1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static struct kvm_device_ops kvm_arm_vgic_its_ops;
27
28 static int vgic_its_save_tables_v0(struct vgic_its *its);
29 static int vgic_its_restore_tables_v0(struct vgic_its *its);
30 static int vgic_its_commit_v0(struct vgic_its *its);
31 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
32 struct kvm_vcpu *filter_vcpu, bool needs_inv);
33
34 #define vgic_its_read_entry_lock(i, g, valp, t) \
35 ({ \
36 int __sz = vgic_its_get_abi(i)->t##_esz; \
37 struct kvm *__k = (i)->dev->kvm; \
38 int __ret; \
39 \
40 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
41 sizeof(*(valp)) != ABI_0_ESZ); \
42 if (NR_ITS_ABIS > 1 && \
43 KVM_BUG_ON(__sz != sizeof(*(valp)), __k)) \
44 __ret = -EINVAL; \
45 else \
46 __ret = kvm_read_guest_lock(__k, (g), \
47 valp, __sz); \
48 __ret; \
49 })
50
51 #define vgic_its_write_entry_lock(i, g, val, t) \
52 ({ \
53 int __sz = vgic_its_get_abi(i)->t##_esz; \
54 struct kvm *__k = (i)->dev->kvm; \
55 typeof(val) __v = (val); \
56 int __ret; \
57 \
58 BUILD_BUG_ON(NR_ITS_ABIS == 1 && \
59 sizeof(__v) != ABI_0_ESZ); \
60 if (NR_ITS_ABIS > 1 && \
61 KVM_BUG_ON(__sz != sizeof(__v), __k)) \
62 __ret = -EINVAL; \
63 else \
64 __ret = vgic_write_guest_lock(__k, (g), \
65 &__v, __sz); \
66 __ret; \
67 })
68
69 /*
70 * Creates a new (reference to a) struct vgic_irq for a given LPI.
71 * If this LPI is already mapped on another ITS, we increase its refcount
72 * and return a pointer to the existing structure.
73 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
74 * This function returns a pointer to the _unlocked_ structure.
75 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)76 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
77 struct kvm_vcpu *vcpu)
78 {
79 struct vgic_dist *dist = &kvm->arch.vgic;
80 struct vgic_irq *irq = vgic_get_irq(kvm, intid), *oldirq;
81 unsigned long flags;
82 int ret;
83
84 /* In this case there is no put, since we keep the reference. */
85 if (irq)
86 return irq;
87
88 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
89 if (!irq)
90 return ERR_PTR(-ENOMEM);
91
92 ret = xa_reserve_irq(&dist->lpi_xa, intid, GFP_KERNEL_ACCOUNT);
93 if (ret) {
94 kfree(irq);
95 return ERR_PTR(ret);
96 }
97
98 INIT_LIST_HEAD(&irq->ap_list);
99 raw_spin_lock_init(&irq->irq_lock);
100
101 irq->config = VGIC_CONFIG_EDGE;
102 refcount_set(&irq->refcount, 1);
103 irq->intid = intid;
104 irq->target_vcpu = vcpu;
105 irq->group = 1;
106
107 xa_lock_irqsave(&dist->lpi_xa, flags);
108
109 /*
110 * There could be a race with another vgic_add_lpi(), so we need to
111 * check that we don't add a second list entry with the same LPI.
112 */
113 oldirq = xa_load(&dist->lpi_xa, intid);
114 if (vgic_try_get_irq_ref(oldirq)) {
115 /* Someone was faster with adding this LPI, lets use that. */
116 kfree(irq);
117 irq = oldirq;
118 } else {
119 ret = xa_err(__xa_store(&dist->lpi_xa, intid, irq, 0));
120 }
121
122 xa_unlock_irqrestore(&dist->lpi_xa, flags);
123
124 if (ret) {
125 xa_release(&dist->lpi_xa, intid);
126 kfree(irq);
127
128 return ERR_PTR(ret);
129 }
130
131 /*
132 * We "cache" the configuration table entries in our struct vgic_irq's.
133 * However we only have those structs for mapped IRQs, so we read in
134 * the respective config data from memory here upon mapping the LPI.
135 *
136 * Should any of these fail, behave as if we couldn't create the LPI
137 * by dropping the refcount and returning the error.
138 */
139 ret = update_lpi_config(kvm, irq, NULL, false);
140 if (ret) {
141 vgic_put_irq(kvm, irq);
142 return ERR_PTR(ret);
143 }
144
145 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
146 if (ret) {
147 vgic_put_irq(kvm, irq);
148 return ERR_PTR(ret);
149 }
150
151 return irq;
152 }
153
154 /**
155 * struct vgic_its_abi - ITS abi ops and settings
156 * @cte_esz: collection table entry size
157 * @dte_esz: device table entry size
158 * @ite_esz: interrupt translation table entry size
159 * @save_tables: save the ITS tables into guest RAM
160 * @restore_tables: restore the ITS internal structs from tables
161 * stored in guest RAM
162 * @commit: initialize the registers which expose the ABI settings,
163 * especially the entry sizes
164 */
165 struct vgic_its_abi {
166 int cte_esz;
167 int dte_esz;
168 int ite_esz;
169 int (*save_tables)(struct vgic_its *its);
170 int (*restore_tables)(struct vgic_its *its);
171 int (*commit)(struct vgic_its *its);
172 };
173
174 #define ABI_0_ESZ 8
175 #define ESZ_MAX ABI_0_ESZ
176
177 static const struct vgic_its_abi its_table_abi_versions[] = {
178 [0] = {
179 .cte_esz = ABI_0_ESZ,
180 .dte_esz = ABI_0_ESZ,
181 .ite_esz = ABI_0_ESZ,
182 .save_tables = vgic_its_save_tables_v0,
183 .restore_tables = vgic_its_restore_tables_v0,
184 .commit = vgic_its_commit_v0,
185 },
186 };
187
188 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
189
vgic_its_get_abi(struct vgic_its * its)190 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
191 {
192 return &its_table_abi_versions[its->abi_rev];
193 }
194
vgic_its_set_abi(struct vgic_its * its,u32 rev)195 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
196 {
197 const struct vgic_its_abi *abi;
198
199 its->abi_rev = rev;
200 abi = vgic_its_get_abi(its);
201 return abi->commit(its);
202 }
203
204 /*
205 * Find and returns a device in the device table for an ITS.
206 * Must be called with the its_lock mutex held.
207 */
find_its_device(struct vgic_its * its,u32 device_id)208 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
209 {
210 struct its_device *device;
211
212 list_for_each_entry(device, &its->device_list, dev_list)
213 if (device_id == device->device_id)
214 return device;
215
216 return NULL;
217 }
218
219 /*
220 * Find and returns an interrupt translation table entry (ITTE) for a given
221 * Device ID/Event ID pair on an ITS.
222 * Must be called with the its_lock mutex held.
223 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)224 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
225 u32 event_id)
226 {
227 struct its_device *device;
228 struct its_ite *ite;
229
230 device = find_its_device(its, device_id);
231 if (device == NULL)
232 return NULL;
233
234 list_for_each_entry(ite, &device->itt_head, ite_list)
235 if (ite->event_id == event_id)
236 return ite;
237
238 return NULL;
239 }
240
241 /* To be used as an iterator this macro misses the enclosing parentheses */
242 #define for_each_lpi_its(dev, ite, its) \
243 list_for_each_entry(dev, &(its)->device_list, dev_list) \
244 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
245
246 #define GIC_LPI_OFFSET 8192
247
248 #define VITS_TYPER_IDBITS 16
249 #define VITS_MAX_EVENTID (BIT(VITS_TYPER_IDBITS) - 1)
250 #define VITS_TYPER_DEVBITS 16
251 #define VITS_MAX_DEVID (BIT(VITS_TYPER_DEVBITS) - 1)
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 if (irq->hw)
307 ret = its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
308
309 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
310 return ret;
311 }
312
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)313 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
314 {
315 struct its_vlpi_map map;
316 int ret;
317
318 guard(raw_spinlock_irqsave)(&irq->irq_lock);
319 irq->target_vcpu = vcpu;
320
321 if (!irq->hw)
322 return 0;
323
324 ret = its_get_vlpi(irq->host_irq, &map);
325 if (ret)
326 return ret;
327
328 if (map.vpe)
329 atomic_dec(&map.vpe->vlpi_count);
330
331 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
332 atomic_inc(&map.vpe->vlpi_count);
333 return its_map_vlpi(irq->host_irq, &map);
334 }
335
collection_to_vcpu(struct kvm * kvm,struct its_collection * col)336 static struct kvm_vcpu *collection_to_vcpu(struct kvm *kvm,
337 struct its_collection *col)
338 {
339 return kvm_get_vcpu_by_id(kvm, col->target_addr);
340 }
341
342 /*
343 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
344 * is targeting) to the VGIC's view, which deals with target VCPUs.
345 * Needs to be called whenever either the collection for a LPIs has
346 * changed or the collection itself got retargeted.
347 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)348 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
349 {
350 struct kvm_vcpu *vcpu;
351
352 if (!its_is_collection_mapped(ite->collection))
353 return;
354
355 vcpu = collection_to_vcpu(kvm, ite->collection);
356 update_affinity(ite->irq, vcpu);
357 }
358
359 /*
360 * Updates the target VCPU for every LPI targeting this collection.
361 * Must be called with the its_lock mutex held.
362 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)363 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
364 struct its_collection *coll)
365 {
366 struct its_device *device;
367 struct its_ite *ite;
368
369 for_each_lpi_its(device, ite, its) {
370 if (ite->collection != coll)
371 continue;
372
373 update_affinity_ite(kvm, ite);
374 }
375 }
376
max_lpis_propbaser(u64 propbaser)377 static u32 max_lpis_propbaser(u64 propbaser)
378 {
379 int nr_idbits = (propbaser & 0x1f) + 1;
380
381 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
382 }
383
384 /*
385 * Sync the pending table pending bit of LPIs targeting @vcpu
386 * with our own data structures. This relies on the LPI being
387 * mapped before.
388 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)389 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
390 {
391 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
392 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
393 unsigned long intid, flags;
394 struct vgic_irq *irq;
395 int last_byte_offset = -1;
396 int ret = 0;
397 u8 pendmask;
398
399 xa_for_each(&dist->lpi_xa, intid, irq) {
400 int byte_offset, bit_nr;
401
402 byte_offset = intid / BITS_PER_BYTE;
403 bit_nr = intid % BITS_PER_BYTE;
404
405 /*
406 * For contiguously allocated LPIs chances are we just read
407 * this very same byte in the last iteration. Reuse that.
408 */
409 if (byte_offset != last_byte_offset) {
410 ret = kvm_read_guest_lock(vcpu->kvm,
411 pendbase + byte_offset,
412 &pendmask, 1);
413 if (ret)
414 return ret;
415
416 last_byte_offset = byte_offset;
417 }
418
419 irq = vgic_get_irq(vcpu->kvm, intid);
420 if (!irq)
421 continue;
422
423 raw_spin_lock_irqsave(&irq->irq_lock, flags);
424 if (irq->target_vcpu == vcpu)
425 irq->pending_latch = pendmask & (1U << bit_nr);
426 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
427 vgic_put_irq(vcpu->kvm, irq);
428 }
429
430 return ret;
431 }
432
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)433 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
434 struct vgic_its *its,
435 gpa_t addr, unsigned int len)
436 {
437 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
438 u64 reg = GITS_TYPER_PLPIS;
439
440 /*
441 * We use linear CPU numbers for redistributor addressing,
442 * so GITS_TYPER.PTA is 0.
443 * Also we force all PROPBASER registers to be the same, so
444 * CommonLPIAff is 0 as well.
445 * To avoid memory waste in the guest, we keep the number of IDBits and
446 * DevBits low - as least for the time being.
447 */
448 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
449 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
450 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
451
452 return extract_bytes(reg, addr & 7, len);
453 }
454
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)455 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
456 struct vgic_its *its,
457 gpa_t addr, unsigned int len)
458 {
459 u32 val;
460
461 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
462 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
463 return val;
464 }
465
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)466 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
467 struct vgic_its *its,
468 gpa_t addr, unsigned int len,
469 unsigned long val)
470 {
471 u32 rev = GITS_IIDR_REV(val);
472
473 if (rev >= NR_ITS_ABIS)
474 return -EINVAL;
475 return vgic_its_set_abi(its, rev);
476 }
477
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)478 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
479 struct vgic_its *its,
480 gpa_t addr, unsigned int len)
481 {
482 switch (addr & 0xffff) {
483 case GITS_PIDR0:
484 return 0x92; /* part number, bits[7:0] */
485 case GITS_PIDR1:
486 return 0xb4; /* part number, bits[11:8] */
487 case GITS_PIDR2:
488 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
489 case GITS_PIDR4:
490 return 0x40; /* This is a 64K software visible page */
491 /* The following are the ID registers for (any) GIC. */
492 case GITS_CIDR0:
493 return 0x0d;
494 case GITS_CIDR1:
495 return 0xf0;
496 case GITS_CIDR2:
497 return 0x05;
498 case GITS_CIDR3:
499 return 0xb1;
500 }
501
502 return 0;
503 }
504
__vgic_doorbell_to_its(struct kvm * kvm,gpa_t db)505 static struct vgic_its *__vgic_doorbell_to_its(struct kvm *kvm, gpa_t db)
506 {
507 struct kvm_io_device *kvm_io_dev;
508 struct vgic_io_device *iodev;
509
510 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, db);
511 if (!kvm_io_dev)
512 return ERR_PTR(-EINVAL);
513
514 if (kvm_io_dev->ops != &kvm_io_gic_ops)
515 return ERR_PTR(-EINVAL);
516
517 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
518 if (iodev->iodev_type != IODEV_ITS)
519 return ERR_PTR(-EINVAL);
520
521 return iodev->its;
522 }
523
vgic_its_cache_key(u32 devid,u32 eventid)524 static unsigned long vgic_its_cache_key(u32 devid, u32 eventid)
525 {
526 return (((unsigned long)devid) << VITS_TYPER_IDBITS) | eventid;
527
528 }
529
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)530 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
531 u32 devid, u32 eventid)
532 {
533 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
534 struct vgic_its *its;
535 struct vgic_irq *irq;
536
537 if (devid > VITS_MAX_DEVID || eventid > VITS_MAX_EVENTID)
538 return NULL;
539
540 its = __vgic_doorbell_to_its(kvm, db);
541 if (IS_ERR(its))
542 return NULL;
543
544 rcu_read_lock();
545
546 irq = xa_load(&its->translation_cache, cache_key);
547 if (!vgic_try_get_irq_ref(irq))
548 irq = NULL;
549
550 rcu_read_unlock();
551
552 return irq;
553 }
554
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)555 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
556 u32 devid, u32 eventid,
557 struct vgic_irq *irq)
558 {
559 unsigned long cache_key = vgic_its_cache_key(devid, eventid);
560 struct vgic_irq *old;
561
562 /* Do not cache a directly injected interrupt */
563 if (irq->hw)
564 return;
565
566 /*
567 * The irq refcount is guaranteed to be nonzero while holding the
568 * its_lock, as the ITE (and the reference it holds) cannot be freed.
569 */
570 lockdep_assert_held(&its->its_lock);
571 vgic_get_irq_ref(irq);
572
573 old = xa_store(&its->translation_cache, cache_key, irq, GFP_KERNEL_ACCOUNT);
574
575 /*
576 * Put the reference taken on @irq if the store fails. Intentionally do
577 * not return the error as the translation cache is best effort.
578 */
579 if (xa_is_err(old)) {
580 vgic_put_irq(kvm, irq);
581 return;
582 }
583
584 /*
585 * We could have raced with another CPU caching the same
586 * translation behind our back, ensure we don't leak a
587 * reference if that is the case.
588 */
589 if (old)
590 vgic_put_irq(kvm, old);
591 }
592
vgic_its_invalidate_cache(struct vgic_its * its)593 static void vgic_its_invalidate_cache(struct vgic_its *its)
594 {
595 struct kvm *kvm = its->dev->kvm;
596 struct vgic_irq *irq;
597 unsigned long idx;
598
599 xa_for_each(&its->translation_cache, idx, irq) {
600 xa_erase(&its->translation_cache, idx);
601 vgic_put_irq(kvm, irq);
602 }
603 }
604
vgic_its_invalidate_all_caches(struct kvm * kvm)605 void vgic_its_invalidate_all_caches(struct kvm *kvm)
606 {
607 struct kvm_device *dev;
608 struct vgic_its *its;
609
610 rcu_read_lock();
611
612 list_for_each_entry_rcu(dev, &kvm->devices, vm_node) {
613 if (dev->ops != &kvm_arm_vgic_its_ops)
614 continue;
615
616 its = dev->private;
617 vgic_its_invalidate_cache(its);
618 }
619
620 rcu_read_unlock();
621 }
622
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)623 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
624 u32 devid, u32 eventid, struct vgic_irq **irq)
625 {
626 struct kvm_vcpu *vcpu;
627 struct its_ite *ite;
628
629 if (!its->enabled)
630 return -EBUSY;
631
632 ite = find_ite(its, devid, eventid);
633 if (!ite || !its_is_collection_mapped(ite->collection))
634 return E_ITS_INT_UNMAPPED_INTERRUPT;
635
636 vcpu = collection_to_vcpu(kvm, ite->collection);
637 if (!vcpu)
638 return E_ITS_INT_UNMAPPED_INTERRUPT;
639
640 if (!vgic_lpis_enabled(vcpu))
641 return -EBUSY;
642
643 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
644
645 *irq = ite->irq;
646 return 0;
647 }
648
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)649 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
650 {
651 u64 address;
652
653 if (!vgic_has_its(kvm))
654 return ERR_PTR(-ENODEV);
655
656 if (!(msi->flags & KVM_MSI_VALID_DEVID))
657 return ERR_PTR(-EINVAL);
658
659 address = (u64)msi->address_hi << 32 | msi->address_lo;
660
661 return __vgic_doorbell_to_its(kvm, address);
662 }
663
664 /*
665 * Find the target VCPU and the LPI number for a given devid/eventid pair
666 * and make this IRQ pending, possibly injecting it.
667 * Must be called with the its_lock mutex held.
668 * Returns 0 on success, a positive error value for any ITS mapping
669 * related errors and negative error values for generic errors.
670 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)671 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
672 u32 devid, u32 eventid)
673 {
674 struct vgic_irq *irq = NULL;
675 unsigned long flags;
676 int err;
677
678 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
679 if (err)
680 return err;
681
682 if (irq->hw)
683 return irq_set_irqchip_state(irq->host_irq,
684 IRQCHIP_STATE_PENDING, true);
685
686 raw_spin_lock_irqsave(&irq->irq_lock, flags);
687 irq->pending_latch = true;
688 vgic_queue_irq_unlock(kvm, irq, flags);
689
690 return 0;
691 }
692
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)693 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
694 {
695 struct vgic_irq *irq;
696 unsigned long flags;
697 phys_addr_t db;
698
699 db = (u64)msi->address_hi << 32 | msi->address_lo;
700 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
701 if (!irq)
702 return -EWOULDBLOCK;
703
704 raw_spin_lock_irqsave(&irq->irq_lock, flags);
705 irq->pending_latch = true;
706 vgic_queue_irq_unlock(kvm, irq, flags);
707 vgic_put_irq(kvm, irq);
708
709 return 0;
710 }
711
712 /*
713 * Queries the KVM IO bus framework to get the ITS pointer from the given
714 * doorbell address.
715 * We then call vgic_its_trigger_msi() with the decoded data.
716 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
717 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)718 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
719 {
720 struct vgic_its *its;
721 int ret;
722
723 if (!vgic_its_inject_cached_translation(kvm, msi))
724 return 1;
725
726 its = vgic_msi_to_its(kvm, msi);
727 if (IS_ERR(its))
728 return PTR_ERR(its);
729
730 mutex_lock(&its->its_lock);
731 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
732 mutex_unlock(&its->its_lock);
733
734 if (ret < 0)
735 return ret;
736
737 /*
738 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
739 * if the guest has blocked the MSI. So we map any LPI mapping
740 * related error to that.
741 */
742 if (ret)
743 return 0;
744 else
745 return 1;
746 }
747
748 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)749 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
750 {
751 struct vgic_irq *irq = ite->irq;
752 list_del(&ite->ite_list);
753
754 /* This put matches the get in vgic_add_lpi. */
755 if (irq) {
756 scoped_guard(raw_spinlock_irqsave, &irq->irq_lock) {
757 if (irq->hw)
758 its_unmap_vlpi(ite->irq->host_irq);
759
760 irq->hw = false;
761 }
762
763 vgic_put_irq(kvm, ite->irq);
764 }
765
766 kfree(ite);
767 }
768
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)769 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
770 {
771 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
772 }
773
774 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
775 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
776 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
777 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
778 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
779 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
780 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
781 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
782 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
783
784 /*
785 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
786 * Must be called with the its_lock mutex held.
787 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)788 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
789 u64 *its_cmd)
790 {
791 u32 device_id = its_cmd_get_deviceid(its_cmd);
792 u32 event_id = its_cmd_get_id(its_cmd);
793 struct its_ite *ite;
794
795 ite = find_ite(its, device_id, event_id);
796 if (ite && its_is_collection_mapped(ite->collection)) {
797 struct its_device *device = find_its_device(its, device_id);
798 int ite_esz = vgic_its_get_abi(its)->ite_esz;
799 gpa_t gpa = device->itt_addr + ite->event_id * ite_esz;
800 /*
801 * Though the spec talks about removing the pending state, we
802 * don't bother here since we clear the ITTE anyway and the
803 * pending state is a property of the ITTE struct.
804 */
805 vgic_its_invalidate_cache(its);
806
807 its_free_ite(kvm, ite);
808
809 return vgic_its_write_entry_lock(its, gpa, 0ULL, ite);
810 }
811
812 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
813 }
814
815 /*
816 * The MOVI command moves an ITTE to a different collection.
817 * Must be called with the its_lock mutex held.
818 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)819 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
820 u64 *its_cmd)
821 {
822 u32 device_id = its_cmd_get_deviceid(its_cmd);
823 u32 event_id = its_cmd_get_id(its_cmd);
824 u32 coll_id = its_cmd_get_collection(its_cmd);
825 struct kvm_vcpu *vcpu;
826 struct its_ite *ite;
827 struct its_collection *collection;
828
829 ite = find_ite(its, device_id, event_id);
830 if (!ite)
831 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
832
833 if (!its_is_collection_mapped(ite->collection))
834 return E_ITS_MOVI_UNMAPPED_COLLECTION;
835
836 collection = find_collection(its, coll_id);
837 if (!its_is_collection_mapped(collection))
838 return E_ITS_MOVI_UNMAPPED_COLLECTION;
839
840 ite->collection = collection;
841 vcpu = collection_to_vcpu(kvm, collection);
842
843 vgic_its_invalidate_cache(its);
844
845 return update_affinity(ite->irq, vcpu);
846 }
847
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)848 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
849 {
850 gfn_t gfn = gpa >> PAGE_SHIFT;
851 int idx;
852 bool ret;
853
854 idx = srcu_read_lock(&its->dev->kvm->srcu);
855 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
856 srcu_read_unlock(&its->dev->kvm->srcu, idx);
857 return ret;
858 }
859
860 /*
861 * Check whether an ID can be stored into the corresponding guest table.
862 * For a direct table this is pretty easy, but gets a bit nasty for
863 * indirect tables. We check whether the resulting guest physical address
864 * is actually valid (covered by a memslot and guest accessible).
865 * For this we have to read the respective first level entry.
866 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)867 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
868 gpa_t *eaddr)
869 {
870 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
871 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
872 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
873 int esz = GITS_BASER_ENTRY_SIZE(baser);
874 int index;
875
876 switch (type) {
877 case GITS_BASER_TYPE_DEVICE:
878 if (id > VITS_MAX_DEVID)
879 return false;
880 break;
881 case GITS_BASER_TYPE_COLLECTION:
882 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
883 if (id >= BIT_ULL(16))
884 return false;
885 break;
886 default:
887 return false;
888 }
889
890 if (!(baser & GITS_BASER_INDIRECT)) {
891 phys_addr_t addr;
892
893 if (id >= (l1_tbl_size / esz))
894 return false;
895
896 addr = base + id * esz;
897
898 if (eaddr)
899 *eaddr = addr;
900
901 return __is_visible_gfn_locked(its, addr);
902 }
903
904 /* calculate and check the index into the 1st level */
905 index = id / (SZ_64K / esz);
906 if (index >= (l1_tbl_size / sizeof(u64)))
907 return false;
908
909 /* Each 1st level entry is represented by a 64-bit value. */
910 if (kvm_read_guest_lock(its->dev->kvm,
911 base + index * sizeof(indirect_ptr),
912 &indirect_ptr, sizeof(indirect_ptr)))
913 return false;
914
915 indirect_ptr = le64_to_cpu(indirect_ptr);
916
917 /* check the valid bit of the first level entry */
918 if (!(indirect_ptr & BIT_ULL(63)))
919 return false;
920
921 /* Mask the guest physical address and calculate the frame number. */
922 indirect_ptr &= GENMASK_ULL(51, 16);
923
924 /* Find the address of the actual entry */
925 index = id % (SZ_64K / esz);
926 indirect_ptr += index * esz;
927
928 if (eaddr)
929 *eaddr = indirect_ptr;
930
931 return __is_visible_gfn_locked(its, indirect_ptr);
932 }
933
934 /*
935 * Check whether an event ID can be stored in the corresponding Interrupt
936 * Translation Table, which starts at device->itt_addr.
937 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)938 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
939 u32 event_id)
940 {
941 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
942 int ite_esz = abi->ite_esz;
943 gpa_t gpa;
944
945 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
946 if (event_id >= BIT_ULL(device->num_eventid_bits))
947 return false;
948
949 gpa = device->itt_addr + event_id * ite_esz;
950 return __is_visible_gfn_locked(its, gpa);
951 }
952
953 /*
954 * Add a new collection into the ITS collection table.
955 * Returns 0 on success, and a negative error value for generic errors.
956 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)957 static int vgic_its_alloc_collection(struct vgic_its *its,
958 struct its_collection **colp,
959 u32 coll_id)
960 {
961 struct its_collection *collection;
962
963 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
964 if (!collection)
965 return -ENOMEM;
966
967 collection->collection_id = coll_id;
968 collection->target_addr = COLLECTION_NOT_MAPPED;
969
970 list_add_tail(&collection->coll_list, &its->collection_list);
971 *colp = collection;
972
973 return 0;
974 }
975
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)976 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
977 {
978 struct its_collection *collection;
979 struct its_device *device;
980 struct its_ite *ite;
981
982 /*
983 * Clearing the mapping for that collection ID removes the
984 * entry from the list. If there wasn't any before, we can
985 * go home early.
986 */
987 collection = find_collection(its, coll_id);
988 if (!collection)
989 return;
990
991 for_each_lpi_its(device, ite, its)
992 if (ite->collection &&
993 ite->collection->collection_id == coll_id)
994 ite->collection = NULL;
995
996 list_del(&collection->coll_list);
997 kfree(collection);
998 }
999
1000 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1001 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1002 struct its_collection *collection,
1003 u32 event_id)
1004 {
1005 struct its_ite *ite;
1006
1007 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1008 if (!ite)
1009 return ERR_PTR(-ENOMEM);
1010
1011 ite->event_id = event_id;
1012 ite->collection = collection;
1013
1014 list_add_tail(&ite->ite_list, &device->itt_head);
1015 return ite;
1016 }
1017
1018 /*
1019 * The MAPTI and MAPI commands map LPIs to ITTEs.
1020 * Must be called with its_lock mutex held.
1021 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1022 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1023 u64 *its_cmd)
1024 {
1025 u32 device_id = its_cmd_get_deviceid(its_cmd);
1026 u32 event_id = its_cmd_get_id(its_cmd);
1027 u32 coll_id = its_cmd_get_collection(its_cmd);
1028 struct its_ite *ite;
1029 struct kvm_vcpu *vcpu = NULL;
1030 struct its_device *device;
1031 struct its_collection *collection, *new_coll = NULL;
1032 struct vgic_irq *irq;
1033 int lpi_nr;
1034
1035 device = find_its_device(its, device_id);
1036 if (!device)
1037 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1038
1039 if (!vgic_its_check_event_id(its, device, event_id))
1040 return E_ITS_MAPTI_ID_OOR;
1041
1042 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1043 lpi_nr = its_cmd_get_physical_id(its_cmd);
1044 else
1045 lpi_nr = event_id;
1046 if (lpi_nr < GIC_LPI_OFFSET ||
1047 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1048 return E_ITS_MAPTI_PHYSICALID_OOR;
1049
1050 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1051 if (find_ite(its, device_id, event_id))
1052 return 0;
1053
1054 collection = find_collection(its, coll_id);
1055 if (!collection) {
1056 int ret;
1057
1058 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1059 return E_ITS_MAPC_COLLECTION_OOR;
1060
1061 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1062 if (ret)
1063 return ret;
1064 new_coll = collection;
1065 }
1066
1067 ite = vgic_its_alloc_ite(device, collection, event_id);
1068 if (IS_ERR(ite)) {
1069 if (new_coll)
1070 vgic_its_free_collection(its, coll_id);
1071 return PTR_ERR(ite);
1072 }
1073
1074 if (its_is_collection_mapped(collection))
1075 vcpu = collection_to_vcpu(kvm, collection);
1076
1077 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1078 if (IS_ERR(irq)) {
1079 if (new_coll)
1080 vgic_its_free_collection(its, coll_id);
1081 its_free_ite(kvm, ite);
1082 return PTR_ERR(irq);
1083 }
1084 ite->irq = irq;
1085
1086 return 0;
1087 }
1088
1089 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct vgic_its * its,struct its_device * device)1090 static void vgic_its_free_device(struct kvm *kvm, struct vgic_its *its,
1091 struct its_device *device)
1092 {
1093 struct its_ite *ite, *temp;
1094
1095 /*
1096 * The spec says that unmapping a device with still valid
1097 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1098 * since we cannot leave the memory unreferenced.
1099 */
1100 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1101 its_free_ite(kvm, ite);
1102
1103 vgic_its_invalidate_cache(its);
1104
1105 list_del(&device->dev_list);
1106 kfree(device);
1107 }
1108
1109 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1110 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1111 {
1112 struct its_device *cur, *temp;
1113
1114 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1115 vgic_its_free_device(kvm, its, cur);
1116 }
1117
1118 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1119 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1120 {
1121 struct its_collection *cur, *temp;
1122
1123 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1124 vgic_its_free_collection(its, cur->collection_id);
1125 }
1126
1127 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1128 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1129 u32 device_id, gpa_t itt_addr,
1130 u8 num_eventid_bits)
1131 {
1132 struct its_device *device;
1133
1134 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1135 if (!device)
1136 return ERR_PTR(-ENOMEM);
1137
1138 device->device_id = device_id;
1139 device->itt_addr = itt_addr;
1140 device->num_eventid_bits = num_eventid_bits;
1141 INIT_LIST_HEAD(&device->itt_head);
1142
1143 list_add_tail(&device->dev_list, &its->device_list);
1144 return device;
1145 }
1146
1147 /*
1148 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1149 * Must be called with the its_lock mutex held.
1150 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1151 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1152 u64 *its_cmd)
1153 {
1154 u32 device_id = its_cmd_get_deviceid(its_cmd);
1155 bool valid = its_cmd_get_validbit(its_cmd);
1156 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1157 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1158 struct its_device *device;
1159 gpa_t gpa;
1160
1161 if (!vgic_its_check_id(its, its->baser_device_table, device_id, &gpa))
1162 return E_ITS_MAPD_DEVICE_OOR;
1163
1164 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1165 return E_ITS_MAPD_ITTSIZE_OOR;
1166
1167 device = find_its_device(its, device_id);
1168
1169 /*
1170 * The spec says that calling MAPD on an already mapped device
1171 * invalidates all cached data for this device. We implement this
1172 * by removing the mapping and re-establishing it.
1173 */
1174 if (device)
1175 vgic_its_free_device(kvm, its, device);
1176
1177 /*
1178 * The spec does not say whether unmapping a not-mapped device
1179 * is an error, so we are done in any case.
1180 */
1181 if (!valid)
1182 return vgic_its_write_entry_lock(its, gpa, 0ULL, dte);
1183
1184 device = vgic_its_alloc_device(its, device_id, itt_addr,
1185 num_eventid_bits);
1186
1187 return PTR_ERR_OR_ZERO(device);
1188 }
1189
1190 /*
1191 * The MAPC command maps collection IDs to redistributors.
1192 * Must be called with the its_lock mutex held.
1193 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1194 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1195 u64 *its_cmd)
1196 {
1197 u16 coll_id;
1198 struct its_collection *collection;
1199 bool valid;
1200
1201 valid = its_cmd_get_validbit(its_cmd);
1202 coll_id = its_cmd_get_collection(its_cmd);
1203
1204 if (!valid) {
1205 vgic_its_free_collection(its, coll_id);
1206 vgic_its_invalidate_cache(its);
1207 } else {
1208 struct kvm_vcpu *vcpu;
1209
1210 vcpu = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1211 if (!vcpu)
1212 return E_ITS_MAPC_PROCNUM_OOR;
1213
1214 collection = find_collection(its, coll_id);
1215
1216 if (!collection) {
1217 int ret;
1218
1219 if (!vgic_its_check_id(its, its->baser_coll_table,
1220 coll_id, NULL))
1221 return E_ITS_MAPC_COLLECTION_OOR;
1222
1223 ret = vgic_its_alloc_collection(its, &collection,
1224 coll_id);
1225 if (ret)
1226 return ret;
1227 collection->target_addr = vcpu->vcpu_id;
1228 } else {
1229 collection->target_addr = vcpu->vcpu_id;
1230 update_affinity_collection(kvm, its, collection);
1231 }
1232 }
1233
1234 return 0;
1235 }
1236
1237 /*
1238 * The CLEAR command removes the pending state for a particular LPI.
1239 * Must be called with the its_lock mutex held.
1240 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1241 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1242 u64 *its_cmd)
1243 {
1244 u32 device_id = its_cmd_get_deviceid(its_cmd);
1245 u32 event_id = its_cmd_get_id(its_cmd);
1246 struct its_ite *ite;
1247
1248
1249 ite = find_ite(its, device_id, event_id);
1250 if (!ite)
1251 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1252
1253 ite->irq->pending_latch = false;
1254
1255 if (ite->irq->hw)
1256 return irq_set_irqchip_state(ite->irq->host_irq,
1257 IRQCHIP_STATE_PENDING, false);
1258
1259 return 0;
1260 }
1261
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1262 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1263 {
1264 return update_lpi_config(kvm, irq, NULL, true);
1265 }
1266
1267 /*
1268 * The INV command syncs the configuration bits from the memory table.
1269 * Must be called with the its_lock mutex held.
1270 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1271 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1272 u64 *its_cmd)
1273 {
1274 u32 device_id = its_cmd_get_deviceid(its_cmd);
1275 u32 event_id = its_cmd_get_id(its_cmd);
1276 struct its_ite *ite;
1277
1278
1279 ite = find_ite(its, device_id, event_id);
1280 if (!ite)
1281 return E_ITS_INV_UNMAPPED_INTERRUPT;
1282
1283 return vgic_its_inv_lpi(kvm, ite->irq);
1284 }
1285
1286 /**
1287 * vgic_its_invall - invalidate all LPIs targeting a given vcpu
1288 * @vcpu: the vcpu for which the RD is targeted by an invalidation
1289 *
1290 * Contrary to the INVALL command, this targets a RD instead of a
1291 * collection, and we don't need to hold the its_lock, since no ITS is
1292 * involved here.
1293 */
vgic_its_invall(struct kvm_vcpu * vcpu)1294 int vgic_its_invall(struct kvm_vcpu *vcpu)
1295 {
1296 struct kvm *kvm = vcpu->kvm;
1297 struct vgic_dist *dist = &kvm->arch.vgic;
1298 struct vgic_irq *irq;
1299 unsigned long intid;
1300
1301 xa_for_each(&dist->lpi_xa, intid, irq) {
1302 irq = vgic_get_irq(kvm, intid);
1303 if (!irq)
1304 continue;
1305
1306 update_lpi_config(kvm, irq, vcpu, false);
1307 vgic_put_irq(kvm, irq);
1308 }
1309
1310 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1311 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * The INVALL command requests flushing of all IRQ data in this collection.
1318 * Find the VCPU mapped to that collection, then iterate over the VM's list
1319 * of mapped LPIs and update the configuration for each IRQ which targets
1320 * the specified vcpu. The configuration will be read from the in-memory
1321 * configuration table.
1322 * Must be called with the its_lock mutex held.
1323 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1324 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1325 u64 *its_cmd)
1326 {
1327 u32 coll_id = its_cmd_get_collection(its_cmd);
1328 struct its_collection *collection;
1329 struct kvm_vcpu *vcpu;
1330
1331 collection = find_collection(its, coll_id);
1332 if (!its_is_collection_mapped(collection))
1333 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1334
1335 vcpu = collection_to_vcpu(kvm, collection);
1336 vgic_its_invall(vcpu);
1337
1338 return 0;
1339 }
1340
1341 /*
1342 * The MOVALL command moves the pending state of all IRQs targeting one
1343 * redistributor to another. We don't hold the pending state in the VCPUs,
1344 * but in the IRQs instead, so there is really not much to do for us here.
1345 * However the spec says that no IRQ must target the old redistributor
1346 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1347 * This command affects all LPIs in the system that target that redistributor.
1348 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1349 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1350 u64 *its_cmd)
1351 {
1352 struct vgic_dist *dist = &kvm->arch.vgic;
1353 struct kvm_vcpu *vcpu1, *vcpu2;
1354 struct vgic_irq *irq;
1355 unsigned long intid;
1356
1357 /* We advertise GITS_TYPER.PTA==0, making the address the vcpu ID */
1358 vcpu1 = kvm_get_vcpu_by_id(kvm, its_cmd_get_target_addr(its_cmd));
1359 vcpu2 = kvm_get_vcpu_by_id(kvm, its_cmd_mask_field(its_cmd, 3, 16, 32));
1360
1361 if (!vcpu1 || !vcpu2)
1362 return E_ITS_MOVALL_PROCNUM_OOR;
1363
1364 if (vcpu1 == vcpu2)
1365 return 0;
1366
1367 xa_for_each(&dist->lpi_xa, intid, irq) {
1368 irq = vgic_get_irq(kvm, intid);
1369 if (!irq)
1370 continue;
1371
1372 update_affinity(irq, vcpu2);
1373
1374 vgic_put_irq(kvm, irq);
1375 }
1376
1377 vgic_its_invalidate_cache(its);
1378
1379 return 0;
1380 }
1381
1382 /*
1383 * The INT command injects the LPI associated with that DevID/EvID pair.
1384 * Must be called with the its_lock mutex held.
1385 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1386 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1387 u64 *its_cmd)
1388 {
1389 u32 msi_data = its_cmd_get_id(its_cmd);
1390 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1391
1392 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1393 }
1394
1395 /*
1396 * This function is called with the its_cmd lock held, but the ITS data
1397 * structure lock dropped.
1398 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1399 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1400 u64 *its_cmd)
1401 {
1402 int ret = -ENODEV;
1403
1404 mutex_lock(&its->its_lock);
1405 switch (its_cmd_get_command(its_cmd)) {
1406 case GITS_CMD_MAPD:
1407 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1408 break;
1409 case GITS_CMD_MAPC:
1410 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1411 break;
1412 case GITS_CMD_MAPI:
1413 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1414 break;
1415 case GITS_CMD_MAPTI:
1416 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1417 break;
1418 case GITS_CMD_MOVI:
1419 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1420 break;
1421 case GITS_CMD_DISCARD:
1422 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1423 break;
1424 case GITS_CMD_CLEAR:
1425 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1426 break;
1427 case GITS_CMD_MOVALL:
1428 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1429 break;
1430 case GITS_CMD_INT:
1431 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1432 break;
1433 case GITS_CMD_INV:
1434 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1435 break;
1436 case GITS_CMD_INVALL:
1437 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1438 break;
1439 case GITS_CMD_SYNC:
1440 /* we ignore this command: we are in sync all of the time */
1441 ret = 0;
1442 break;
1443 }
1444 mutex_unlock(&its->its_lock);
1445
1446 return ret;
1447 }
1448
vgic_sanitise_its_baser(u64 reg)1449 static u64 vgic_sanitise_its_baser(u64 reg)
1450 {
1451 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1452 GITS_BASER_SHAREABILITY_SHIFT,
1453 vgic_sanitise_shareability);
1454 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1455 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1456 vgic_sanitise_inner_cacheability);
1457 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1458 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1459 vgic_sanitise_outer_cacheability);
1460
1461 /* We support only one (ITS) page size: 64K */
1462 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1463
1464 return reg;
1465 }
1466
vgic_sanitise_its_cbaser(u64 reg)1467 static u64 vgic_sanitise_its_cbaser(u64 reg)
1468 {
1469 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1470 GITS_CBASER_SHAREABILITY_SHIFT,
1471 vgic_sanitise_shareability);
1472 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1473 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1474 vgic_sanitise_inner_cacheability);
1475 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1476 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1477 vgic_sanitise_outer_cacheability);
1478
1479 /* Sanitise the physical address to be 64k aligned. */
1480 reg &= ~GENMASK_ULL(15, 12);
1481
1482 return reg;
1483 }
1484
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1485 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1486 struct vgic_its *its,
1487 gpa_t addr, unsigned int len)
1488 {
1489 return extract_bytes(its->cbaser, addr & 7, len);
1490 }
1491
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1492 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1493 gpa_t addr, unsigned int len,
1494 unsigned long val)
1495 {
1496 /* When GITS_CTLR.Enable is 1, this register is RO. */
1497 if (its->enabled)
1498 return;
1499
1500 mutex_lock(&its->cmd_lock);
1501 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1502 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1503 its->creadr = 0;
1504 /*
1505 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1506 * it to CREADR to make sure we start with an empty command buffer.
1507 */
1508 its->cwriter = its->creadr;
1509 mutex_unlock(&its->cmd_lock);
1510 }
1511
1512 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1513 #define ITS_CMD_SIZE 32
1514 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1515
1516 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1517 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1518 {
1519 gpa_t cbaser;
1520 u64 cmd_buf[4];
1521
1522 /* Commands are only processed when the ITS is enabled. */
1523 if (!its->enabled)
1524 return;
1525
1526 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1527
1528 while (its->cwriter != its->creadr) {
1529 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1530 cmd_buf, ITS_CMD_SIZE);
1531 /*
1532 * If kvm_read_guest() fails, this could be due to the guest
1533 * programming a bogus value in CBASER or something else going
1534 * wrong from which we cannot easily recover.
1535 * According to section 6.3.2 in the GICv3 spec we can just
1536 * ignore that command then.
1537 */
1538 if (!ret)
1539 vgic_its_handle_command(kvm, its, cmd_buf);
1540
1541 its->creadr += ITS_CMD_SIZE;
1542 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1543 its->creadr = 0;
1544 }
1545 }
1546
1547 /*
1548 * By writing to CWRITER the guest announces new commands to be processed.
1549 * To avoid any races in the first place, we take the its_cmd lock, which
1550 * protects our ring buffer variables, so that there is only one user
1551 * per ITS handling commands at a given time.
1552 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1553 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1554 gpa_t addr, unsigned int len,
1555 unsigned long val)
1556 {
1557 u64 reg;
1558
1559 if (!its)
1560 return;
1561
1562 mutex_lock(&its->cmd_lock);
1563
1564 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1565 reg = ITS_CMD_OFFSET(reg);
1566 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1567 mutex_unlock(&its->cmd_lock);
1568 return;
1569 }
1570 its->cwriter = reg;
1571
1572 vgic_its_process_commands(kvm, its);
1573
1574 mutex_unlock(&its->cmd_lock);
1575 }
1576
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1577 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1578 struct vgic_its *its,
1579 gpa_t addr, unsigned int len)
1580 {
1581 return extract_bytes(its->cwriter, addr & 0x7, len);
1582 }
1583
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1584 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1585 struct vgic_its *its,
1586 gpa_t addr, unsigned int len)
1587 {
1588 return extract_bytes(its->creadr, addr & 0x7, len);
1589 }
1590
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1591 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1592 struct vgic_its *its,
1593 gpa_t addr, unsigned int len,
1594 unsigned long val)
1595 {
1596 u32 cmd_offset;
1597 int ret = 0;
1598
1599 mutex_lock(&its->cmd_lock);
1600
1601 if (its->enabled) {
1602 ret = -EBUSY;
1603 goto out;
1604 }
1605
1606 cmd_offset = ITS_CMD_OFFSET(val);
1607 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1608 ret = -EINVAL;
1609 goto out;
1610 }
1611
1612 its->creadr = cmd_offset;
1613 out:
1614 mutex_unlock(&its->cmd_lock);
1615 return ret;
1616 }
1617
1618 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1619 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1620 struct vgic_its *its,
1621 gpa_t addr, unsigned int len)
1622 {
1623 u64 reg;
1624
1625 switch (BASER_INDEX(addr)) {
1626 case 0:
1627 reg = its->baser_device_table;
1628 break;
1629 case 1:
1630 reg = its->baser_coll_table;
1631 break;
1632 default:
1633 reg = 0;
1634 break;
1635 }
1636
1637 return extract_bytes(reg, addr & 7, len);
1638 }
1639
1640 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1641 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1642 struct vgic_its *its,
1643 gpa_t addr, unsigned int len,
1644 unsigned long val)
1645 {
1646 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1647 u64 entry_size, table_type;
1648 u64 reg, *regptr, clearbits = 0;
1649
1650 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1651 if (its->enabled)
1652 return;
1653
1654 switch (BASER_INDEX(addr)) {
1655 case 0:
1656 regptr = &its->baser_device_table;
1657 entry_size = abi->dte_esz;
1658 table_type = GITS_BASER_TYPE_DEVICE;
1659 break;
1660 case 1:
1661 regptr = &its->baser_coll_table;
1662 entry_size = abi->cte_esz;
1663 table_type = GITS_BASER_TYPE_COLLECTION;
1664 clearbits = GITS_BASER_INDIRECT;
1665 break;
1666 default:
1667 return;
1668 }
1669
1670 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1671 reg &= ~GITS_BASER_RO_MASK;
1672 reg &= ~clearbits;
1673
1674 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1675 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1676 reg = vgic_sanitise_its_baser(reg);
1677
1678 *regptr = reg;
1679
1680 if (!(reg & GITS_BASER_VALID)) {
1681 /* Take the its_lock to prevent a race with a save/restore */
1682 mutex_lock(&its->its_lock);
1683 switch (table_type) {
1684 case GITS_BASER_TYPE_DEVICE:
1685 vgic_its_free_device_list(kvm, its);
1686 break;
1687 case GITS_BASER_TYPE_COLLECTION:
1688 vgic_its_free_collection_list(kvm, its);
1689 break;
1690 }
1691 mutex_unlock(&its->its_lock);
1692 }
1693 }
1694
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1695 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1696 struct vgic_its *its,
1697 gpa_t addr, unsigned int len)
1698 {
1699 u32 reg = 0;
1700
1701 mutex_lock(&its->cmd_lock);
1702 if (its->creadr == its->cwriter)
1703 reg |= GITS_CTLR_QUIESCENT;
1704 if (its->enabled)
1705 reg |= GITS_CTLR_ENABLE;
1706 mutex_unlock(&its->cmd_lock);
1707
1708 return reg;
1709 }
1710
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1711 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1712 gpa_t addr, unsigned int len,
1713 unsigned long val)
1714 {
1715 mutex_lock(&its->cmd_lock);
1716
1717 /*
1718 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1719 * device/collection BASER are invalid
1720 */
1721 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1722 (!(its->baser_device_table & GITS_BASER_VALID) ||
1723 !(its->baser_coll_table & GITS_BASER_VALID) ||
1724 !(its->cbaser & GITS_CBASER_VALID)))
1725 goto out;
1726
1727 its->enabled = !!(val & GITS_CTLR_ENABLE);
1728 if (!its->enabled)
1729 vgic_its_invalidate_cache(its);
1730
1731 /*
1732 * Try to process any pending commands. This function bails out early
1733 * if the ITS is disabled or no commands have been queued.
1734 */
1735 vgic_its_process_commands(kvm, its);
1736
1737 out:
1738 mutex_unlock(&its->cmd_lock);
1739 }
1740
1741 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1742 { \
1743 .reg_offset = off, \
1744 .len = length, \
1745 .access_flags = acc, \
1746 .its_read = rd, \
1747 .its_write = wr, \
1748 }
1749
1750 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1751 { \
1752 .reg_offset = off, \
1753 .len = length, \
1754 .access_flags = acc, \
1755 .its_read = rd, \
1756 .its_write = wr, \
1757 .uaccess_its_write = uwr, \
1758 }
1759
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1760 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1761 gpa_t addr, unsigned int len, unsigned long val)
1762 {
1763 /* Ignore */
1764 }
1765
1766 static struct vgic_register_region its_registers[] = {
1767 REGISTER_ITS_DESC(GITS_CTLR,
1768 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1769 VGIC_ACCESS_32bit),
1770 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1771 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1772 vgic_mmio_uaccess_write_its_iidr, 4,
1773 VGIC_ACCESS_32bit),
1774 REGISTER_ITS_DESC(GITS_TYPER,
1775 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1776 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1777 REGISTER_ITS_DESC(GITS_CBASER,
1778 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1779 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1780 REGISTER_ITS_DESC(GITS_CWRITER,
1781 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1782 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1783 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1784 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1785 vgic_mmio_uaccess_write_its_creadr, 8,
1786 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1787 REGISTER_ITS_DESC(GITS_BASER,
1788 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1789 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1790 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1791 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1792 VGIC_ACCESS_32bit),
1793 };
1794
1795 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1796 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1797 {
1798 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1799 its_sync_lpi_pending_table(vcpu);
1800 }
1801
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1802 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1803 u64 addr)
1804 {
1805 struct vgic_io_device *iodev = &its->iodev;
1806 int ret;
1807
1808 mutex_lock(&kvm->slots_lock);
1809 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1810 ret = -EBUSY;
1811 goto out;
1812 }
1813
1814 its->vgic_its_base = addr;
1815 iodev->regions = its_registers;
1816 iodev->nr_regions = ARRAY_SIZE(its_registers);
1817 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1818
1819 iodev->base_addr = its->vgic_its_base;
1820 iodev->iodev_type = IODEV_ITS;
1821 iodev->its = its;
1822 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1823 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1824 out:
1825 mutex_unlock(&kvm->slots_lock);
1826
1827 return ret;
1828 }
1829
1830 #define INITIAL_BASER_VALUE \
1831 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1832 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1833 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1834 GITS_BASER_PAGE_SIZE_64K)
1835
1836 #define INITIAL_PROPBASER_VALUE \
1837 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1838 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1839 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1840
vgic_its_create(struct kvm_device * dev,u32 type)1841 static int vgic_its_create(struct kvm_device *dev, u32 type)
1842 {
1843 int ret;
1844 struct vgic_its *its;
1845
1846 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1847 return -ENODEV;
1848
1849 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1850 if (!its)
1851 return -ENOMEM;
1852
1853 mutex_lock(&dev->kvm->arch.config_lock);
1854
1855 if (vgic_initialized(dev->kvm)) {
1856 ret = vgic_v4_init(dev->kvm);
1857 if (ret < 0) {
1858 mutex_unlock(&dev->kvm->arch.config_lock);
1859 kfree(its);
1860 return ret;
1861 }
1862 }
1863
1864 mutex_init(&its->its_lock);
1865 mutex_init(&its->cmd_lock);
1866
1867 /* Yep, even more trickery for lock ordering... */
1868 #ifdef CONFIG_LOCKDEP
1869 mutex_lock(&its->cmd_lock);
1870 mutex_lock(&its->its_lock);
1871 mutex_unlock(&its->its_lock);
1872 mutex_unlock(&its->cmd_lock);
1873 #endif
1874
1875 its->vgic_its_base = VGIC_ADDR_UNDEF;
1876
1877 INIT_LIST_HEAD(&its->device_list);
1878 INIT_LIST_HEAD(&its->collection_list);
1879 xa_init(&its->translation_cache);
1880
1881 dev->kvm->arch.vgic.msis_require_devid = true;
1882 dev->kvm->arch.vgic.has_its = true;
1883 its->enabled = false;
1884 its->dev = dev;
1885
1886 its->baser_device_table = INITIAL_BASER_VALUE |
1887 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1888 its->baser_coll_table = INITIAL_BASER_VALUE |
1889 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1890 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1891
1892 dev->private = its;
1893
1894 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1895
1896 mutex_unlock(&dev->kvm->arch.config_lock);
1897
1898 return ret;
1899 }
1900
vgic_its_destroy(struct kvm_device * kvm_dev)1901 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1902 {
1903 struct kvm *kvm = kvm_dev->kvm;
1904 struct vgic_its *its = kvm_dev->private;
1905
1906 mutex_lock(&its->its_lock);
1907
1908 vgic_its_debug_destroy(kvm_dev);
1909
1910 vgic_its_free_device_list(kvm, its);
1911 vgic_its_free_collection_list(kvm, its);
1912 vgic_its_invalidate_cache(its);
1913 xa_destroy(&its->translation_cache);
1914
1915 mutex_unlock(&its->its_lock);
1916 kfree(its);
1917 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1918 }
1919
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1920 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1921 struct kvm_device_attr *attr)
1922 {
1923 const struct vgic_register_region *region;
1924 gpa_t offset = attr->attr;
1925 int align;
1926
1927 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1928
1929 if (offset & align)
1930 return -EINVAL;
1931
1932 region = vgic_find_mmio_region(its_registers,
1933 ARRAY_SIZE(its_registers),
1934 offset);
1935 if (!region)
1936 return -ENXIO;
1937
1938 return 0;
1939 }
1940
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1941 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1942 struct kvm_device_attr *attr,
1943 u64 *reg, bool is_write)
1944 {
1945 const struct vgic_register_region *region;
1946 struct vgic_its *its;
1947 gpa_t addr, offset;
1948 unsigned int len;
1949 int align, ret = 0;
1950
1951 its = dev->private;
1952 offset = attr->attr;
1953
1954 /*
1955 * Although the spec supports upper/lower 32-bit accesses to
1956 * 64-bit ITS registers, the userspace ABI requires 64-bit
1957 * accesses to all 64-bit wide registers. We therefore only
1958 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1959 * registers
1960 */
1961 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1962 align = 0x3;
1963 else
1964 align = 0x7;
1965
1966 if (offset & align)
1967 return -EINVAL;
1968
1969 mutex_lock(&dev->kvm->lock);
1970
1971 if (kvm_trylock_all_vcpus(dev->kvm)) {
1972 mutex_unlock(&dev->kvm->lock);
1973 return -EBUSY;
1974 }
1975
1976 mutex_lock(&dev->kvm->arch.config_lock);
1977
1978 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1979 ret = -ENXIO;
1980 goto out;
1981 }
1982
1983 region = vgic_find_mmio_region(its_registers,
1984 ARRAY_SIZE(its_registers),
1985 offset);
1986 if (!region) {
1987 ret = -ENXIO;
1988 goto out;
1989 }
1990
1991 addr = its->vgic_its_base + offset;
1992
1993 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1994
1995 if (is_write) {
1996 if (region->uaccess_its_write)
1997 ret = region->uaccess_its_write(dev->kvm, its, addr,
1998 len, *reg);
1999 else
2000 region->its_write(dev->kvm, its, addr, len, *reg);
2001 } else {
2002 *reg = region->its_read(dev->kvm, its, addr, len);
2003 }
2004 out:
2005 mutex_unlock(&dev->kvm->arch.config_lock);
2006 kvm_unlock_all_vcpus(dev->kvm);
2007 mutex_unlock(&dev->kvm->lock);
2008 return ret;
2009 }
2010
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2011 static u32 compute_next_devid_offset(struct list_head *h,
2012 struct its_device *dev)
2013 {
2014 struct its_device *next;
2015 u32 next_offset;
2016
2017 if (list_is_last(&dev->dev_list, h))
2018 return 0;
2019 next = list_next_entry(dev, dev_list);
2020 next_offset = next->device_id - dev->device_id;
2021
2022 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2023 }
2024
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2025 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2026 {
2027 struct its_ite *next;
2028 u32 next_offset;
2029
2030 if (list_is_last(&ite->ite_list, h))
2031 return 0;
2032 next = list_next_entry(ite, ite_list);
2033 next_offset = next->event_id - ite->event_id;
2034
2035 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2036 }
2037
2038 /**
2039 * typedef entry_fn_t - Callback called on a table entry restore path
2040 * @its: its handle
2041 * @id: id of the entry
2042 * @entry: pointer to the entry
2043 * @opaque: pointer to an opaque data
2044 *
2045 * Return: < 0 on error, 0 if last element was identified, id offset to next
2046 * element otherwise
2047 */
2048 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2049 void *opaque);
2050
2051 /**
2052 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2053 * to each entry
2054 *
2055 * @its: its handle
2056 * @base: base gpa of the table
2057 * @size: size of the table in bytes
2058 * @esz: entry size in bytes
2059 * @start_id: the ID of the first entry in the table
2060 * (non zero for 2d level tables)
2061 * @fn: function to apply on each entry
2062 * @opaque: pointer to opaque data
2063 *
2064 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2065 * (the last element may not be found on second level tables)
2066 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2067 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2068 int start_id, entry_fn_t fn, void *opaque)
2069 {
2070 struct kvm *kvm = its->dev->kvm;
2071 unsigned long len = size;
2072 int id = start_id;
2073 gpa_t gpa = base;
2074 char entry[ESZ_MAX];
2075 int ret;
2076
2077 memset(entry, 0, esz);
2078
2079 while (true) {
2080 int next_offset;
2081 size_t byte_offset;
2082
2083 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2084 if (ret)
2085 return ret;
2086
2087 next_offset = fn(its, id, entry, opaque);
2088 if (next_offset <= 0)
2089 return next_offset;
2090
2091 byte_offset = next_offset * esz;
2092 if (byte_offset >= len)
2093 break;
2094
2095 id += next_offset;
2096 gpa += byte_offset;
2097 len -= byte_offset;
2098 }
2099 return 1;
2100 }
2101
2102 /*
2103 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2104 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa)2105 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2106 struct its_ite *ite, gpa_t gpa)
2107 {
2108 u32 next_offset;
2109 u64 val;
2110
2111 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2112 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2113 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2114 ite->collection->collection_id;
2115 val = cpu_to_le64(val);
2116
2117 return vgic_its_write_entry_lock(its, gpa, val, ite);
2118 }
2119
2120 /**
2121 * vgic_its_restore_ite - restore an interrupt translation entry
2122 *
2123 * @its: its handle
2124 * @event_id: id used for indexing
2125 * @ptr: pointer to the ITE entry
2126 * @opaque: pointer to the its_device
2127 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2128 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2129 void *ptr, void *opaque)
2130 {
2131 struct its_device *dev = opaque;
2132 struct its_collection *collection;
2133 struct kvm *kvm = its->dev->kvm;
2134 struct kvm_vcpu *vcpu = NULL;
2135 u64 val;
2136 u64 *p = (u64 *)ptr;
2137 struct vgic_irq *irq;
2138 u32 coll_id, lpi_id;
2139 struct its_ite *ite;
2140 u32 offset;
2141
2142 val = *p;
2143
2144 val = le64_to_cpu(val);
2145
2146 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2147 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2148
2149 if (!lpi_id)
2150 return 1; /* invalid entry, no choice but to scan next entry */
2151
2152 if (lpi_id < VGIC_MIN_LPI)
2153 return -EINVAL;
2154
2155 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2156 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2157 return -EINVAL;
2158
2159 collection = find_collection(its, coll_id);
2160 if (!collection)
2161 return -EINVAL;
2162
2163 if (!vgic_its_check_event_id(its, dev, event_id))
2164 return -EINVAL;
2165
2166 ite = vgic_its_alloc_ite(dev, collection, event_id);
2167 if (IS_ERR(ite))
2168 return PTR_ERR(ite);
2169
2170 if (its_is_collection_mapped(collection))
2171 vcpu = kvm_get_vcpu_by_id(kvm, collection->target_addr);
2172
2173 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2174 if (IS_ERR(irq)) {
2175 its_free_ite(kvm, ite);
2176 return PTR_ERR(irq);
2177 }
2178 ite->irq = irq;
2179
2180 return offset;
2181 }
2182
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2183 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2184 const struct list_head *b)
2185 {
2186 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2187 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2188
2189 if (itea->event_id < iteb->event_id)
2190 return -1;
2191 else
2192 return 1;
2193 }
2194
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2195 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2196 {
2197 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2198 gpa_t base = device->itt_addr;
2199 struct its_ite *ite;
2200 int ret;
2201 int ite_esz = abi->ite_esz;
2202
2203 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2204
2205 list_for_each_entry(ite, &device->itt_head, ite_list) {
2206 gpa_t gpa = base + ite->event_id * ite_esz;
2207
2208 /*
2209 * If an LPI carries the HW bit, this means that this
2210 * interrupt is controlled by GICv4, and we do not
2211 * have direct access to that state without GICv4.1.
2212 * Let's simply fail the save operation...
2213 */
2214 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2215 return -EACCES;
2216
2217 ret = vgic_its_save_ite(its, device, ite, gpa);
2218 if (ret)
2219 return ret;
2220 }
2221 return 0;
2222 }
2223
2224 /**
2225 * vgic_its_restore_itt - restore the ITT of a device
2226 *
2227 * @its: its handle
2228 * @dev: device handle
2229 *
2230 * Return 0 on success, < 0 on error
2231 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2232 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2233 {
2234 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2235 gpa_t base = dev->itt_addr;
2236 int ret;
2237 int ite_esz = abi->ite_esz;
2238 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2239
2240 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2241 vgic_its_restore_ite, dev);
2242
2243 /* scan_its_table returns +1 if all ITEs are invalid */
2244 if (ret > 0)
2245 ret = 0;
2246
2247 return ret;
2248 }
2249
2250 /**
2251 * vgic_its_save_dte - Save a device table entry at a given GPA
2252 *
2253 * @its: ITS handle
2254 * @dev: ITS device
2255 * @ptr: GPA
2256 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr)2257 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2258 gpa_t ptr)
2259 {
2260 u64 val, itt_addr_field;
2261 u32 next_offset;
2262
2263 itt_addr_field = dev->itt_addr >> 8;
2264 next_offset = compute_next_devid_offset(&its->device_list, dev);
2265 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2266 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2267 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2268 (dev->num_eventid_bits - 1));
2269 val = cpu_to_le64(val);
2270
2271 return vgic_its_write_entry_lock(its, ptr, val, dte);
2272 }
2273
2274 /**
2275 * vgic_its_restore_dte - restore a device table entry
2276 *
2277 * @its: its handle
2278 * @id: device id the DTE corresponds to
2279 * @ptr: kernel VA where the 8 byte DTE is located
2280 * @opaque: unused
2281 *
2282 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2283 * next dte otherwise
2284 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2285 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2286 void *ptr, void *opaque)
2287 {
2288 struct its_device *dev;
2289 u64 baser = its->baser_device_table;
2290 gpa_t itt_addr;
2291 u8 num_eventid_bits;
2292 u64 entry = *(u64 *)ptr;
2293 bool valid;
2294 u32 offset;
2295 int ret;
2296
2297 entry = le64_to_cpu(entry);
2298
2299 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2300 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2301 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2302 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2303
2304 if (!valid)
2305 return 1;
2306
2307 /* dte entry is valid */
2308 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2309
2310 if (!vgic_its_check_id(its, baser, id, NULL))
2311 return -EINVAL;
2312
2313 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2314 if (IS_ERR(dev))
2315 return PTR_ERR(dev);
2316
2317 ret = vgic_its_restore_itt(its, dev);
2318 if (ret) {
2319 vgic_its_free_device(its->dev->kvm, its, dev);
2320 return ret;
2321 }
2322
2323 return offset;
2324 }
2325
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2326 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2327 const struct list_head *b)
2328 {
2329 struct its_device *deva = container_of(a, struct its_device, dev_list);
2330 struct its_device *devb = container_of(b, struct its_device, dev_list);
2331
2332 if (deva->device_id < devb->device_id)
2333 return -1;
2334 else
2335 return 1;
2336 }
2337
2338 /*
2339 * vgic_its_save_device_tables - Save the device table and all ITT
2340 * into guest RAM
2341 *
2342 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2343 * returns the GPA of the device entry
2344 */
vgic_its_save_device_tables(struct vgic_its * its)2345 static int vgic_its_save_device_tables(struct vgic_its *its)
2346 {
2347 u64 baser = its->baser_device_table;
2348 struct its_device *dev;
2349
2350 if (!(baser & GITS_BASER_VALID))
2351 return 0;
2352
2353 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2354
2355 list_for_each_entry(dev, &its->device_list, dev_list) {
2356 int ret;
2357 gpa_t eaddr;
2358
2359 if (!vgic_its_check_id(its, baser,
2360 dev->device_id, &eaddr))
2361 return -EINVAL;
2362
2363 ret = vgic_its_save_itt(its, dev);
2364 if (ret)
2365 return ret;
2366
2367 ret = vgic_its_save_dte(its, dev, eaddr);
2368 if (ret)
2369 return ret;
2370 }
2371 return 0;
2372 }
2373
2374 /**
2375 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2376 *
2377 * @its: its handle
2378 * @id: index of the entry in the L1 table
2379 * @addr: kernel VA
2380 * @opaque: unused
2381 *
2382 * L1 table entries are scanned by steps of 1 entry
2383 * Return < 0 if error, 0 if last dte was found when scanning the L2
2384 * table, +1 otherwise (meaning next L1 entry must be scanned)
2385 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2386 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2387 void *opaque)
2388 {
2389 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2390 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2391 u64 entry = *(u64 *)addr;
2392 int dte_esz = abi->dte_esz;
2393 gpa_t gpa;
2394 int ret;
2395
2396 entry = le64_to_cpu(entry);
2397
2398 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2399 return 1;
2400
2401 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2402
2403 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2404 l2_start_id, vgic_its_restore_dte, NULL);
2405
2406 return ret;
2407 }
2408
2409 /*
2410 * vgic_its_restore_device_tables - Restore the device table and all ITT
2411 * from guest RAM to internal data structs
2412 */
vgic_its_restore_device_tables(struct vgic_its * its)2413 static int vgic_its_restore_device_tables(struct vgic_its *its)
2414 {
2415 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2416 u64 baser = its->baser_device_table;
2417 int l1_esz, ret;
2418 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2419 gpa_t l1_gpa;
2420
2421 if (!(baser & GITS_BASER_VALID))
2422 return 0;
2423
2424 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2425
2426 if (baser & GITS_BASER_INDIRECT) {
2427 l1_esz = GITS_LVL1_ENTRY_SIZE;
2428 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2429 handle_l1_dte, NULL);
2430 } else {
2431 l1_esz = abi->dte_esz;
2432 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2433 vgic_its_restore_dte, NULL);
2434 }
2435
2436 /* scan_its_table returns +1 if all entries are invalid */
2437 if (ret > 0)
2438 ret = 0;
2439
2440 if (ret < 0)
2441 vgic_its_free_device_list(its->dev->kvm, its);
2442
2443 return ret;
2444 }
2445
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa)2446 static int vgic_its_save_cte(struct vgic_its *its,
2447 struct its_collection *collection,
2448 gpa_t gpa)
2449 {
2450 u64 val;
2451
2452 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2453 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2454 collection->collection_id);
2455 val = cpu_to_le64(val);
2456
2457 return vgic_its_write_entry_lock(its, gpa, val, cte);
2458 }
2459
2460 /*
2461 * Restore a collection entry into the ITS collection table.
2462 * Return +1 on success, 0 if the entry was invalid (which should be
2463 * interpreted as end-of-table), and a negative error value for generic errors.
2464 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa)2465 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa)
2466 {
2467 struct its_collection *collection;
2468 struct kvm *kvm = its->dev->kvm;
2469 u32 target_addr, coll_id;
2470 u64 val;
2471 int ret;
2472
2473 ret = vgic_its_read_entry_lock(its, gpa, &val, cte);
2474 if (ret)
2475 return ret;
2476 val = le64_to_cpu(val);
2477 if (!(val & KVM_ITS_CTE_VALID_MASK))
2478 return 0;
2479
2480 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2481 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2482
2483 if (target_addr != COLLECTION_NOT_MAPPED &&
2484 !kvm_get_vcpu_by_id(kvm, target_addr))
2485 return -EINVAL;
2486
2487 collection = find_collection(its, coll_id);
2488 if (collection)
2489 return -EEXIST;
2490
2491 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2492 return -EINVAL;
2493
2494 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2495 if (ret)
2496 return ret;
2497 collection->target_addr = target_addr;
2498 return 1;
2499 }
2500
2501 /*
2502 * vgic_its_save_collection_table - Save the collection table into
2503 * guest RAM
2504 */
vgic_its_save_collection_table(struct vgic_its * its)2505 static int vgic_its_save_collection_table(struct vgic_its *its)
2506 {
2507 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2508 u64 baser = its->baser_coll_table;
2509 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2510 struct its_collection *collection;
2511 size_t max_size, filled = 0;
2512 int ret, cte_esz = abi->cte_esz;
2513
2514 if (!(baser & GITS_BASER_VALID))
2515 return 0;
2516
2517 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2518
2519 list_for_each_entry(collection, &its->collection_list, coll_list) {
2520 ret = vgic_its_save_cte(its, collection, gpa);
2521 if (ret)
2522 return ret;
2523 gpa += cte_esz;
2524 filled += cte_esz;
2525 }
2526
2527 if (filled == max_size)
2528 return 0;
2529
2530 /*
2531 * table is not fully filled, add a last dummy element
2532 * with valid bit unset
2533 */
2534 return vgic_its_write_entry_lock(its, gpa, 0ULL, cte);
2535 }
2536
2537 /*
2538 * vgic_its_restore_collection_table - reads the collection table
2539 * in guest memory and restores the ITS internal state. Requires the
2540 * BASER registers to be restored before.
2541 */
vgic_its_restore_collection_table(struct vgic_its * its)2542 static int vgic_its_restore_collection_table(struct vgic_its *its)
2543 {
2544 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2545 u64 baser = its->baser_coll_table;
2546 int cte_esz = abi->cte_esz;
2547 size_t max_size, read = 0;
2548 gpa_t gpa;
2549 int ret;
2550
2551 if (!(baser & GITS_BASER_VALID))
2552 return 0;
2553
2554 gpa = GITS_BASER_ADDR_48_to_52(baser);
2555
2556 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2557
2558 while (read < max_size) {
2559 ret = vgic_its_restore_cte(its, gpa);
2560 if (ret <= 0)
2561 break;
2562 gpa += cte_esz;
2563 read += cte_esz;
2564 }
2565
2566 if (ret > 0)
2567 return 0;
2568
2569 if (ret < 0)
2570 vgic_its_free_collection_list(its->dev->kvm, its);
2571
2572 return ret;
2573 }
2574
2575 /*
2576 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2577 * according to v0 ABI
2578 */
vgic_its_save_tables_v0(struct vgic_its * its)2579 static int vgic_its_save_tables_v0(struct vgic_its *its)
2580 {
2581 int ret;
2582
2583 ret = vgic_its_save_device_tables(its);
2584 if (ret)
2585 return ret;
2586
2587 return vgic_its_save_collection_table(its);
2588 }
2589
2590 /*
2591 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2592 * to internal data structs according to V0 ABI
2593 *
2594 */
vgic_its_restore_tables_v0(struct vgic_its * its)2595 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2596 {
2597 int ret;
2598
2599 ret = vgic_its_restore_collection_table(its);
2600 if (ret)
2601 return ret;
2602
2603 ret = vgic_its_restore_device_tables(its);
2604 if (ret)
2605 vgic_its_free_collection_list(its->dev->kvm, its);
2606 return ret;
2607 }
2608
vgic_its_commit_v0(struct vgic_its * its)2609 static int vgic_its_commit_v0(struct vgic_its *its)
2610 {
2611 const struct vgic_its_abi *abi;
2612
2613 abi = vgic_its_get_abi(its);
2614 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2615 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2616
2617 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2618 << GITS_BASER_ENTRY_SIZE_SHIFT);
2619
2620 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2621 << GITS_BASER_ENTRY_SIZE_SHIFT);
2622 return 0;
2623 }
2624
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2625 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2626 {
2627 /* We need to keep the ABI specific field values */
2628 its->baser_coll_table &= ~GITS_BASER_VALID;
2629 its->baser_device_table &= ~GITS_BASER_VALID;
2630 its->cbaser = 0;
2631 its->creadr = 0;
2632 its->cwriter = 0;
2633 its->enabled = 0;
2634 vgic_its_free_device_list(kvm, its);
2635 vgic_its_free_collection_list(kvm, its);
2636 }
2637
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2638 static int vgic_its_has_attr(struct kvm_device *dev,
2639 struct kvm_device_attr *attr)
2640 {
2641 switch (attr->group) {
2642 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2643 switch (attr->attr) {
2644 case KVM_VGIC_ITS_ADDR_TYPE:
2645 return 0;
2646 }
2647 break;
2648 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2649 switch (attr->attr) {
2650 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2651 return 0;
2652 case KVM_DEV_ARM_ITS_CTRL_RESET:
2653 return 0;
2654 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2655 return 0;
2656 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2657 return 0;
2658 }
2659 break;
2660 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2661 return vgic_its_has_attr_regs(dev, attr);
2662 }
2663 return -ENXIO;
2664 }
2665
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2666 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2667 {
2668 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2669 int ret = 0;
2670
2671 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2672 return 0;
2673
2674 mutex_lock(&kvm->lock);
2675
2676 if (kvm_trylock_all_vcpus(kvm)) {
2677 mutex_unlock(&kvm->lock);
2678 return -EBUSY;
2679 }
2680
2681 mutex_lock(&kvm->arch.config_lock);
2682 mutex_lock(&its->its_lock);
2683
2684 switch (attr) {
2685 case KVM_DEV_ARM_ITS_CTRL_RESET:
2686 vgic_its_reset(kvm, its);
2687 break;
2688 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2689 ret = abi->save_tables(its);
2690 break;
2691 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2692 ret = abi->restore_tables(its);
2693 break;
2694 default:
2695 ret = -ENXIO;
2696 break;
2697 }
2698
2699 mutex_unlock(&its->its_lock);
2700 mutex_unlock(&kvm->arch.config_lock);
2701 kvm_unlock_all_vcpus(kvm);
2702 mutex_unlock(&kvm->lock);
2703 return ret;
2704 }
2705
2706 /*
2707 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2708 * without the running VCPU when dirty ring is enabled.
2709 *
2710 * The running VCPU is required to track dirty guest pages when dirty ring
2711 * is enabled. Otherwise, the backup bitmap should be used to track the
2712 * dirty guest pages. When vgic/its tables are being saved, the backup
2713 * bitmap is used to track the dirty guest pages due to the missed running
2714 * VCPU in the period.
2715 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2716 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2717 {
2718 struct vgic_dist *dist = &kvm->arch.vgic;
2719
2720 return dist->table_write_in_progress;
2721 }
2722
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2723 static int vgic_its_set_attr(struct kvm_device *dev,
2724 struct kvm_device_attr *attr)
2725 {
2726 struct vgic_its *its = dev->private;
2727 int ret;
2728
2729 switch (attr->group) {
2730 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2731 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2732 unsigned long type = (unsigned long)attr->attr;
2733 u64 addr;
2734
2735 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2736 return -ENODEV;
2737
2738 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2739 return -EFAULT;
2740
2741 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2742 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2743 if (ret)
2744 return ret;
2745
2746 ret = vgic_register_its_iodev(dev->kvm, its, addr);
2747 if (ret)
2748 return ret;
2749
2750 return vgic_its_debug_init(dev);
2751
2752 }
2753 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2754 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2755 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2756 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2757 u64 reg;
2758
2759 if (get_user(reg, uaddr))
2760 return -EFAULT;
2761
2762 return vgic_its_attr_regs_access(dev, attr, ®, true);
2763 }
2764 }
2765 return -ENXIO;
2766 }
2767
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2768 static int vgic_its_get_attr(struct kvm_device *dev,
2769 struct kvm_device_attr *attr)
2770 {
2771 switch (attr->group) {
2772 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2773 struct vgic_its *its = dev->private;
2774 u64 addr = its->vgic_its_base;
2775 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2776 unsigned long type = (unsigned long)attr->attr;
2777
2778 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2779 return -ENODEV;
2780
2781 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2782 return -EFAULT;
2783 break;
2784 }
2785 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2786 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2787 u64 reg;
2788 int ret;
2789
2790 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2791 if (ret)
2792 return ret;
2793 return put_user(reg, uaddr);
2794 }
2795 default:
2796 return -ENXIO;
2797 }
2798
2799 return 0;
2800 }
2801
2802 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2803 .name = "kvm-arm-vgic-its",
2804 .create = vgic_its_create,
2805 .destroy = vgic_its_destroy,
2806 .set_attr = vgic_its_set_attr,
2807 .get_attr = vgic_its_get_attr,
2808 .has_attr = vgic_its_has_attr,
2809 };
2810
kvm_vgic_register_its_device(void)2811 int kvm_vgic_register_its_device(void)
2812 {
2813 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2814 KVM_DEV_TYPE_ARM_VGIC_ITS);
2815 }
2816