1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static struct kvm_device_ops kvm_arm_vgic_its_ops; 27 28 static int vgic_its_save_tables_v0(struct vgic_its *its); 29 static int vgic_its_restore_tables_v0(struct vgic_its *its); 30 static int vgic_its_commit_v0(struct vgic_its *its); 31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 32 struct kvm_vcpu *filter_vcpu, bool needs_inv); 33 34 #define vgic_its_read_entry_lock(i, g, valp, t) \ 35 ({ \ 36 int __sz = vgic_its_get_abi(i)->t##_esz; \ 37 struct kvm *__k = (i)->dev->kvm; \ 38 int __ret; \ 39 \ 40 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \ 41 sizeof(*(valp)) != ABI_0_ESZ); \ 42 if (NR_ITS_ABIS > 1 && \ 43 KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \ 44 __ret = -EINVAL; \ 45 else \ 46 __ret = kvm_read_guest_lock(__k, (g), \ 47 valp, __sz); \ 48 __ret; \ 49 }) 50 51 #define vgic_its_write_entry_lock(i, g, val, t) \ 52 ({ \ 53 int __sz = vgic_its_get_abi(i)->t##_esz; \ 54 struct kvm *__k = (i)->dev->kvm; \ 55 typeof(val) __v = (val); \ 56 int __ret; \ 57 \ 58 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \ 59 sizeof(__v) != ABI_0_ESZ); \ 60 if (NR_ITS_ABIS > 1 && \ 61 KVM_BUG_ON(__sz != sizeof(__v), __k)) \ 62 __ret = -EINVAL; \ 63 else \ 64 __ret = vgic_write_guest_lock(__k, (g), \ 65 &__v, __sz); \ 66 __ret; \ 67 }) 68 69 /* 70 * Creates a new (reference to a) struct vgic_irq for a given LPI. 71 * If this LPI is already mapped on another ITS, we increase its refcount 72 * and return a pointer to the existing structure. 73 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 74 * This function returns a pointer to the _unlocked_ structure. 75 */ 76 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 77 struct kvm_vcpu *vcpu) 78 { 79 struct vgic_dist *dist = &kvm->arch.vgic; 80 struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq; 81 unsigned long flags; 82 int ret; 83 84 /* In this case there is no put, since we keep the reference. */ 85 if (irq) 86 return irq; 87 88 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 89 if (!irq) 90 return ERR_PTR(-ENOMEM); 91 92 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT); 93 if (ret) { 94 kfree(irq); 95 return ERR_PTR(ret); 96 } 97 98 INIT_LIST_HEAD(&irq->ap_list); 99 raw_spin_lock_init(&irq->irq_lock); 100 101 irq->config = VGIC_CONFIG_EDGE; 102 kref_init(&irq->refcount); 103 irq->intid = intid; 104 irq->target_vcpu = vcpu; 105 irq->group = 1; 106 107 xa_lock_irqsave(&dist->lpi_xa, flags); 108 109 /* 110 * There could be a race with another vgic_add_lpi(), so we need to 111 * check that we don't add a second list entry with the same LPI. 112 */ 113 oldirq = xa_load(&dist->lpi_xa, intid); 114 if (vgic_try_get_irq_kref(oldirq)) { 115 /* Someone was faster with adding this LPI, lets use that. */ 116 kfree(irq); 117 irq = oldirq; 118 119 goto out_unlock; 120 } 121 122 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0)); 123 if (ret) { 124 xa_release(&dist->lpi_xa, intid); 125 kfree(irq); 126 } 127 128 out_unlock: 129 xa_unlock_irqrestore(&dist->lpi_xa, flags); 130 131 if (ret) 132 return ERR_PTR(ret); 133 134 /* 135 * We "cache" the configuration table entries in our struct vgic_irq's. 136 * However we only have those structs for mapped IRQs, so we read in 137 * the respective config data from memory here upon mapping the LPI. 138 * 139 * Should any of these fail, behave as if we couldn't create the LPI 140 * by dropping the refcount and returning the error. 141 */ 142 ret = update_lpi_config(kvm, irq, NULL, false); 143 if (ret) { 144 vgic_put_irq(kvm, irq); 145 return ERR_PTR(ret); 146 } 147 148 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 149 if (ret) { 150 vgic_put_irq(kvm, irq); 151 return ERR_PTR(ret); 152 } 153 154 return irq; 155 } 156 157 struct its_device { 158 struct list_head dev_list; 159 160 /* the head for the list of ITTEs */ 161 struct list_head itt_head; 162 u32 num_eventid_bits; 163 gpa_t itt_addr; 164 u32 device_id; 165 }; 166 167 #define COLLECTION_NOT_MAPPED ((u32)~0) 168 169 struct its_collection { 170 struct list_head coll_list; 171 172 u32 collection_id; 173 u32 target_addr; 174 }; 175 176 #define its_is_collection_mapped(coll) ((coll) && \ 177 ((coll)->target_addr != COLLECTION_NOT_MAPPED)) 178 179 struct its_ite { 180 struct list_head ite_list; 181 182 struct vgic_irq *irq; 183 struct its_collection *collection; 184 u32 event_id; 185 }; 186 187 /** 188 * struct vgic_its_abi - ITS abi ops and settings 189 * @cte_esz: collection table entry size 190 * @dte_esz: device table entry size 191 * @ite_esz: interrupt translation table entry size 192 * @save_tables: save the ITS tables into guest RAM 193 * @restore_tables: restore the ITS internal structs from tables 194 * stored in guest RAM 195 * @commit: initialize the registers which expose the ABI settings, 196 * especially the entry sizes 197 */ 198 struct vgic_its_abi { 199 int cte_esz; 200 int dte_esz; 201 int ite_esz; 202 int (*save_tables)(struct vgic_its *its); 203 int (*restore_tables)(struct vgic_its *its); 204 int (*commit)(struct vgic_its *its); 205 }; 206 207 #define ABI_0_ESZ 8 208 #define ESZ_MAX ABI_0_ESZ 209 210 static const struct vgic_its_abi its_table_abi_versions[] = { 211 [0] = { 212 .cte_esz = ABI_0_ESZ, 213 .dte_esz = ABI_0_ESZ, 214 .ite_esz = ABI_0_ESZ, 215 .save_tables = vgic_its_save_tables_v0, 216 .restore_tables = vgic_its_restore_tables_v0, 217 .commit = vgic_its_commit_v0, 218 }, 219 }; 220 221 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 222 223 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 224 { 225 return &its_table_abi_versions[its->abi_rev]; 226 } 227 228 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 229 { 230 const struct vgic_its_abi *abi; 231 232 its->abi_rev = rev; 233 abi = vgic_its_get_abi(its); 234 return abi->commit(its); 235 } 236 237 /* 238 * Find and returns a device in the device table for an ITS. 239 * Must be called with the its_lock mutex held. 240 */ 241 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 242 { 243 struct its_device *device; 244 245 list_for_each_entry(device, &its->device_list, dev_list) 246 if (device_id == device->device_id) 247 return device; 248 249 return NULL; 250 } 251 252 /* 253 * Find and returns an interrupt translation table entry (ITTE) for a given 254 * Device ID/Event ID pair on an ITS. 255 * Must be called with the its_lock mutex held. 256 */ 257 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 258 u32 event_id) 259 { 260 struct its_device *device; 261 struct its_ite *ite; 262 263 device = find_its_device(its, device_id); 264 if (device == NULL) 265 return NULL; 266 267 list_for_each_entry(ite, &device->itt_head, ite_list) 268 if (ite->event_id == event_id) 269 return ite; 270 271 return NULL; 272 } 273 274 /* To be used as an iterator this macro misses the enclosing parentheses */ 275 #define for_each_lpi_its(dev, ite, its) \ 276 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 277 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 278 279 #define GIC_LPI_OFFSET 8192 280 281 #define VITS_TYPER_IDBITS 16 282 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1) 283 #define VITS_TYPER_DEVBITS 16 284 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1) 285 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 286 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 287 288 /* 289 * Finds and returns a collection in the ITS collection table. 290 * Must be called with the its_lock mutex held. 291 */ 292 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 293 { 294 struct its_collection *collection; 295 296 list_for_each_entry(collection, &its->collection_list, coll_list) { 297 if (coll_id == collection->collection_id) 298 return collection; 299 } 300 301 return NULL; 302 } 303 304 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 305 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 306 307 /* 308 * Reads the configuration data for a given LPI from guest memory and 309 * updates the fields in struct vgic_irq. 310 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 311 * VCPU. Unconditionally applies if filter_vcpu is NULL. 312 */ 313 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 314 struct kvm_vcpu *filter_vcpu, bool needs_inv) 315 { 316 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 317 u8 prop; 318 int ret; 319 unsigned long flags; 320 321 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 322 &prop, 1); 323 324 if (ret) 325 return ret; 326 327 raw_spin_lock_irqsave(&irq->irq_lock, flags); 328 329 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 330 irq->priority = LPI_PROP_PRIORITY(prop); 331 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 332 333 if (!irq->hw) { 334 vgic_queue_irq_unlock(kvm, irq, flags); 335 return 0; 336 } 337 } 338 339 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 340 341 if (irq->hw) 342 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 343 344 return 0; 345 } 346 347 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 348 { 349 int ret = 0; 350 unsigned long flags; 351 352 raw_spin_lock_irqsave(&irq->irq_lock, flags); 353 irq->target_vcpu = vcpu; 354 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 355 356 if (irq->hw) { 357 struct its_vlpi_map map; 358 359 ret = its_get_vlpi(irq->host_irq, &map); 360 if (ret) 361 return ret; 362 363 if (map.vpe) 364 atomic_dec(&map.vpe->vlpi_count); 365 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 366 atomic_inc(&map.vpe->vlpi_count); 367 368 ret = its_map_vlpi(irq->host_irq, &map); 369 } 370 371 return ret; 372 } 373 374 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm, 375 struct its_collection *col) 376 { 377 return kvm_get_vcpu_by_id(kvm, col->target_addr); 378 } 379 380 /* 381 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 382 * is targeting) to the VGIC's view, which deals with target VCPUs. 383 * Needs to be called whenever either the collection for a LPIs has 384 * changed or the collection itself got retargeted. 385 */ 386 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 387 { 388 struct kvm_vcpu *vcpu; 389 390 if (!its_is_collection_mapped(ite->collection)) 391 return; 392 393 vcpu = collection_to_vcpu(kvm, ite->collection); 394 update_affinity(ite->irq, vcpu); 395 } 396 397 /* 398 * Updates the target VCPU for every LPI targeting this collection. 399 * Must be called with the its_lock mutex held. 400 */ 401 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 402 struct its_collection *coll) 403 { 404 struct its_device *device; 405 struct its_ite *ite; 406 407 for_each_lpi_its(device, ite, its) { 408 if (ite->collection != coll) 409 continue; 410 411 update_affinity_ite(kvm, ite); 412 } 413 } 414 415 static u32 max_lpis_propbaser(u64 propbaser) 416 { 417 int nr_idbits = (propbaser & 0x1f) + 1; 418 419 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 420 } 421 422 /* 423 * Sync the pending table pending bit of LPIs targeting @vcpu 424 * with our own data structures. This relies on the LPI being 425 * mapped before. 426 */ 427 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 428 { 429 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 430 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 431 unsigned long intid, flags; 432 struct vgic_irq *irq; 433 int last_byte_offset = -1; 434 int ret = 0; 435 u8 pendmask; 436 437 xa_for_each(&dist->lpi_xa, intid, irq) { 438 int byte_offset, bit_nr; 439 440 byte_offset = intid / BITS_PER_BYTE; 441 bit_nr = intid % BITS_PER_BYTE; 442 443 /* 444 * For contiguously allocated LPIs chances are we just read 445 * this very same byte in the last iteration. Reuse that. 446 */ 447 if (byte_offset != last_byte_offset) { 448 ret = kvm_read_guest_lock(vcpu->kvm, 449 pendbase + byte_offset, 450 &pendmask, 1); 451 if (ret) 452 return ret; 453 454 last_byte_offset = byte_offset; 455 } 456 457 irq = vgic_get_irq(vcpu->kvm, intid); 458 if (!irq) 459 continue; 460 461 raw_spin_lock_irqsave(&irq->irq_lock, flags); 462 if (irq->target_vcpu == vcpu) 463 irq->pending_latch = pendmask & (1U << bit_nr); 464 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 465 vgic_put_irq(vcpu->kvm, irq); 466 } 467 468 return ret; 469 } 470 471 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 472 struct vgic_its *its, 473 gpa_t addr, unsigned int len) 474 { 475 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 476 u64 reg = GITS_TYPER_PLPIS; 477 478 /* 479 * We use linear CPU numbers for redistributor addressing, 480 * so GITS_TYPER.PTA is 0. 481 * Also we force all PROPBASER registers to be the same, so 482 * CommonLPIAff is 0 as well. 483 * To avoid memory waste in the guest, we keep the number of IDBits and 484 * DevBits low - as least for the time being. 485 */ 486 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 487 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 488 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 489 490 return extract_bytes(reg, addr & 7, len); 491 } 492 493 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 494 struct vgic_its *its, 495 gpa_t addr, unsigned int len) 496 { 497 u32 val; 498 499 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 500 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 501 return val; 502 } 503 504 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 505 struct vgic_its *its, 506 gpa_t addr, unsigned int len, 507 unsigned long val) 508 { 509 u32 rev = GITS_IIDR_REV(val); 510 511 if (rev >= NR_ITS_ABIS) 512 return -EINVAL; 513 return vgic_its_set_abi(its, rev); 514 } 515 516 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 517 struct vgic_its *its, 518 gpa_t addr, unsigned int len) 519 { 520 switch (addr & 0xffff) { 521 case GITS_PIDR0: 522 return 0x92; /* part number, bits[7:0] */ 523 case GITS_PIDR1: 524 return 0xb4; /* part number, bits[11:8] */ 525 case GITS_PIDR2: 526 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 527 case GITS_PIDR4: 528 return 0x40; /* This is a 64K software visible page */ 529 /* The following are the ID registers for (any) GIC. */ 530 case GITS_CIDR0: 531 return 0x0d; 532 case GITS_CIDR1: 533 return 0xf0; 534 case GITS_CIDR2: 535 return 0x05; 536 case GITS_CIDR3: 537 return 0xb1; 538 } 539 540 return 0; 541 } 542 543 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db) 544 { 545 struct kvm_io_device *kvm_io_dev; 546 struct vgic_io_device *iodev; 547 548 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db); 549 if (!kvm_io_dev) 550 return ERR_PTR(-EINVAL); 551 552 if (kvm_io_dev->ops != &kvm_io_gic_ops) 553 return ERR_PTR(-EINVAL); 554 555 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 556 if (iodev->iodev_type != IODEV_ITS) 557 return ERR_PTR(-EINVAL); 558 559 return iodev->its; 560 } 561 562 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid) 563 { 564 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid; 565 566 } 567 568 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 569 u32 devid, u32 eventid) 570 { 571 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 572 struct vgic_its *its; 573 struct vgic_irq *irq; 574 575 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID) 576 return NULL; 577 578 its = __vgic_doorbell_to_its(kvm, db); 579 if (IS_ERR(its)) 580 return NULL; 581 582 rcu_read_lock(); 583 584 irq = xa_load(&its->translation_cache, cache_key); 585 if (!vgic_try_get_irq_kref(irq)) 586 irq = NULL; 587 588 rcu_read_unlock(); 589 590 return irq; 591 } 592 593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 594 u32 devid, u32 eventid, 595 struct vgic_irq *irq) 596 { 597 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 598 struct vgic_irq *old; 599 600 /* Do not cache a directly injected interrupt */ 601 if (irq->hw) 602 return; 603 604 /* 605 * The irq refcount is guaranteed to be nonzero while holding the 606 * its_lock, as the ITE (and the reference it holds) cannot be freed. 607 */ 608 lockdep_assert_held(&its->its_lock); 609 vgic_get_irq_kref(irq); 610 611 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT); 612 613 /* 614 * Put the reference taken on @irq if the store fails. Intentionally do 615 * not return the error as the translation cache is best effort. 616 */ 617 if (xa_is_err(old)) { 618 vgic_put_irq(kvm, irq); 619 return; 620 } 621 622 /* 623 * We could have raced with another CPU caching the same 624 * translation behind our back, ensure we don't leak a 625 * reference if that is the case. 626 */ 627 if (old) 628 vgic_put_irq(kvm, old); 629 } 630 631 static void vgic_its_invalidate_cache(struct vgic_its *its) 632 { 633 struct kvm *kvm = its->dev->kvm; 634 struct vgic_irq *irq; 635 unsigned long idx; 636 637 xa_for_each(&its->translation_cache, idx, irq) { 638 xa_erase(&its->translation_cache, idx); 639 vgic_put_irq(kvm, irq); 640 } 641 } 642 643 void vgic_its_invalidate_all_caches(struct kvm *kvm) 644 { 645 struct kvm_device *dev; 646 struct vgic_its *its; 647 648 rcu_read_lock(); 649 650 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) { 651 if (dev->ops != &kvm_arm_vgic_its_ops) 652 continue; 653 654 its = dev->private; 655 vgic_its_invalidate_cache(its); 656 } 657 658 rcu_read_unlock(); 659 } 660 661 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 662 u32 devid, u32 eventid, struct vgic_irq **irq) 663 { 664 struct kvm_vcpu *vcpu; 665 struct its_ite *ite; 666 667 if (!its->enabled) 668 return -EBUSY; 669 670 ite = find_ite(its, devid, eventid); 671 if (!ite || !its_is_collection_mapped(ite->collection)) 672 return E_ITS_INT_UNMAPPED_INTERRUPT; 673 674 vcpu = collection_to_vcpu(kvm, ite->collection); 675 if (!vcpu) 676 return E_ITS_INT_UNMAPPED_INTERRUPT; 677 678 if (!vgic_lpis_enabled(vcpu)) 679 return -EBUSY; 680 681 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 682 683 *irq = ite->irq; 684 return 0; 685 } 686 687 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 688 { 689 u64 address; 690 691 if (!vgic_has_its(kvm)) 692 return ERR_PTR(-ENODEV); 693 694 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 695 return ERR_PTR(-EINVAL); 696 697 address = (u64)msi->address_hi << 32 | msi->address_lo; 698 699 return __vgic_doorbell_to_its(kvm, address); 700 } 701 702 /* 703 * Find the target VCPU and the LPI number for a given devid/eventid pair 704 * and make this IRQ pending, possibly injecting it. 705 * Must be called with the its_lock mutex held. 706 * Returns 0 on success, a positive error value for any ITS mapping 707 * related errors and negative error values for generic errors. 708 */ 709 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 710 u32 devid, u32 eventid) 711 { 712 struct vgic_irq *irq = NULL; 713 unsigned long flags; 714 int err; 715 716 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 717 if (err) 718 return err; 719 720 if (irq->hw) 721 return irq_set_irqchip_state(irq->host_irq, 722 IRQCHIP_STATE_PENDING, true); 723 724 raw_spin_lock_irqsave(&irq->irq_lock, flags); 725 irq->pending_latch = true; 726 vgic_queue_irq_unlock(kvm, irq, flags); 727 728 return 0; 729 } 730 731 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 732 { 733 struct vgic_irq *irq; 734 unsigned long flags; 735 phys_addr_t db; 736 737 db = (u64)msi->address_hi << 32 | msi->address_lo; 738 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 739 if (!irq) 740 return -EWOULDBLOCK; 741 742 raw_spin_lock_irqsave(&irq->irq_lock, flags); 743 irq->pending_latch = true; 744 vgic_queue_irq_unlock(kvm, irq, flags); 745 vgic_put_irq(kvm, irq); 746 747 return 0; 748 } 749 750 /* 751 * Queries the KVM IO bus framework to get the ITS pointer from the given 752 * doorbell address. 753 * We then call vgic_its_trigger_msi() with the decoded data. 754 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 755 */ 756 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 757 { 758 struct vgic_its *its; 759 int ret; 760 761 if (!vgic_its_inject_cached_translation(kvm, msi)) 762 return 1; 763 764 its = vgic_msi_to_its(kvm, msi); 765 if (IS_ERR(its)) 766 return PTR_ERR(its); 767 768 mutex_lock(&its->its_lock); 769 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 770 mutex_unlock(&its->its_lock); 771 772 if (ret < 0) 773 return ret; 774 775 /* 776 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 777 * if the guest has blocked the MSI. So we map any LPI mapping 778 * related error to that. 779 */ 780 if (ret) 781 return 0; 782 else 783 return 1; 784 } 785 786 /* Requires the its_lock to be held. */ 787 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 788 { 789 list_del(&ite->ite_list); 790 791 /* This put matches the get in vgic_add_lpi. */ 792 if (ite->irq) { 793 if (ite->irq->hw) 794 WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); 795 796 vgic_put_irq(kvm, ite->irq); 797 } 798 799 kfree(ite); 800 } 801 802 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 803 { 804 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 805 } 806 807 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 808 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 809 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 810 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 811 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 812 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 813 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 814 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 815 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 816 817 /* 818 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 819 * Must be called with the its_lock mutex held. 820 */ 821 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 822 u64 *its_cmd) 823 { 824 u32 device_id = its_cmd_get_deviceid(its_cmd); 825 u32 event_id = its_cmd_get_id(its_cmd); 826 struct its_ite *ite; 827 828 ite = find_ite(its, device_id, event_id); 829 if (ite && its_is_collection_mapped(ite->collection)) { 830 struct its_device *device = find_its_device(its, device_id); 831 int ite_esz = vgic_its_get_abi(its)->ite_esz; 832 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz; 833 /* 834 * Though the spec talks about removing the pending state, we 835 * don't bother here since we clear the ITTE anyway and the 836 * pending state is a property of the ITTE struct. 837 */ 838 vgic_its_invalidate_cache(its); 839 840 its_free_ite(kvm, ite); 841 842 return vgic_its_write_entry_lock(its, gpa, 0ULL, ite); 843 } 844 845 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 846 } 847 848 /* 849 * The MOVI command moves an ITTE to a different collection. 850 * Must be called with the its_lock mutex held. 851 */ 852 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 853 u64 *its_cmd) 854 { 855 u32 device_id = its_cmd_get_deviceid(its_cmd); 856 u32 event_id = its_cmd_get_id(its_cmd); 857 u32 coll_id = its_cmd_get_collection(its_cmd); 858 struct kvm_vcpu *vcpu; 859 struct its_ite *ite; 860 struct its_collection *collection; 861 862 ite = find_ite(its, device_id, event_id); 863 if (!ite) 864 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 865 866 if (!its_is_collection_mapped(ite->collection)) 867 return E_ITS_MOVI_UNMAPPED_COLLECTION; 868 869 collection = find_collection(its, coll_id); 870 if (!its_is_collection_mapped(collection)) 871 return E_ITS_MOVI_UNMAPPED_COLLECTION; 872 873 ite->collection = collection; 874 vcpu = collection_to_vcpu(kvm, collection); 875 876 vgic_its_invalidate_cache(its); 877 878 return update_affinity(ite->irq, vcpu); 879 } 880 881 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 882 { 883 gfn_t gfn = gpa >> PAGE_SHIFT; 884 int idx; 885 bool ret; 886 887 idx = srcu_read_lock(&its->dev->kvm->srcu); 888 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 889 srcu_read_unlock(&its->dev->kvm->srcu, idx); 890 return ret; 891 } 892 893 /* 894 * Check whether an ID can be stored into the corresponding guest table. 895 * For a direct table this is pretty easy, but gets a bit nasty for 896 * indirect tables. We check whether the resulting guest physical address 897 * is actually valid (covered by a memslot and guest accessible). 898 * For this we have to read the respective first level entry. 899 */ 900 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 901 gpa_t *eaddr) 902 { 903 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 904 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 905 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 906 int esz = GITS_BASER_ENTRY_SIZE(baser); 907 int index; 908 909 switch (type) { 910 case GITS_BASER_TYPE_DEVICE: 911 if (id > VITS_MAX_DEVID) 912 return false; 913 break; 914 case GITS_BASER_TYPE_COLLECTION: 915 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 916 if (id >= BIT_ULL(16)) 917 return false; 918 break; 919 default: 920 return false; 921 } 922 923 if (!(baser & GITS_BASER_INDIRECT)) { 924 phys_addr_t addr; 925 926 if (id >= (l1_tbl_size / esz)) 927 return false; 928 929 addr = base + id * esz; 930 931 if (eaddr) 932 *eaddr = addr; 933 934 return __is_visible_gfn_locked(its, addr); 935 } 936 937 /* calculate and check the index into the 1st level */ 938 index = id / (SZ_64K / esz); 939 if (index >= (l1_tbl_size / sizeof(u64))) 940 return false; 941 942 /* Each 1st level entry is represented by a 64-bit value. */ 943 if (kvm_read_guest_lock(its->dev->kvm, 944 base + index * sizeof(indirect_ptr), 945 &indirect_ptr, sizeof(indirect_ptr))) 946 return false; 947 948 indirect_ptr = le64_to_cpu(indirect_ptr); 949 950 /* check the valid bit of the first level entry */ 951 if (!(indirect_ptr & BIT_ULL(63))) 952 return false; 953 954 /* Mask the guest physical address and calculate the frame number. */ 955 indirect_ptr &= GENMASK_ULL(51, 16); 956 957 /* Find the address of the actual entry */ 958 index = id % (SZ_64K / esz); 959 indirect_ptr += index * esz; 960 961 if (eaddr) 962 *eaddr = indirect_ptr; 963 964 return __is_visible_gfn_locked(its, indirect_ptr); 965 } 966 967 /* 968 * Check whether an event ID can be stored in the corresponding Interrupt 969 * Translation Table, which starts at device->itt_addr. 970 */ 971 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 972 u32 event_id) 973 { 974 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 975 int ite_esz = abi->ite_esz; 976 gpa_t gpa; 977 978 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 979 if (event_id >= BIT_ULL(device->num_eventid_bits)) 980 return false; 981 982 gpa = device->itt_addr + event_id * ite_esz; 983 return __is_visible_gfn_locked(its, gpa); 984 } 985 986 /* 987 * Add a new collection into the ITS collection table. 988 * Returns 0 on success, and a negative error value for generic errors. 989 */ 990 static int vgic_its_alloc_collection(struct vgic_its *its, 991 struct its_collection **colp, 992 u32 coll_id) 993 { 994 struct its_collection *collection; 995 996 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 997 if (!collection) 998 return -ENOMEM; 999 1000 collection->collection_id = coll_id; 1001 collection->target_addr = COLLECTION_NOT_MAPPED; 1002 1003 list_add_tail(&collection->coll_list, &its->collection_list); 1004 *colp = collection; 1005 1006 return 0; 1007 } 1008 1009 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 1010 { 1011 struct its_collection *collection; 1012 struct its_device *device; 1013 struct its_ite *ite; 1014 1015 /* 1016 * Clearing the mapping for that collection ID removes the 1017 * entry from the list. If there wasn't any before, we can 1018 * go home early. 1019 */ 1020 collection = find_collection(its, coll_id); 1021 if (!collection) 1022 return; 1023 1024 for_each_lpi_its(device, ite, its) 1025 if (ite->collection && 1026 ite->collection->collection_id == coll_id) 1027 ite->collection = NULL; 1028 1029 list_del(&collection->coll_list); 1030 kfree(collection); 1031 } 1032 1033 /* Must be called with its_lock mutex held */ 1034 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1035 struct its_collection *collection, 1036 u32 event_id) 1037 { 1038 struct its_ite *ite; 1039 1040 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1041 if (!ite) 1042 return ERR_PTR(-ENOMEM); 1043 1044 ite->event_id = event_id; 1045 ite->collection = collection; 1046 1047 list_add_tail(&ite->ite_list, &device->itt_head); 1048 return ite; 1049 } 1050 1051 /* 1052 * The MAPTI and MAPI commands map LPIs to ITTEs. 1053 * Must be called with its_lock mutex held. 1054 */ 1055 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1056 u64 *its_cmd) 1057 { 1058 u32 device_id = its_cmd_get_deviceid(its_cmd); 1059 u32 event_id = its_cmd_get_id(its_cmd); 1060 u32 coll_id = its_cmd_get_collection(its_cmd); 1061 struct its_ite *ite; 1062 struct kvm_vcpu *vcpu = NULL; 1063 struct its_device *device; 1064 struct its_collection *collection, *new_coll = NULL; 1065 struct vgic_irq *irq; 1066 int lpi_nr; 1067 1068 device = find_its_device(its, device_id); 1069 if (!device) 1070 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1071 1072 if (!vgic_its_check_event_id(its, device, event_id)) 1073 return E_ITS_MAPTI_ID_OOR; 1074 1075 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1076 lpi_nr = its_cmd_get_physical_id(its_cmd); 1077 else 1078 lpi_nr = event_id; 1079 if (lpi_nr < GIC_LPI_OFFSET || 1080 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1081 return E_ITS_MAPTI_PHYSICALID_OOR; 1082 1083 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1084 if (find_ite(its, device_id, event_id)) 1085 return 0; 1086 1087 collection = find_collection(its, coll_id); 1088 if (!collection) { 1089 int ret; 1090 1091 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1092 return E_ITS_MAPC_COLLECTION_OOR; 1093 1094 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1095 if (ret) 1096 return ret; 1097 new_coll = collection; 1098 } 1099 1100 ite = vgic_its_alloc_ite(device, collection, event_id); 1101 if (IS_ERR(ite)) { 1102 if (new_coll) 1103 vgic_its_free_collection(its, coll_id); 1104 return PTR_ERR(ite); 1105 } 1106 1107 if (its_is_collection_mapped(collection)) 1108 vcpu = collection_to_vcpu(kvm, collection); 1109 1110 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1111 if (IS_ERR(irq)) { 1112 if (new_coll) 1113 vgic_its_free_collection(its, coll_id); 1114 its_free_ite(kvm, ite); 1115 return PTR_ERR(irq); 1116 } 1117 ite->irq = irq; 1118 1119 return 0; 1120 } 1121 1122 /* Requires the its_lock to be held. */ 1123 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its, 1124 struct its_device *device) 1125 { 1126 struct its_ite *ite, *temp; 1127 1128 /* 1129 * The spec says that unmapping a device with still valid 1130 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1131 * since we cannot leave the memory unreferenced. 1132 */ 1133 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1134 its_free_ite(kvm, ite); 1135 1136 vgic_its_invalidate_cache(its); 1137 1138 list_del(&device->dev_list); 1139 kfree(device); 1140 } 1141 1142 /* its lock must be held */ 1143 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1144 { 1145 struct its_device *cur, *temp; 1146 1147 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1148 vgic_its_free_device(kvm, its, cur); 1149 } 1150 1151 /* its lock must be held */ 1152 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1153 { 1154 struct its_collection *cur, *temp; 1155 1156 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1157 vgic_its_free_collection(its, cur->collection_id); 1158 } 1159 1160 /* Must be called with its_lock mutex held */ 1161 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1162 u32 device_id, gpa_t itt_addr, 1163 u8 num_eventid_bits) 1164 { 1165 struct its_device *device; 1166 1167 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1168 if (!device) 1169 return ERR_PTR(-ENOMEM); 1170 1171 device->device_id = device_id; 1172 device->itt_addr = itt_addr; 1173 device->num_eventid_bits = num_eventid_bits; 1174 INIT_LIST_HEAD(&device->itt_head); 1175 1176 list_add_tail(&device->dev_list, &its->device_list); 1177 return device; 1178 } 1179 1180 /* 1181 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1182 * Must be called with the its_lock mutex held. 1183 */ 1184 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1185 u64 *its_cmd) 1186 { 1187 u32 device_id = its_cmd_get_deviceid(its_cmd); 1188 bool valid = its_cmd_get_validbit(its_cmd); 1189 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1190 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1191 struct its_device *device; 1192 gpa_t gpa; 1193 1194 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa)) 1195 return E_ITS_MAPD_DEVICE_OOR; 1196 1197 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1198 return E_ITS_MAPD_ITTSIZE_OOR; 1199 1200 device = find_its_device(its, device_id); 1201 1202 /* 1203 * The spec says that calling MAPD on an already mapped device 1204 * invalidates all cached data for this device. We implement this 1205 * by removing the mapping and re-establishing it. 1206 */ 1207 if (device) 1208 vgic_its_free_device(kvm, its, device); 1209 1210 /* 1211 * The spec does not say whether unmapping a not-mapped device 1212 * is an error, so we are done in any case. 1213 */ 1214 if (!valid) 1215 return vgic_its_write_entry_lock(its, gpa, 0ULL, dte); 1216 1217 device = vgic_its_alloc_device(its, device_id, itt_addr, 1218 num_eventid_bits); 1219 1220 return PTR_ERR_OR_ZERO(device); 1221 } 1222 1223 /* 1224 * The MAPC command maps collection IDs to redistributors. 1225 * Must be called with the its_lock mutex held. 1226 */ 1227 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1228 u64 *its_cmd) 1229 { 1230 u16 coll_id; 1231 struct its_collection *collection; 1232 bool valid; 1233 1234 valid = its_cmd_get_validbit(its_cmd); 1235 coll_id = its_cmd_get_collection(its_cmd); 1236 1237 if (!valid) { 1238 vgic_its_free_collection(its, coll_id); 1239 vgic_its_invalidate_cache(its); 1240 } else { 1241 struct kvm_vcpu *vcpu; 1242 1243 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1244 if (!vcpu) 1245 return E_ITS_MAPC_PROCNUM_OOR; 1246 1247 collection = find_collection(its, coll_id); 1248 1249 if (!collection) { 1250 int ret; 1251 1252 if (!vgic_its_check_id(its, its->baser_coll_table, 1253 coll_id, NULL)) 1254 return E_ITS_MAPC_COLLECTION_OOR; 1255 1256 ret = vgic_its_alloc_collection(its, &collection, 1257 coll_id); 1258 if (ret) 1259 return ret; 1260 collection->target_addr = vcpu->vcpu_id; 1261 } else { 1262 collection->target_addr = vcpu->vcpu_id; 1263 update_affinity_collection(kvm, its, collection); 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * The CLEAR command removes the pending state for a particular LPI. 1272 * Must be called with the its_lock mutex held. 1273 */ 1274 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1275 u64 *its_cmd) 1276 { 1277 u32 device_id = its_cmd_get_deviceid(its_cmd); 1278 u32 event_id = its_cmd_get_id(its_cmd); 1279 struct its_ite *ite; 1280 1281 1282 ite = find_ite(its, device_id, event_id); 1283 if (!ite) 1284 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1285 1286 ite->irq->pending_latch = false; 1287 1288 if (ite->irq->hw) 1289 return irq_set_irqchip_state(ite->irq->host_irq, 1290 IRQCHIP_STATE_PENDING, false); 1291 1292 return 0; 1293 } 1294 1295 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1296 { 1297 return update_lpi_config(kvm, irq, NULL, true); 1298 } 1299 1300 /* 1301 * The INV command syncs the configuration bits from the memory table. 1302 * Must be called with the its_lock mutex held. 1303 */ 1304 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1305 u64 *its_cmd) 1306 { 1307 u32 device_id = its_cmd_get_deviceid(its_cmd); 1308 u32 event_id = its_cmd_get_id(its_cmd); 1309 struct its_ite *ite; 1310 1311 1312 ite = find_ite(its, device_id, event_id); 1313 if (!ite) 1314 return E_ITS_INV_UNMAPPED_INTERRUPT; 1315 1316 return vgic_its_inv_lpi(kvm, ite->irq); 1317 } 1318 1319 /** 1320 * vgic_its_invall - invalidate all LPIs targeting a given vcpu 1321 * @vcpu: the vcpu for which the RD is targeted by an invalidation 1322 * 1323 * Contrary to the INVALL command, this targets a RD instead of a 1324 * collection, and we don't need to hold the its_lock, since no ITS is 1325 * involved here. 1326 */ 1327 int vgic_its_invall(struct kvm_vcpu *vcpu) 1328 { 1329 struct kvm *kvm = vcpu->kvm; 1330 struct vgic_dist *dist = &kvm->arch.vgic; 1331 struct vgic_irq *irq; 1332 unsigned long intid; 1333 1334 xa_for_each(&dist->lpi_xa, intid, irq) { 1335 irq = vgic_get_irq(kvm, intid); 1336 if (!irq) 1337 continue; 1338 1339 update_lpi_config(kvm, irq, vcpu, false); 1340 vgic_put_irq(kvm, irq); 1341 } 1342 1343 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1344 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1345 1346 return 0; 1347 } 1348 1349 /* 1350 * The INVALL command requests flushing of all IRQ data in this collection. 1351 * Find the VCPU mapped to that collection, then iterate over the VM's list 1352 * of mapped LPIs and update the configuration for each IRQ which targets 1353 * the specified vcpu. The configuration will be read from the in-memory 1354 * configuration table. 1355 * Must be called with the its_lock mutex held. 1356 */ 1357 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1358 u64 *its_cmd) 1359 { 1360 u32 coll_id = its_cmd_get_collection(its_cmd); 1361 struct its_collection *collection; 1362 struct kvm_vcpu *vcpu; 1363 1364 collection = find_collection(its, coll_id); 1365 if (!its_is_collection_mapped(collection)) 1366 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1367 1368 vcpu = collection_to_vcpu(kvm, collection); 1369 vgic_its_invall(vcpu); 1370 1371 return 0; 1372 } 1373 1374 /* 1375 * The MOVALL command moves the pending state of all IRQs targeting one 1376 * redistributor to another. We don't hold the pending state in the VCPUs, 1377 * but in the IRQs instead, so there is really not much to do for us here. 1378 * However the spec says that no IRQ must target the old redistributor 1379 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1380 * This command affects all LPIs in the system that target that redistributor. 1381 */ 1382 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1383 u64 *its_cmd) 1384 { 1385 struct vgic_dist *dist = &kvm->arch.vgic; 1386 struct kvm_vcpu *vcpu1, *vcpu2; 1387 struct vgic_irq *irq; 1388 unsigned long intid; 1389 1390 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */ 1391 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1392 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32)); 1393 1394 if (!vcpu1 || !vcpu2) 1395 return E_ITS_MOVALL_PROCNUM_OOR; 1396 1397 if (vcpu1 == vcpu2) 1398 return 0; 1399 1400 xa_for_each(&dist->lpi_xa, intid, irq) { 1401 irq = vgic_get_irq(kvm, intid); 1402 if (!irq) 1403 continue; 1404 1405 update_affinity(irq, vcpu2); 1406 1407 vgic_put_irq(kvm, irq); 1408 } 1409 1410 vgic_its_invalidate_cache(its); 1411 1412 return 0; 1413 } 1414 1415 /* 1416 * The INT command injects the LPI associated with that DevID/EvID pair. 1417 * Must be called with the its_lock mutex held. 1418 */ 1419 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1420 u64 *its_cmd) 1421 { 1422 u32 msi_data = its_cmd_get_id(its_cmd); 1423 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1424 1425 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1426 } 1427 1428 /* 1429 * This function is called with the its_cmd lock held, but the ITS data 1430 * structure lock dropped. 1431 */ 1432 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1433 u64 *its_cmd) 1434 { 1435 int ret = -ENODEV; 1436 1437 mutex_lock(&its->its_lock); 1438 switch (its_cmd_get_command(its_cmd)) { 1439 case GITS_CMD_MAPD: 1440 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1441 break; 1442 case GITS_CMD_MAPC: 1443 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1444 break; 1445 case GITS_CMD_MAPI: 1446 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1447 break; 1448 case GITS_CMD_MAPTI: 1449 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1450 break; 1451 case GITS_CMD_MOVI: 1452 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1453 break; 1454 case GITS_CMD_DISCARD: 1455 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1456 break; 1457 case GITS_CMD_CLEAR: 1458 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1459 break; 1460 case GITS_CMD_MOVALL: 1461 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1462 break; 1463 case GITS_CMD_INT: 1464 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1465 break; 1466 case GITS_CMD_INV: 1467 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1468 break; 1469 case GITS_CMD_INVALL: 1470 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1471 break; 1472 case GITS_CMD_SYNC: 1473 /* we ignore this command: we are in sync all of the time */ 1474 ret = 0; 1475 break; 1476 } 1477 mutex_unlock(&its->its_lock); 1478 1479 return ret; 1480 } 1481 1482 static u64 vgic_sanitise_its_baser(u64 reg) 1483 { 1484 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1485 GITS_BASER_SHAREABILITY_SHIFT, 1486 vgic_sanitise_shareability); 1487 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1488 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1489 vgic_sanitise_inner_cacheability); 1490 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1491 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1492 vgic_sanitise_outer_cacheability); 1493 1494 /* We support only one (ITS) page size: 64K */ 1495 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1496 1497 return reg; 1498 } 1499 1500 static u64 vgic_sanitise_its_cbaser(u64 reg) 1501 { 1502 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1503 GITS_CBASER_SHAREABILITY_SHIFT, 1504 vgic_sanitise_shareability); 1505 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1506 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1507 vgic_sanitise_inner_cacheability); 1508 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1509 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1510 vgic_sanitise_outer_cacheability); 1511 1512 /* Sanitise the physical address to be 64k aligned. */ 1513 reg &= ~GENMASK_ULL(15, 12); 1514 1515 return reg; 1516 } 1517 1518 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1519 struct vgic_its *its, 1520 gpa_t addr, unsigned int len) 1521 { 1522 return extract_bytes(its->cbaser, addr & 7, len); 1523 } 1524 1525 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1526 gpa_t addr, unsigned int len, 1527 unsigned long val) 1528 { 1529 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1530 if (its->enabled) 1531 return; 1532 1533 mutex_lock(&its->cmd_lock); 1534 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1535 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1536 its->creadr = 0; 1537 /* 1538 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1539 * it to CREADR to make sure we start with an empty command buffer. 1540 */ 1541 its->cwriter = its->creadr; 1542 mutex_unlock(&its->cmd_lock); 1543 } 1544 1545 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1546 #define ITS_CMD_SIZE 32 1547 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1548 1549 /* Must be called with the cmd_lock held. */ 1550 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1551 { 1552 gpa_t cbaser; 1553 u64 cmd_buf[4]; 1554 1555 /* Commands are only processed when the ITS is enabled. */ 1556 if (!its->enabled) 1557 return; 1558 1559 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1560 1561 while (its->cwriter != its->creadr) { 1562 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1563 cmd_buf, ITS_CMD_SIZE); 1564 /* 1565 * If kvm_read_guest() fails, this could be due to the guest 1566 * programming a bogus value in CBASER or something else going 1567 * wrong from which we cannot easily recover. 1568 * According to section 6.3.2 in the GICv3 spec we can just 1569 * ignore that command then. 1570 */ 1571 if (!ret) 1572 vgic_its_handle_command(kvm, its, cmd_buf); 1573 1574 its->creadr += ITS_CMD_SIZE; 1575 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1576 its->creadr = 0; 1577 } 1578 } 1579 1580 /* 1581 * By writing to CWRITER the guest announces new commands to be processed. 1582 * To avoid any races in the first place, we take the its_cmd lock, which 1583 * protects our ring buffer variables, so that there is only one user 1584 * per ITS handling commands at a given time. 1585 */ 1586 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1587 gpa_t addr, unsigned int len, 1588 unsigned long val) 1589 { 1590 u64 reg; 1591 1592 if (!its) 1593 return; 1594 1595 mutex_lock(&its->cmd_lock); 1596 1597 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1598 reg = ITS_CMD_OFFSET(reg); 1599 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1600 mutex_unlock(&its->cmd_lock); 1601 return; 1602 } 1603 its->cwriter = reg; 1604 1605 vgic_its_process_commands(kvm, its); 1606 1607 mutex_unlock(&its->cmd_lock); 1608 } 1609 1610 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1611 struct vgic_its *its, 1612 gpa_t addr, unsigned int len) 1613 { 1614 return extract_bytes(its->cwriter, addr & 0x7, len); 1615 } 1616 1617 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1618 struct vgic_its *its, 1619 gpa_t addr, unsigned int len) 1620 { 1621 return extract_bytes(its->creadr, addr & 0x7, len); 1622 } 1623 1624 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1625 struct vgic_its *its, 1626 gpa_t addr, unsigned int len, 1627 unsigned long val) 1628 { 1629 u32 cmd_offset; 1630 int ret = 0; 1631 1632 mutex_lock(&its->cmd_lock); 1633 1634 if (its->enabled) { 1635 ret = -EBUSY; 1636 goto out; 1637 } 1638 1639 cmd_offset = ITS_CMD_OFFSET(val); 1640 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1641 ret = -EINVAL; 1642 goto out; 1643 } 1644 1645 its->creadr = cmd_offset; 1646 out: 1647 mutex_unlock(&its->cmd_lock); 1648 return ret; 1649 } 1650 1651 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1652 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1653 struct vgic_its *its, 1654 gpa_t addr, unsigned int len) 1655 { 1656 u64 reg; 1657 1658 switch (BASER_INDEX(addr)) { 1659 case 0: 1660 reg = its->baser_device_table; 1661 break; 1662 case 1: 1663 reg = its->baser_coll_table; 1664 break; 1665 default: 1666 reg = 0; 1667 break; 1668 } 1669 1670 return extract_bytes(reg, addr & 7, len); 1671 } 1672 1673 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1674 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1675 struct vgic_its *its, 1676 gpa_t addr, unsigned int len, 1677 unsigned long val) 1678 { 1679 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1680 u64 entry_size, table_type; 1681 u64 reg, *regptr, clearbits = 0; 1682 1683 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1684 if (its->enabled) 1685 return; 1686 1687 switch (BASER_INDEX(addr)) { 1688 case 0: 1689 regptr = &its->baser_device_table; 1690 entry_size = abi->dte_esz; 1691 table_type = GITS_BASER_TYPE_DEVICE; 1692 break; 1693 case 1: 1694 regptr = &its->baser_coll_table; 1695 entry_size = abi->cte_esz; 1696 table_type = GITS_BASER_TYPE_COLLECTION; 1697 clearbits = GITS_BASER_INDIRECT; 1698 break; 1699 default: 1700 return; 1701 } 1702 1703 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1704 reg &= ~GITS_BASER_RO_MASK; 1705 reg &= ~clearbits; 1706 1707 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1708 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1709 reg = vgic_sanitise_its_baser(reg); 1710 1711 *regptr = reg; 1712 1713 if (!(reg & GITS_BASER_VALID)) { 1714 /* Take the its_lock to prevent a race with a save/restore */ 1715 mutex_lock(&its->its_lock); 1716 switch (table_type) { 1717 case GITS_BASER_TYPE_DEVICE: 1718 vgic_its_free_device_list(kvm, its); 1719 break; 1720 case GITS_BASER_TYPE_COLLECTION: 1721 vgic_its_free_collection_list(kvm, its); 1722 break; 1723 } 1724 mutex_unlock(&its->its_lock); 1725 } 1726 } 1727 1728 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1729 struct vgic_its *its, 1730 gpa_t addr, unsigned int len) 1731 { 1732 u32 reg = 0; 1733 1734 mutex_lock(&its->cmd_lock); 1735 if (its->creadr == its->cwriter) 1736 reg |= GITS_CTLR_QUIESCENT; 1737 if (its->enabled) 1738 reg |= GITS_CTLR_ENABLE; 1739 mutex_unlock(&its->cmd_lock); 1740 1741 return reg; 1742 } 1743 1744 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1745 gpa_t addr, unsigned int len, 1746 unsigned long val) 1747 { 1748 mutex_lock(&its->cmd_lock); 1749 1750 /* 1751 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1752 * device/collection BASER are invalid 1753 */ 1754 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1755 (!(its->baser_device_table & GITS_BASER_VALID) || 1756 !(its->baser_coll_table & GITS_BASER_VALID) || 1757 !(its->cbaser & GITS_CBASER_VALID))) 1758 goto out; 1759 1760 its->enabled = !!(val & GITS_CTLR_ENABLE); 1761 if (!its->enabled) 1762 vgic_its_invalidate_cache(its); 1763 1764 /* 1765 * Try to process any pending commands. This function bails out early 1766 * if the ITS is disabled or no commands have been queued. 1767 */ 1768 vgic_its_process_commands(kvm, its); 1769 1770 out: 1771 mutex_unlock(&its->cmd_lock); 1772 } 1773 1774 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1775 { \ 1776 .reg_offset = off, \ 1777 .len = length, \ 1778 .access_flags = acc, \ 1779 .its_read = rd, \ 1780 .its_write = wr, \ 1781 } 1782 1783 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1784 { \ 1785 .reg_offset = off, \ 1786 .len = length, \ 1787 .access_flags = acc, \ 1788 .its_read = rd, \ 1789 .its_write = wr, \ 1790 .uaccess_its_write = uwr, \ 1791 } 1792 1793 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1794 gpa_t addr, unsigned int len, unsigned long val) 1795 { 1796 /* Ignore */ 1797 } 1798 1799 static struct vgic_register_region its_registers[] = { 1800 REGISTER_ITS_DESC(GITS_CTLR, 1801 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1802 VGIC_ACCESS_32bit), 1803 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1804 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1805 vgic_mmio_uaccess_write_its_iidr, 4, 1806 VGIC_ACCESS_32bit), 1807 REGISTER_ITS_DESC(GITS_TYPER, 1808 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1809 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1810 REGISTER_ITS_DESC(GITS_CBASER, 1811 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1812 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1813 REGISTER_ITS_DESC(GITS_CWRITER, 1814 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1815 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1816 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1817 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1818 vgic_mmio_uaccess_write_its_creadr, 8, 1819 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1820 REGISTER_ITS_DESC(GITS_BASER, 1821 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1822 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1823 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1824 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1825 VGIC_ACCESS_32bit), 1826 }; 1827 1828 /* This is called on setting the LPI enable bit in the redistributor. */ 1829 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1830 { 1831 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1832 its_sync_lpi_pending_table(vcpu); 1833 } 1834 1835 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1836 u64 addr) 1837 { 1838 struct vgic_io_device *iodev = &its->iodev; 1839 int ret; 1840 1841 mutex_lock(&kvm->slots_lock); 1842 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1843 ret = -EBUSY; 1844 goto out; 1845 } 1846 1847 its->vgic_its_base = addr; 1848 iodev->regions = its_registers; 1849 iodev->nr_regions = ARRAY_SIZE(its_registers); 1850 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1851 1852 iodev->base_addr = its->vgic_its_base; 1853 iodev->iodev_type = IODEV_ITS; 1854 iodev->its = its; 1855 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1856 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1857 out: 1858 mutex_unlock(&kvm->slots_lock); 1859 1860 return ret; 1861 } 1862 1863 #define INITIAL_BASER_VALUE \ 1864 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1865 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1866 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1867 GITS_BASER_PAGE_SIZE_64K) 1868 1869 #define INITIAL_PROPBASER_VALUE \ 1870 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1871 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1872 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1873 1874 static int vgic_its_create(struct kvm_device *dev, u32 type) 1875 { 1876 int ret; 1877 struct vgic_its *its; 1878 1879 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1880 return -ENODEV; 1881 1882 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1883 if (!its) 1884 return -ENOMEM; 1885 1886 mutex_lock(&dev->kvm->arch.config_lock); 1887 1888 if (vgic_initialized(dev->kvm)) { 1889 ret = vgic_v4_init(dev->kvm); 1890 if (ret < 0) { 1891 mutex_unlock(&dev->kvm->arch.config_lock); 1892 kfree(its); 1893 return ret; 1894 } 1895 } 1896 1897 mutex_init(&its->its_lock); 1898 mutex_init(&its->cmd_lock); 1899 1900 /* Yep, even more trickery for lock ordering... */ 1901 #ifdef CONFIG_LOCKDEP 1902 mutex_lock(&its->cmd_lock); 1903 mutex_lock(&its->its_lock); 1904 mutex_unlock(&its->its_lock); 1905 mutex_unlock(&its->cmd_lock); 1906 #endif 1907 1908 its->vgic_its_base = VGIC_ADDR_UNDEF; 1909 1910 INIT_LIST_HEAD(&its->device_list); 1911 INIT_LIST_HEAD(&its->collection_list); 1912 xa_init(&its->translation_cache); 1913 1914 dev->kvm->arch.vgic.msis_require_devid = true; 1915 dev->kvm->arch.vgic.has_its = true; 1916 its->enabled = false; 1917 its->dev = dev; 1918 1919 its->baser_device_table = INITIAL_BASER_VALUE | 1920 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1921 its->baser_coll_table = INITIAL_BASER_VALUE | 1922 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1923 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1924 1925 dev->private = its; 1926 1927 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1928 1929 mutex_unlock(&dev->kvm->arch.config_lock); 1930 1931 return ret; 1932 } 1933 1934 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1935 { 1936 struct kvm *kvm = kvm_dev->kvm; 1937 struct vgic_its *its = kvm_dev->private; 1938 1939 mutex_lock(&its->its_lock); 1940 1941 vgic_its_free_device_list(kvm, its); 1942 vgic_its_free_collection_list(kvm, its); 1943 vgic_its_invalidate_cache(its); 1944 xa_destroy(&its->translation_cache); 1945 1946 mutex_unlock(&its->its_lock); 1947 kfree(its); 1948 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1949 } 1950 1951 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1952 struct kvm_device_attr *attr) 1953 { 1954 const struct vgic_register_region *region; 1955 gpa_t offset = attr->attr; 1956 int align; 1957 1958 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1959 1960 if (offset & align) 1961 return -EINVAL; 1962 1963 region = vgic_find_mmio_region(its_registers, 1964 ARRAY_SIZE(its_registers), 1965 offset); 1966 if (!region) 1967 return -ENXIO; 1968 1969 return 0; 1970 } 1971 1972 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1973 struct kvm_device_attr *attr, 1974 u64 *reg, bool is_write) 1975 { 1976 const struct vgic_register_region *region; 1977 struct vgic_its *its; 1978 gpa_t addr, offset; 1979 unsigned int len; 1980 int align, ret = 0; 1981 1982 its = dev->private; 1983 offset = attr->attr; 1984 1985 /* 1986 * Although the spec supports upper/lower 32-bit accesses to 1987 * 64-bit ITS registers, the userspace ABI requires 64-bit 1988 * accesses to all 64-bit wide registers. We therefore only 1989 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1990 * registers 1991 */ 1992 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1993 align = 0x3; 1994 else 1995 align = 0x7; 1996 1997 if (offset & align) 1998 return -EINVAL; 1999 2000 mutex_lock(&dev->kvm->lock); 2001 2002 if (!lock_all_vcpus(dev->kvm)) { 2003 mutex_unlock(&dev->kvm->lock); 2004 return -EBUSY; 2005 } 2006 2007 mutex_lock(&dev->kvm->arch.config_lock); 2008 2009 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 2010 ret = -ENXIO; 2011 goto out; 2012 } 2013 2014 region = vgic_find_mmio_region(its_registers, 2015 ARRAY_SIZE(its_registers), 2016 offset); 2017 if (!region) { 2018 ret = -ENXIO; 2019 goto out; 2020 } 2021 2022 addr = its->vgic_its_base + offset; 2023 2024 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 2025 2026 if (is_write) { 2027 if (region->uaccess_its_write) 2028 ret = region->uaccess_its_write(dev->kvm, its, addr, 2029 len, *reg); 2030 else 2031 region->its_write(dev->kvm, its, addr, len, *reg); 2032 } else { 2033 *reg = region->its_read(dev->kvm, its, addr, len); 2034 } 2035 out: 2036 mutex_unlock(&dev->kvm->arch.config_lock); 2037 unlock_all_vcpus(dev->kvm); 2038 mutex_unlock(&dev->kvm->lock); 2039 return ret; 2040 } 2041 2042 static u32 compute_next_devid_offset(struct list_head *h, 2043 struct its_device *dev) 2044 { 2045 struct its_device *next; 2046 u32 next_offset; 2047 2048 if (list_is_last(&dev->dev_list, h)) 2049 return 0; 2050 next = list_next_entry(dev, dev_list); 2051 next_offset = next->device_id - dev->device_id; 2052 2053 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2054 } 2055 2056 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2057 { 2058 struct its_ite *next; 2059 u32 next_offset; 2060 2061 if (list_is_last(&ite->ite_list, h)) 2062 return 0; 2063 next = list_next_entry(ite, ite_list); 2064 next_offset = next->event_id - ite->event_id; 2065 2066 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2067 } 2068 2069 /** 2070 * typedef entry_fn_t - Callback called on a table entry restore path 2071 * @its: its handle 2072 * @id: id of the entry 2073 * @entry: pointer to the entry 2074 * @opaque: pointer to an opaque data 2075 * 2076 * Return: < 0 on error, 0 if last element was identified, id offset to next 2077 * element otherwise 2078 */ 2079 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2080 void *opaque); 2081 2082 /** 2083 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2084 * to each entry 2085 * 2086 * @its: its handle 2087 * @base: base gpa of the table 2088 * @size: size of the table in bytes 2089 * @esz: entry size in bytes 2090 * @start_id: the ID of the first entry in the table 2091 * (non zero for 2d level tables) 2092 * @fn: function to apply on each entry 2093 * @opaque: pointer to opaque data 2094 * 2095 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2096 * (the last element may not be found on second level tables) 2097 */ 2098 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2099 int start_id, entry_fn_t fn, void *opaque) 2100 { 2101 struct kvm *kvm = its->dev->kvm; 2102 unsigned long len = size; 2103 int id = start_id; 2104 gpa_t gpa = base; 2105 char entry[ESZ_MAX]; 2106 int ret; 2107 2108 memset(entry, 0, esz); 2109 2110 while (true) { 2111 int next_offset; 2112 size_t byte_offset; 2113 2114 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2115 if (ret) 2116 return ret; 2117 2118 next_offset = fn(its, id, entry, opaque); 2119 if (next_offset <= 0) 2120 return next_offset; 2121 2122 byte_offset = next_offset * esz; 2123 if (byte_offset >= len) 2124 break; 2125 2126 id += next_offset; 2127 gpa += byte_offset; 2128 len -= byte_offset; 2129 } 2130 return 1; 2131 } 2132 2133 /* 2134 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2135 */ 2136 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2137 struct its_ite *ite, gpa_t gpa) 2138 { 2139 u32 next_offset; 2140 u64 val; 2141 2142 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2143 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2144 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2145 ite->collection->collection_id; 2146 val = cpu_to_le64(val); 2147 2148 return vgic_its_write_entry_lock(its, gpa, val, ite); 2149 } 2150 2151 /** 2152 * vgic_its_restore_ite - restore an interrupt translation entry 2153 * 2154 * @its: its handle 2155 * @event_id: id used for indexing 2156 * @ptr: pointer to the ITE entry 2157 * @opaque: pointer to the its_device 2158 */ 2159 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2160 void *ptr, void *opaque) 2161 { 2162 struct its_device *dev = opaque; 2163 struct its_collection *collection; 2164 struct kvm *kvm = its->dev->kvm; 2165 struct kvm_vcpu *vcpu = NULL; 2166 u64 val; 2167 u64 *p = (u64 *)ptr; 2168 struct vgic_irq *irq; 2169 u32 coll_id, lpi_id; 2170 struct its_ite *ite; 2171 u32 offset; 2172 2173 val = *p; 2174 2175 val = le64_to_cpu(val); 2176 2177 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2178 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2179 2180 if (!lpi_id) 2181 return 1; /* invalid entry, no choice but to scan next entry */ 2182 2183 if (lpi_id < VGIC_MIN_LPI) 2184 return -EINVAL; 2185 2186 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2187 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2188 return -EINVAL; 2189 2190 collection = find_collection(its, coll_id); 2191 if (!collection) 2192 return -EINVAL; 2193 2194 if (!vgic_its_check_event_id(its, dev, event_id)) 2195 return -EINVAL; 2196 2197 ite = vgic_its_alloc_ite(dev, collection, event_id); 2198 if (IS_ERR(ite)) 2199 return PTR_ERR(ite); 2200 2201 if (its_is_collection_mapped(collection)) 2202 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr); 2203 2204 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2205 if (IS_ERR(irq)) { 2206 its_free_ite(kvm, ite); 2207 return PTR_ERR(irq); 2208 } 2209 ite->irq = irq; 2210 2211 return offset; 2212 } 2213 2214 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2215 const struct list_head *b) 2216 { 2217 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2218 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2219 2220 if (itea->event_id < iteb->event_id) 2221 return -1; 2222 else 2223 return 1; 2224 } 2225 2226 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2227 { 2228 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2229 gpa_t base = device->itt_addr; 2230 struct its_ite *ite; 2231 int ret; 2232 int ite_esz = abi->ite_esz; 2233 2234 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2235 2236 list_for_each_entry(ite, &device->itt_head, ite_list) { 2237 gpa_t gpa = base + ite->event_id * ite_esz; 2238 2239 /* 2240 * If an LPI carries the HW bit, this means that this 2241 * interrupt is controlled by GICv4, and we do not 2242 * have direct access to that state without GICv4.1. 2243 * Let's simply fail the save operation... 2244 */ 2245 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2246 return -EACCES; 2247 2248 ret = vgic_its_save_ite(its, device, ite, gpa); 2249 if (ret) 2250 return ret; 2251 } 2252 return 0; 2253 } 2254 2255 /** 2256 * vgic_its_restore_itt - restore the ITT of a device 2257 * 2258 * @its: its handle 2259 * @dev: device handle 2260 * 2261 * Return 0 on success, < 0 on error 2262 */ 2263 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2264 { 2265 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2266 gpa_t base = dev->itt_addr; 2267 int ret; 2268 int ite_esz = abi->ite_esz; 2269 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2270 2271 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2272 vgic_its_restore_ite, dev); 2273 2274 /* scan_its_table returns +1 if all ITEs are invalid */ 2275 if (ret > 0) 2276 ret = 0; 2277 2278 return ret; 2279 } 2280 2281 /** 2282 * vgic_its_save_dte - Save a device table entry at a given GPA 2283 * 2284 * @its: ITS handle 2285 * @dev: ITS device 2286 * @ptr: GPA 2287 */ 2288 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2289 gpa_t ptr) 2290 { 2291 u64 val, itt_addr_field; 2292 u32 next_offset; 2293 2294 itt_addr_field = dev->itt_addr >> 8; 2295 next_offset = compute_next_devid_offset(&its->device_list, dev); 2296 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2297 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2298 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2299 (dev->num_eventid_bits - 1)); 2300 val = cpu_to_le64(val); 2301 2302 return vgic_its_write_entry_lock(its, ptr, val, dte); 2303 } 2304 2305 /** 2306 * vgic_its_restore_dte - restore a device table entry 2307 * 2308 * @its: its handle 2309 * @id: device id the DTE corresponds to 2310 * @ptr: kernel VA where the 8 byte DTE is located 2311 * @opaque: unused 2312 * 2313 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2314 * next dte otherwise 2315 */ 2316 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2317 void *ptr, void *opaque) 2318 { 2319 struct its_device *dev; 2320 u64 baser = its->baser_device_table; 2321 gpa_t itt_addr; 2322 u8 num_eventid_bits; 2323 u64 entry = *(u64 *)ptr; 2324 bool valid; 2325 u32 offset; 2326 int ret; 2327 2328 entry = le64_to_cpu(entry); 2329 2330 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2331 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2332 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2333 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2334 2335 if (!valid) 2336 return 1; 2337 2338 /* dte entry is valid */ 2339 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2340 2341 if (!vgic_its_check_id(its, baser, id, NULL)) 2342 return -EINVAL; 2343 2344 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2345 if (IS_ERR(dev)) 2346 return PTR_ERR(dev); 2347 2348 ret = vgic_its_restore_itt(its, dev); 2349 if (ret) { 2350 vgic_its_free_device(its->dev->kvm, its, dev); 2351 return ret; 2352 } 2353 2354 return offset; 2355 } 2356 2357 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2358 const struct list_head *b) 2359 { 2360 struct its_device *deva = container_of(a, struct its_device, dev_list); 2361 struct its_device *devb = container_of(b, struct its_device, dev_list); 2362 2363 if (deva->device_id < devb->device_id) 2364 return -1; 2365 else 2366 return 1; 2367 } 2368 2369 /* 2370 * vgic_its_save_device_tables - Save the device table and all ITT 2371 * into guest RAM 2372 * 2373 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2374 * returns the GPA of the device entry 2375 */ 2376 static int vgic_its_save_device_tables(struct vgic_its *its) 2377 { 2378 u64 baser = its->baser_device_table; 2379 struct its_device *dev; 2380 2381 if (!(baser & GITS_BASER_VALID)) 2382 return 0; 2383 2384 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2385 2386 list_for_each_entry(dev, &its->device_list, dev_list) { 2387 int ret; 2388 gpa_t eaddr; 2389 2390 if (!vgic_its_check_id(its, baser, 2391 dev->device_id, &eaddr)) 2392 return -EINVAL; 2393 2394 ret = vgic_its_save_itt(its, dev); 2395 if (ret) 2396 return ret; 2397 2398 ret = vgic_its_save_dte(its, dev, eaddr); 2399 if (ret) 2400 return ret; 2401 } 2402 return 0; 2403 } 2404 2405 /** 2406 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2407 * 2408 * @its: its handle 2409 * @id: index of the entry in the L1 table 2410 * @addr: kernel VA 2411 * @opaque: unused 2412 * 2413 * L1 table entries are scanned by steps of 1 entry 2414 * Return < 0 if error, 0 if last dte was found when scanning the L2 2415 * table, +1 otherwise (meaning next L1 entry must be scanned) 2416 */ 2417 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2418 void *opaque) 2419 { 2420 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2421 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2422 u64 entry = *(u64 *)addr; 2423 int dte_esz = abi->dte_esz; 2424 gpa_t gpa; 2425 int ret; 2426 2427 entry = le64_to_cpu(entry); 2428 2429 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2430 return 1; 2431 2432 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2433 2434 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2435 l2_start_id, vgic_its_restore_dte, NULL); 2436 2437 return ret; 2438 } 2439 2440 /* 2441 * vgic_its_restore_device_tables - Restore the device table and all ITT 2442 * from guest RAM to internal data structs 2443 */ 2444 static int vgic_its_restore_device_tables(struct vgic_its *its) 2445 { 2446 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2447 u64 baser = its->baser_device_table; 2448 int l1_esz, ret; 2449 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2450 gpa_t l1_gpa; 2451 2452 if (!(baser & GITS_BASER_VALID)) 2453 return 0; 2454 2455 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2456 2457 if (baser & GITS_BASER_INDIRECT) { 2458 l1_esz = GITS_LVL1_ENTRY_SIZE; 2459 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2460 handle_l1_dte, NULL); 2461 } else { 2462 l1_esz = abi->dte_esz; 2463 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2464 vgic_its_restore_dte, NULL); 2465 } 2466 2467 /* scan_its_table returns +1 if all entries are invalid */ 2468 if (ret > 0) 2469 ret = 0; 2470 2471 if (ret < 0) 2472 vgic_its_free_device_list(its->dev->kvm, its); 2473 2474 return ret; 2475 } 2476 2477 static int vgic_its_save_cte(struct vgic_its *its, 2478 struct its_collection *collection, 2479 gpa_t gpa) 2480 { 2481 u64 val; 2482 2483 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2484 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2485 collection->collection_id); 2486 val = cpu_to_le64(val); 2487 2488 return vgic_its_write_entry_lock(its, gpa, val, cte); 2489 } 2490 2491 /* 2492 * Restore a collection entry into the ITS collection table. 2493 * Return +1 on success, 0 if the entry was invalid (which should be 2494 * interpreted as end-of-table), and a negative error value for generic errors. 2495 */ 2496 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa) 2497 { 2498 struct its_collection *collection; 2499 struct kvm *kvm = its->dev->kvm; 2500 u32 target_addr, coll_id; 2501 u64 val; 2502 int ret; 2503 2504 ret = vgic_its_read_entry_lock(its, gpa, &val, cte); 2505 if (ret) 2506 return ret; 2507 val = le64_to_cpu(val); 2508 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2509 return 0; 2510 2511 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2512 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2513 2514 if (target_addr != COLLECTION_NOT_MAPPED && 2515 !kvm_get_vcpu_by_id(kvm, target_addr)) 2516 return -EINVAL; 2517 2518 collection = find_collection(its, coll_id); 2519 if (collection) 2520 return -EEXIST; 2521 2522 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2523 return -EINVAL; 2524 2525 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2526 if (ret) 2527 return ret; 2528 collection->target_addr = target_addr; 2529 return 1; 2530 } 2531 2532 /* 2533 * vgic_its_save_collection_table - Save the collection table into 2534 * guest RAM 2535 */ 2536 static int vgic_its_save_collection_table(struct vgic_its *its) 2537 { 2538 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2539 u64 baser = its->baser_coll_table; 2540 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2541 struct its_collection *collection; 2542 size_t max_size, filled = 0; 2543 int ret, cte_esz = abi->cte_esz; 2544 2545 if (!(baser & GITS_BASER_VALID)) 2546 return 0; 2547 2548 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2549 2550 list_for_each_entry(collection, &its->collection_list, coll_list) { 2551 ret = vgic_its_save_cte(its, collection, gpa); 2552 if (ret) 2553 return ret; 2554 gpa += cte_esz; 2555 filled += cte_esz; 2556 } 2557 2558 if (filled == max_size) 2559 return 0; 2560 2561 /* 2562 * table is not fully filled, add a last dummy element 2563 * with valid bit unset 2564 */ 2565 return vgic_its_write_entry_lock(its, gpa, 0ULL, cte); 2566 } 2567 2568 /* 2569 * vgic_its_restore_collection_table - reads the collection table 2570 * in guest memory and restores the ITS internal state. Requires the 2571 * BASER registers to be restored before. 2572 */ 2573 static int vgic_its_restore_collection_table(struct vgic_its *its) 2574 { 2575 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2576 u64 baser = its->baser_coll_table; 2577 int cte_esz = abi->cte_esz; 2578 size_t max_size, read = 0; 2579 gpa_t gpa; 2580 int ret; 2581 2582 if (!(baser & GITS_BASER_VALID)) 2583 return 0; 2584 2585 gpa = GITS_BASER_ADDR_48_to_52(baser); 2586 2587 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2588 2589 while (read < max_size) { 2590 ret = vgic_its_restore_cte(its, gpa); 2591 if (ret <= 0) 2592 break; 2593 gpa += cte_esz; 2594 read += cte_esz; 2595 } 2596 2597 if (ret > 0) 2598 return 0; 2599 2600 if (ret < 0) 2601 vgic_its_free_collection_list(its->dev->kvm, its); 2602 2603 return ret; 2604 } 2605 2606 /* 2607 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2608 * according to v0 ABI 2609 */ 2610 static int vgic_its_save_tables_v0(struct vgic_its *its) 2611 { 2612 int ret; 2613 2614 ret = vgic_its_save_device_tables(its); 2615 if (ret) 2616 return ret; 2617 2618 return vgic_its_save_collection_table(its); 2619 } 2620 2621 /* 2622 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2623 * to internal data structs according to V0 ABI 2624 * 2625 */ 2626 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2627 { 2628 int ret; 2629 2630 ret = vgic_its_restore_collection_table(its); 2631 if (ret) 2632 return ret; 2633 2634 ret = vgic_its_restore_device_tables(its); 2635 if (ret) 2636 vgic_its_free_collection_list(its->dev->kvm, its); 2637 return ret; 2638 } 2639 2640 static int vgic_its_commit_v0(struct vgic_its *its) 2641 { 2642 const struct vgic_its_abi *abi; 2643 2644 abi = vgic_its_get_abi(its); 2645 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2646 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2647 2648 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2649 << GITS_BASER_ENTRY_SIZE_SHIFT); 2650 2651 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2652 << GITS_BASER_ENTRY_SIZE_SHIFT); 2653 return 0; 2654 } 2655 2656 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2657 { 2658 /* We need to keep the ABI specific field values */ 2659 its->baser_coll_table &= ~GITS_BASER_VALID; 2660 its->baser_device_table &= ~GITS_BASER_VALID; 2661 its->cbaser = 0; 2662 its->creadr = 0; 2663 its->cwriter = 0; 2664 its->enabled = 0; 2665 vgic_its_free_device_list(kvm, its); 2666 vgic_its_free_collection_list(kvm, its); 2667 } 2668 2669 static int vgic_its_has_attr(struct kvm_device *dev, 2670 struct kvm_device_attr *attr) 2671 { 2672 switch (attr->group) { 2673 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2674 switch (attr->attr) { 2675 case KVM_VGIC_ITS_ADDR_TYPE: 2676 return 0; 2677 } 2678 break; 2679 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2680 switch (attr->attr) { 2681 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2682 return 0; 2683 case KVM_DEV_ARM_ITS_CTRL_RESET: 2684 return 0; 2685 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2686 return 0; 2687 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2688 return 0; 2689 } 2690 break; 2691 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2692 return vgic_its_has_attr_regs(dev, attr); 2693 } 2694 return -ENXIO; 2695 } 2696 2697 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2698 { 2699 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2700 int ret = 0; 2701 2702 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2703 return 0; 2704 2705 mutex_lock(&kvm->lock); 2706 2707 if (!lock_all_vcpus(kvm)) { 2708 mutex_unlock(&kvm->lock); 2709 return -EBUSY; 2710 } 2711 2712 mutex_lock(&kvm->arch.config_lock); 2713 mutex_lock(&its->its_lock); 2714 2715 switch (attr) { 2716 case KVM_DEV_ARM_ITS_CTRL_RESET: 2717 vgic_its_reset(kvm, its); 2718 break; 2719 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2720 ret = abi->save_tables(its); 2721 break; 2722 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2723 ret = abi->restore_tables(its); 2724 break; 2725 } 2726 2727 mutex_unlock(&its->its_lock); 2728 mutex_unlock(&kvm->arch.config_lock); 2729 unlock_all_vcpus(kvm); 2730 mutex_unlock(&kvm->lock); 2731 return ret; 2732 } 2733 2734 /* 2735 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2736 * without the running VCPU when dirty ring is enabled. 2737 * 2738 * The running VCPU is required to track dirty guest pages when dirty ring 2739 * is enabled. Otherwise, the backup bitmap should be used to track the 2740 * dirty guest pages. When vgic/its tables are being saved, the backup 2741 * bitmap is used to track the dirty guest pages due to the missed running 2742 * VCPU in the period. 2743 */ 2744 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2745 { 2746 struct vgic_dist *dist = &kvm->arch.vgic; 2747 2748 return dist->table_write_in_progress; 2749 } 2750 2751 static int vgic_its_set_attr(struct kvm_device *dev, 2752 struct kvm_device_attr *attr) 2753 { 2754 struct vgic_its *its = dev->private; 2755 int ret; 2756 2757 switch (attr->group) { 2758 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2759 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2760 unsigned long type = (unsigned long)attr->attr; 2761 u64 addr; 2762 2763 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2764 return -ENODEV; 2765 2766 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2767 return -EFAULT; 2768 2769 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2770 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2771 if (ret) 2772 return ret; 2773 2774 return vgic_register_its_iodev(dev->kvm, its, addr); 2775 } 2776 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2777 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2778 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2779 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2780 u64 reg; 2781 2782 if (get_user(reg, uaddr)) 2783 return -EFAULT; 2784 2785 return vgic_its_attr_regs_access(dev, attr, ®, true); 2786 } 2787 } 2788 return -ENXIO; 2789 } 2790 2791 static int vgic_its_get_attr(struct kvm_device *dev, 2792 struct kvm_device_attr *attr) 2793 { 2794 switch (attr->group) { 2795 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2796 struct vgic_its *its = dev->private; 2797 u64 addr = its->vgic_its_base; 2798 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2799 unsigned long type = (unsigned long)attr->attr; 2800 2801 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2802 return -ENODEV; 2803 2804 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2805 return -EFAULT; 2806 break; 2807 } 2808 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2809 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2810 u64 reg; 2811 int ret; 2812 2813 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2814 if (ret) 2815 return ret; 2816 return put_user(reg, uaddr); 2817 } 2818 default: 2819 return -ENXIO; 2820 } 2821 2822 return 0; 2823 } 2824 2825 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2826 .name = "kvm-arm-vgic-its", 2827 .create = vgic_its_create, 2828 .destroy = vgic_its_destroy, 2829 .set_attr = vgic_its_set_attr, 2830 .get_attr = vgic_its_get_attr, 2831 .has_attr = vgic_its_has_attr, 2832 }; 2833 2834 int kvm_vgic_register_its_device(void) 2835 { 2836 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2837 KVM_DEV_TYPE_ARM_VGIC_ITS); 2838 } 2839