1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/interrupt.h> 8 #include <linux/cpu.h> 9 #include <linux/kvm_host.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_emulate.h> 12 #include <asm/kvm_mmu.h> 13 #include "vgic.h" 14 15 /* 16 * Initialization rules: there are multiple stages to the vgic 17 * initialization, both for the distributor and the CPU interfaces. The basic 18 * idea is that even though the VGIC is not functional or not requested from 19 * user space, the critical path of the run loop can still call VGIC functions 20 * that just won't do anything, without them having to check additional 21 * initialization flags to ensure they don't look at uninitialized data 22 * structures. 23 * 24 * Distributor: 25 * 26 * - kvm_vgic_early_init(): initialization of static data that doesn't 27 * depend on any sizing information or emulation type. No allocation 28 * is allowed there. 29 * 30 * - vgic_init(): allocation and initialization of the generic data 31 * structures that depend on sizing information (number of CPUs, 32 * number of interrupts). Also initializes the vcpu specific data 33 * structures. Can be executed lazily for GICv2. 34 * 35 * CPU Interface: 36 * 37 * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend 38 * on any sizing information. Private interrupts are allocated if not 39 * already allocated at vgic-creation time. 40 */ 41 42 /* EARLY INIT */ 43 44 /** 45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures 46 * @kvm: The VM whose VGIC districutor should be initialized 47 * 48 * Only do initialization of static structures that don't require any 49 * allocation or sizing information from userspace. vgic_init() called 50 * kvm_vgic_dist_init() which takes care of the rest. 51 */ 52 void kvm_vgic_early_init(struct kvm *kvm) 53 { 54 struct vgic_dist *dist = &kvm->arch.vgic; 55 56 xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ); 57 } 58 59 /* CREATION */ 60 61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type); 62 63 /** 64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by 65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) 66 * or through the generic KVM_CREATE_DEVICE API ioctl. 67 * irqchip_in_kernel() tells you if this function succeeded or not. 68 * @kvm: kvm struct pointer 69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] 70 */ 71 int kvm_vgic_create(struct kvm *kvm, u32 type) 72 { 73 struct kvm_vcpu *vcpu; 74 unsigned long i; 75 int ret; 76 77 /* 78 * This function is also called by the KVM_CREATE_IRQCHIP handler, 79 * which had no chance yet to check the availability of the GICv2 80 * emulation. So check this here again. KVM_CREATE_DEVICE does 81 * the proper checks already. 82 */ 83 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && 84 !kvm_vgic_global_state.can_emulate_gicv2) 85 return -ENODEV; 86 87 /* Must be held to avoid race with vCPU creation */ 88 lockdep_assert_held(&kvm->lock); 89 90 ret = -EBUSY; 91 if (!lock_all_vcpus(kvm)) 92 return ret; 93 94 mutex_lock(&kvm->arch.config_lock); 95 96 if (irqchip_in_kernel(kvm)) { 97 ret = -EEXIST; 98 goto out_unlock; 99 } 100 101 kvm_for_each_vcpu(i, vcpu, kvm) { 102 if (vcpu_has_run_once(vcpu)) 103 goto out_unlock; 104 } 105 ret = 0; 106 107 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 108 kvm->max_vcpus = VGIC_V2_MAX_CPUS; 109 else 110 kvm->max_vcpus = VGIC_V3_MAX_CPUS; 111 112 if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { 113 ret = -E2BIG; 114 goto out_unlock; 115 } 116 117 kvm_for_each_vcpu(i, vcpu, kvm) { 118 ret = vgic_allocate_private_irqs_locked(vcpu, type); 119 if (ret) 120 break; 121 } 122 123 if (ret) { 124 kvm_for_each_vcpu(i, vcpu, kvm) { 125 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 126 kfree(vgic_cpu->private_irqs); 127 vgic_cpu->private_irqs = NULL; 128 } 129 130 goto out_unlock; 131 } 132 133 kvm->arch.vgic.in_kernel = true; 134 kvm->arch.vgic.vgic_model = type; 135 136 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; 137 138 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 139 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; 140 else 141 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); 142 143 out_unlock: 144 mutex_unlock(&kvm->arch.config_lock); 145 unlock_all_vcpus(kvm); 146 return ret; 147 } 148 149 /* INIT/DESTROY */ 150 151 /** 152 * kvm_vgic_dist_init: initialize the dist data structures 153 * @kvm: kvm struct pointer 154 * @nr_spis: number of spis, frozen by caller 155 */ 156 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) 157 { 158 struct vgic_dist *dist = &kvm->arch.vgic; 159 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); 160 int i; 161 162 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 163 if (!dist->spis) 164 return -ENOMEM; 165 166 /* 167 * In the following code we do not take the irq struct lock since 168 * no other action on irq structs can happen while the VGIC is 169 * not initialized yet: 170 * If someone wants to inject an interrupt or does a MMIO access, we 171 * require prior initialization in case of a virtual GICv3 or trigger 172 * initialization when using a virtual GICv2. 173 */ 174 for (i = 0; i < nr_spis; i++) { 175 struct vgic_irq *irq = &dist->spis[i]; 176 177 irq->intid = i + VGIC_NR_PRIVATE_IRQS; 178 INIT_LIST_HEAD(&irq->ap_list); 179 raw_spin_lock_init(&irq->irq_lock); 180 irq->vcpu = NULL; 181 irq->target_vcpu = vcpu0; 182 kref_init(&irq->refcount); 183 switch (dist->vgic_model) { 184 case KVM_DEV_TYPE_ARM_VGIC_V2: 185 irq->targets = 0; 186 irq->group = 0; 187 break; 188 case KVM_DEV_TYPE_ARM_VGIC_V3: 189 irq->mpidr = 0; 190 irq->group = 1; 191 break; 192 default: 193 kfree(dist->spis); 194 dist->spis = NULL; 195 return -EINVAL; 196 } 197 } 198 return 0; 199 } 200 201 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type) 202 { 203 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 204 int i; 205 206 lockdep_assert_held(&vcpu->kvm->arch.config_lock); 207 208 if (vgic_cpu->private_irqs) 209 return 0; 210 211 vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS, 212 sizeof(struct vgic_irq), 213 GFP_KERNEL_ACCOUNT); 214 215 if (!vgic_cpu->private_irqs) 216 return -ENOMEM; 217 218 /* 219 * Enable and configure all SGIs to be edge-triggered and 220 * configure all PPIs as level-triggered. 221 */ 222 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 223 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 224 225 INIT_LIST_HEAD(&irq->ap_list); 226 raw_spin_lock_init(&irq->irq_lock); 227 irq->intid = i; 228 irq->vcpu = NULL; 229 irq->target_vcpu = vcpu; 230 kref_init(&irq->refcount); 231 if (vgic_irq_is_sgi(i)) { 232 /* SGIs */ 233 irq->enabled = 1; 234 irq->config = VGIC_CONFIG_EDGE; 235 } else { 236 /* PPIs */ 237 irq->config = VGIC_CONFIG_LEVEL; 238 } 239 240 switch (type) { 241 case KVM_DEV_TYPE_ARM_VGIC_V3: 242 irq->group = 1; 243 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 244 break; 245 case KVM_DEV_TYPE_ARM_VGIC_V2: 246 irq->group = 0; 247 irq->targets = BIT(vcpu->vcpu_id); 248 break; 249 } 250 } 251 252 return 0; 253 } 254 255 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type) 256 { 257 int ret; 258 259 mutex_lock(&vcpu->kvm->arch.config_lock); 260 ret = vgic_allocate_private_irqs_locked(vcpu, type); 261 mutex_unlock(&vcpu->kvm->arch.config_lock); 262 263 return ret; 264 } 265 266 /** 267 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data 268 * structures and register VCPU-specific KVM iodevs 269 * 270 * @vcpu: pointer to the VCPU being created and initialized 271 * 272 * Only do initialization, but do not actually enable the 273 * VGIC CPU interface 274 */ 275 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) 276 { 277 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 278 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 279 int ret = 0; 280 281 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 282 283 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 284 raw_spin_lock_init(&vgic_cpu->ap_list_lock); 285 atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); 286 287 if (!irqchip_in_kernel(vcpu->kvm)) 288 return 0; 289 290 ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model); 291 if (ret) 292 return ret; 293 294 /* 295 * If we are creating a VCPU with a GICv3 we must also register the 296 * KVM io device for the redistributor that belongs to this VCPU. 297 */ 298 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 299 mutex_lock(&vcpu->kvm->slots_lock); 300 ret = vgic_register_redist_iodev(vcpu); 301 mutex_unlock(&vcpu->kvm->slots_lock); 302 } 303 return ret; 304 } 305 306 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) 307 { 308 if (kvm_vgic_global_state.type == VGIC_V2) 309 vgic_v2_enable(vcpu); 310 else 311 vgic_v3_enable(vcpu); 312 } 313 314 /* 315 * vgic_init: allocates and initializes dist and vcpu data structures 316 * depending on two dimensioning parameters: 317 * - the number of spis 318 * - the number of vcpus 319 * The function is generally called when nr_spis has been explicitly set 320 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. 321 * vgic_initialized() returns true when this function has succeeded. 322 */ 323 int vgic_init(struct kvm *kvm) 324 { 325 struct vgic_dist *dist = &kvm->arch.vgic; 326 struct kvm_vcpu *vcpu; 327 int ret = 0; 328 unsigned long idx; 329 330 lockdep_assert_held(&kvm->arch.config_lock); 331 332 if (vgic_initialized(kvm)) 333 return 0; 334 335 /* Are we also in the middle of creating a VCPU? */ 336 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 337 return -EBUSY; 338 339 /* freeze the number of spis */ 340 if (!dist->nr_spis) 341 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; 342 343 ret = kvm_vgic_dist_init(kvm, dist->nr_spis); 344 if (ret) 345 goto out; 346 347 /* 348 * If we have GICv4.1 enabled, unconditionally request enable the 349 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only 350 * enable it if we present a virtual ITS to the guest. 351 */ 352 if (vgic_supports_direct_msis(kvm)) { 353 ret = vgic_v4_init(kvm); 354 if (ret) 355 goto out; 356 } 357 358 kvm_for_each_vcpu(idx, vcpu, kvm) 359 kvm_vgic_vcpu_enable(vcpu); 360 361 ret = kvm_vgic_setup_default_irq_routing(kvm); 362 if (ret) 363 goto out; 364 365 vgic_debug_init(kvm); 366 367 /* 368 * If userspace didn't set the GIC implementation revision, 369 * default to the latest and greatest. You know want it. 370 */ 371 if (!dist->implementation_rev) 372 dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST; 373 dist->initialized = true; 374 375 out: 376 return ret; 377 } 378 379 static void kvm_vgic_dist_destroy(struct kvm *kvm) 380 { 381 struct vgic_dist *dist = &kvm->arch.vgic; 382 struct vgic_redist_region *rdreg, *next; 383 384 dist->ready = false; 385 dist->initialized = false; 386 387 kfree(dist->spis); 388 dist->spis = NULL; 389 dist->nr_spis = 0; 390 dist->vgic_dist_base = VGIC_ADDR_UNDEF; 391 392 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 393 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) 394 vgic_v3_free_redist_region(kvm, rdreg); 395 INIT_LIST_HEAD(&dist->rd_regions); 396 } else { 397 dist->vgic_cpu_base = VGIC_ADDR_UNDEF; 398 } 399 400 if (vgic_supports_direct_msis(kvm)) 401 vgic_v4_teardown(kvm); 402 403 xa_destroy(&dist->lpi_xa); 404 } 405 406 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 407 { 408 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 409 410 /* 411 * Retire all pending LPIs on this vcpu anyway as we're 412 * going to destroy it. 413 */ 414 vgic_flush_pending_lpis(vcpu); 415 416 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 417 kfree(vgic_cpu->private_irqs); 418 vgic_cpu->private_irqs = NULL; 419 420 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 421 /* 422 * If this vCPU is being destroyed because of a failed creation 423 * then unregister the redistributor to avoid leaving behind a 424 * dangling pointer to the vCPU struct. 425 * 426 * vCPUs that have been successfully created (i.e. added to 427 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as 428 * this function gets called while holding kvm->arch.config_lock 429 * in the VM teardown path and would otherwise introduce a lock 430 * inversion w.r.t. kvm->srcu. 431 * 432 * vCPUs that failed creation are torn down outside of the 433 * kvm->arch.config_lock and do not get unregistered in 434 * kvm_vgic_destroy(), meaning it is both safe and necessary to 435 * do so here. 436 */ 437 if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu) 438 vgic_unregister_redist_iodev(vcpu); 439 440 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 441 } 442 } 443 444 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 445 { 446 struct kvm *kvm = vcpu->kvm; 447 448 mutex_lock(&kvm->slots_lock); 449 __kvm_vgic_vcpu_destroy(vcpu); 450 mutex_unlock(&kvm->slots_lock); 451 } 452 453 void kvm_vgic_destroy(struct kvm *kvm) 454 { 455 struct kvm_vcpu *vcpu; 456 unsigned long i; 457 458 mutex_lock(&kvm->slots_lock); 459 mutex_lock(&kvm->arch.config_lock); 460 461 vgic_debug_destroy(kvm); 462 463 kvm_for_each_vcpu(i, vcpu, kvm) 464 __kvm_vgic_vcpu_destroy(vcpu); 465 466 kvm_vgic_dist_destroy(kvm); 467 468 mutex_unlock(&kvm->arch.config_lock); 469 470 if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) 471 kvm_for_each_vcpu(i, vcpu, kvm) 472 vgic_unregister_redist_iodev(vcpu); 473 474 mutex_unlock(&kvm->slots_lock); 475 } 476 477 /** 478 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest 479 * is a GICv2. A GICv3 must be explicitly initialized by userspace using the 480 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. 481 * @kvm: kvm struct pointer 482 */ 483 int vgic_lazy_init(struct kvm *kvm) 484 { 485 int ret = 0; 486 487 if (unlikely(!vgic_initialized(kvm))) { 488 /* 489 * We only provide the automatic initialization of the VGIC 490 * for the legacy case of a GICv2. Any other type must 491 * be explicitly initialized once setup with the respective 492 * KVM device call. 493 */ 494 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) 495 return -EBUSY; 496 497 mutex_lock(&kvm->arch.config_lock); 498 ret = vgic_init(kvm); 499 mutex_unlock(&kvm->arch.config_lock); 500 } 501 502 return ret; 503 } 504 505 /* RESOURCE MAPPING */ 506 507 /** 508 * kvm_vgic_map_resources - map the MMIO regions 509 * @kvm: kvm struct pointer 510 * 511 * Map the MMIO regions depending on the VGIC model exposed to the guest 512 * called on the first VCPU run. 513 * Also map the virtual CPU interface into the VM. 514 * v2 calls vgic_init() if not already done. 515 * v3 and derivatives return an error if the VGIC is not initialized. 516 * vgic_ready() returns true if this function has succeeded. 517 */ 518 int kvm_vgic_map_resources(struct kvm *kvm) 519 { 520 struct vgic_dist *dist = &kvm->arch.vgic; 521 enum vgic_type type; 522 gpa_t dist_base; 523 int ret = 0; 524 525 if (likely(vgic_ready(kvm))) 526 return 0; 527 528 mutex_lock(&kvm->slots_lock); 529 mutex_lock(&kvm->arch.config_lock); 530 if (vgic_ready(kvm)) 531 goto out; 532 533 if (!irqchip_in_kernel(kvm)) 534 goto out; 535 536 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { 537 ret = vgic_v2_map_resources(kvm); 538 type = VGIC_V2; 539 } else { 540 ret = vgic_v3_map_resources(kvm); 541 type = VGIC_V3; 542 } 543 544 if (ret) 545 goto out; 546 547 dist_base = dist->vgic_dist_base; 548 mutex_unlock(&kvm->arch.config_lock); 549 550 ret = vgic_register_dist_iodev(kvm, dist_base, type); 551 if (ret) { 552 kvm_err("Unable to register VGIC dist MMIO regions\n"); 553 goto out_slots; 554 } 555 556 /* 557 * kvm_io_bus_register_dev() guarantees all readers see the new MMIO 558 * registration before returning through synchronize_srcu(), which also 559 * implies a full memory barrier. As such, marking the distributor as 560 * 'ready' here is guaranteed to be ordered after all vCPUs having seen 561 * a completely configured distributor. 562 */ 563 dist->ready = true; 564 goto out_slots; 565 out: 566 mutex_unlock(&kvm->arch.config_lock); 567 out_slots: 568 if (ret) 569 kvm_vm_dead(kvm); 570 571 mutex_unlock(&kvm->slots_lock); 572 573 return ret; 574 } 575 576 /* GENERIC PROBE */ 577 578 void kvm_vgic_cpu_up(void) 579 { 580 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); 581 } 582 583 584 void kvm_vgic_cpu_down(void) 585 { 586 disable_percpu_irq(kvm_vgic_global_state.maint_irq); 587 } 588 589 static irqreturn_t vgic_maintenance_handler(int irq, void *data) 590 { 591 /* 592 * We cannot rely on the vgic maintenance interrupt to be 593 * delivered synchronously. This means we can only use it to 594 * exit the VM, and we perform the handling of EOIed 595 * interrupts on the exit path (see vgic_fold_lr_state). 596 */ 597 return IRQ_HANDLED; 598 } 599 600 static struct gic_kvm_info *gic_kvm_info; 601 602 void __init vgic_set_kvm_info(const struct gic_kvm_info *info) 603 { 604 BUG_ON(gic_kvm_info != NULL); 605 gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); 606 if (gic_kvm_info) 607 *gic_kvm_info = *info; 608 } 609 610 /** 611 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware 612 * 613 * For a specific CPU, initialize the GIC VE hardware. 614 */ 615 void kvm_vgic_init_cpu_hardware(void) 616 { 617 BUG_ON(preemptible()); 618 619 /* 620 * We want to make sure the list registers start out clear so that we 621 * only have the program the used registers. 622 */ 623 if (kvm_vgic_global_state.type == VGIC_V2) 624 vgic_v2_init_lrs(); 625 else 626 kvm_call_hyp(__vgic_v3_init_lrs); 627 } 628 629 /** 630 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable 631 * according to the host GIC model. Accordingly calls either 632 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be 633 * instantiated by a guest later on . 634 */ 635 int kvm_vgic_hyp_init(void) 636 { 637 bool has_mask; 638 int ret; 639 640 if (!gic_kvm_info) 641 return -ENODEV; 642 643 has_mask = !gic_kvm_info->no_maint_irq_mask; 644 645 if (has_mask && !gic_kvm_info->maint_irq) { 646 kvm_err("No vgic maintenance irq\n"); 647 return -ENXIO; 648 } 649 650 /* 651 * If we get one of these oddball non-GICs, taint the kernel, 652 * as we have no idea of how they *really* behave. 653 */ 654 if (gic_kvm_info->no_hw_deactivation) { 655 kvm_info("Non-architectural vgic, tainting kernel\n"); 656 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 657 kvm_vgic_global_state.no_hw_deactivation = true; 658 } 659 660 switch (gic_kvm_info->type) { 661 case GIC_V2: 662 ret = vgic_v2_probe(gic_kvm_info); 663 break; 664 case GIC_V3: 665 ret = vgic_v3_probe(gic_kvm_info); 666 if (!ret) { 667 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); 668 kvm_info("GIC system register CPU interface enabled\n"); 669 } 670 break; 671 default: 672 ret = -ENODEV; 673 } 674 675 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; 676 677 kfree(gic_kvm_info); 678 gic_kvm_info = NULL; 679 680 if (ret) 681 return ret; 682 683 if (!has_mask && !kvm_vgic_global_state.maint_irq) 684 return 0; 685 686 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, 687 vgic_maintenance_handler, 688 "vgic", kvm_get_running_vcpus()); 689 if (ret) { 690 kvm_err("Cannot register interrupt %d\n", 691 kvm_vgic_global_state.maint_irq); 692 return ret; 693 } 694 695 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); 696 return 0; 697 } 698