1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * GICv3 ITS emulation 4 * 5 * Copyright (C) 2015,2016 ARM Ltd. 6 * Author: Andre Przywara <andre.przywara@arm.com> 7 */ 8 9 #include <linux/cpu.h> 10 #include <linux/kvm.h> 11 #include <linux/kvm_host.h> 12 #include <linux/interrupt.h> 13 #include <linux/list.h> 14 #include <linux/uaccess.h> 15 #include <linux/list_sort.h> 16 17 #include <linux/irqchip/arm-gic-v3.h> 18 19 #include <asm/kvm_emulate.h> 20 #include <asm/kvm_arm.h> 21 #include <asm/kvm_mmu.h> 22 23 #include "vgic.h" 24 #include "vgic-mmio.h" 25 26 static struct kvm_device_ops kvm_arm_vgic_its_ops; 27 28 static int vgic_its_save_tables_v0(struct vgic_its *its); 29 static int vgic_its_restore_tables_v0(struct vgic_its *its); 30 static int vgic_its_commit_v0(struct vgic_its *its); 31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 32 struct kvm_vcpu *filter_vcpu, bool needs_inv); 33 34 #define vgic_its_read_entry_lock(i, g, valp, t) \ 35 ({ \ 36 int __sz = vgic_its_get_abi(i)->t##_esz; \ 37 struct kvm *__k = (i)->dev->kvm; \ 38 int __ret; \ 39 \ 40 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \ 41 sizeof(*(valp)) != ABI_0_ESZ); \ 42 if (NR_ITS_ABIS > 1 && \ 43 KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \ 44 __ret = -EINVAL; \ 45 else \ 46 __ret = kvm_read_guest_lock(__k, (g), \ 47 valp, __sz); \ 48 __ret; \ 49 }) 50 51 #define vgic_its_write_entry_lock(i, g, val, t) \ 52 ({ \ 53 int __sz = vgic_its_get_abi(i)->t##_esz; \ 54 struct kvm *__k = (i)->dev->kvm; \ 55 typeof(val) __v = (val); \ 56 int __ret; \ 57 \ 58 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \ 59 sizeof(__v) != ABI_0_ESZ); \ 60 if (NR_ITS_ABIS > 1 && \ 61 KVM_BUG_ON(__sz != sizeof(__v), __k)) \ 62 __ret = -EINVAL; \ 63 else \ 64 __ret = vgic_write_guest_lock(__k, (g), \ 65 &__v, __sz); \ 66 __ret; \ 67 }) 68 69 /* 70 * Creates a new (reference to a) struct vgic_irq for a given LPI. 71 * If this LPI is already mapped on another ITS, we increase its refcount 72 * and return a pointer to the existing structure. 73 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. 74 * This function returns a pointer to the _unlocked_ structure. 75 */ 76 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, 77 struct kvm_vcpu *vcpu) 78 { 79 struct vgic_dist *dist = &kvm->arch.vgic; 80 struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq; 81 unsigned long flags; 82 int ret; 83 84 /* In this case there is no put, since we keep the reference. */ 85 if (irq) 86 return irq; 87 88 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 89 if (!irq) 90 return ERR_PTR(-ENOMEM); 91 92 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT); 93 if (ret) { 94 kfree(irq); 95 return ERR_PTR(ret); 96 } 97 98 INIT_LIST_HEAD(&irq->ap_list); 99 raw_spin_lock_init(&irq->irq_lock); 100 101 irq->config = VGIC_CONFIG_EDGE; 102 kref_init(&irq->refcount); 103 irq->intid = intid; 104 irq->target_vcpu = vcpu; 105 irq->group = 1; 106 107 xa_lock_irqsave(&dist->lpi_xa, flags); 108 109 /* 110 * There could be a race with another vgic_add_lpi(), so we need to 111 * check that we don't add a second list entry with the same LPI. 112 */ 113 oldirq = xa_load(&dist->lpi_xa, intid); 114 if (vgic_try_get_irq_kref(oldirq)) { 115 /* Someone was faster with adding this LPI, lets use that. */ 116 kfree(irq); 117 irq = oldirq; 118 119 goto out_unlock; 120 } 121 122 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0)); 123 if (ret) { 124 xa_release(&dist->lpi_xa, intid); 125 kfree(irq); 126 } 127 128 out_unlock: 129 xa_unlock_irqrestore(&dist->lpi_xa, flags); 130 131 if (ret) 132 return ERR_PTR(ret); 133 134 /* 135 * We "cache" the configuration table entries in our struct vgic_irq's. 136 * However we only have those structs for mapped IRQs, so we read in 137 * the respective config data from memory here upon mapping the LPI. 138 * 139 * Should any of these fail, behave as if we couldn't create the LPI 140 * by dropping the refcount and returning the error. 141 */ 142 ret = update_lpi_config(kvm, irq, NULL, false); 143 if (ret) { 144 vgic_put_irq(kvm, irq); 145 return ERR_PTR(ret); 146 } 147 148 ret = vgic_v3_lpi_sync_pending_status(kvm, irq); 149 if (ret) { 150 vgic_put_irq(kvm, irq); 151 return ERR_PTR(ret); 152 } 153 154 return irq; 155 } 156 157 /** 158 * struct vgic_its_abi - ITS abi ops and settings 159 * @cte_esz: collection table entry size 160 * @dte_esz: device table entry size 161 * @ite_esz: interrupt translation table entry size 162 * @save_tables: save the ITS tables into guest RAM 163 * @restore_tables: restore the ITS internal structs from tables 164 * stored in guest RAM 165 * @commit: initialize the registers which expose the ABI settings, 166 * especially the entry sizes 167 */ 168 struct vgic_its_abi { 169 int cte_esz; 170 int dte_esz; 171 int ite_esz; 172 int (*save_tables)(struct vgic_its *its); 173 int (*restore_tables)(struct vgic_its *its); 174 int (*commit)(struct vgic_its *its); 175 }; 176 177 #define ABI_0_ESZ 8 178 #define ESZ_MAX ABI_0_ESZ 179 180 static const struct vgic_its_abi its_table_abi_versions[] = { 181 [0] = { 182 .cte_esz = ABI_0_ESZ, 183 .dte_esz = ABI_0_ESZ, 184 .ite_esz = ABI_0_ESZ, 185 .save_tables = vgic_its_save_tables_v0, 186 .restore_tables = vgic_its_restore_tables_v0, 187 .commit = vgic_its_commit_v0, 188 }, 189 }; 190 191 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) 192 193 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) 194 { 195 return &its_table_abi_versions[its->abi_rev]; 196 } 197 198 static int vgic_its_set_abi(struct vgic_its *its, u32 rev) 199 { 200 const struct vgic_its_abi *abi; 201 202 its->abi_rev = rev; 203 abi = vgic_its_get_abi(its); 204 return abi->commit(its); 205 } 206 207 /* 208 * Find and returns a device in the device table for an ITS. 209 * Must be called with the its_lock mutex held. 210 */ 211 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) 212 { 213 struct its_device *device; 214 215 list_for_each_entry(device, &its->device_list, dev_list) 216 if (device_id == device->device_id) 217 return device; 218 219 return NULL; 220 } 221 222 /* 223 * Find and returns an interrupt translation table entry (ITTE) for a given 224 * Device ID/Event ID pair on an ITS. 225 * Must be called with the its_lock mutex held. 226 */ 227 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, 228 u32 event_id) 229 { 230 struct its_device *device; 231 struct its_ite *ite; 232 233 device = find_its_device(its, device_id); 234 if (device == NULL) 235 return NULL; 236 237 list_for_each_entry(ite, &device->itt_head, ite_list) 238 if (ite->event_id == event_id) 239 return ite; 240 241 return NULL; 242 } 243 244 /* To be used as an iterator this macro misses the enclosing parentheses */ 245 #define for_each_lpi_its(dev, ite, its) \ 246 list_for_each_entry(dev, &(its)->device_list, dev_list) \ 247 list_for_each_entry(ite, &(dev)->itt_head, ite_list) 248 249 #define GIC_LPI_OFFSET 8192 250 251 #define VITS_TYPER_IDBITS 16 252 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1) 253 #define VITS_TYPER_DEVBITS 16 254 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1) 255 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) 256 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) 257 258 /* 259 * Finds and returns a collection in the ITS collection table. 260 * Must be called with the its_lock mutex held. 261 */ 262 static struct its_collection *find_collection(struct vgic_its *its, int coll_id) 263 { 264 struct its_collection *collection; 265 266 list_for_each_entry(collection, &its->collection_list, coll_list) { 267 if (coll_id == collection->collection_id) 268 return collection; 269 } 270 271 return NULL; 272 } 273 274 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) 275 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) 276 277 /* 278 * Reads the configuration data for a given LPI from guest memory and 279 * updates the fields in struct vgic_irq. 280 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this 281 * VCPU. Unconditionally applies if filter_vcpu is NULL. 282 */ 283 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, 284 struct kvm_vcpu *filter_vcpu, bool needs_inv) 285 { 286 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); 287 u8 prop; 288 int ret; 289 unsigned long flags; 290 291 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, 292 &prop, 1); 293 294 if (ret) 295 return ret; 296 297 raw_spin_lock_irqsave(&irq->irq_lock, flags); 298 299 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { 300 irq->priority = LPI_PROP_PRIORITY(prop); 301 irq->enabled = LPI_PROP_ENABLE_BIT(prop); 302 303 if (!irq->hw) { 304 vgic_queue_irq_unlock(kvm, irq, flags); 305 return 0; 306 } 307 } 308 309 if (irq->hw) 310 ret = its_prop_update_vlpi(irq->host_irq, prop, needs_inv); 311 312 raw_spin_unlock_irqrestore(&irq->irq_lock, flags); 313 return ret; 314 } 315 316 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) 317 { 318 struct its_vlpi_map map; 319 int ret; 320 321 guard(raw_spinlock_irqsave)(&irq->irq_lock); 322 irq->target_vcpu = vcpu; 323 324 if (!irq->hw) 325 return 0; 326 327 ret = its_get_vlpi(irq->host_irq, &map); 328 if (ret) 329 return ret; 330 331 if (map.vpe) 332 atomic_dec(&map.vpe->vlpi_count); 333 334 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; 335 atomic_inc(&map.vpe->vlpi_count); 336 return its_map_vlpi(irq->host_irq, &map); 337 } 338 339 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm, 340 struct its_collection *col) 341 { 342 return kvm_get_vcpu_by_id(kvm, col->target_addr); 343 } 344 345 /* 346 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI 347 * is targeting) to the VGIC's view, which deals with target VCPUs. 348 * Needs to be called whenever either the collection for a LPIs has 349 * changed or the collection itself got retargeted. 350 */ 351 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) 352 { 353 struct kvm_vcpu *vcpu; 354 355 if (!its_is_collection_mapped(ite->collection)) 356 return; 357 358 vcpu = collection_to_vcpu(kvm, ite->collection); 359 update_affinity(ite->irq, vcpu); 360 } 361 362 /* 363 * Updates the target VCPU for every LPI targeting this collection. 364 * Must be called with the its_lock mutex held. 365 */ 366 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, 367 struct its_collection *coll) 368 { 369 struct its_device *device; 370 struct its_ite *ite; 371 372 for_each_lpi_its(device, ite, its) { 373 if (ite->collection != coll) 374 continue; 375 376 update_affinity_ite(kvm, ite); 377 } 378 } 379 380 static u32 max_lpis_propbaser(u64 propbaser) 381 { 382 int nr_idbits = (propbaser & 0x1f) + 1; 383 384 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); 385 } 386 387 /* 388 * Sync the pending table pending bit of LPIs targeting @vcpu 389 * with our own data structures. This relies on the LPI being 390 * mapped before. 391 */ 392 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) 393 { 394 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); 395 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 396 unsigned long intid, flags; 397 struct vgic_irq *irq; 398 int last_byte_offset = -1; 399 int ret = 0; 400 u8 pendmask; 401 402 xa_for_each(&dist->lpi_xa, intid, irq) { 403 int byte_offset, bit_nr; 404 405 byte_offset = intid / BITS_PER_BYTE; 406 bit_nr = intid % BITS_PER_BYTE; 407 408 /* 409 * For contiguously allocated LPIs chances are we just read 410 * this very same byte in the last iteration. Reuse that. 411 */ 412 if (byte_offset != last_byte_offset) { 413 ret = kvm_read_guest_lock(vcpu->kvm, 414 pendbase + byte_offset, 415 &pendmask, 1); 416 if (ret) 417 return ret; 418 419 last_byte_offset = byte_offset; 420 } 421 422 irq = vgic_get_irq(vcpu->kvm, intid); 423 if (!irq) 424 continue; 425 426 raw_spin_lock_irqsave(&irq->irq_lock, flags); 427 if (irq->target_vcpu == vcpu) 428 irq->pending_latch = pendmask & (1U << bit_nr); 429 vgic_queue_irq_unlock(vcpu->kvm, irq, flags); 430 vgic_put_irq(vcpu->kvm, irq); 431 } 432 433 return ret; 434 } 435 436 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, 437 struct vgic_its *its, 438 gpa_t addr, unsigned int len) 439 { 440 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 441 u64 reg = GITS_TYPER_PLPIS; 442 443 /* 444 * We use linear CPU numbers for redistributor addressing, 445 * so GITS_TYPER.PTA is 0. 446 * Also we force all PROPBASER registers to be the same, so 447 * CommonLPIAff is 0 as well. 448 * To avoid memory waste in the guest, we keep the number of IDBits and 449 * DevBits low - as least for the time being. 450 */ 451 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; 452 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; 453 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; 454 455 return extract_bytes(reg, addr & 7, len); 456 } 457 458 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, 459 struct vgic_its *its, 460 gpa_t addr, unsigned int len) 461 { 462 u32 val; 463 464 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; 465 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; 466 return val; 467 } 468 469 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, 470 struct vgic_its *its, 471 gpa_t addr, unsigned int len, 472 unsigned long val) 473 { 474 u32 rev = GITS_IIDR_REV(val); 475 476 if (rev >= NR_ITS_ABIS) 477 return -EINVAL; 478 return vgic_its_set_abi(its, rev); 479 } 480 481 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, 482 struct vgic_its *its, 483 gpa_t addr, unsigned int len) 484 { 485 switch (addr & 0xffff) { 486 case GITS_PIDR0: 487 return 0x92; /* part number, bits[7:0] */ 488 case GITS_PIDR1: 489 return 0xb4; /* part number, bits[11:8] */ 490 case GITS_PIDR2: 491 return GIC_PIDR2_ARCH_GICv3 | 0x0b; 492 case GITS_PIDR4: 493 return 0x40; /* This is a 64K software visible page */ 494 /* The following are the ID registers for (any) GIC. */ 495 case GITS_CIDR0: 496 return 0x0d; 497 case GITS_CIDR1: 498 return 0xf0; 499 case GITS_CIDR2: 500 return 0x05; 501 case GITS_CIDR3: 502 return 0xb1; 503 } 504 505 return 0; 506 } 507 508 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db) 509 { 510 struct kvm_io_device *kvm_io_dev; 511 struct vgic_io_device *iodev; 512 513 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db); 514 if (!kvm_io_dev) 515 return ERR_PTR(-EINVAL); 516 517 if (kvm_io_dev->ops != &kvm_io_gic_ops) 518 return ERR_PTR(-EINVAL); 519 520 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); 521 if (iodev->iodev_type != IODEV_ITS) 522 return ERR_PTR(-EINVAL); 523 524 return iodev->its; 525 } 526 527 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid) 528 { 529 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid; 530 531 } 532 533 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db, 534 u32 devid, u32 eventid) 535 { 536 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 537 struct vgic_its *its; 538 struct vgic_irq *irq; 539 540 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID) 541 return NULL; 542 543 its = __vgic_doorbell_to_its(kvm, db); 544 if (IS_ERR(its)) 545 return NULL; 546 547 rcu_read_lock(); 548 549 irq = xa_load(&its->translation_cache, cache_key); 550 if (!vgic_try_get_irq_kref(irq)) 551 irq = NULL; 552 553 rcu_read_unlock(); 554 555 return irq; 556 } 557 558 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its, 559 u32 devid, u32 eventid, 560 struct vgic_irq *irq) 561 { 562 unsigned long cache_key = vgic_its_cache_key(devid, eventid); 563 struct vgic_irq *old; 564 565 /* Do not cache a directly injected interrupt */ 566 if (irq->hw) 567 return; 568 569 /* 570 * The irq refcount is guaranteed to be nonzero while holding the 571 * its_lock, as the ITE (and the reference it holds) cannot be freed. 572 */ 573 lockdep_assert_held(&its->its_lock); 574 vgic_get_irq_kref(irq); 575 576 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT); 577 578 /* 579 * Put the reference taken on @irq if the store fails. Intentionally do 580 * not return the error as the translation cache is best effort. 581 */ 582 if (xa_is_err(old)) { 583 vgic_put_irq(kvm, irq); 584 return; 585 } 586 587 /* 588 * We could have raced with another CPU caching the same 589 * translation behind our back, ensure we don't leak a 590 * reference if that is the case. 591 */ 592 if (old) 593 vgic_put_irq(kvm, old); 594 } 595 596 static void vgic_its_invalidate_cache(struct vgic_its *its) 597 { 598 struct kvm *kvm = its->dev->kvm; 599 struct vgic_irq *irq; 600 unsigned long idx; 601 602 xa_for_each(&its->translation_cache, idx, irq) { 603 xa_erase(&its->translation_cache, idx); 604 vgic_put_irq(kvm, irq); 605 } 606 } 607 608 void vgic_its_invalidate_all_caches(struct kvm *kvm) 609 { 610 struct kvm_device *dev; 611 struct vgic_its *its; 612 613 rcu_read_lock(); 614 615 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) { 616 if (dev->ops != &kvm_arm_vgic_its_ops) 617 continue; 618 619 its = dev->private; 620 vgic_its_invalidate_cache(its); 621 } 622 623 rcu_read_unlock(); 624 } 625 626 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, 627 u32 devid, u32 eventid, struct vgic_irq **irq) 628 { 629 struct kvm_vcpu *vcpu; 630 struct its_ite *ite; 631 632 if (!its->enabled) 633 return -EBUSY; 634 635 ite = find_ite(its, devid, eventid); 636 if (!ite || !its_is_collection_mapped(ite->collection)) 637 return E_ITS_INT_UNMAPPED_INTERRUPT; 638 639 vcpu = collection_to_vcpu(kvm, ite->collection); 640 if (!vcpu) 641 return E_ITS_INT_UNMAPPED_INTERRUPT; 642 643 if (!vgic_lpis_enabled(vcpu)) 644 return -EBUSY; 645 646 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq); 647 648 *irq = ite->irq; 649 return 0; 650 } 651 652 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) 653 { 654 u64 address; 655 656 if (!vgic_has_its(kvm)) 657 return ERR_PTR(-ENODEV); 658 659 if (!(msi->flags & KVM_MSI_VALID_DEVID)) 660 return ERR_PTR(-EINVAL); 661 662 address = (u64)msi->address_hi << 32 | msi->address_lo; 663 664 return __vgic_doorbell_to_its(kvm, address); 665 } 666 667 /* 668 * Find the target VCPU and the LPI number for a given devid/eventid pair 669 * and make this IRQ pending, possibly injecting it. 670 * Must be called with the its_lock mutex held. 671 * Returns 0 on success, a positive error value for any ITS mapping 672 * related errors and negative error values for generic errors. 673 */ 674 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, 675 u32 devid, u32 eventid) 676 { 677 struct vgic_irq *irq = NULL; 678 unsigned long flags; 679 int err; 680 681 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); 682 if (err) 683 return err; 684 685 if (irq->hw) 686 return irq_set_irqchip_state(irq->host_irq, 687 IRQCHIP_STATE_PENDING, true); 688 689 raw_spin_lock_irqsave(&irq->irq_lock, flags); 690 irq->pending_latch = true; 691 vgic_queue_irq_unlock(kvm, irq, flags); 692 693 return 0; 694 } 695 696 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi) 697 { 698 struct vgic_irq *irq; 699 unsigned long flags; 700 phys_addr_t db; 701 702 db = (u64)msi->address_hi << 32 | msi->address_lo; 703 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data); 704 if (!irq) 705 return -EWOULDBLOCK; 706 707 raw_spin_lock_irqsave(&irq->irq_lock, flags); 708 irq->pending_latch = true; 709 vgic_queue_irq_unlock(kvm, irq, flags); 710 vgic_put_irq(kvm, irq); 711 712 return 0; 713 } 714 715 /* 716 * Queries the KVM IO bus framework to get the ITS pointer from the given 717 * doorbell address. 718 * We then call vgic_its_trigger_msi() with the decoded data. 719 * According to the KVM_SIGNAL_MSI API description returns 1 on success. 720 */ 721 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) 722 { 723 struct vgic_its *its; 724 int ret; 725 726 if (!vgic_its_inject_cached_translation(kvm, msi)) 727 return 1; 728 729 its = vgic_msi_to_its(kvm, msi); 730 if (IS_ERR(its)) 731 return PTR_ERR(its); 732 733 mutex_lock(&its->its_lock); 734 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); 735 mutex_unlock(&its->its_lock); 736 737 if (ret < 0) 738 return ret; 739 740 /* 741 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 742 * if the guest has blocked the MSI. So we map any LPI mapping 743 * related error to that. 744 */ 745 if (ret) 746 return 0; 747 else 748 return 1; 749 } 750 751 /* Requires the its_lock to be held. */ 752 static void its_free_ite(struct kvm *kvm, struct its_ite *ite) 753 { 754 struct vgic_irq *irq = ite->irq; 755 list_del(&ite->ite_list); 756 757 /* This put matches the get in vgic_add_lpi. */ 758 if (irq) { 759 scoped_guard(raw_spinlock_irqsave, &irq->irq_lock) { 760 if (irq->hw) 761 its_unmap_vlpi(ite->irq->host_irq); 762 763 irq->hw = false; 764 } 765 766 vgic_put_irq(kvm, ite->irq); 767 } 768 769 kfree(ite); 770 } 771 772 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) 773 { 774 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); 775 } 776 777 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) 778 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) 779 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) 780 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) 781 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) 782 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) 783 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) 784 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) 785 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) 786 787 /* 788 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). 789 * Must be called with the its_lock mutex held. 790 */ 791 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, 792 u64 *its_cmd) 793 { 794 u32 device_id = its_cmd_get_deviceid(its_cmd); 795 u32 event_id = its_cmd_get_id(its_cmd); 796 struct its_ite *ite; 797 798 ite = find_ite(its, device_id, event_id); 799 if (ite && its_is_collection_mapped(ite->collection)) { 800 struct its_device *device = find_its_device(its, device_id); 801 int ite_esz = vgic_its_get_abi(its)->ite_esz; 802 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz; 803 /* 804 * Though the spec talks about removing the pending state, we 805 * don't bother here since we clear the ITTE anyway and the 806 * pending state is a property of the ITTE struct. 807 */ 808 vgic_its_invalidate_cache(its); 809 810 its_free_ite(kvm, ite); 811 812 return vgic_its_write_entry_lock(its, gpa, 0ULL, ite); 813 } 814 815 return E_ITS_DISCARD_UNMAPPED_INTERRUPT; 816 } 817 818 /* 819 * The MOVI command moves an ITTE to a different collection. 820 * Must be called with the its_lock mutex held. 821 */ 822 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, 823 u64 *its_cmd) 824 { 825 u32 device_id = its_cmd_get_deviceid(its_cmd); 826 u32 event_id = its_cmd_get_id(its_cmd); 827 u32 coll_id = its_cmd_get_collection(its_cmd); 828 struct kvm_vcpu *vcpu; 829 struct its_ite *ite; 830 struct its_collection *collection; 831 832 ite = find_ite(its, device_id, event_id); 833 if (!ite) 834 return E_ITS_MOVI_UNMAPPED_INTERRUPT; 835 836 if (!its_is_collection_mapped(ite->collection)) 837 return E_ITS_MOVI_UNMAPPED_COLLECTION; 838 839 collection = find_collection(its, coll_id); 840 if (!its_is_collection_mapped(collection)) 841 return E_ITS_MOVI_UNMAPPED_COLLECTION; 842 843 ite->collection = collection; 844 vcpu = collection_to_vcpu(kvm, collection); 845 846 vgic_its_invalidate_cache(its); 847 848 return update_affinity(ite->irq, vcpu); 849 } 850 851 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa) 852 { 853 gfn_t gfn = gpa >> PAGE_SHIFT; 854 int idx; 855 bool ret; 856 857 idx = srcu_read_lock(&its->dev->kvm->srcu); 858 ret = kvm_is_visible_gfn(its->dev->kvm, gfn); 859 srcu_read_unlock(&its->dev->kvm->srcu, idx); 860 return ret; 861 } 862 863 /* 864 * Check whether an ID can be stored into the corresponding guest table. 865 * For a direct table this is pretty easy, but gets a bit nasty for 866 * indirect tables. We check whether the resulting guest physical address 867 * is actually valid (covered by a memslot and guest accessible). 868 * For this we have to read the respective first level entry. 869 */ 870 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, 871 gpa_t *eaddr) 872 { 873 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 874 u64 indirect_ptr, type = GITS_BASER_TYPE(baser); 875 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser); 876 int esz = GITS_BASER_ENTRY_SIZE(baser); 877 int index; 878 879 switch (type) { 880 case GITS_BASER_TYPE_DEVICE: 881 if (id > VITS_MAX_DEVID) 882 return false; 883 break; 884 case GITS_BASER_TYPE_COLLECTION: 885 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ 886 if (id >= BIT_ULL(16)) 887 return false; 888 break; 889 default: 890 return false; 891 } 892 893 if (!(baser & GITS_BASER_INDIRECT)) { 894 phys_addr_t addr; 895 896 if (id >= (l1_tbl_size / esz)) 897 return false; 898 899 addr = base + id * esz; 900 901 if (eaddr) 902 *eaddr = addr; 903 904 return __is_visible_gfn_locked(its, addr); 905 } 906 907 /* calculate and check the index into the 1st level */ 908 index = id / (SZ_64K / esz); 909 if (index >= (l1_tbl_size / sizeof(u64))) 910 return false; 911 912 /* Each 1st level entry is represented by a 64-bit value. */ 913 if (kvm_read_guest_lock(its->dev->kvm, 914 base + index * sizeof(indirect_ptr), 915 &indirect_ptr, sizeof(indirect_ptr))) 916 return false; 917 918 indirect_ptr = le64_to_cpu(indirect_ptr); 919 920 /* check the valid bit of the first level entry */ 921 if (!(indirect_ptr & BIT_ULL(63))) 922 return false; 923 924 /* Mask the guest physical address and calculate the frame number. */ 925 indirect_ptr &= GENMASK_ULL(51, 16); 926 927 /* Find the address of the actual entry */ 928 index = id % (SZ_64K / esz); 929 indirect_ptr += index * esz; 930 931 if (eaddr) 932 *eaddr = indirect_ptr; 933 934 return __is_visible_gfn_locked(its, indirect_ptr); 935 } 936 937 /* 938 * Check whether an event ID can be stored in the corresponding Interrupt 939 * Translation Table, which starts at device->itt_addr. 940 */ 941 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device, 942 u32 event_id) 943 { 944 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 945 int ite_esz = abi->ite_esz; 946 gpa_t gpa; 947 948 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */ 949 if (event_id >= BIT_ULL(device->num_eventid_bits)) 950 return false; 951 952 gpa = device->itt_addr + event_id * ite_esz; 953 return __is_visible_gfn_locked(its, gpa); 954 } 955 956 /* 957 * Add a new collection into the ITS collection table. 958 * Returns 0 on success, and a negative error value for generic errors. 959 */ 960 static int vgic_its_alloc_collection(struct vgic_its *its, 961 struct its_collection **colp, 962 u32 coll_id) 963 { 964 struct its_collection *collection; 965 966 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT); 967 if (!collection) 968 return -ENOMEM; 969 970 collection->collection_id = coll_id; 971 collection->target_addr = COLLECTION_NOT_MAPPED; 972 973 list_add_tail(&collection->coll_list, &its->collection_list); 974 *colp = collection; 975 976 return 0; 977 } 978 979 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) 980 { 981 struct its_collection *collection; 982 struct its_device *device; 983 struct its_ite *ite; 984 985 /* 986 * Clearing the mapping for that collection ID removes the 987 * entry from the list. If there wasn't any before, we can 988 * go home early. 989 */ 990 collection = find_collection(its, coll_id); 991 if (!collection) 992 return; 993 994 for_each_lpi_its(device, ite, its) 995 if (ite->collection && 996 ite->collection->collection_id == coll_id) 997 ite->collection = NULL; 998 999 list_del(&collection->coll_list); 1000 kfree(collection); 1001 } 1002 1003 /* Must be called with its_lock mutex held */ 1004 static struct its_ite *vgic_its_alloc_ite(struct its_device *device, 1005 struct its_collection *collection, 1006 u32 event_id) 1007 { 1008 struct its_ite *ite; 1009 1010 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT); 1011 if (!ite) 1012 return ERR_PTR(-ENOMEM); 1013 1014 ite->event_id = event_id; 1015 ite->collection = collection; 1016 1017 list_add_tail(&ite->ite_list, &device->itt_head); 1018 return ite; 1019 } 1020 1021 /* 1022 * The MAPTI and MAPI commands map LPIs to ITTEs. 1023 * Must be called with its_lock mutex held. 1024 */ 1025 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, 1026 u64 *its_cmd) 1027 { 1028 u32 device_id = its_cmd_get_deviceid(its_cmd); 1029 u32 event_id = its_cmd_get_id(its_cmd); 1030 u32 coll_id = its_cmd_get_collection(its_cmd); 1031 struct its_ite *ite; 1032 struct kvm_vcpu *vcpu = NULL; 1033 struct its_device *device; 1034 struct its_collection *collection, *new_coll = NULL; 1035 struct vgic_irq *irq; 1036 int lpi_nr; 1037 1038 device = find_its_device(its, device_id); 1039 if (!device) 1040 return E_ITS_MAPTI_UNMAPPED_DEVICE; 1041 1042 if (!vgic_its_check_event_id(its, device, event_id)) 1043 return E_ITS_MAPTI_ID_OOR; 1044 1045 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) 1046 lpi_nr = its_cmd_get_physical_id(its_cmd); 1047 else 1048 lpi_nr = event_id; 1049 if (lpi_nr < GIC_LPI_OFFSET || 1050 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) 1051 return E_ITS_MAPTI_PHYSICALID_OOR; 1052 1053 /* If there is an existing mapping, behavior is UNPREDICTABLE. */ 1054 if (find_ite(its, device_id, event_id)) 1055 return 0; 1056 1057 collection = find_collection(its, coll_id); 1058 if (!collection) { 1059 int ret; 1060 1061 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 1062 return E_ITS_MAPC_COLLECTION_OOR; 1063 1064 ret = vgic_its_alloc_collection(its, &collection, coll_id); 1065 if (ret) 1066 return ret; 1067 new_coll = collection; 1068 } 1069 1070 ite = vgic_its_alloc_ite(device, collection, event_id); 1071 if (IS_ERR(ite)) { 1072 if (new_coll) 1073 vgic_its_free_collection(its, coll_id); 1074 return PTR_ERR(ite); 1075 } 1076 1077 if (its_is_collection_mapped(collection)) 1078 vcpu = collection_to_vcpu(kvm, collection); 1079 1080 irq = vgic_add_lpi(kvm, lpi_nr, vcpu); 1081 if (IS_ERR(irq)) { 1082 if (new_coll) 1083 vgic_its_free_collection(its, coll_id); 1084 its_free_ite(kvm, ite); 1085 return PTR_ERR(irq); 1086 } 1087 ite->irq = irq; 1088 1089 return 0; 1090 } 1091 1092 /* Requires the its_lock to be held. */ 1093 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its, 1094 struct its_device *device) 1095 { 1096 struct its_ite *ite, *temp; 1097 1098 /* 1099 * The spec says that unmapping a device with still valid 1100 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, 1101 * since we cannot leave the memory unreferenced. 1102 */ 1103 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) 1104 its_free_ite(kvm, ite); 1105 1106 vgic_its_invalidate_cache(its); 1107 1108 list_del(&device->dev_list); 1109 kfree(device); 1110 } 1111 1112 /* its lock must be held */ 1113 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) 1114 { 1115 struct its_device *cur, *temp; 1116 1117 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) 1118 vgic_its_free_device(kvm, its, cur); 1119 } 1120 1121 /* its lock must be held */ 1122 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) 1123 { 1124 struct its_collection *cur, *temp; 1125 1126 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) 1127 vgic_its_free_collection(its, cur->collection_id); 1128 } 1129 1130 /* Must be called with its_lock mutex held */ 1131 static struct its_device *vgic_its_alloc_device(struct vgic_its *its, 1132 u32 device_id, gpa_t itt_addr, 1133 u8 num_eventid_bits) 1134 { 1135 struct its_device *device; 1136 1137 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT); 1138 if (!device) 1139 return ERR_PTR(-ENOMEM); 1140 1141 device->device_id = device_id; 1142 device->itt_addr = itt_addr; 1143 device->num_eventid_bits = num_eventid_bits; 1144 INIT_LIST_HEAD(&device->itt_head); 1145 1146 list_add_tail(&device->dev_list, &its->device_list); 1147 return device; 1148 } 1149 1150 /* 1151 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). 1152 * Must be called with the its_lock mutex held. 1153 */ 1154 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, 1155 u64 *its_cmd) 1156 { 1157 u32 device_id = its_cmd_get_deviceid(its_cmd); 1158 bool valid = its_cmd_get_validbit(its_cmd); 1159 u8 num_eventid_bits = its_cmd_get_size(its_cmd); 1160 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); 1161 struct its_device *device; 1162 gpa_t gpa; 1163 1164 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa)) 1165 return E_ITS_MAPD_DEVICE_OOR; 1166 1167 if (valid && num_eventid_bits > VITS_TYPER_IDBITS) 1168 return E_ITS_MAPD_ITTSIZE_OOR; 1169 1170 device = find_its_device(its, device_id); 1171 1172 /* 1173 * The spec says that calling MAPD on an already mapped device 1174 * invalidates all cached data for this device. We implement this 1175 * by removing the mapping and re-establishing it. 1176 */ 1177 if (device) 1178 vgic_its_free_device(kvm, its, device); 1179 1180 /* 1181 * The spec does not say whether unmapping a not-mapped device 1182 * is an error, so we are done in any case. 1183 */ 1184 if (!valid) 1185 return vgic_its_write_entry_lock(its, gpa, 0ULL, dte); 1186 1187 device = vgic_its_alloc_device(its, device_id, itt_addr, 1188 num_eventid_bits); 1189 1190 return PTR_ERR_OR_ZERO(device); 1191 } 1192 1193 /* 1194 * The MAPC command maps collection IDs to redistributors. 1195 * Must be called with the its_lock mutex held. 1196 */ 1197 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, 1198 u64 *its_cmd) 1199 { 1200 u16 coll_id; 1201 struct its_collection *collection; 1202 bool valid; 1203 1204 valid = its_cmd_get_validbit(its_cmd); 1205 coll_id = its_cmd_get_collection(its_cmd); 1206 1207 if (!valid) { 1208 vgic_its_free_collection(its, coll_id); 1209 vgic_its_invalidate_cache(its); 1210 } else { 1211 struct kvm_vcpu *vcpu; 1212 1213 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1214 if (!vcpu) 1215 return E_ITS_MAPC_PROCNUM_OOR; 1216 1217 collection = find_collection(its, coll_id); 1218 1219 if (!collection) { 1220 int ret; 1221 1222 if (!vgic_its_check_id(its, its->baser_coll_table, 1223 coll_id, NULL)) 1224 return E_ITS_MAPC_COLLECTION_OOR; 1225 1226 ret = vgic_its_alloc_collection(its, &collection, 1227 coll_id); 1228 if (ret) 1229 return ret; 1230 collection->target_addr = vcpu->vcpu_id; 1231 } else { 1232 collection->target_addr = vcpu->vcpu_id; 1233 update_affinity_collection(kvm, its, collection); 1234 } 1235 } 1236 1237 return 0; 1238 } 1239 1240 /* 1241 * The CLEAR command removes the pending state for a particular LPI. 1242 * Must be called with the its_lock mutex held. 1243 */ 1244 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, 1245 u64 *its_cmd) 1246 { 1247 u32 device_id = its_cmd_get_deviceid(its_cmd); 1248 u32 event_id = its_cmd_get_id(its_cmd); 1249 struct its_ite *ite; 1250 1251 1252 ite = find_ite(its, device_id, event_id); 1253 if (!ite) 1254 return E_ITS_CLEAR_UNMAPPED_INTERRUPT; 1255 1256 ite->irq->pending_latch = false; 1257 1258 if (ite->irq->hw) 1259 return irq_set_irqchip_state(ite->irq->host_irq, 1260 IRQCHIP_STATE_PENDING, false); 1261 1262 return 0; 1263 } 1264 1265 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq) 1266 { 1267 return update_lpi_config(kvm, irq, NULL, true); 1268 } 1269 1270 /* 1271 * The INV command syncs the configuration bits from the memory table. 1272 * Must be called with the its_lock mutex held. 1273 */ 1274 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, 1275 u64 *its_cmd) 1276 { 1277 u32 device_id = its_cmd_get_deviceid(its_cmd); 1278 u32 event_id = its_cmd_get_id(its_cmd); 1279 struct its_ite *ite; 1280 1281 1282 ite = find_ite(its, device_id, event_id); 1283 if (!ite) 1284 return E_ITS_INV_UNMAPPED_INTERRUPT; 1285 1286 return vgic_its_inv_lpi(kvm, ite->irq); 1287 } 1288 1289 /** 1290 * vgic_its_invall - invalidate all LPIs targeting a given vcpu 1291 * @vcpu: the vcpu for which the RD is targeted by an invalidation 1292 * 1293 * Contrary to the INVALL command, this targets a RD instead of a 1294 * collection, and we don't need to hold the its_lock, since no ITS is 1295 * involved here. 1296 */ 1297 int vgic_its_invall(struct kvm_vcpu *vcpu) 1298 { 1299 struct kvm *kvm = vcpu->kvm; 1300 struct vgic_dist *dist = &kvm->arch.vgic; 1301 struct vgic_irq *irq; 1302 unsigned long intid; 1303 1304 xa_for_each(&dist->lpi_xa, intid, irq) { 1305 irq = vgic_get_irq(kvm, intid); 1306 if (!irq) 1307 continue; 1308 1309 update_lpi_config(kvm, irq, vcpu, false); 1310 vgic_put_irq(kvm, irq); 1311 } 1312 1313 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) 1314 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); 1315 1316 return 0; 1317 } 1318 1319 /* 1320 * The INVALL command requests flushing of all IRQ data in this collection. 1321 * Find the VCPU mapped to that collection, then iterate over the VM's list 1322 * of mapped LPIs and update the configuration for each IRQ which targets 1323 * the specified vcpu. The configuration will be read from the in-memory 1324 * configuration table. 1325 * Must be called with the its_lock mutex held. 1326 */ 1327 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, 1328 u64 *its_cmd) 1329 { 1330 u32 coll_id = its_cmd_get_collection(its_cmd); 1331 struct its_collection *collection; 1332 struct kvm_vcpu *vcpu; 1333 1334 collection = find_collection(its, coll_id); 1335 if (!its_is_collection_mapped(collection)) 1336 return E_ITS_INVALL_UNMAPPED_COLLECTION; 1337 1338 vcpu = collection_to_vcpu(kvm, collection); 1339 vgic_its_invall(vcpu); 1340 1341 return 0; 1342 } 1343 1344 /* 1345 * The MOVALL command moves the pending state of all IRQs targeting one 1346 * redistributor to another. We don't hold the pending state in the VCPUs, 1347 * but in the IRQs instead, so there is really not much to do for us here. 1348 * However the spec says that no IRQ must target the old redistributor 1349 * afterwards, so we make sure that no LPI is using the associated target_vcpu. 1350 * This command affects all LPIs in the system that target that redistributor. 1351 */ 1352 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, 1353 u64 *its_cmd) 1354 { 1355 struct vgic_dist *dist = &kvm->arch.vgic; 1356 struct kvm_vcpu *vcpu1, *vcpu2; 1357 struct vgic_irq *irq; 1358 unsigned long intid; 1359 1360 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */ 1361 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd)); 1362 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32)); 1363 1364 if (!vcpu1 || !vcpu2) 1365 return E_ITS_MOVALL_PROCNUM_OOR; 1366 1367 if (vcpu1 == vcpu2) 1368 return 0; 1369 1370 xa_for_each(&dist->lpi_xa, intid, irq) { 1371 irq = vgic_get_irq(kvm, intid); 1372 if (!irq) 1373 continue; 1374 1375 update_affinity(irq, vcpu2); 1376 1377 vgic_put_irq(kvm, irq); 1378 } 1379 1380 vgic_its_invalidate_cache(its); 1381 1382 return 0; 1383 } 1384 1385 /* 1386 * The INT command injects the LPI associated with that DevID/EvID pair. 1387 * Must be called with the its_lock mutex held. 1388 */ 1389 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, 1390 u64 *its_cmd) 1391 { 1392 u32 msi_data = its_cmd_get_id(its_cmd); 1393 u64 msi_devid = its_cmd_get_deviceid(its_cmd); 1394 1395 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); 1396 } 1397 1398 /* 1399 * This function is called with the its_cmd lock held, but the ITS data 1400 * structure lock dropped. 1401 */ 1402 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, 1403 u64 *its_cmd) 1404 { 1405 int ret = -ENODEV; 1406 1407 mutex_lock(&its->its_lock); 1408 switch (its_cmd_get_command(its_cmd)) { 1409 case GITS_CMD_MAPD: 1410 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); 1411 break; 1412 case GITS_CMD_MAPC: 1413 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); 1414 break; 1415 case GITS_CMD_MAPI: 1416 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1417 break; 1418 case GITS_CMD_MAPTI: 1419 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); 1420 break; 1421 case GITS_CMD_MOVI: 1422 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); 1423 break; 1424 case GITS_CMD_DISCARD: 1425 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); 1426 break; 1427 case GITS_CMD_CLEAR: 1428 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); 1429 break; 1430 case GITS_CMD_MOVALL: 1431 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); 1432 break; 1433 case GITS_CMD_INT: 1434 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); 1435 break; 1436 case GITS_CMD_INV: 1437 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); 1438 break; 1439 case GITS_CMD_INVALL: 1440 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); 1441 break; 1442 case GITS_CMD_SYNC: 1443 /* we ignore this command: we are in sync all of the time */ 1444 ret = 0; 1445 break; 1446 } 1447 mutex_unlock(&its->its_lock); 1448 1449 return ret; 1450 } 1451 1452 static u64 vgic_sanitise_its_baser(u64 reg) 1453 { 1454 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, 1455 GITS_BASER_SHAREABILITY_SHIFT, 1456 vgic_sanitise_shareability); 1457 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, 1458 GITS_BASER_INNER_CACHEABILITY_SHIFT, 1459 vgic_sanitise_inner_cacheability); 1460 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, 1461 GITS_BASER_OUTER_CACHEABILITY_SHIFT, 1462 vgic_sanitise_outer_cacheability); 1463 1464 /* We support only one (ITS) page size: 64K */ 1465 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; 1466 1467 return reg; 1468 } 1469 1470 static u64 vgic_sanitise_its_cbaser(u64 reg) 1471 { 1472 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, 1473 GITS_CBASER_SHAREABILITY_SHIFT, 1474 vgic_sanitise_shareability); 1475 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, 1476 GITS_CBASER_INNER_CACHEABILITY_SHIFT, 1477 vgic_sanitise_inner_cacheability); 1478 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, 1479 GITS_CBASER_OUTER_CACHEABILITY_SHIFT, 1480 vgic_sanitise_outer_cacheability); 1481 1482 /* Sanitise the physical address to be 64k aligned. */ 1483 reg &= ~GENMASK_ULL(15, 12); 1484 1485 return reg; 1486 } 1487 1488 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, 1489 struct vgic_its *its, 1490 gpa_t addr, unsigned int len) 1491 { 1492 return extract_bytes(its->cbaser, addr & 7, len); 1493 } 1494 1495 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, 1496 gpa_t addr, unsigned int len, 1497 unsigned long val) 1498 { 1499 /* When GITS_CTLR.Enable is 1, this register is RO. */ 1500 if (its->enabled) 1501 return; 1502 1503 mutex_lock(&its->cmd_lock); 1504 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); 1505 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); 1506 its->creadr = 0; 1507 /* 1508 * CWRITER is architecturally UNKNOWN on reset, but we need to reset 1509 * it to CREADR to make sure we start with an empty command buffer. 1510 */ 1511 its->cwriter = its->creadr; 1512 mutex_unlock(&its->cmd_lock); 1513 } 1514 1515 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) 1516 #define ITS_CMD_SIZE 32 1517 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) 1518 1519 /* Must be called with the cmd_lock held. */ 1520 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) 1521 { 1522 gpa_t cbaser; 1523 u64 cmd_buf[4]; 1524 1525 /* Commands are only processed when the ITS is enabled. */ 1526 if (!its->enabled) 1527 return; 1528 1529 cbaser = GITS_CBASER_ADDRESS(its->cbaser); 1530 1531 while (its->cwriter != its->creadr) { 1532 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, 1533 cmd_buf, ITS_CMD_SIZE); 1534 /* 1535 * If kvm_read_guest() fails, this could be due to the guest 1536 * programming a bogus value in CBASER or something else going 1537 * wrong from which we cannot easily recover. 1538 * According to section 6.3.2 in the GICv3 spec we can just 1539 * ignore that command then. 1540 */ 1541 if (!ret) 1542 vgic_its_handle_command(kvm, its, cmd_buf); 1543 1544 its->creadr += ITS_CMD_SIZE; 1545 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) 1546 its->creadr = 0; 1547 } 1548 } 1549 1550 /* 1551 * By writing to CWRITER the guest announces new commands to be processed. 1552 * To avoid any races in the first place, we take the its_cmd lock, which 1553 * protects our ring buffer variables, so that there is only one user 1554 * per ITS handling commands at a given time. 1555 */ 1556 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, 1557 gpa_t addr, unsigned int len, 1558 unsigned long val) 1559 { 1560 u64 reg; 1561 1562 if (!its) 1563 return; 1564 1565 mutex_lock(&its->cmd_lock); 1566 1567 reg = update_64bit_reg(its->cwriter, addr & 7, len, val); 1568 reg = ITS_CMD_OFFSET(reg); 1569 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1570 mutex_unlock(&its->cmd_lock); 1571 return; 1572 } 1573 its->cwriter = reg; 1574 1575 vgic_its_process_commands(kvm, its); 1576 1577 mutex_unlock(&its->cmd_lock); 1578 } 1579 1580 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, 1581 struct vgic_its *its, 1582 gpa_t addr, unsigned int len) 1583 { 1584 return extract_bytes(its->cwriter, addr & 0x7, len); 1585 } 1586 1587 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, 1588 struct vgic_its *its, 1589 gpa_t addr, unsigned int len) 1590 { 1591 return extract_bytes(its->creadr, addr & 0x7, len); 1592 } 1593 1594 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, 1595 struct vgic_its *its, 1596 gpa_t addr, unsigned int len, 1597 unsigned long val) 1598 { 1599 u32 cmd_offset; 1600 int ret = 0; 1601 1602 mutex_lock(&its->cmd_lock); 1603 1604 if (its->enabled) { 1605 ret = -EBUSY; 1606 goto out; 1607 } 1608 1609 cmd_offset = ITS_CMD_OFFSET(val); 1610 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { 1611 ret = -EINVAL; 1612 goto out; 1613 } 1614 1615 its->creadr = cmd_offset; 1616 out: 1617 mutex_unlock(&its->cmd_lock); 1618 return ret; 1619 } 1620 1621 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) 1622 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, 1623 struct vgic_its *its, 1624 gpa_t addr, unsigned int len) 1625 { 1626 u64 reg; 1627 1628 switch (BASER_INDEX(addr)) { 1629 case 0: 1630 reg = its->baser_device_table; 1631 break; 1632 case 1: 1633 reg = its->baser_coll_table; 1634 break; 1635 default: 1636 reg = 0; 1637 break; 1638 } 1639 1640 return extract_bytes(reg, addr & 7, len); 1641 } 1642 1643 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) 1644 static void vgic_mmio_write_its_baser(struct kvm *kvm, 1645 struct vgic_its *its, 1646 gpa_t addr, unsigned int len, 1647 unsigned long val) 1648 { 1649 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 1650 u64 entry_size, table_type; 1651 u64 reg, *regptr, clearbits = 0; 1652 1653 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ 1654 if (its->enabled) 1655 return; 1656 1657 switch (BASER_INDEX(addr)) { 1658 case 0: 1659 regptr = &its->baser_device_table; 1660 entry_size = abi->dte_esz; 1661 table_type = GITS_BASER_TYPE_DEVICE; 1662 break; 1663 case 1: 1664 regptr = &its->baser_coll_table; 1665 entry_size = abi->cte_esz; 1666 table_type = GITS_BASER_TYPE_COLLECTION; 1667 clearbits = GITS_BASER_INDIRECT; 1668 break; 1669 default: 1670 return; 1671 } 1672 1673 reg = update_64bit_reg(*regptr, addr & 7, len, val); 1674 reg &= ~GITS_BASER_RO_MASK; 1675 reg &= ~clearbits; 1676 1677 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; 1678 reg |= table_type << GITS_BASER_TYPE_SHIFT; 1679 reg = vgic_sanitise_its_baser(reg); 1680 1681 *regptr = reg; 1682 1683 if (!(reg & GITS_BASER_VALID)) { 1684 /* Take the its_lock to prevent a race with a save/restore */ 1685 mutex_lock(&its->its_lock); 1686 switch (table_type) { 1687 case GITS_BASER_TYPE_DEVICE: 1688 vgic_its_free_device_list(kvm, its); 1689 break; 1690 case GITS_BASER_TYPE_COLLECTION: 1691 vgic_its_free_collection_list(kvm, its); 1692 break; 1693 } 1694 mutex_unlock(&its->its_lock); 1695 } 1696 } 1697 1698 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, 1699 struct vgic_its *its, 1700 gpa_t addr, unsigned int len) 1701 { 1702 u32 reg = 0; 1703 1704 mutex_lock(&its->cmd_lock); 1705 if (its->creadr == its->cwriter) 1706 reg |= GITS_CTLR_QUIESCENT; 1707 if (its->enabled) 1708 reg |= GITS_CTLR_ENABLE; 1709 mutex_unlock(&its->cmd_lock); 1710 1711 return reg; 1712 } 1713 1714 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, 1715 gpa_t addr, unsigned int len, 1716 unsigned long val) 1717 { 1718 mutex_lock(&its->cmd_lock); 1719 1720 /* 1721 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or 1722 * device/collection BASER are invalid 1723 */ 1724 if (!its->enabled && (val & GITS_CTLR_ENABLE) && 1725 (!(its->baser_device_table & GITS_BASER_VALID) || 1726 !(its->baser_coll_table & GITS_BASER_VALID) || 1727 !(its->cbaser & GITS_CBASER_VALID))) 1728 goto out; 1729 1730 its->enabled = !!(val & GITS_CTLR_ENABLE); 1731 if (!its->enabled) 1732 vgic_its_invalidate_cache(its); 1733 1734 /* 1735 * Try to process any pending commands. This function bails out early 1736 * if the ITS is disabled or no commands have been queued. 1737 */ 1738 vgic_its_process_commands(kvm, its); 1739 1740 out: 1741 mutex_unlock(&its->cmd_lock); 1742 } 1743 1744 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ 1745 { \ 1746 .reg_offset = off, \ 1747 .len = length, \ 1748 .access_flags = acc, \ 1749 .its_read = rd, \ 1750 .its_write = wr, \ 1751 } 1752 1753 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ 1754 { \ 1755 .reg_offset = off, \ 1756 .len = length, \ 1757 .access_flags = acc, \ 1758 .its_read = rd, \ 1759 .its_write = wr, \ 1760 .uaccess_its_write = uwr, \ 1761 } 1762 1763 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, 1764 gpa_t addr, unsigned int len, unsigned long val) 1765 { 1766 /* Ignore */ 1767 } 1768 1769 static struct vgic_register_region its_registers[] = { 1770 REGISTER_ITS_DESC(GITS_CTLR, 1771 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, 1772 VGIC_ACCESS_32bit), 1773 REGISTER_ITS_DESC_UACCESS(GITS_IIDR, 1774 vgic_mmio_read_its_iidr, its_mmio_write_wi, 1775 vgic_mmio_uaccess_write_its_iidr, 4, 1776 VGIC_ACCESS_32bit), 1777 REGISTER_ITS_DESC(GITS_TYPER, 1778 vgic_mmio_read_its_typer, its_mmio_write_wi, 8, 1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1780 REGISTER_ITS_DESC(GITS_CBASER, 1781 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, 1782 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1783 REGISTER_ITS_DESC(GITS_CWRITER, 1784 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, 1785 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1786 REGISTER_ITS_DESC_UACCESS(GITS_CREADR, 1787 vgic_mmio_read_its_creadr, its_mmio_write_wi, 1788 vgic_mmio_uaccess_write_its_creadr, 8, 1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1790 REGISTER_ITS_DESC(GITS_BASER, 1791 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, 1792 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), 1793 REGISTER_ITS_DESC(GITS_IDREGS_BASE, 1794 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, 1795 VGIC_ACCESS_32bit), 1796 }; 1797 1798 /* This is called on setting the LPI enable bit in the redistributor. */ 1799 void vgic_enable_lpis(struct kvm_vcpu *vcpu) 1800 { 1801 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) 1802 its_sync_lpi_pending_table(vcpu); 1803 } 1804 1805 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, 1806 u64 addr) 1807 { 1808 struct vgic_io_device *iodev = &its->iodev; 1809 int ret; 1810 1811 mutex_lock(&kvm->slots_lock); 1812 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1813 ret = -EBUSY; 1814 goto out; 1815 } 1816 1817 its->vgic_its_base = addr; 1818 iodev->regions = its_registers; 1819 iodev->nr_regions = ARRAY_SIZE(its_registers); 1820 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); 1821 1822 iodev->base_addr = its->vgic_its_base; 1823 iodev->iodev_type = IODEV_ITS; 1824 iodev->its = its; 1825 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, 1826 KVM_VGIC_V3_ITS_SIZE, &iodev->dev); 1827 out: 1828 mutex_unlock(&kvm->slots_lock); 1829 1830 return ret; 1831 } 1832 1833 #define INITIAL_BASER_VALUE \ 1834 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ 1835 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ 1836 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ 1837 GITS_BASER_PAGE_SIZE_64K) 1838 1839 #define INITIAL_PROPBASER_VALUE \ 1840 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ 1841 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ 1842 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) 1843 1844 static int vgic_its_create(struct kvm_device *dev, u32 type) 1845 { 1846 int ret; 1847 struct vgic_its *its; 1848 1849 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) 1850 return -ENODEV; 1851 1852 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT); 1853 if (!its) 1854 return -ENOMEM; 1855 1856 mutex_lock(&dev->kvm->arch.config_lock); 1857 1858 if (vgic_initialized(dev->kvm)) { 1859 ret = vgic_v4_init(dev->kvm); 1860 if (ret < 0) { 1861 mutex_unlock(&dev->kvm->arch.config_lock); 1862 kfree(its); 1863 return ret; 1864 } 1865 } 1866 1867 mutex_init(&its->its_lock); 1868 mutex_init(&its->cmd_lock); 1869 1870 /* Yep, even more trickery for lock ordering... */ 1871 #ifdef CONFIG_LOCKDEP 1872 mutex_lock(&its->cmd_lock); 1873 mutex_lock(&its->its_lock); 1874 mutex_unlock(&its->its_lock); 1875 mutex_unlock(&its->cmd_lock); 1876 #endif 1877 1878 its->vgic_its_base = VGIC_ADDR_UNDEF; 1879 1880 INIT_LIST_HEAD(&its->device_list); 1881 INIT_LIST_HEAD(&its->collection_list); 1882 xa_init(&its->translation_cache); 1883 1884 dev->kvm->arch.vgic.msis_require_devid = true; 1885 dev->kvm->arch.vgic.has_its = true; 1886 its->enabled = false; 1887 its->dev = dev; 1888 1889 its->baser_device_table = INITIAL_BASER_VALUE | 1890 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); 1891 its->baser_coll_table = INITIAL_BASER_VALUE | 1892 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); 1893 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; 1894 1895 dev->private = its; 1896 1897 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1); 1898 1899 mutex_unlock(&dev->kvm->arch.config_lock); 1900 1901 return ret; 1902 } 1903 1904 static void vgic_its_destroy(struct kvm_device *kvm_dev) 1905 { 1906 struct kvm *kvm = kvm_dev->kvm; 1907 struct vgic_its *its = kvm_dev->private; 1908 1909 mutex_lock(&its->its_lock); 1910 1911 vgic_its_debug_destroy(kvm_dev); 1912 1913 vgic_its_free_device_list(kvm, its); 1914 vgic_its_free_collection_list(kvm, its); 1915 vgic_its_invalidate_cache(its); 1916 xa_destroy(&its->translation_cache); 1917 1918 mutex_unlock(&its->its_lock); 1919 kfree(its); 1920 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ 1921 } 1922 1923 static int vgic_its_has_attr_regs(struct kvm_device *dev, 1924 struct kvm_device_attr *attr) 1925 { 1926 const struct vgic_register_region *region; 1927 gpa_t offset = attr->attr; 1928 int align; 1929 1930 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; 1931 1932 if (offset & align) 1933 return -EINVAL; 1934 1935 region = vgic_find_mmio_region(its_registers, 1936 ARRAY_SIZE(its_registers), 1937 offset); 1938 if (!region) 1939 return -ENXIO; 1940 1941 return 0; 1942 } 1943 1944 static int vgic_its_attr_regs_access(struct kvm_device *dev, 1945 struct kvm_device_attr *attr, 1946 u64 *reg, bool is_write) 1947 { 1948 const struct vgic_register_region *region; 1949 struct vgic_its *its; 1950 gpa_t addr, offset; 1951 unsigned int len; 1952 int align, ret = 0; 1953 1954 its = dev->private; 1955 offset = attr->attr; 1956 1957 /* 1958 * Although the spec supports upper/lower 32-bit accesses to 1959 * 64-bit ITS registers, the userspace ABI requires 64-bit 1960 * accesses to all 64-bit wide registers. We therefore only 1961 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID 1962 * registers 1963 */ 1964 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) 1965 align = 0x3; 1966 else 1967 align = 0x7; 1968 1969 if (offset & align) 1970 return -EINVAL; 1971 1972 mutex_lock(&dev->kvm->lock); 1973 1974 if (kvm_trylock_all_vcpus(dev->kvm)) { 1975 mutex_unlock(&dev->kvm->lock); 1976 return -EBUSY; 1977 } 1978 1979 mutex_lock(&dev->kvm->arch.config_lock); 1980 1981 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { 1982 ret = -ENXIO; 1983 goto out; 1984 } 1985 1986 region = vgic_find_mmio_region(its_registers, 1987 ARRAY_SIZE(its_registers), 1988 offset); 1989 if (!region) { 1990 ret = -ENXIO; 1991 goto out; 1992 } 1993 1994 addr = its->vgic_its_base + offset; 1995 1996 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; 1997 1998 if (is_write) { 1999 if (region->uaccess_its_write) 2000 ret = region->uaccess_its_write(dev->kvm, its, addr, 2001 len, *reg); 2002 else 2003 region->its_write(dev->kvm, its, addr, len, *reg); 2004 } else { 2005 *reg = region->its_read(dev->kvm, its, addr, len); 2006 } 2007 out: 2008 mutex_unlock(&dev->kvm->arch.config_lock); 2009 kvm_unlock_all_vcpus(dev->kvm); 2010 mutex_unlock(&dev->kvm->lock); 2011 return ret; 2012 } 2013 2014 static u32 compute_next_devid_offset(struct list_head *h, 2015 struct its_device *dev) 2016 { 2017 struct its_device *next; 2018 u32 next_offset; 2019 2020 if (list_is_last(&dev->dev_list, h)) 2021 return 0; 2022 next = list_next_entry(dev, dev_list); 2023 next_offset = next->device_id - dev->device_id; 2024 2025 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); 2026 } 2027 2028 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) 2029 { 2030 struct its_ite *next; 2031 u32 next_offset; 2032 2033 if (list_is_last(&ite->ite_list, h)) 2034 return 0; 2035 next = list_next_entry(ite, ite_list); 2036 next_offset = next->event_id - ite->event_id; 2037 2038 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); 2039 } 2040 2041 /** 2042 * typedef entry_fn_t - Callback called on a table entry restore path 2043 * @its: its handle 2044 * @id: id of the entry 2045 * @entry: pointer to the entry 2046 * @opaque: pointer to an opaque data 2047 * 2048 * Return: < 0 on error, 0 if last element was identified, id offset to next 2049 * element otherwise 2050 */ 2051 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, 2052 void *opaque); 2053 2054 /** 2055 * scan_its_table - Scan a contiguous table in guest RAM and applies a function 2056 * to each entry 2057 * 2058 * @its: its handle 2059 * @base: base gpa of the table 2060 * @size: size of the table in bytes 2061 * @esz: entry size in bytes 2062 * @start_id: the ID of the first entry in the table 2063 * (non zero for 2d level tables) 2064 * @fn: function to apply on each entry 2065 * @opaque: pointer to opaque data 2066 * 2067 * Return: < 0 on error, 0 if last element was identified, 1 otherwise 2068 * (the last element may not be found on second level tables) 2069 */ 2070 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, 2071 int start_id, entry_fn_t fn, void *opaque) 2072 { 2073 struct kvm *kvm = its->dev->kvm; 2074 unsigned long len = size; 2075 int id = start_id; 2076 gpa_t gpa = base; 2077 char entry[ESZ_MAX]; 2078 int ret; 2079 2080 memset(entry, 0, esz); 2081 2082 while (true) { 2083 int next_offset; 2084 size_t byte_offset; 2085 2086 ret = kvm_read_guest_lock(kvm, gpa, entry, esz); 2087 if (ret) 2088 return ret; 2089 2090 next_offset = fn(its, id, entry, opaque); 2091 if (next_offset <= 0) 2092 return next_offset; 2093 2094 byte_offset = next_offset * esz; 2095 if (byte_offset >= len) 2096 break; 2097 2098 id += next_offset; 2099 gpa += byte_offset; 2100 len -= byte_offset; 2101 } 2102 return 1; 2103 } 2104 2105 /* 2106 * vgic_its_save_ite - Save an interrupt translation entry at @gpa 2107 */ 2108 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, 2109 struct its_ite *ite, gpa_t gpa) 2110 { 2111 u32 next_offset; 2112 u64 val; 2113 2114 next_offset = compute_next_eventid_offset(&dev->itt_head, ite); 2115 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | 2116 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | 2117 ite->collection->collection_id; 2118 val = cpu_to_le64(val); 2119 2120 return vgic_its_write_entry_lock(its, gpa, val, ite); 2121 } 2122 2123 /** 2124 * vgic_its_restore_ite - restore an interrupt translation entry 2125 * 2126 * @its: its handle 2127 * @event_id: id used for indexing 2128 * @ptr: pointer to the ITE entry 2129 * @opaque: pointer to the its_device 2130 */ 2131 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, 2132 void *ptr, void *opaque) 2133 { 2134 struct its_device *dev = opaque; 2135 struct its_collection *collection; 2136 struct kvm *kvm = its->dev->kvm; 2137 struct kvm_vcpu *vcpu = NULL; 2138 u64 val; 2139 u64 *p = (u64 *)ptr; 2140 struct vgic_irq *irq; 2141 u32 coll_id, lpi_id; 2142 struct its_ite *ite; 2143 u32 offset; 2144 2145 val = *p; 2146 2147 val = le64_to_cpu(val); 2148 2149 coll_id = val & KVM_ITS_ITE_ICID_MASK; 2150 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; 2151 2152 if (!lpi_id) 2153 return 1; /* invalid entry, no choice but to scan next entry */ 2154 2155 if (lpi_id < VGIC_MIN_LPI) 2156 return -EINVAL; 2157 2158 offset = val >> KVM_ITS_ITE_NEXT_SHIFT; 2159 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) 2160 return -EINVAL; 2161 2162 collection = find_collection(its, coll_id); 2163 if (!collection) 2164 return -EINVAL; 2165 2166 if (!vgic_its_check_event_id(its, dev, event_id)) 2167 return -EINVAL; 2168 2169 ite = vgic_its_alloc_ite(dev, collection, event_id); 2170 if (IS_ERR(ite)) 2171 return PTR_ERR(ite); 2172 2173 if (its_is_collection_mapped(collection)) 2174 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr); 2175 2176 irq = vgic_add_lpi(kvm, lpi_id, vcpu); 2177 if (IS_ERR(irq)) { 2178 its_free_ite(kvm, ite); 2179 return PTR_ERR(irq); 2180 } 2181 ite->irq = irq; 2182 2183 return offset; 2184 } 2185 2186 static int vgic_its_ite_cmp(void *priv, const struct list_head *a, 2187 const struct list_head *b) 2188 { 2189 struct its_ite *itea = container_of(a, struct its_ite, ite_list); 2190 struct its_ite *iteb = container_of(b, struct its_ite, ite_list); 2191 2192 if (itea->event_id < iteb->event_id) 2193 return -1; 2194 else 2195 return 1; 2196 } 2197 2198 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) 2199 { 2200 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2201 gpa_t base = device->itt_addr; 2202 struct its_ite *ite; 2203 int ret; 2204 int ite_esz = abi->ite_esz; 2205 2206 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); 2207 2208 list_for_each_entry(ite, &device->itt_head, ite_list) { 2209 gpa_t gpa = base + ite->event_id * ite_esz; 2210 2211 /* 2212 * If an LPI carries the HW bit, this means that this 2213 * interrupt is controlled by GICv4, and we do not 2214 * have direct access to that state without GICv4.1. 2215 * Let's simply fail the save operation... 2216 */ 2217 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1) 2218 return -EACCES; 2219 2220 ret = vgic_its_save_ite(its, device, ite, gpa); 2221 if (ret) 2222 return ret; 2223 } 2224 return 0; 2225 } 2226 2227 /** 2228 * vgic_its_restore_itt - restore the ITT of a device 2229 * 2230 * @its: its handle 2231 * @dev: device handle 2232 * 2233 * Return 0 on success, < 0 on error 2234 */ 2235 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) 2236 { 2237 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2238 gpa_t base = dev->itt_addr; 2239 int ret; 2240 int ite_esz = abi->ite_esz; 2241 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; 2242 2243 ret = scan_its_table(its, base, max_size, ite_esz, 0, 2244 vgic_its_restore_ite, dev); 2245 2246 /* scan_its_table returns +1 if all ITEs are invalid */ 2247 if (ret > 0) 2248 ret = 0; 2249 2250 return ret; 2251 } 2252 2253 /** 2254 * vgic_its_save_dte - Save a device table entry at a given GPA 2255 * 2256 * @its: ITS handle 2257 * @dev: ITS device 2258 * @ptr: GPA 2259 */ 2260 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, 2261 gpa_t ptr) 2262 { 2263 u64 val, itt_addr_field; 2264 u32 next_offset; 2265 2266 itt_addr_field = dev->itt_addr >> 8; 2267 next_offset = compute_next_devid_offset(&its->device_list, dev); 2268 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | 2269 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | 2270 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | 2271 (dev->num_eventid_bits - 1)); 2272 val = cpu_to_le64(val); 2273 2274 return vgic_its_write_entry_lock(its, ptr, val, dte); 2275 } 2276 2277 /** 2278 * vgic_its_restore_dte - restore a device table entry 2279 * 2280 * @its: its handle 2281 * @id: device id the DTE corresponds to 2282 * @ptr: kernel VA where the 8 byte DTE is located 2283 * @opaque: unused 2284 * 2285 * Return: < 0 on error, 0 if the dte is the last one, id offset to the 2286 * next dte otherwise 2287 */ 2288 static int vgic_its_restore_dte(struct vgic_its *its, u32 id, 2289 void *ptr, void *opaque) 2290 { 2291 struct its_device *dev; 2292 u64 baser = its->baser_device_table; 2293 gpa_t itt_addr; 2294 u8 num_eventid_bits; 2295 u64 entry = *(u64 *)ptr; 2296 bool valid; 2297 u32 offset; 2298 int ret; 2299 2300 entry = le64_to_cpu(entry); 2301 2302 valid = entry >> KVM_ITS_DTE_VALID_SHIFT; 2303 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; 2304 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) 2305 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; 2306 2307 if (!valid) 2308 return 1; 2309 2310 /* dte entry is valid */ 2311 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; 2312 2313 if (!vgic_its_check_id(its, baser, id, NULL)) 2314 return -EINVAL; 2315 2316 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); 2317 if (IS_ERR(dev)) 2318 return PTR_ERR(dev); 2319 2320 ret = vgic_its_restore_itt(its, dev); 2321 if (ret) { 2322 vgic_its_free_device(its->dev->kvm, its, dev); 2323 return ret; 2324 } 2325 2326 return offset; 2327 } 2328 2329 static int vgic_its_device_cmp(void *priv, const struct list_head *a, 2330 const struct list_head *b) 2331 { 2332 struct its_device *deva = container_of(a, struct its_device, dev_list); 2333 struct its_device *devb = container_of(b, struct its_device, dev_list); 2334 2335 if (deva->device_id < devb->device_id) 2336 return -1; 2337 else 2338 return 1; 2339 } 2340 2341 /* 2342 * vgic_its_save_device_tables - Save the device table and all ITT 2343 * into guest RAM 2344 * 2345 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly 2346 * returns the GPA of the device entry 2347 */ 2348 static int vgic_its_save_device_tables(struct vgic_its *its) 2349 { 2350 u64 baser = its->baser_device_table; 2351 struct its_device *dev; 2352 2353 if (!(baser & GITS_BASER_VALID)) 2354 return 0; 2355 2356 list_sort(NULL, &its->device_list, vgic_its_device_cmp); 2357 2358 list_for_each_entry(dev, &its->device_list, dev_list) { 2359 int ret; 2360 gpa_t eaddr; 2361 2362 if (!vgic_its_check_id(its, baser, 2363 dev->device_id, &eaddr)) 2364 return -EINVAL; 2365 2366 ret = vgic_its_save_itt(its, dev); 2367 if (ret) 2368 return ret; 2369 2370 ret = vgic_its_save_dte(its, dev, eaddr); 2371 if (ret) 2372 return ret; 2373 } 2374 return 0; 2375 } 2376 2377 /** 2378 * handle_l1_dte - callback used for L1 device table entries (2 stage case) 2379 * 2380 * @its: its handle 2381 * @id: index of the entry in the L1 table 2382 * @addr: kernel VA 2383 * @opaque: unused 2384 * 2385 * L1 table entries are scanned by steps of 1 entry 2386 * Return < 0 if error, 0 if last dte was found when scanning the L2 2387 * table, +1 otherwise (meaning next L1 entry must be scanned) 2388 */ 2389 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, 2390 void *opaque) 2391 { 2392 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2393 int l2_start_id = id * (SZ_64K / abi->dte_esz); 2394 u64 entry = *(u64 *)addr; 2395 int dte_esz = abi->dte_esz; 2396 gpa_t gpa; 2397 int ret; 2398 2399 entry = le64_to_cpu(entry); 2400 2401 if (!(entry & KVM_ITS_L1E_VALID_MASK)) 2402 return 1; 2403 2404 gpa = entry & KVM_ITS_L1E_ADDR_MASK; 2405 2406 ret = scan_its_table(its, gpa, SZ_64K, dte_esz, 2407 l2_start_id, vgic_its_restore_dte, NULL); 2408 2409 return ret; 2410 } 2411 2412 /* 2413 * vgic_its_restore_device_tables - Restore the device table and all ITT 2414 * from guest RAM to internal data structs 2415 */ 2416 static int vgic_its_restore_device_tables(struct vgic_its *its) 2417 { 2418 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2419 u64 baser = its->baser_device_table; 2420 int l1_esz, ret; 2421 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2422 gpa_t l1_gpa; 2423 2424 if (!(baser & GITS_BASER_VALID)) 2425 return 0; 2426 2427 l1_gpa = GITS_BASER_ADDR_48_to_52(baser); 2428 2429 if (baser & GITS_BASER_INDIRECT) { 2430 l1_esz = GITS_LVL1_ENTRY_SIZE; 2431 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2432 handle_l1_dte, NULL); 2433 } else { 2434 l1_esz = abi->dte_esz; 2435 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, 2436 vgic_its_restore_dte, NULL); 2437 } 2438 2439 /* scan_its_table returns +1 if all entries are invalid */ 2440 if (ret > 0) 2441 ret = 0; 2442 2443 if (ret < 0) 2444 vgic_its_free_device_list(its->dev->kvm, its); 2445 2446 return ret; 2447 } 2448 2449 static int vgic_its_save_cte(struct vgic_its *its, 2450 struct its_collection *collection, 2451 gpa_t gpa) 2452 { 2453 u64 val; 2454 2455 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | 2456 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | 2457 collection->collection_id); 2458 val = cpu_to_le64(val); 2459 2460 return vgic_its_write_entry_lock(its, gpa, val, cte); 2461 } 2462 2463 /* 2464 * Restore a collection entry into the ITS collection table. 2465 * Return +1 on success, 0 if the entry was invalid (which should be 2466 * interpreted as end-of-table), and a negative error value for generic errors. 2467 */ 2468 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa) 2469 { 2470 struct its_collection *collection; 2471 struct kvm *kvm = its->dev->kvm; 2472 u32 target_addr, coll_id; 2473 u64 val; 2474 int ret; 2475 2476 ret = vgic_its_read_entry_lock(its, gpa, &val, cte); 2477 if (ret) 2478 return ret; 2479 val = le64_to_cpu(val); 2480 if (!(val & KVM_ITS_CTE_VALID_MASK)) 2481 return 0; 2482 2483 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); 2484 coll_id = val & KVM_ITS_CTE_ICID_MASK; 2485 2486 if (target_addr != COLLECTION_NOT_MAPPED && 2487 !kvm_get_vcpu_by_id(kvm, target_addr)) 2488 return -EINVAL; 2489 2490 collection = find_collection(its, coll_id); 2491 if (collection) 2492 return -EEXIST; 2493 2494 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) 2495 return -EINVAL; 2496 2497 ret = vgic_its_alloc_collection(its, &collection, coll_id); 2498 if (ret) 2499 return ret; 2500 collection->target_addr = target_addr; 2501 return 1; 2502 } 2503 2504 /* 2505 * vgic_its_save_collection_table - Save the collection table into 2506 * guest RAM 2507 */ 2508 static int vgic_its_save_collection_table(struct vgic_its *its) 2509 { 2510 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2511 u64 baser = its->baser_coll_table; 2512 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser); 2513 struct its_collection *collection; 2514 size_t max_size, filled = 0; 2515 int ret, cte_esz = abi->cte_esz; 2516 2517 if (!(baser & GITS_BASER_VALID)) 2518 return 0; 2519 2520 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2521 2522 list_for_each_entry(collection, &its->collection_list, coll_list) { 2523 ret = vgic_its_save_cte(its, collection, gpa); 2524 if (ret) 2525 return ret; 2526 gpa += cte_esz; 2527 filled += cte_esz; 2528 } 2529 2530 if (filled == max_size) 2531 return 0; 2532 2533 /* 2534 * table is not fully filled, add a last dummy element 2535 * with valid bit unset 2536 */ 2537 return vgic_its_write_entry_lock(its, gpa, 0ULL, cte); 2538 } 2539 2540 /* 2541 * vgic_its_restore_collection_table - reads the collection table 2542 * in guest memory and restores the ITS internal state. Requires the 2543 * BASER registers to be restored before. 2544 */ 2545 static int vgic_its_restore_collection_table(struct vgic_its *its) 2546 { 2547 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2548 u64 baser = its->baser_coll_table; 2549 int cte_esz = abi->cte_esz; 2550 size_t max_size, read = 0; 2551 gpa_t gpa; 2552 int ret; 2553 2554 if (!(baser & GITS_BASER_VALID)) 2555 return 0; 2556 2557 gpa = GITS_BASER_ADDR_48_to_52(baser); 2558 2559 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; 2560 2561 while (read < max_size) { 2562 ret = vgic_its_restore_cte(its, gpa); 2563 if (ret <= 0) 2564 break; 2565 gpa += cte_esz; 2566 read += cte_esz; 2567 } 2568 2569 if (ret > 0) 2570 return 0; 2571 2572 if (ret < 0) 2573 vgic_its_free_collection_list(its->dev->kvm, its); 2574 2575 return ret; 2576 } 2577 2578 /* 2579 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM 2580 * according to v0 ABI 2581 */ 2582 static int vgic_its_save_tables_v0(struct vgic_its *its) 2583 { 2584 int ret; 2585 2586 ret = vgic_its_save_device_tables(its); 2587 if (ret) 2588 return ret; 2589 2590 return vgic_its_save_collection_table(its); 2591 } 2592 2593 /* 2594 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM 2595 * to internal data structs according to V0 ABI 2596 * 2597 */ 2598 static int vgic_its_restore_tables_v0(struct vgic_its *its) 2599 { 2600 int ret; 2601 2602 ret = vgic_its_restore_collection_table(its); 2603 if (ret) 2604 return ret; 2605 2606 ret = vgic_its_restore_device_tables(its); 2607 if (ret) 2608 vgic_its_free_collection_list(its->dev->kvm, its); 2609 return ret; 2610 } 2611 2612 static int vgic_its_commit_v0(struct vgic_its *its) 2613 { 2614 const struct vgic_its_abi *abi; 2615 2616 abi = vgic_its_get_abi(its); 2617 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2618 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; 2619 2620 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) 2621 << GITS_BASER_ENTRY_SIZE_SHIFT); 2622 2623 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) 2624 << GITS_BASER_ENTRY_SIZE_SHIFT); 2625 return 0; 2626 } 2627 2628 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) 2629 { 2630 /* We need to keep the ABI specific field values */ 2631 its->baser_coll_table &= ~GITS_BASER_VALID; 2632 its->baser_device_table &= ~GITS_BASER_VALID; 2633 its->cbaser = 0; 2634 its->creadr = 0; 2635 its->cwriter = 0; 2636 its->enabled = 0; 2637 vgic_its_free_device_list(kvm, its); 2638 vgic_its_free_collection_list(kvm, its); 2639 } 2640 2641 static int vgic_its_has_attr(struct kvm_device *dev, 2642 struct kvm_device_attr *attr) 2643 { 2644 switch (attr->group) { 2645 case KVM_DEV_ARM_VGIC_GRP_ADDR: 2646 switch (attr->attr) { 2647 case KVM_VGIC_ITS_ADDR_TYPE: 2648 return 0; 2649 } 2650 break; 2651 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2652 switch (attr->attr) { 2653 case KVM_DEV_ARM_VGIC_CTRL_INIT: 2654 return 0; 2655 case KVM_DEV_ARM_ITS_CTRL_RESET: 2656 return 0; 2657 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2658 return 0; 2659 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2660 return 0; 2661 } 2662 break; 2663 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: 2664 return vgic_its_has_attr_regs(dev, attr); 2665 } 2666 return -ENXIO; 2667 } 2668 2669 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) 2670 { 2671 const struct vgic_its_abi *abi = vgic_its_get_abi(its); 2672 int ret = 0; 2673 2674 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ 2675 return 0; 2676 2677 mutex_lock(&kvm->lock); 2678 2679 if (kvm_trylock_all_vcpus(kvm)) { 2680 mutex_unlock(&kvm->lock); 2681 return -EBUSY; 2682 } 2683 2684 mutex_lock(&kvm->arch.config_lock); 2685 mutex_lock(&its->its_lock); 2686 2687 switch (attr) { 2688 case KVM_DEV_ARM_ITS_CTRL_RESET: 2689 vgic_its_reset(kvm, its); 2690 break; 2691 case KVM_DEV_ARM_ITS_SAVE_TABLES: 2692 ret = abi->save_tables(its); 2693 break; 2694 case KVM_DEV_ARM_ITS_RESTORE_TABLES: 2695 ret = abi->restore_tables(its); 2696 break; 2697 default: 2698 ret = -ENXIO; 2699 break; 2700 } 2701 2702 mutex_unlock(&its->its_lock); 2703 mutex_unlock(&kvm->arch.config_lock); 2704 kvm_unlock_all_vcpus(kvm); 2705 mutex_unlock(&kvm->lock); 2706 return ret; 2707 } 2708 2709 /* 2710 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory 2711 * without the running VCPU when dirty ring is enabled. 2712 * 2713 * The running VCPU is required to track dirty guest pages when dirty ring 2714 * is enabled. Otherwise, the backup bitmap should be used to track the 2715 * dirty guest pages. When vgic/its tables are being saved, the backup 2716 * bitmap is used to track the dirty guest pages due to the missed running 2717 * VCPU in the period. 2718 */ 2719 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm) 2720 { 2721 struct vgic_dist *dist = &kvm->arch.vgic; 2722 2723 return dist->table_write_in_progress; 2724 } 2725 2726 static int vgic_its_set_attr(struct kvm_device *dev, 2727 struct kvm_device_attr *attr) 2728 { 2729 struct vgic_its *its = dev->private; 2730 int ret; 2731 2732 switch (attr->group) { 2733 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2734 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2735 unsigned long type = (unsigned long)attr->attr; 2736 u64 addr; 2737 2738 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2739 return -ENODEV; 2740 2741 if (copy_from_user(&addr, uaddr, sizeof(addr))) 2742 return -EFAULT; 2743 2744 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base, 2745 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE); 2746 if (ret) 2747 return ret; 2748 2749 ret = vgic_register_its_iodev(dev->kvm, its, addr); 2750 if (ret) 2751 return ret; 2752 2753 return vgic_its_debug_init(dev); 2754 2755 } 2756 case KVM_DEV_ARM_VGIC_GRP_CTRL: 2757 return vgic_its_ctrl(dev->kvm, its, attr->attr); 2758 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2759 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2760 u64 reg; 2761 2762 if (get_user(reg, uaddr)) 2763 return -EFAULT; 2764 2765 return vgic_its_attr_regs_access(dev, attr, ®, true); 2766 } 2767 } 2768 return -ENXIO; 2769 } 2770 2771 static int vgic_its_get_attr(struct kvm_device *dev, 2772 struct kvm_device_attr *attr) 2773 { 2774 switch (attr->group) { 2775 case KVM_DEV_ARM_VGIC_GRP_ADDR: { 2776 struct vgic_its *its = dev->private; 2777 u64 addr = its->vgic_its_base; 2778 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2779 unsigned long type = (unsigned long)attr->attr; 2780 2781 if (type != KVM_VGIC_ITS_ADDR_TYPE) 2782 return -ENODEV; 2783 2784 if (copy_to_user(uaddr, &addr, sizeof(addr))) 2785 return -EFAULT; 2786 break; 2787 } 2788 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { 2789 u64 __user *uaddr = (u64 __user *)(long)attr->addr; 2790 u64 reg; 2791 int ret; 2792 2793 ret = vgic_its_attr_regs_access(dev, attr, ®, false); 2794 if (ret) 2795 return ret; 2796 return put_user(reg, uaddr); 2797 } 2798 default: 2799 return -ENXIO; 2800 } 2801 2802 return 0; 2803 } 2804 2805 static struct kvm_device_ops kvm_arm_vgic_its_ops = { 2806 .name = "kvm-arm-vgic-its", 2807 .create = vgic_its_create, 2808 .destroy = vgic_its_destroy, 2809 .set_attr = vgic_its_set_attr, 2810 .get_attr = vgic_its_get_attr, 2811 .has_attr = vgic_its_has_attr, 2812 }; 2813 2814 int kvm_vgic_register_its_device(void) 2815 { 2816 return kvm_register_device_ops(&kvm_arm_vgic_its_ops, 2817 KVM_DEV_TYPE_ARM_VGIC_ITS); 2818 } 2819