;
124 
125 	/* the head for the list of ITTEs */
126 	struct list_head itt_head;
127 	u32 num_eventid_bits;
128 	gpa_t itt_addr;
129 	u32 device_id;
130 };
131 
132 #define COLLECTION_NOT_MAPPED ((u32)~0)
133 
134 struct its_collection {
135 	struct list_head coll_list;
136 
137 	u32 collection_id;
138 	u32 target_addr;
139 };
140 
141 #define its_is_collection_mapped(coll) ((coll) && \
142 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
143 
144 struct its_ite {
145 	struct list_head ite_list;
146 
147 	struct vgic_irq *irq;
148 	struct its_collection *collection;
149 	u32 event_id;
150 };
151 
152 /**
153  * struct vgic_its_abi - ITS abi ops and settings
154  * @cte_esz: collection table entry size
155  * @dte_esz: device table entry size
156  * @ite_esz: interrupt translation table entry size
157  * @save_tables: save the ITS tables into guest RAM
158  * @restore_tables: restore the ITS internal structs from tables
159  *  stored in guest RAM
160  * @commit: initialize the registers which expose the ABI settings,
161  *  especially the entry sizes
162  */
163 struct vgic_its_abi {
164 	int cte_esz;
165 	int dte_esz;
166 	int ite_esz;
167 	int (*save_tables)(struct vgic_its *its);
168 	int (*restore_tables)(struct vgic_its *its);
169 	int (*commit)(struct vgic_its *its);
170 };
171 
172 #define ABI_0_ESZ	8
173 #define ESZ_MAX		ABI_0_ESZ
174 
175 static const struct vgic_its_abi its_table_abi_versions[] = {
176 	[0] = {
177 	 .cte_esz = ABI_0_ESZ,
178 	 .dte_esz = ABI_0_ESZ,
179 	 .ite_esz = ABI_0_ESZ,
180 	 .save_tables = vgic_its_save_tables_v0,
181 	 .restore_tables = vgic_its_restore_tables_v0,
182 	 .commit = vgic_its_commit_v0,
183 	},
184 };
185 
186 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
187 
188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189 {
190 	return &its_table_abi_versions[its->abi_rev];
191 }
192 
193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 {
195 	const struct vgic_its_abi *abi;
196 
197 	its->abi_rev = rev;
198 	abi = vgic_its_get_abi(its);
199 	return abi->commit(its);
200 }
201 
202 /*
203  * Find and returns a device in the device table for an ITS.
204  * Must be called with the its_lock mutex held.
205  */
206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207 {
208 	struct its_device *device;
209 
210 	list_for_each_entry(device, &its->device_list, dev_list)
211 		if (device_id == device->device_id)
212 			return device;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Find and returns an interrupt translation table entry (ITTE) for a given
219  * Device ID/Event ID pair on an ITS.
220  * Must be called with the its_lock mutex held.
221  */
222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 				  u32 event_id)
224 {
225 	struct its_device *device;
226 	struct its_ite *ite;
227 
228 	device = find_its_device(its, device_id);
229 	if (device == NULL)
230 		return NULL;
231 
232 	list_for_each_entry(ite, &device->itt_head, ite_list)
233 		if (ite->event_id == event_id)
234 			return ite;
235 
236 	return NULL;
237 }
238 
239 /* To be used as an iterator this macro misses the enclosing parentheses */
240 #define for_each_lpi_its(dev, ite, its) \
241 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
242 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243 
244 #define GIC_LPI_OFFSET 8192
245 
246 #define VITS_TYPER_IDBITS		16
247 #define VITS_MAX_EVENTID		(BIT(VITS_TYPER_IDBITS) - 1)
248 #define VITS_TYPER_DEVBITS		16
249 #define VITS_MAX_DEVID			(BIT(VITS_TYPER_DEVBITS) - 1)
250 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
251 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
252 
253 /*
254  * Finds and returns a collection in the ITS collection table.
255  * Must be called with the its_lock mutex held.
256  */
257 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
258 {
259 	struct its_collection *collection;
260 
261 	list_for_each_entry(collection, &its->collection_list, coll_list) {
262 		if (coll_id == collection->collection_id)
263 			return collection;
264 	}
265 
266 	return NULL;
267 }
268 
269 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
270 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
271 
272 /*
273  * Reads the configuration data for a given LPI from guest memory and
274  * updates the fields in struct vgic_irq.
275  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
276  * VCPU. Unconditionally applies if filter_vcpu is NULL.
277  */
278 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
279 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
280 {
281 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
282 	u8 prop;
283 	int ret;
284 	unsigned long flags;
285 
286 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
287 				  &prop, 1);
288 
289 	if (ret)
290 		return ret;
291 
292 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
293 
294 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
295 		irq->priority = LPI_PROP_PRIORITY(prop);
296 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
297 
298 		if (!irq->hw) {
299 			vgic_queue_irq_unlock(kvm, irq, flags);
300 			return 0;
301 		}
302 	}
303 
304 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
305 
306 	if (irq->hw)
307 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
308 
309 	return 0;
310 }
311 
312 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
313 {
314 	int ret = 0;
315 	unsigned long flags;
316 
317 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
318 	irq->target_vcpu = vcpu;
319 	raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
320 
321 	if (irq->hw) {
322 		struct its_vlpi_map map;
323 
324 		ret = its_get_vlpi(irq->host_irq, &map);
325 		if (ret)
326 			return ret;
327 
328 		if (map.vpe)
329 			atomic_dec(&map.vpe->vlpi_count);
330 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
331 		atomic_inc(&map.vpe->vlpi_count);
332 
333 		ret = its_map_vlpi(irq->host_irq, &map);
334 	}
335 
336 	return ret;
337 }
338 
339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
340 					   struct its_collection *col)
341 {
342 	return kvm_get_vcpu_by_id(kvm, col->target_addr);
343 }
344 
345 /*
346  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
347  * is targeting) to the VGIC's view, which deals with target VCPUs.
348  * Needs to be called whenever either the collection for a LPIs has
349  * changed or the collection itself got retargeted.
350  */
351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
352 {
353 	struct kvm_vcpu *vcpu;
354 
355 	if (!its_is_collection_mapped(ite->collection))
356 		return;
357 
358 	vcpu = collection_to_vcpu(kvm, ite->collection);
359 	update_affinity(ite->irq, vcpu);
360 }
361 
362 /*
363  * Updates the target VCPU for every LPI targeting this collection.
364  * Must be called with the its_lock mutex held.
365  */
366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
367 				       struct its_collection *coll)
368 {
369 	struct its_device *device;
370 	struct its_ite *ite;
371 
372 	for_each_lpi_its(device, ite, its) {
373 		if (ite->collection != coll)
374 			continue;
375 
376 		update_affinity_ite(kvm, ite);
377 	}
378 }
379 
380 static u32 max_lpis_propbaser(u64 propbaser)
381 {
382 	int nr_idbits = (propbaser & 0x1f) + 1;
383 
384 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
385 }
386 
387 /*
388  * Sync the pending table pending bit of LPIs targeting @vcpu
389  * with our own data structures. This relies on the LPI being
390  * mapped before.
391  */
392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
393 {
394 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
395 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
396 	unsigned long intid, flags;
397 	struct vgic_irq *irq;
398 	int last_byte_offset = -1;
399 	int ret = 0;
400 	u8 pendmask;
401 
402 	xa_for_each(&dist->lpi_xa, intid, irq) {
403 		int byte_offset, bit_nr;
404 
405 		byte_offset = intid / BITS_PER_BYTE;
406 		bit_nr = intid % BITS_PER_BYTE;
407 
408 		/*
409 		 * For contiguously allocated LPIs chances are we just read
410 		 * this very same byte in the last iteration. Reuse that.
411 		 */
412 		if (byte_offset != last_byte_offset) {
413 			ret = kvm_read_guest_lock(vcpu->kvm,
414 						  pendbase + byte_offset,
415 						  &pendmask, 1);
416 			if (ret)
417 				return ret;
418 
419 			last_byte_offset = byte_offset;
420 		}
421 
422 		irq = vgic_get_irq(vcpu->kvm, NULL, intid);
423 		if (!irq)
424 			continue;
425 
426 		raw_spin_lock_irqsave(&irq->irq_lock, flags);
427 		if (irq->target_vcpu == vcpu)
428 			irq->pending_latch = pendmask & (1U << bit_nr);
429 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
430 		vgic_put_irq(vcpu->kvm, irq);
431 	}
432 
433 	return ret;
434 }
435 
436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
437 					      struct vgic_its *its,
438 					      gpa_t addr, unsigned int len)
439 {
440 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
441 	u64 reg = GITS_TYPER_PLPIS;
442 
443 	/*
444 	 * We use linear CPU numbers for redistributor addressing,
445 	 * so GITS_TYPER.PTA is 0.
446 	 * Also we force all PROPBASER registers to be the same, so
447 	 * CommonLPIAff is 0 as well.
448 	 * To avoid memory waste in the guest, we keep the number of IDBits and
449 	 * DevBits low - as least for the time being.
450 	 */
451 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
452 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
453 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
454 
455 	return extract_bytes(reg, addr & 7, len);
456 }
457 
458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
459 					     struct vgic_its *its,
460 					     gpa_t addr, unsigned int len)
461 {
462 	u32 val;
463 
464 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
465 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
466 	return val;
467 }
468 
469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
470 					    struct vgic_its *its,
471 					    gpa_t addr, unsigned int len,
472 					    unsigned long val)
473 {
474 	u32 rev = GITS_IIDR_REV(val);
475 
476 	if (rev >= NR_ITS_ABIS)
477 		return -EINVAL;
478 	return vgic_its_set_abi(its, rev);
479 }
480 
481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
482 					       struct vgic_its *its,
483 					       gpa_t addr, unsigned int len)
484 {
485 	switch (addr & 0xffff) {
486 	case GITS_PIDR0:
487 		return 0x92;	/* part number, bits[7:0] */
488 	case GITS_PIDR1:
489 		return 0xb4;	/* part number, bits[11:8] */
490 	case GITS_PIDR2:
491 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
492 	case GITS_PIDR4:
493 		return 0x40;	/* This is a 64K software visible page */
494 	/* The following are the ID registers for (any) GIC. */
495 	case GITS_CIDR0:
496 		return 0x0d;
497 	case GITS_CIDR1:
498 		return 0xf0;
499 	case GITS_CIDR2:
500 		return 0x05;
501 	case GITS_CIDR3:
502 		return 0xb1;
503 	}
504 
505 	return 0;
506 }
507 
508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
509 {
510 	struct kvm_io_device *kvm_io_dev;
511 	struct vgic_io_device *iodev;
512 
513 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
514 	if (!kvm_io_dev)
515 		return ERR_PTR(-EINVAL);
516 
517 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
518 		return ERR_PTR(-EINVAL);
519 
520 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
521 	if (iodev->iodev_type != IODEV_ITS)
522 		return ERR_PTR(-EINVAL);
523 
524 	return iodev->its;
525 }
526 
527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
528 {
529 	return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
530 
531 }
532 
533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
534 					     u32 devid, u32 eventid)
535 {
536 	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
537 	struct vgic_its *its;
538 	struct vgic_irq *irq;
539 
540 	if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
541 		return NULL;
542 
543 	its = __vgic_doorbell_to_its(kvm, db);
544 	if (IS_ERR(its))
545 		return NULL;
546 
547 	rcu_read_lock();
548 
549 	irq = xa_load(&its->translation_cache, cache_key);
550 	if (!vgic_try_get_irq_kref(irq))
551 		irq = NULL;
552 
553 	rcu_read_unlock();
554 
555 	return irq;
556 }
557 
558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
559 				       u32 devid, u32 eventid,
560 				       struct vgic_irq *irq)
561 {
562 	unsigned long cache_key = vgic_its_cache_key(devid, eventid);
563 	struct vgic_irq *old;
564 
565 	/* Do not cache a directly injected interrupt */
566 	if (irq->hw)
567 		return;
568 
569 	/*
570 	 * The irq refcount is guaranteed to be nonzero while holding the
571 	 * its_lock, as the ITE (and the reference it holds) cannot be freed.
572 	 */
573 	lockdep_assert_held(&its->its_lock);
574 	vgic_get_irq_kref(irq);
575 
576 	/*
577 	 * We could have raced with another CPU caching the same
578 	 * translation behind our back, ensure we don't leak a
579 	 * reference if that is the case.
580 	 */
581 	old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
582 	if (old)
583 		vgic_put_irq(kvm, old);
584 }
585 
586 static void vgic_its_invalidate_cache(struct vgic_its *its)
587 {
588 	struct kvm *kvm = its->dev->kvm;
589 	struct vgic_irq *irq;
590 	unsigned long idx;
591 
592 	xa_for_each(&its->translation_cache, idx, irq) {
593 		xa_erase(&its->translation_cache, idx);
594 		vgic_put_irq(kvm, irq);
595 	}
596 }
597 
598 void vgic_its_invalidate_all_caches(struct kvm *kvm)
599 {
600 	struct kvm_device *dev;
601 	struct vgic_its *its;
602 
603 	rcu_read_lock();
604 
605 	list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
606 		if (dev->ops != &kvm_arm_vgic_its_ops)
607 			continue;
608 
609 		its = dev->private;
610 		vgic_its_invalidate_cache(its);
611 	}
612 
613 	rcu_read_unlock();
614 }
615 
616 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
617 			 u32 devid, u32 eventid, struct vgic_irq **irq)
618 {
619 	struct kvm_vcpu *vcpu;
620 	struct its_ite *ite;
621 
622 	if (!its->enabled)
623 		return -EBUSY;
624 
625 	ite = find_ite(its, devid, eventid);
626 	if (!ite || !its_is_collection_mapped(ite->collection))
627 		return E_ITS_INT_UNMAPPED_INTERRUPT;
628 
629 	vcpu = collection_to_vcpu(kvm, ite->collection);
630 	if (!vcpu)
631 		return E_ITS_INT_UNMAPPED_INTERRUPT;
632 
633 	if (!vgic_lpis_enabled(vcpu))
634 		return -EBUSY;
635 
636 	vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
637 
638 	*irq = ite->irq;
639 	return 0;
640 }
641 
642 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
643 {
644 	u64 address;
645 
646 	if (!vgic_has_its(kvm))
647 		return ERR_PTR(-ENODEV);
648 
649 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
650 		return ERR_PTR(-EINVAL);
651 
652 	address = (u64)msi->address_hi << 32 | msi->address_lo;
653 
654 	return __vgic_doorbell_to_its(kvm, address);
655 }
656 
657 /*
658  * Find the target VCPU and the LPI number for a given devid/eventid pair
659  * and make this IRQ pending, possibly injecting it.
660  * Must be called with the its_lock mutex held.
661  * Returns 0 on success, a positive error value for any ITS mapping
662  * related errors and negative error values for generic errors.
663  */
664 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
665 				u32 devid, u32 eventid)
666 {
667 	struct vgic_irq *irq = NULL;
668 	unsigned long flags;
669 	int err;
670 
671 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
672 	if (err)
673 		return err;
674 
675 	if (irq->hw)
676 		return irq_set_irqchip_state(irq->host_irq,
677 					     IRQCHIP_STATE_PENDING, true);
678 
679 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
680 	irq->pending_latch = true;
681 	vgic_queue_irq_unlock(kvm, irq, flags);
682 
683 	return 0;
684 }
685 
686 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
687 {
688 	struct vgic_irq *irq;
689 	unsigned long flags;
690 	phys_addr_t db;
691 
692 	db = (u64)msi->address_hi << 32 | msi->address_lo;
693 	irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
694 	if (!irq)
695 		return -EWOULDBLOCK;
696 
697 	raw_spin_lock_irqsave(&irq->irq_lock, flags);
698 	irq->pending_latch = true;
699 	vgic_queue_irq_unlock(kvm, irq, flags);
700 	vgic_put_irq(kvm, irq);
701 
702 	return 0;
703 }
704 
705 /*
706  * Queries the KVM IO bus framework to get the ITS pointer from the given
707  * doorbell address.
708  * We then call vgic_its_trigger_msi() with the decoded data.
709  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
710  */
711 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
712 {
713 	struct vgic_its *its;
714 	int ret;
715 
716 	if (!vgic_its_inject_cached_translation(kvm, msi))
717 		return 1;
718 
719 	its = vgic_msi_to_its(kvm, msi);
720 	if (IS_ERR(its))
721 		return PTR_ERR(its);
722 
723 	mutex_lock(&its->its_lock);
724 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
725 	mutex_unlock(&its->its_lock);
726 
727 	if (ret < 0)
728 		return ret;
729 
730 	/*
731 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
732 	 * if the guest has blocked the MSI. So we map any LPI mapping
733 	 * related error to that.
734 	 */
735 	if (ret)
736 		return 0;
737 	else
738 		return 1;
739 }
740 
741 /* Requires the its_lock to be held. */
742 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
743 {
744 	list_del(&ite->ite_list);
745 
746 	/* This put matches the get in vgic_add_lpi. */
747 	if (ite->irq) {
748 		if (ite->irq->hw)
749 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
750 
751 		vgic_put_irq(kvm, ite->irq);
752 	}
753 
754 	kfree(ite);
755 }
756 
757 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
758 {
759 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
760 }
761 
762 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
763 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
764 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
765 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
766 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
767 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
768 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
769 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
770 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
771 
772 /*
773  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
774  * Must be called with the its_lock mutex held.
775  */
776 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
777 				       u64 *its_cmd)
778 {
779 	u32 device_id = its_cmd_get_deviceid(its_cmd);
780 	u32 event_id = its_cmd_get_id(its_cmd);
781 	struct its_ite *ite;
782 
783 	ite = find_ite(its, device_id, event_id);
784 	if (ite && its_is_collection_mapped(ite->collection)) {
785 		struct its_device *device = find_its_device(its, device_id);
786 		int ite_esz = vgic_its_get_abi(its)->ite_esz;
787 		gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
788 		/*
789 		 * Though the spec talks about removing the pending state, we
790 		 * don't bother here since we clear the ITTE anyway and the
791 		 * pending state is a property of the ITTE struct.
792 		 */
793 		vgic_its_invalidate_cache(its);
794 
795 		its_free_ite(kvm, ite);
796 
797 		return vgic_its_write_entry_lock(its, gpa, 0, ite_esz);
798 	}
799 
800 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
801 }
802 
803 /*
804  * The MOVI command moves an ITTE to a different collection.
805  * Must be called with the its_lock mutex held.
806  */
807 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
808 				    u64 *its_cmd)
809 {
810 	u32 device_id = its_cmd_get_deviceid(its_cmd);
811 	u32 event_id = its_cmd_get_id(its_cmd);
812 	u32 coll_id = its_cmd_get_collection(its_cmd);
813 	struct kvm_vcpu *vcpu;
814 	struct its_ite *ite;
815 	struct its_collection *collection;
816 
817 	ite = find_ite(its, device_id, event_id);
818 	if (!ite)
819 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
820 
821 	if (!its_is_collection_mapped(ite->collection))
822 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
823 
824 	collection = find_collection(its, coll_id);
825 	if (!its_is_collection_mapped(collection))
826 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
827 
828 	ite->collection = collection;
829 	vcpu = collection_to_vcpu(kvm, collection);
830 
831 	vgic_its_invalidate_cache(its);
832 
833 	return update_affinity(ite->irq, vcpu);
834 }
835 
836 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
837 {
838 	gfn_t gfn = gpa >> PAGE_SHIFT;
839 	int idx;
840 	bool ret;
841 
842 	idx = srcu_read_lock(&its->dev->kvm->srcu);
843 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
844 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
845 	return ret;
846 }
847 
848 /*
849  * Check whether an ID can be stored into the corresponding guest table.
850  * For a direct table this is pretty easy, but gets a bit nasty for
851  * indirect tables. We check whether the resulting guest physical address
852  * is actually valid (covered by a memslot and guest accessible).
853  * For this we have to read the respective first level entry.
854  */
855 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
856 			      gpa_t *eaddr)
857 {
858 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
859 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
860 	phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
861 	int esz = GITS_BASER_ENTRY_SIZE(baser);
862 	int index;
863 
864 	switch (type) {
865 	case GITS_BASER_TYPE_DEVICE:
866 		if (id > VITS_MAX_DEVID)
867 			return false;
868 		break;
869 	case GITS_BASER_TYPE_COLLECTION:
870 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
871 		if (id >= BIT_ULL(16))
872 			return false;
873 		break;
874 	default:
875 		return false;
876 	}
877 
878 	if (!(baser & GITS_BASER_INDIRECT)) {
879 		phys_addr_t addr;
880 
881 		if (id >= (l1_tbl_size / esz))
882 			return false;
883 
884 		addr = base + id * esz;
885 
886 		if (eaddr)
887 			*eaddr = addr;
888 
889 		return __is_visible_gfn_locked(its, addr);
890 	}
891 
892 	/* calculate and check the index into the 1st level */
893 	index = id / (SZ_64K / esz);
894 	if (index >= (l1_tbl_size / sizeof(u64)))
895 		return false;
896 
897 	/* Each 1st level entry is represented by a 64-bit value. */
898 	if (kvm_read_guest_lock(its->dev->kvm,
899 			   base + index * sizeof(indirect_ptr),
900 			   &indirect_ptr, sizeof(indirect_ptr)))
901 		return false;
902 
903 	indirect_ptr = le64_to_cpu(indirect_ptr);
904 
905 	/* check the valid bit of the first level entry */
906 	if (!(indirect_ptr & BIT_ULL(63)))
907 		return false;
908 
909 	/* Mask the guest physical address and calculate the frame number. */
910 	indirect_ptr &= GENMASK_ULL(51, 16);
911 
912 	/* Find the address of the actual entry */
913 	index = id % (SZ_64K / esz);
914 	indirect_ptr += index * esz;
915 
916 	if (eaddr)
917 		*eaddr = indirect_ptr;
918 
919 	return __is_visible_gfn_locked(its, indirect_ptr);
920 }
921 
922 /*
923  * Check whether an event ID can be stored in the corresponding Interrupt
924  * Translation Table, which starts at device->itt_addr.
925  */
926 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
927 		u32 event_id)
928 {
929 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
930 	int ite_esz = abi->ite_esz;
931 	gpa_t gpa;
932 
933 	/* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
934 	if (event_id >= BIT_ULL(device->num_eventid_bits))
935 		return false;
936 
937 	gpa = device->itt_addr + event_id * ite_esz;
938 	return __is_visible_gfn_locked(its, gpa);
939 }
940 
941 /*
942  * Add a new collection into the ITS collection table.
943  * Returns 0 on success, and a negative error value for generic errors.
944  */
945 static int vgic_its_alloc_collection(struct vgic_its *its,
946 				     struct its_collection **colp,
947 				     u32 coll_id)
948 {
949 	struct its_collection *collection;
950 
951 	collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
952 	if (!collection)
953 		return -ENOMEM;
954 
955 	collection->collection_id = coll_id;
956 	collection->target_addr = COLLECTION_NOT_MAPPED;
957 
958 	list_add_tail(&collection->coll_list, &its->collection_list);
959 	*colp = collection;
960 
961 	return 0;
962 }
963 
964 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
965 {
966 	struct its_collection *collection;
967 	struct its_device *device;
968 	struct its_ite *ite;
969 
970 	/*
971 	 * Clearing the mapping for that collection ID removes the
972 	 * entry from the list. If there wasn't any before, we can
973 	 * go home early.
974 	 */
975 	collection = find_collection(its, coll_id);
976 	if (!collection)
977 		return;
978 
979 	for_each_lpi_its(device, ite, its)
980 		if (ite->collection &&
981 		    ite->collection->collection_id == coll_id)
982 			ite->collection = NULL;
983 
984 	list_del(&collection->coll_list);
985 	kfree(collection);
986 }
987 
988 /* Must be called with its_lock mutex held */
989 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
990 					  struct its_collection *collection,
991 					  u32 event_id)
992 {
993 	struct its_ite *ite;
994 
995 	ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
996 	if (!ite)
997 		return ERR_PTR(-ENOMEM);
998 
999 	ite->event_id	= event_id;
1000 	ite->collection = collection;
1001 
1002 	list_add_tail(&ite->ite_list, &device->itt_head);
1003 	return ite;
1004 }
1005 
1006 /*
1007  * The MAPTI and MAPI commands map LPIs to ITTEs.
1008  * Must be called with its_lock mutex held.
1009  */
1010 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1011 				    u64 *its_cmd)
1012 {
1013 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1014 	u32 event_id = its_cmd_get_id(its_cmd);
1015 	u32 coll_id = its_cmd_get_collection(its_cmd);
1016 	struct its_ite *ite;
1017 	struct kvm_vcpu *vcpu = NULL;
1018 	struct its_device *device;
1019 	struct its_collection *collection, *new_coll = NULL;
1020 	struct vgic_irq *irq;
1021 	int lpi_nr;
1022 
1023 	device = find_its_device(its, device_id);
1024 	if (!device)
1025 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
1026 
1027 	if (!vgic_its_check_event_id(its, device, event_id))
1028 		return E_ITS_MAPTI_ID_OOR;
1029 
1030 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1031 		lpi_nr = its_cmd_get_physical_id(its_cmd);
1032 	else
1033 		lpi_nr = event_id;
1034 	if (lpi_nr < GIC_LPI_OFFSET ||
1035 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1036 		return E_ITS_MAPTI_PHYSICALID_OOR;
1037 
1038 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
1039 	if (find_ite(its, device_id, event_id))
1040 		return 0;
1041 
1042 	collection = find_collection(its, coll_id);
1043 	if (!collection) {
1044 		int ret;
1045 
1046 		if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1047 			return E_ITS_MAPC_COLLECTION_OOR;
1048 
1049 		ret = vgic_its_alloc_collection(its, &collection, coll_id);
1050 		if (ret)
1051 			return ret;
1052 		new_coll = collection;
1053 	}
1054 
1055 	ite = vgic_its_alloc_ite(device, collection, event_id);
1056 	if (IS_ERR(ite)) {
1057 		if (new_coll)
1058 			vgic_its_free_collection(its, coll_id);
1059 		return PTR_ERR(ite);
1060 	}
1061 
1062 	if (its_is_collection_mapped(collection))
1063 		vcpu = collection_to_vcpu(kvm, collection);
1064 
1065 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1066 	if (IS_ERR(irq)) {
1067 		if (new_coll)
1068 			vgic_its_free_collection(its, coll_id);
1069 		its_free_ite(kvm, ite);
1070 		return PTR_ERR(irq);
1071 	}
1072 	ite->irq = irq;
1073 
1074 	return 0;
1075 }
1076 
1077 /* Requires the its_lock to be held. */
1078 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1079 				 struct its_device *device)
1080 {
1081 	struct its_ite *ite, *temp;
1082 
1083 	/*
1084 	 * The spec says that unmapping a device with still valid
1085 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1086 	 * since we cannot leave the memory unreferenced.
1087 	 */
1088 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1089 		its_free_ite(kvm, ite);
1090 
1091 	vgic_its_invalidate_cache(its);
1092 
1093 	list_del(&device->dev_list);
1094 	kfree(device);
1095 }
1096 
1097 /* its lock must be held */
1098 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1099 {
1100 	struct its_device *cur, *temp;
1101 
1102 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1103 		vgic_its_free_device(kvm, its, cur);
1104 }
1105 
1106 /* its lock must be held */
1107 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1108 {
1109 	struct its_collection *cur, *temp;
1110 
1111 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1112 		vgic_its_free_collection(its, cur->collection_id);
1113 }
1114 
1115 /* Must be called with its_lock mutex held */
1116 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1117 						u32 device_id, gpa_t itt_addr,
1118 						u8 num_eventid_bits)
1119 {
1120 	struct its_device *device;
1121 
1122 	device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1123 	if (!device)
1124 		return ERR_PTR(-ENOMEM);
1125 
1126 	device->device_id = device_id;
1127 	device->itt_addr = itt_addr;
1128 	device->num_eventid_bits = num_eventid_bits;
1129 	INIT_LIST_HEAD(&device->itt_head);
1130 
1131 	list_add_tail(&device->dev_list, &its->device_list);
1132 	return device;
1133 }
1134 
1135 /*
1136  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1137  * Must be called with the its_lock mutex held.
1138  */
1139 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1140 				    u64 *its_cmd)
1141 {
1142 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1143 	bool valid = its_cmd_get_validbit(its_cmd);
1144 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1145 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1146 	int dte_esz = vgic_its_get_abi(its)->dte_esz;
1147 	struct its_device *device;
1148 	gpa_t gpa;
1149 
1150 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1151 		return E_ITS_MAPD_DEVICE_OOR;
1152 
1153 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1154 		return E_ITS_MAPD_ITTSIZE_OOR;
1155 
1156 	device = find_its_device(its, device_id);
1157 
1158 	/*
1159 	 * The spec says that calling MAPD on an already mapped device
1160 	 * invalidates all cached data for this device. We implement this
1161 	 * by removing the mapping and re-establishing it.
1162 	 */
1163 	if (device)
1164 		vgic_its_free_device(kvm, its, device);
1165 
1166 	/*
1167 	 * The spec does not say whether unmapping a not-mapped device
1168 	 * is an error, so we are done in any case.
1169 	 */
1170 	if (!valid)
1171 		return vgic_its_write_entry_lock(its, gpa, 0, dte_esz);
1172 
1173 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1174 				       num_eventid_bits);
1175 
1176 	return PTR_ERR_OR_ZERO(device);
1177 }
1178 
1179 /*
1180  * The MAPC command maps collection IDs to redistributors.
1181  * Must be called with the its_lock mutex held.
1182  */
1183 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1184 				    u64 *its_cmd)
1185 {
1186 	u16 coll_id;
1187 	struct its_collection *collection;
1188 	bool valid;
1189 
1190 	valid = its_cmd_get_validbit(its_cmd);
1191 	coll_id = its_cmd_get_collection(its_cmd);
1192 
1193 	if (!valid) {
1194 		vgic_its_free_collection(its, coll_id);
1195 		vgic_its_invalidate_cache(its);
1196 	} else {
1197 		struct kvm_vcpu *vcpu;
1198 
1199 		vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1200 		if (!vcpu)
1201 			return E_ITS_MAPC_PROCNUM_OOR;
1202 
1203 		collection = find_collection(its, coll_id);
1204 
1205 		if (!collection) {
1206 			int ret;
1207 
1208 			if (!vgic_its_check_id(its, its->baser_coll_table,
1209 						coll_id, NULL))
1210 				return E_ITS_MAPC_COLLECTION_OOR;
1211 
1212 			ret = vgic_its_alloc_collection(its, &collection,
1213 							coll_id);
1214 			if (ret)
1215 				return ret;
1216 			collection->target_addr = vcpu->vcpu_id;
1217 		} else {
1218 			collection->target_addr = vcpu->vcpu_id;
1219 			update_affinity_collection(kvm, its, collection);
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 /*
1227  * The CLEAR command removes the pending state for a particular LPI.
1228  * Must be called with the its_lock mutex held.
1229  */
1230 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1231 				     u64 *its_cmd)
1232 {
1233 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1234 	u32 event_id = its_cmd_get_id(its_cmd);
1235 	struct its_ite *ite;
1236 
1237 
1238 	ite = find_ite(its, device_id, event_id);
1239 	if (!ite)
1240 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1241 
1242 	ite->irq->pending_latch = false;
1243 
1244 	if (ite->irq->hw)
1245 		return irq_set_irqchip_state(ite->irq->host_irq,
1246 					     IRQCHIP_STATE_PENDING, false);
1247 
1248 	return 0;
1249 }
1250 
1251 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1252 {
1253 	return update_lpi_config(kvm, irq, NULL, true);
1254 }
1255 
1256 /*
1257  * The INV command syncs the configuration bits from the memory table.
1258  * Must be called with the its_lock mutex held.
1259  */
1260 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1261 				   u64 *its_cmd)
1262 {
1263 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1264 	u32 event_id = its_cmd_get_id(its_cmd);
1265 	struct its_ite *ite;
1266 
1267 
1268 	ite = find_ite(its, device_id, event_id);
1269 	if (!ite)
1270 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1271 
1272 	return vgic_its_inv_lpi(kvm, ite->irq);
1273 }
1274 
1275 /**
1276  * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1277  * @vcpu: the vcpu for which the RD is targeted by an invalidation
1278  *
1279  * Contrary to the INVALL command, this targets a RD instead of a
1280  * collection, and we don't need to hold the its_lock, since no ITS is
1281  * involved here.
1282  */
1283 int vgic_its_invall(struct kvm_vcpu *vcpu)
1284 {
1285 	struct kvm *kvm = vcpu->kvm;
1286 	struct vgic_dist *dist = &kvm->arch.vgic;
1287 	struct vgic_irq *irq;
1288 	unsigned long intid;
1289 
1290 	xa_for_each(&dist->lpi_xa, intid, irq) {
1291 		irq = vgic_get_irq(kvm, NULL, intid);
1292 		if (!irq)
1293 			continue;
1294 
1295 		update_lpi_config(kvm, irq, vcpu, false);
1296 		vgic_put_irq(kvm, irq);
1297 	}
1298 
1299 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1300 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * The INVALL command requests flushing of all IRQ data in this collection.
1307  * Find the VCPU mapped to that collection, then iterate over the VM's list
1308  * of mapped LPIs and update the configuration for each IRQ which targets
1309  * the specified vcpu. The configuration will be read from the in-memory
1310  * configuration table.
1311  * Must be called with the its_lock mutex held.
1312  */
1313 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1314 				      u64 *its_cmd)
1315 {
1316 	u32 coll_id = its_cmd_get_collection(its_cmd);
1317 	struct its_collection *collection;
1318 	struct kvm_vcpu *vcpu;
1319 
1320 	collection = find_collection(its, coll_id);
1321 	if (!its_is_collection_mapped(collection))
1322 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1323 
1324 	vcpu = collection_to_vcpu(kvm, collection);
1325 	vgic_its_invall(vcpu);
1326 
1327 	return 0;
1328 }
1329 
1330 /*
1331  * The MOVALL command moves the pending state of all IRQs targeting one
1332  * redistributor to another. We don't hold the pending state in the VCPUs,
1333  * but in the IRQs instead, so there is really not much to do for us here.
1334  * However the spec says that no IRQ must target the old redistributor
1335  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1336  * This command affects all LPIs in the system that target that redistributor.
1337  */
1338 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1339 				      u64 *its_cmd)
1340 {
1341 	struct vgic_dist *dist = &kvm->arch.vgic;
1342 	struct kvm_vcpu *vcpu1, *vcpu2;
1343 	struct vgic_irq *irq;
1344 	unsigned long intid;
1345 
1346 	/* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1347 	vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1348 	vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1349 
1350 	if (!vcpu1 || !vcpu2)
1351 		return E_ITS_MOVALL_PROCNUM_OOR;
1352 
1353 	if (vcpu1 == vcpu2)
1354 		return 0;
1355 
1356 	xa_for_each(&dist->lpi_xa, intid, irq) {
1357 		irq = vgic_get_irq(kvm, NULL, intid);
1358 		if (!irq)
1359 			continue;
1360 
1361 		update_affinity(irq, vcpu2);
1362 
1363 		vgic_put_irq(kvm, irq);
1364 	}
1365 
1366 	vgic_its_invalidate_cache(its);
1367 
1368 	return 0;
1369 }
1370 
1371 /*
1372  * The INT command injects the LPI associated with that DevID/EvID pair.
1373  * Must be called with the its_lock mutex held.
1374  */
1375 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1376 				   u64 *its_cmd)
1377 {
1378 	u32 msi_data = its_cmd_get_id(its_cmd);
1379 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1380 
1381 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1382 }
1383 
1384 /*
1385  * This function is called with the its_cmd lock held, but the ITS data
1386  * structure lock dropped.
1387  */
1388 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1389 				   u64 *its_cmd)
1390 {
1391 	int ret = -ENODEV;
1392 
1393 	mutex_lock(&its->its_lock);
1394 	switch (its_cmd_get_command(its_cmd)) {
1395 	case GITS_CMD_MAPD:
1396 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1397 		break;
1398 	case GITS_CMD_MAPC:
1399 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1400 		break;
1401 	case GITS_CMD_MAPI:
1402 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1403 		break;
1404 	case GITS_CMD_MAPTI:
1405 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1406 		break;
1407 	case GITS_CMD_MOVI:
1408 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1409 		break;
1410 	case GITS_CMD_DISCARD:
1411 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1412 		break;
1413 	case GITS_CMD_CLEAR:
1414 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1415 		break;
1416 	case GITS_CMD_MOVALL:
1417 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1418 		break;
1419 	case GITS_CMD_INT:
1420 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1421 		break;
1422 	case GITS_CMD_INV:
1423 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1424 		break;
1425 	case GITS_CMD_INVALL:
1426 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1427 		break;
1428 	case GITS_CMD_SYNC:
1429 		/* we ignore this command: we are in sync all of the time */
1430 		ret = 0;
1431 		break;
1432 	}
1433 	mutex_unlock(&its->its_lock);
1434 
1435 	return ret;
1436 }
1437 
1438 static u64 vgic_sanitise_its_baser(u64 reg)
1439 {
1440 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1441 				  GITS_BASER_SHAREABILITY_SHIFT,
1442 				  vgic_sanitise_shareability);
1443 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1444 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1445 				  vgic_sanitise_inner_cacheability);
1446 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1447 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1448 				  vgic_sanitise_outer_cacheability);
1449 
1450 	/* We support only one (ITS) page size: 64K */
1451 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1452 
1453 	return reg;
1454 }
1455 
1456 static u64 vgic_sanitise_its_cbaser(u64 reg)
1457 {
1458 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1459 				  GITS_CBASER_SHAREABILITY_SHIFT,
1460 				  vgic_sanitise_shareability);
1461 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1462 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1463 				  vgic_sanitise_inner_cacheability);
1464 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1465 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1466 				  vgic_sanitise_outer_cacheability);
1467 
1468 	/* Sanitise the physical address to be 64k aligned. */
1469 	reg &= ~GENMASK_ULL(15, 12);
1470 
1471 	return reg;
1472 }
1473 
1474 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1475 					       struct vgic_its *its,
1476 					       gpa_t addr, unsigned int len)
1477 {
1478 	return extract_bytes(its->cbaser, addr & 7, len);
1479 }
1480 
1481 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1482 				       gpa_t addr, unsigned int len,
1483 				       unsigned long val)
1484 {
1485 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1486 	if (its->enabled)
1487 		return;
1488 
1489 	mutex_lock(&its->cmd_lock);
1490 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1491 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1492 	its->creadr = 0;
1493 	/*
1494 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1495 	 * it to CREADR to make sure we start with an empty command buffer.
1496 	 */
1497 	its->cwriter = its->creadr;
1498 	mutex_unlock(&its->cmd_lock);
1499 }
1500 
1501 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1502 #define ITS_CMD_SIZE			32
1503 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1504 
1505 /* Must be called with the cmd_lock held. */
1506 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1507 {
1508 	gpa_t cbaser;
1509 	u64 cmd_buf[4];
1510 
1511 	/* Commands are only processed when the ITS is enabled. */
1512 	if (!its->enabled)
1513 		return;
1514 
1515 	cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1516 
1517 	while (its->cwriter != its->creadr) {
1518 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1519 					      cmd_buf, ITS_CMD_SIZE);
1520 		/*
1521 		 * If kvm_read_guest() fails, this could be due to the guest
1522 		 * programming a bogus value in CBASER or something else going
1523 		 * wrong from which we cannot easily recover.
1524 		 * According to section 6.3.2 in the GICv3 spec we can just
1525 		 * ignore that command then.
1526 		 */
1527 		if (!ret)
1528 			vgic_its_handle_command(kvm, its, cmd_buf);
1529 
1530 		its->creadr += ITS_CMD_SIZE;
1531 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1532 			its->creadr = 0;
1533 	}
1534 }
1535 
1536 /*
1537  * By writing to CWRITER the guest announces new commands to be processed.
1538  * To avoid any races in the first place, we take the its_cmd lock, which
1539  * protects our ring buffer variables, so that there is only one user
1540  * per ITS handling commands at a given time.
1541  */
1542 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1543 					gpa_t addr, unsigned int len,
1544 					unsigned long val)
1545 {
1546 	u64 reg;
1547 
1548 	if (!its)
1549 		return;
1550 
1551 	mutex_lock(&its->cmd_lock);
1552 
1553 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1554 	reg = ITS_CMD_OFFSET(reg);
1555 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1556 		mutex_unlock(&its->cmd_lock);
1557 		return;
1558 	}
1559 	its->cwriter = reg;
1560 
1561 	vgic_its_process_commands(kvm, its);
1562 
1563 	mutex_unlock(&its->cmd_lock);
1564 }
1565 
1566 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1567 						struct vgic_its *its,
1568 						gpa_t addr, unsigned int len)
1569 {
1570 	return extract_bytes(its->cwriter, addr & 0x7, len);
1571 }
1572 
1573 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1574 					       struct vgic_its *its,
1575 					       gpa_t addr, unsigned int len)
1576 {
1577 	return extract_bytes(its->creadr, addr & 0x7, len);
1578 }
1579 
1580 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1581 					      struct vgic_its *its,
1582 					      gpa_t addr, unsigned int len,
1583 					      unsigned long val)
1584 {
1585 	u32 cmd_offset;
1586 	int ret = 0;
1587 
1588 	mutex_lock(&its->cmd_lock);
1589 
1590 	if (its->enabled) {
1591 		ret = -EBUSY;
1592 		goto out;
1593 	}
1594 
1595 	cmd_offset = ITS_CMD_OFFSET(val);
1596 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1597 		ret = -EINVAL;
1598 		goto out;
1599 	}
1600 
1601 	its->creadr = cmd_offset;
1602 out:
1603 	mutex_unlock(&its->cmd_lock);
1604 	return ret;
1605 }
1606 
1607 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1608 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1609 					      struct vgic_its *its,
1610 					      gpa_t addr, unsigned int len)
1611 {
1612 	u64 reg;
1613 
1614 	switch (BASER_INDEX(addr)) {
1615 	case 0:
1616 		reg = its->baser_device_table;
1617 		break;
1618 	case 1:
1619 		reg = its->baser_coll_table;
1620 		break;
1621 	default:
1622 		reg = 0;
1623 		break;
1624 	}
1625 
1626 	return extract_bytes(reg, addr & 7, len);
1627 }
1628 
1629 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1630 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1631 				      struct vgic_its *its,
1632 				      gpa_t addr, unsigned int len,
1633 				      unsigned long val)
1634 {
1635 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1636 	u64 entry_size, table_type;
1637 	u64 reg, *regptr, clearbits = 0;
1638 
1639 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1640 	if (its->enabled)
1641 		return;
1642 
1643 	switch (BASER_INDEX(addr)) {
1644 	case 0:
1645 		regptr = &its->baser_device_table;
1646 		entry_size = abi->dte_esz;
1647 		table_type = GITS_BASER_TYPE_DEVICE;
1648 		break;
1649 	case 1:
1650 		regptr = &its->baser_coll_table;
1651 		entry_size = abi->cte_esz;
1652 		table_type = GITS_BASER_TYPE_COLLECTION;
1653 		clearbits = GITS_BASER_INDIRECT;
1654 		break;
1655 	default:
1656 		return;
1657 	}
1658 
1659 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1660 	reg &= ~GITS_BASER_RO_MASK;
1661 	reg &= ~clearbits;
1662 
1663 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1664 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1665 	reg = vgic_sanitise_its_baser(reg);
1666 
1667 	*regptr = reg;
1668 
1669 	if (!(reg & GITS_BASER_VALID)) {
1670 		/* Take the its_lock to prevent a race with a save/restore */
1671 		mutex_lock(&its->its_lock);
1672 		switch (table_type) {
1673 		case GITS_BASER_TYPE_DEVICE:
1674 			vgic_its_free_device_list(kvm, its);
1675 			break;
1676 		case GITS_BASER_TYPE_COLLECTION:
1677 			vgic_its_free_collection_list(kvm, its);
1678 			break;
1679 		}
1680 		mutex_unlock(&its->its_lock);
1681 	}
1682 }
1683 
1684 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1685 					     struct vgic_its *its,
1686 					     gpa_t addr, unsigned int len)
1687 {
1688 	u32 reg = 0;
1689 
1690 	mutex_lock(&its->cmd_lock);
1691 	if (its->creadr == its->cwriter)
1692 		reg |= GITS_CTLR_QUIESCENT;
1693 	if (its->enabled)
1694 		reg |= GITS_CTLR_ENABLE;
1695 	mutex_unlock(&its->cmd_lock);
1696 
1697 	return reg;
1698 }
1699 
1700 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1701 				     gpa_t addr, unsigned int len,
1702 				     unsigned long val)
1703 {
1704 	mutex_lock(&its->cmd_lock);
1705 
1706 	/*
1707 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1708 	 * device/collection BASER are invalid
1709 	 */
1710 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1711 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1712 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1713 		 !(its->cbaser & GITS_CBASER_VALID)))
1714 		goto out;
1715 
1716 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1717 	if (!its->enabled)
1718 		vgic_its_invalidate_cache(its);
1719 
1720 	/*
1721 	 * Try to process any pending commands. This function bails out early
1722 	 * if the ITS is disabled or no commands have been queued.
1723 	 */
1724 	vgic_its_process_commands(kvm, its);
1725 
1726 out:
1727 	mutex_unlock(&its->cmd_lock);
1728 }
1729 
1730 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1731 {								\
1732 	.reg_offset = off,					\
1733 	.len = length,						\
1734 	.access_flags = acc,					\
1735 	.its_read = rd,						\
1736 	.its_write = wr,					\
1737 }
1738 
1739 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1740 {								\
1741 	.reg_offset = off,					\
1742 	.len = length,						\
1743 	.access_flags = acc,					\
1744 	.its_read = rd,						\
1745 	.its_write = wr,					\
1746 	.uaccess_its_write = uwr,				\
1747 }
1748 
1749 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1750 			      gpa_t addr, unsigned int len, unsigned long val)
1751 {
1752 	/* Ignore */
1753 }
1754 
1755 static struct vgic_register_region its_registers[] = {
1756 	REGISTER_ITS_DESC(GITS_CTLR,
1757 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1758 		VGIC_ACCESS_32bit),
1759 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1760 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1761 		vgic_mmio_uaccess_write_its_iidr, 4,
1762 		VGIC_ACCESS_32bit),
1763 	REGISTER_ITS_DESC(GITS_TYPER,
1764 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1765 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1766 	REGISTER_ITS_DESC(GITS_CBASER,
1767 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1768 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1769 	REGISTER_ITS_DESC(GITS_CWRITER,
1770 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1771 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1772 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1773 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1774 		vgic_mmio_uaccess_write_its_creadr, 8,
1775 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1776 	REGISTER_ITS_DESC(GITS_BASER,
1777 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1778 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1779 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1780 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1781 		VGIC_ACCESS_32bit),
1782 };
1783 
1784 /* This is called on setting the LPI enable bit in the redistributor. */
1785 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1786 {
1787 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1788 		its_sync_lpi_pending_table(vcpu);
1789 }
1790 
1791 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1792 				   u64 addr)
1793 {
1794 	struct vgic_io_device *iodev = &its->iodev;
1795 	int ret;
1796 
1797 	mutex_lock(&kvm->slots_lock);
1798 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1799 		ret = -EBUSY;
1800 		goto out;
1801 	}
1802 
1803 	its->vgic_its_base = addr;
1804 	iodev->regions = its_registers;
1805 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1806 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1807 
1808 	iodev->base_addr = its->vgic_its_base;
1809 	iodev->iodev_type = IODEV_ITS;
1810 	iodev->its = its;
1811 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1812 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1813 out:
1814 	mutex_unlock(&kvm->slots_lock);
1815 
1816 	return ret;
1817 }
1818 
1819 #define INITIAL_BASER_VALUE						  \
1820 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1821 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1822 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1823 	 GITS_BASER_PAGE_SIZE_64K)
1824 
1825 #define INITIAL_PROPBASER_VALUE						  \
1826 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1827 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1828 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1829 
1830 static int vgic_its_create(struct kvm_device *dev, u32 type)
1831 {
1832 	int ret;
1833 	struct vgic_its *its;
1834 
1835 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1836 		return -ENODEV;
1837 
1838 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1839 	if (!its)
1840 		return -ENOMEM;
1841 
1842 	mutex_lock(&dev->kvm->arch.config_lock);
1843 
1844 	if (vgic_initialized(dev->kvm)) {
1845 		ret = vgic_v4_init(dev->kvm);
1846 		if (ret < 0) {
1847 			mutex_unlock(&dev->kvm->arch.config_lock);
1848 			kfree(its);
1849 			return ret;
1850 		}
1851 	}
1852 
1853 	mutex_init(&its->its_lock);
1854 	mutex_init(&its->cmd_lock);
1855 
1856 	/* Yep, even more trickery for lock ordering... */
1857 #ifdef CONFIG_LOCKDEP
1858 	mutex_lock(&its->cmd_lock);
1859 	mutex_lock(&its->its_lock);
1860 	mutex_unlock(&its->its_lock);
1861 	mutex_unlock(&its->cmd_lock);
1862 #endif
1863 
1864 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1865 
1866 	INIT_LIST_HEAD(&its->device_list);
1867 	INIT_LIST_HEAD(&its->collection_list);
1868 	xa_init(&its->translation_cache);
1869 
1870 	dev->kvm->arch.vgic.msis_require_devid = true;
1871 	dev->kvm->arch.vgic.has_its = true;
1872 	its->enabled = false;
1873 	its->dev = dev;
1874 
1875 	its->baser_device_table = INITIAL_BASER_VALUE			|
1876 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1877 	its->baser_coll_table = INITIAL_BASER_VALUE |
1878 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1879 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1880 
1881 	dev->private = its;
1882 
1883 	ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1884 
1885 	mutex_unlock(&dev->kvm->arch.config_lock);
1886 
1887 	return ret;
1888 }
1889 
1890 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1891 {
1892 	struct kvm *kvm = kvm_dev->kvm;
1893 	struct vgic_its *its = kvm_dev->private;
1894 
1895 	mutex_lock(&its->its_lock);
1896 
1897 	vgic_its_free_device_list(kvm, its);
1898 	vgic_its_free_collection_list(kvm, its);
1899 	vgic_its_invalidate_cache(its);
1900 	xa_destroy(&its->translation_cache);
1901 
1902 	mutex_unlock(&its->its_lock);
1903 	kfree(its);
1904 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1905 }
1906 
1907 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1908 				  struct kvm_device_attr *attr)
1909 {
1910 	const struct vgic_register_region *region;
1911 	gpa_t offset = attr->attr;
1912 	int align;
1913 
1914 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1915 
1916 	if (offset & align)
1917 		return -EINVAL;
1918 
1919 	region = vgic_find_mmio_region(its_registers,
1920 				       ARRAY_SIZE(its_registers),
1921 				       offset);
1922 	if (!region)
1923 		return -ENXIO;
1924 
1925 	return 0;
1926 }
1927 
1928 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1929 				     struct kvm_device_attr *attr,
1930 				     u64 *reg, bool is_write)
1931 {
1932 	const struct vgic_register_region *region;
1933 	struct vgic_its *its;
1934 	gpa_t addr, offset;
1935 	unsigned int len;
1936 	int align, ret = 0;
1937 
1938 	its = dev->private;
1939 	offset = attr->attr;
1940 
1941 	/*
1942 	 * Although the spec supports upper/lower 32-bit accesses to
1943 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1944 	 * accesses to all 64-bit wide registers. We therefore only
1945 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1946 	 * registers
1947 	 */
1948 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1949 		align = 0x3;
1950 	else
1951 		align = 0x7;
1952 
1953 	if (offset & align)
1954 		return -EINVAL;
1955 
1956 	mutex_lock(&dev->kvm->lock);
1957 
1958 	if (!lock_all_vcpus(dev->kvm)) {
1959 		mutex_unlock(&dev->kvm->lock);
1960 		return -EBUSY;
1961 	}
1962 
1963 	mutex_lock(&dev->kvm->arch.config_lock);
1964 
1965 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1966 		ret = -ENXIO;
1967 		goto out;
1968 	}
1969 
1970 	region = vgic_find_mmio_region(its_registers,
1971 				       ARRAY_SIZE(its_registers),
1972 				       offset);
1973 	if (!region) {
1974 		ret = -ENXIO;
1975 		goto out;
1976 	}
1977 
1978 	addr = its->vgic_its_base + offset;
1979 
1980 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1981 
1982 	if (is_write) {
1983 		if (region->uaccess_its_write)
1984 			ret = region->uaccess_its_write(dev->kvm, its, addr,
1985 							len, *reg);
1986 		else
1987 			region->its_write(dev->kvm, its, addr, len, *reg);
1988 	} else {
1989 		*reg = region->its_read(dev->kvm, its, addr, len);
1990 	}
1991 out:
1992 	mutex_unlock(&dev->kvm->arch.config_lock);
1993 	unlock_all_vcpus(dev->kvm);
1994 	mutex_unlock(&dev->kvm->lock);
1995 	return ret;
1996 }
1997 
1998 static u32 compute_next_devid_offset(struct list_head *h,
1999 				     struct its_device *dev)
2000 {
2001 	struct its_device *next;
2002 	u32 next_offset;
2003 
2004 	if (list_is_last(&dev->dev_list, h))
2005 		return 0;
2006 	next = list_next_entry(dev, dev_list);
2007 	next_offset = next->device_id - dev->device_id;
2008 
2009 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2010 }
2011 
2012 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2013 {
2014 	struct its_ite *next;
2015 	u32 next_offset;
2016 
2017 	if (list_is_last(&ite->ite_list, h))
2018 		return 0;
2019 	next = list_next_entry(ite, ite_list);
2020 	next_offset = next->event_id - ite->event_id;
2021 
2022 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2023 }
2024 
2025 /**
2026  * typedef entry_fn_t - Callback called on a table entry restore path
2027  * @its: its handle
2028  * @id: id of the entry
2029  * @entry: pointer to the entry
2030  * @opaque: pointer to an opaque data
2031  *
2032  * Return: < 0 on error, 0 if last element was identified, id offset to next
2033  * element otherwise
2034  */
2035 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2036 			  void *opaque);
2037 
2038 /**
2039  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2040  * to each entry
2041  *
2042  * @its: its handle
2043  * @base: base gpa of the table
2044  * @size: size of the table in bytes
2045  * @esz: entry size in bytes
2046  * @start_id: the ID of the first entry in the table
2047  * (non zero for 2d level tables)
2048  * @fn: function to apply on each entry
2049  * @opaque: pointer to opaque data
2050  *
2051  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2052  * (the last element may not be found on second level tables)
2053  */
2054 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2055 			  int start_id, entry_fn_t fn, void *opaque)
2056 {
2057 	struct kvm *kvm = its->dev->kvm;
2058 	unsigned long len = size;
2059 	int id = start_id;
2060 	gpa_t gpa = base;
2061 	char entry[ESZ_MAX];
2062 	int ret;
2063 
2064 	memset(entry, 0, esz);
2065 
2066 	while (true) {
2067 		int next_offset;
2068 		size_t byte_offset;
2069 
2070 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2071 		if (ret)
2072 			return ret;
2073 
2074 		next_offset = fn(its, id, entry, opaque);
2075 		if (next_offset <= 0)
2076 			return next_offset;
2077 
2078 		byte_offset = next_offset * esz;
2079 		if (byte_offset >= len)
2080 			break;
2081 
2082 		id += next_offset;
2083 		gpa += byte_offset;
2084 		len -= byte_offset;
2085 	}
2086 	return 1;
2087 }
2088 
2089 /*
2090  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2091  */
2092 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2093 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
2094 {
2095 	u32 next_offset;
2096 	u64 val;
2097 
2098 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2099 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2100 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2101 		ite->collection->collection_id;
2102 	val = cpu_to_le64(val);
2103 
2104 	return vgic_its_write_entry_lock(its, gpa, val, ite_esz);
2105 }
2106 
2107 /**
2108  * vgic_its_restore_ite - restore an interrupt translation entry
2109  *
2110  * @its: its handle
2111  * @event_id: id used for indexing
2112  * @ptr: pointer to the ITE entry
2113  * @opaque: pointer to the its_device
2114  */
2115 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2116 				void *ptr, void *opaque)
2117 {
2118 	struct its_device *dev = opaque;
2119 	struct its_collection *collection;
2120 	struct kvm *kvm = its->dev->kvm;
2121 	struct kvm_vcpu *vcpu = NULL;
2122 	u64 val;
2123 	u64 *p = (u64 *)ptr;
2124 	struct vgic_irq *irq;
2125 	u32 coll_id, lpi_id;
2126 	struct its_ite *ite;
2127 	u32 offset;
2128 
2129 	val = *p;
2130 
2131 	val = le64_to_cpu(val);
2132 
2133 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
2134 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2135 
2136 	if (!lpi_id)
2137 		return 1; /* invalid entry, no choice but to scan next entry */
2138 
2139 	if (lpi_id < VGIC_MIN_LPI)
2140 		return -EINVAL;
2141 
2142 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2143 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2144 		return -EINVAL;
2145 
2146 	collection = find_collection(its, coll_id);
2147 	if (!collection)
2148 		return -EINVAL;
2149 
2150 	if (!vgic_its_check_event_id(its, dev, event_id))
2151 		return -EINVAL;
2152 
2153 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2154 	if (IS_ERR(ite))
2155 		return PTR_ERR(ite);
2156 
2157 	if (its_is_collection_mapped(collection))
2158 		vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2159 
2160 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2161 	if (IS_ERR(irq)) {
2162 		its_free_ite(kvm, ite);
2163 		return PTR_ERR(irq);
2164 	}
2165 	ite->irq = irq;
2166 
2167 	return offset;
2168 }
2169 
2170 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2171 			    const struct list_head *b)
2172 {
2173 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2174 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2175 
2176 	if (itea->event_id < iteb->event_id)
2177 		return -1;
2178 	else
2179 		return 1;
2180 }
2181 
2182 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2183 {
2184 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2185 	gpa_t base = device->itt_addr;
2186 	struct its_ite *ite;
2187 	int ret;
2188 	int ite_esz = abi->ite_esz;
2189 
2190 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2191 
2192 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2193 		gpa_t gpa = base + ite->event_id * ite_esz;
2194 
2195 		/*
2196 		 * If an LPI carries the HW bit, this means that this
2197 		 * interrupt is controlled by GICv4, and we do not
2198 		 * have direct access to that state without GICv4.1.
2199 		 * Let's simply fail the save operation...
2200 		 */
2201 		if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2202 			return -EACCES;
2203 
2204 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2205 		if (ret)
2206 			return ret;
2207 	}
2208 	return 0;
2209 }
2210 
2211 /**
2212  * vgic_its_restore_itt - restore the ITT of a device
2213  *
2214  * @its: its handle
2215  * @dev: device handle
2216  *
2217  * Return 0 on success, < 0 on error
2218  */
2219 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2220 {
2221 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2222 	gpa_t base = dev->itt_addr;
2223 	int ret;
2224 	int ite_esz = abi->ite_esz;
2225 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2226 
2227 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2228 			     vgic_its_restore_ite, dev);
2229 
2230 	/* scan_its_table returns +1 if all ITEs are invalid */
2231 	if (ret > 0)
2232 		ret = 0;
2233 
2234 	return ret;
2235 }
2236 
2237 /**
2238  * vgic_its_save_dte - Save a device table entry at a given GPA
2239  *
2240  * @its: ITS handle
2241  * @dev: ITS device
2242  * @ptr: GPA
2243  * @dte_esz: device table entry size
2244  */
2245 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2246 			     gpa_t ptr, int dte_esz)
2247 {
2248 	u64 val, itt_addr_field;
2249 	u32 next_offset;
2250 
2251 	itt_addr_field = dev->itt_addr >> 8;
2252 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2253 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2254 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2255 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2256 		(dev->num_eventid_bits - 1));
2257 	val = cpu_to_le64(val);
2258 
2259 	return vgic_its_write_entry_lock(its, ptr, val, dte_esz);
2260 }
2261 
2262 /**
2263  * vgic_its_restore_dte - restore a device table entry
2264  *
2265  * @its: its handle
2266  * @id: device id the DTE corresponds to
2267  * @ptr: kernel VA where the 8 byte DTE is located
2268  * @opaque: unused
2269  *
2270  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2271  * next dte otherwise
2272  */
2273 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2274 				void *ptr, void *opaque)
2275 {
2276 	struct its_device *dev;
2277 	u64 baser = its->baser_device_table;
2278 	gpa_t itt_addr;
2279 	u8 num_eventid_bits;
2280 	u64 entry = *(u64 *)ptr;
2281 	bool valid;
2282 	u32 offset;
2283 	int ret;
2284 
2285 	entry = le64_to_cpu(entry);
2286 
2287 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2288 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2289 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2290 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2291 
2292 	if (!valid)
2293 		return 1;
2294 
2295 	/* dte entry is valid */
2296 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2297 
2298 	if (!vgic_its_check_id(its, baser, id, NULL))
2299 		return -EINVAL;
2300 
2301 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2302 	if (IS_ERR(dev))
2303 		return PTR_ERR(dev);
2304 
2305 	ret = vgic_its_restore_itt(its, dev);
2306 	if (ret) {
2307 		vgic_its_free_device(its->dev->kvm, its, dev);
2308 		return ret;
2309 	}
2310 
2311 	return offset;
2312 }
2313 
2314 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2315 			       const struct list_head *b)
2316 {
2317 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2318 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2319 
2320 	if (deva->device_id < devb->device_id)
2321 		return -1;
2322 	else
2323 		return 1;
2324 }
2325 
2326 /*
2327  * vgic_its_save_device_tables - Save the device table and all ITT
2328  * into guest RAM
2329  *
2330  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2331  * returns the GPA of the device entry
2332  */
2333 static int vgic_its_save_device_tables(struct vgic_its *its)
2334 {
2335 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2336 	u64 baser = its->baser_device_table;
2337 	struct its_device *dev;
2338 	int dte_esz = abi->dte_esz;
2339 
2340 	if (!(baser & GITS_BASER_VALID))
2341 		return 0;
2342 
2343 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2344 
2345 	list_for_each_entry(dev, &its->device_list, dev_list) {
2346 		int ret;
2347 		gpa_t eaddr;
2348 
2349 		if (!vgic_its_check_id(its, baser,
2350 				       dev->device_id, &eaddr))
2351 			return -EINVAL;
2352 
2353 		ret = vgic_its_save_itt(its, dev);
2354 		if (ret)
2355 			return ret;
2356 
2357 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2358 		if (ret)
2359 			return ret;
2360 	}
2361 	return 0;
2362 }
2363 
2364 /**
2365  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2366  *
2367  * @its: its handle
2368  * @id: index of the entry in the L1 table
2369  * @addr: kernel VA
2370  * @opaque: unused
2371  *
2372  * L1 table entries are scanned by steps of 1 entry
2373  * Return < 0 if error, 0 if last dte was found when scanning the L2
2374  * table, +1 otherwise (meaning next L1 entry must be scanned)
2375  */
2376 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2377 			 void *opaque)
2378 {
2379 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2380 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2381 	u64 entry = *(u64 *)addr;
2382 	int dte_esz = abi->dte_esz;
2383 	gpa_t gpa;
2384 	int ret;
2385 
2386 	entry = le64_to_cpu(entry);
2387 
2388 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2389 		return 1;
2390 
2391 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2392 
2393 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2394 			     l2_start_id, vgic_its_restore_dte, NULL);
2395 
2396 	return ret;
2397 }
2398 
2399 /*
2400  * vgic_its_restore_device_tables - Restore the device table and all ITT
2401  * from guest RAM to internal data structs
2402  */
2403 static int vgic_its_restore_device_tables(struct vgic_its *its)
2404 {
2405 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2406 	u64 baser = its->baser_device_table;
2407 	int l1_esz, ret;
2408 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2409 	gpa_t l1_gpa;
2410 
2411 	if (!(baser & GITS_BASER_VALID))
2412 		return 0;
2413 
2414 	l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2415 
2416 	if (baser & GITS_BASER_INDIRECT) {
2417 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2418 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2419 				     handle_l1_dte, NULL);
2420 	} else {
2421 		l1_esz = abi->dte_esz;
2422 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2423 				     vgic_its_restore_dte, NULL);
2424 	}
2425 
2426 	/* scan_its_table returns +1 if all entries are invalid */
2427 	if (ret > 0)
2428 		ret = 0;
2429 
2430 	if (ret < 0)
2431 		vgic_its_free_device_list(its->dev->kvm, its);
2432 
2433 	return ret;
2434 }
2435 
2436 static int vgic_its_save_cte(struct vgic_its *its,
2437 			     struct its_collection *collection,
2438 			     gpa_t gpa, int esz)
2439 {
2440 	u64 val;
2441 
2442 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2443 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2444 	       collection->collection_id);
2445 	val = cpu_to_le64(val);
2446 
2447 	return vgic_its_write_entry_lock(its, gpa, val, esz);
2448 }
2449 
2450 /*
2451  * Restore a collection entry into the ITS collection table.
2452  * Return +1 on success, 0 if the entry was invalid (which should be
2453  * interpreted as end-of-table), and a negative error value for generic errors.
2454  */
2455 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2456 {
2457 	struct its_collection *collection;
2458 	struct kvm *kvm = its->dev->kvm;
2459 	u32 target_addr, coll_id;
2460 	u64 val;
2461 	int ret;
2462 
2463 	ret = vgic_its_read_entry_lock(its, gpa, &val, esz);
2464 	if (ret)
2465 		return ret;
2466 	val = le64_to_cpu(val);
2467 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2468 		return 0;
2469 
2470 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2471 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2472 
2473 	if (target_addr != COLLECTION_NOT_MAPPED &&
2474 	    !kvm_get_vcpu_by_id(kvm, target_addr))
2475 		return -EINVAL;
2476 
2477 	collection = find_collection(its, coll_id);
2478 	if (collection)
2479 		return -EEXIST;
2480 
2481 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2482 		return -EINVAL;
2483 
2484 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2485 	if (ret)
2486 		return ret;
2487 	collection->target_addr = target_addr;
2488 	return 1;
2489 }
2490 
2491 /*
2492  * vgic_its_save_collection_table - Save the collection table into
2493  * guest RAM
2494  */
2495 static int vgic_its_save_collection_table(struct vgic_its *its)
2496 {
2497 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2498 	u64 baser = its->baser_coll_table;
2499 	gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2500 	struct its_collection *collection;
2501 	size_t max_size, filled = 0;
2502 	int ret, cte_esz = abi->cte_esz;
2503 
2504 	if (!(baser & GITS_BASER_VALID))
2505 		return 0;
2506 
2507 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2508 
2509 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2510 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2511 		if (ret)
2512 			return ret;
2513 		gpa += cte_esz;
2514 		filled += cte_esz;
2515 	}
2516 
2517 	if (filled == max_size)
2518 		return 0;
2519 
2520 	/*
2521 	 * table is not fully filled, add a last dummy element
2522 	 * with valid bit unset
2523 	 */
2524 	return vgic_its_write_entry_lock(its, gpa, 0, cte_esz);
2525 }
2526 
2527 /*
2528  * vgic_its_restore_collection_table - reads the collection table
2529  * in guest memory and restores the ITS internal state. Requires the
2530  * BASER registers to be restored before.
2531  */
2532 static int vgic_its_restore_collection_table(struct vgic_its *its)
2533 {
2534 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2535 	u64 baser = its->baser_coll_table;
2536 	int cte_esz = abi->cte_esz;
2537 	size_t max_size, read = 0;
2538 	gpa_t gpa;
2539 	int ret;
2540 
2541 	if (!(baser & GITS_BASER_VALID))
2542 		return 0;
2543 
2544 	gpa = GITS_BASER_ADDR_48_to_52(baser);
2545 
2546 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2547 
2548 	while (read < max_size) {
2549 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2550 		if (ret <= 0)
2551 			break;
2552 		gpa += cte_esz;
2553 		read += cte_esz;
2554 	}
2555 
2556 	if (ret > 0)
2557 		return 0;
2558 
2559 	if (ret < 0)
2560 		vgic_its_free_collection_list(its->dev->kvm, its);
2561 
2562 	return ret;
2563 }
2564 
2565 /*
2566  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2567  * according to v0 ABI
2568  */
2569 static int vgic_its_save_tables_v0(struct vgic_its *its)
2570 {
2571 	int ret;
2572 
2573 	ret = vgic_its_save_device_tables(its);
2574 	if (ret)
2575 		return ret;
2576 
2577 	return vgic_its_save_collection_table(its);
2578 }
2579 
2580 /*
2581  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2582  * to internal data structs according to V0 ABI
2583  *
2584  */
2585 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2586 {
2587 	int ret;
2588 
2589 	ret = vgic_its_restore_collection_table(its);
2590 	if (ret)
2591 		return ret;
2592 
2593 	ret = vgic_its_restore_device_tables(its);
2594 	if (ret)
2595 		vgic_its_free_collection_list(its->dev->kvm, its);
2596 	return ret;
2597 }
2598 
2599 static int vgic_its_commit_v0(struct vgic_its *its)
2600 {
2601 	const struct vgic_its_abi *abi;
2602 
2603 	abi = vgic_its_get_abi(its);
2604 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2605 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2606 
2607 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2608 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2609 
2610 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2611 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2612 	return 0;
2613 }
2614 
2615 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2616 {
2617 	/* We need to keep the ABI specific field values */
2618 	its->baser_coll_table &= ~GITS_BASER_VALID;
2619 	its->baser_device_table &= ~GITS_BASER_VALID;
2620 	its->cbaser = 0;
2621 	its->creadr = 0;
2622 	its->cwriter = 0;
2623 	its->enabled = 0;
2624 	vgic_its_free_device_list(kvm, its);
2625 	vgic_its_free_collection_list(kvm, its);
2626 }
2627 
2628 static int vgic_its_has_attr(struct kvm_device *dev,
2629 			     struct kvm_device_attr *attr)
2630 {
2631 	switch (attr->group) {
2632 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2633 		switch (attr->attr) {
2634 		case KVM_VGIC_ITS_ADDR_TYPE:
2635 			return 0;
2636 		}
2637 		break;
2638 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2639 		switch (attr->attr) {
2640 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2641 			return 0;
2642 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2643 			return 0;
2644 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2645 			return 0;
2646 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2647 			return 0;
2648 		}
2649 		break;
2650 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2651 		return vgic_its_has_attr_regs(dev, attr);
2652 	}
2653 	return -ENXIO;
2654 }
2655 
2656 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2657 {
2658 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2659 	int ret = 0;
2660 
2661 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2662 		return 0;
2663 
2664 	mutex_lock(&kvm->lock);
2665 
2666 	if (!lock_all_vcpus(kvm)) {
2667 		mutex_unlock(&kvm->lock);
2668 		return -EBUSY;
2669 	}
2670 
2671 	mutex_lock(&kvm->arch.config_lock);
2672 	mutex_lock(&its->its_lock);
2673 
2674 	switch (attr) {
2675 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2676 		vgic_its_reset(kvm, its);
2677 		break;
2678 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2679 		ret = abi->save_tables(its);
2680 		break;
2681 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2682 		ret = abi->restore_tables(its);
2683 		break;
2684 	}
2685 
2686 	mutex_unlock(&its->its_lock);
2687 	mutex_unlock(&kvm->arch.config_lock);
2688 	unlock_all_vcpus(kvm);
2689 	mutex_unlock(&kvm->lock);
2690 	return ret;
2691 }
2692 
2693 /*
2694  * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2695  * without the running VCPU when dirty ring is enabled.
2696  *
2697  * The running VCPU is required to track dirty guest pages when dirty ring
2698  * is enabled. Otherwise, the backup bitmap should be used to track the
2699  * dirty guest pages. When vgic/its tables are being saved, the backup
2700  * bitmap is used to track the dirty guest pages due to the missed running
2701  * VCPU in the period.
2702  */
2703 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2704 {
2705 	struct vgic_dist *dist = &kvm->arch.vgic;
2706 
2707 	return dist->table_write_in_progress;
2708 }
2709 
2710 static int vgic_its_set_attr(struct kvm_device *dev,
2711 			     struct kvm_device_attr *attr)
2712 {
2713 	struct vgic_its *its = dev->private;
2714 	int ret;
2715 
2716 	switch (attr->group) {
2717 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2718 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2719 		unsigned long type = (unsigned long)attr->attr;
2720 		u64 addr;
2721 
2722 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2723 			return -ENODEV;
2724 
2725 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2726 			return -EFAULT;
2727 
2728 		ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2729 					 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2730 		if (ret)
2731 			return ret;
2732 
2733 		return vgic_register_its_iodev(dev->kvm, its, addr);
2734 	}
2735 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2736 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2737 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2738 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2739 		u64 reg;
2740 
2741 		if (get_user(reg, uaddr))
2742 			return -EFAULT;
2743 
2744 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2745 	}
2746 	}
2747 	return -ENXIO;
2748 }
2749 
2750 static int vgic_its_get_attr(struct kvm_device *dev,
2751 			     struct kvm_device_attr *attr)
2752 {
2753 	switch (attr->group) {
2754 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2755 		struct vgic_its *its = dev->private;
2756 		u64 addr = its->vgic_its_base;
2757 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2758 		unsigned long type = (unsigned long)attr->attr;
2759 
2760 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2761 			return -ENODEV;
2762 
2763 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2764 			return -EFAULT;
2765 		break;
2766 	}
2767 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2768 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2769 		u64 reg;
2770 		int ret;
2771 
2772 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2773 		if (ret)
2774 			return ret;
2775 		return put_user(reg, uaddr);
2776 	}
2777 	default:
2778 		return -ENXIO;
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2785 	.name = "kvm-arm-vgic-its",
2786 	.create = vgic_its_create,
2787 	.destroy = vgic_its_destroy,
2788 	.set_attr = vgic_its_set_attr,
2789 	.get_attr = vgic_its_get_attr,
2790 	.has_attr = vgic_its_has_attr,
2791 };
2792 
2793 int kvm_vgic_register_its_device(void)
2794 {
2795 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2796 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2797 }
2798