1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/interrupt.h> 8 #include <linux/cpu.h> 9 #include <linux/kvm_host.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_emulate.h> 12 #include <asm/kvm_mmu.h> 13 #include "vgic.h" 14 15 /* 16 * Initialization rules: there are multiple stages to the vgic 17 * initialization, both for the distributor and the CPU interfaces. The basic 18 * idea is that even though the VGIC is not functional or not requested from 19 * user space, the critical path of the run loop can still call VGIC functions 20 * that just won't do anything, without them having to check additional 21 * initialization flags to ensure they don't look at uninitialized data 22 * structures. 23 * 24 * Distributor: 25 * 26 * - kvm_vgic_early_init(): initialization of static data that doesn't 27 * depend on any sizing information or emulation type. No allocation 28 * is allowed there. 29 * 30 * - vgic_init(): allocation and initialization of the generic data 31 * structures that depend on sizing information (number of CPUs, 32 * number of interrupts). Also initializes the vcpu specific data 33 * structures. Can be executed lazily for GICv2. 34 * 35 * CPU Interface: 36 * 37 * - kvm_vgic_vcpu_init(): initialization of static data that 38 * doesn't depend on any sizing information or emulation type. No 39 * allocation is allowed there. 40 */ 41 42 /* EARLY INIT */ 43 44 /** 45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures 46 * @kvm: The VM whose VGIC districutor should be initialized 47 * 48 * Only do initialization of static structures that don't require any 49 * allocation or sizing information from userspace. vgic_init() called 50 * kvm_vgic_dist_init() which takes care of the rest. 51 */ 52 void kvm_vgic_early_init(struct kvm *kvm) 53 { 54 struct vgic_dist *dist = &kvm->arch.vgic; 55 56 INIT_LIST_HEAD(&dist->lpi_list_head); 57 INIT_LIST_HEAD(&dist->lpi_translation_cache); 58 raw_spin_lock_init(&dist->lpi_list_lock); 59 } 60 61 /* CREATION */ 62 63 /** 64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by 65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) 66 * or through the generic KVM_CREATE_DEVICE API ioctl. 67 * irqchip_in_kernel() tells you if this function succeeded or not. 68 * @kvm: kvm struct pointer 69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] 70 */ 71 int kvm_vgic_create(struct kvm *kvm, u32 type) 72 { 73 struct kvm_vcpu *vcpu; 74 unsigned long i; 75 int ret; 76 77 /* 78 * This function is also called by the KVM_CREATE_IRQCHIP handler, 79 * which had no chance yet to check the availability of the GICv2 80 * emulation. So check this here again. KVM_CREATE_DEVICE does 81 * the proper checks already. 82 */ 83 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && 84 !kvm_vgic_global_state.can_emulate_gicv2) 85 return -ENODEV; 86 87 /* Must be held to avoid race with vCPU creation */ 88 lockdep_assert_held(&kvm->lock); 89 90 ret = -EBUSY; 91 if (!lock_all_vcpus(kvm)) 92 return ret; 93 94 mutex_lock(&kvm->arch.config_lock); 95 96 if (irqchip_in_kernel(kvm)) { 97 ret = -EEXIST; 98 goto out_unlock; 99 } 100 101 kvm_for_each_vcpu(i, vcpu, kvm) { 102 if (vcpu_has_run_once(vcpu)) 103 goto out_unlock; 104 } 105 ret = 0; 106 107 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 108 kvm->max_vcpus = VGIC_V2_MAX_CPUS; 109 else 110 kvm->max_vcpus = VGIC_V3_MAX_CPUS; 111 112 if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { 113 ret = -E2BIG; 114 goto out_unlock; 115 } 116 117 kvm->arch.vgic.in_kernel = true; 118 kvm->arch.vgic.vgic_model = type; 119 120 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; 121 122 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 123 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; 124 else 125 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); 126 127 out_unlock: 128 mutex_unlock(&kvm->arch.config_lock); 129 unlock_all_vcpus(kvm); 130 return ret; 131 } 132 133 /* INIT/DESTROY */ 134 135 /** 136 * kvm_vgic_dist_init: initialize the dist data structures 137 * @kvm: kvm struct pointer 138 * @nr_spis: number of spis, frozen by caller 139 */ 140 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) 141 { 142 struct vgic_dist *dist = &kvm->arch.vgic; 143 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); 144 int i; 145 146 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 147 if (!dist->spis) 148 return -ENOMEM; 149 150 /* 151 * In the following code we do not take the irq struct lock since 152 * no other action on irq structs can happen while the VGIC is 153 * not initialized yet: 154 * If someone wants to inject an interrupt or does a MMIO access, we 155 * require prior initialization in case of a virtual GICv3 or trigger 156 * initialization when using a virtual GICv2. 157 */ 158 for (i = 0; i < nr_spis; i++) { 159 struct vgic_irq *irq = &dist->spis[i]; 160 161 irq->intid = i + VGIC_NR_PRIVATE_IRQS; 162 INIT_LIST_HEAD(&irq->ap_list); 163 raw_spin_lock_init(&irq->irq_lock); 164 irq->vcpu = NULL; 165 irq->target_vcpu = vcpu0; 166 kref_init(&irq->refcount); 167 switch (dist->vgic_model) { 168 case KVM_DEV_TYPE_ARM_VGIC_V2: 169 irq->targets = 0; 170 irq->group = 0; 171 break; 172 case KVM_DEV_TYPE_ARM_VGIC_V3: 173 irq->mpidr = 0; 174 irq->group = 1; 175 break; 176 default: 177 kfree(dist->spis); 178 dist->spis = NULL; 179 return -EINVAL; 180 } 181 } 182 return 0; 183 } 184 185 /** 186 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data 187 * structures and register VCPU-specific KVM iodevs 188 * 189 * @vcpu: pointer to the VCPU being created and initialized 190 * 191 * Only do initialization, but do not actually enable the 192 * VGIC CPU interface 193 */ 194 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) 195 { 196 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 197 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 198 int ret = 0; 199 int i; 200 201 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 202 203 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 204 raw_spin_lock_init(&vgic_cpu->ap_list_lock); 205 atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); 206 207 /* 208 * Enable and configure all SGIs to be edge-triggered and 209 * configure all PPIs as level-triggered. 210 */ 211 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 212 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 213 214 INIT_LIST_HEAD(&irq->ap_list); 215 raw_spin_lock_init(&irq->irq_lock); 216 irq->intid = i; 217 irq->vcpu = NULL; 218 irq->target_vcpu = vcpu; 219 kref_init(&irq->refcount); 220 if (vgic_irq_is_sgi(i)) { 221 /* SGIs */ 222 irq->enabled = 1; 223 irq->config = VGIC_CONFIG_EDGE; 224 } else { 225 /* PPIs */ 226 irq->config = VGIC_CONFIG_LEVEL; 227 } 228 } 229 230 if (!irqchip_in_kernel(vcpu->kvm)) 231 return 0; 232 233 /* 234 * If we are creating a VCPU with a GICv3 we must also register the 235 * KVM io device for the redistributor that belongs to this VCPU. 236 */ 237 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 238 mutex_lock(&vcpu->kvm->slots_lock); 239 ret = vgic_register_redist_iodev(vcpu); 240 mutex_unlock(&vcpu->kvm->slots_lock); 241 } 242 return ret; 243 } 244 245 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) 246 { 247 if (kvm_vgic_global_state.type == VGIC_V2) 248 vgic_v2_enable(vcpu); 249 else 250 vgic_v3_enable(vcpu); 251 } 252 253 /* 254 * vgic_init: allocates and initializes dist and vcpu data structures 255 * depending on two dimensioning parameters: 256 * - the number of spis 257 * - the number of vcpus 258 * The function is generally called when nr_spis has been explicitly set 259 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. 260 * vgic_initialized() returns true when this function has succeeded. 261 */ 262 int vgic_init(struct kvm *kvm) 263 { 264 struct vgic_dist *dist = &kvm->arch.vgic; 265 struct kvm_vcpu *vcpu; 266 int ret = 0, i; 267 unsigned long idx; 268 269 lockdep_assert_held(&kvm->arch.config_lock); 270 271 if (vgic_initialized(kvm)) 272 return 0; 273 274 /* Are we also in the middle of creating a VCPU? */ 275 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 276 return -EBUSY; 277 278 /* freeze the number of spis */ 279 if (!dist->nr_spis) 280 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; 281 282 ret = kvm_vgic_dist_init(kvm, dist->nr_spis); 283 if (ret) 284 goto out; 285 286 /* Initialize groups on CPUs created before the VGIC type was known */ 287 kvm_for_each_vcpu(idx, vcpu, kvm) { 288 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 289 290 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 291 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 292 switch (dist->vgic_model) { 293 case KVM_DEV_TYPE_ARM_VGIC_V3: 294 irq->group = 1; 295 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 296 break; 297 case KVM_DEV_TYPE_ARM_VGIC_V2: 298 irq->group = 0; 299 irq->targets = 1U << idx; 300 break; 301 default: 302 ret = -EINVAL; 303 goto out; 304 } 305 } 306 } 307 308 if (vgic_has_its(kvm)) 309 vgic_lpi_translation_cache_init(kvm); 310 311 /* 312 * If we have GICv4.1 enabled, unconditionnaly request enable the 313 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only 314 * enable it if we present a virtual ITS to the guest. 315 */ 316 if (vgic_supports_direct_msis(kvm)) { 317 ret = vgic_v4_init(kvm); 318 if (ret) 319 goto out; 320 } 321 322 kvm_for_each_vcpu(idx, vcpu, kvm) 323 kvm_vgic_vcpu_enable(vcpu); 324 325 ret = kvm_vgic_setup_default_irq_routing(kvm); 326 if (ret) 327 goto out; 328 329 vgic_debug_init(kvm); 330 331 /* 332 * If userspace didn't set the GIC implementation revision, 333 * default to the latest and greatest. You know want it. 334 */ 335 if (!dist->implementation_rev) 336 dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST; 337 dist->initialized = true; 338 339 out: 340 return ret; 341 } 342 343 static void kvm_vgic_dist_destroy(struct kvm *kvm) 344 { 345 struct vgic_dist *dist = &kvm->arch.vgic; 346 struct vgic_redist_region *rdreg, *next; 347 348 dist->ready = false; 349 dist->initialized = false; 350 351 kfree(dist->spis); 352 dist->spis = NULL; 353 dist->nr_spis = 0; 354 dist->vgic_dist_base = VGIC_ADDR_UNDEF; 355 356 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 357 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) 358 vgic_v3_free_redist_region(rdreg); 359 INIT_LIST_HEAD(&dist->rd_regions); 360 } else { 361 dist->vgic_cpu_base = VGIC_ADDR_UNDEF; 362 } 363 364 if (vgic_has_its(kvm)) 365 vgic_lpi_translation_cache_destroy(kvm); 366 367 if (vgic_supports_direct_msis(kvm)) 368 vgic_v4_teardown(kvm); 369 } 370 371 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 372 { 373 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 374 375 /* 376 * Retire all pending LPIs on this vcpu anyway as we're 377 * going to destroy it. 378 */ 379 vgic_flush_pending_lpis(vcpu); 380 381 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 382 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 383 } 384 385 static void __kvm_vgic_destroy(struct kvm *kvm) 386 { 387 struct kvm_vcpu *vcpu; 388 unsigned long i; 389 390 lockdep_assert_held(&kvm->arch.config_lock); 391 392 vgic_debug_destroy(kvm); 393 394 kvm_for_each_vcpu(i, vcpu, kvm) 395 kvm_vgic_vcpu_destroy(vcpu); 396 397 kvm_vgic_dist_destroy(kvm); 398 } 399 400 void kvm_vgic_destroy(struct kvm *kvm) 401 { 402 mutex_lock(&kvm->arch.config_lock); 403 __kvm_vgic_destroy(kvm); 404 mutex_unlock(&kvm->arch.config_lock); 405 } 406 407 /** 408 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest 409 * is a GICv2. A GICv3 must be explicitly initialized by userspace using the 410 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. 411 * @kvm: kvm struct pointer 412 */ 413 int vgic_lazy_init(struct kvm *kvm) 414 { 415 int ret = 0; 416 417 if (unlikely(!vgic_initialized(kvm))) { 418 /* 419 * We only provide the automatic initialization of the VGIC 420 * for the legacy case of a GICv2. Any other type must 421 * be explicitly initialized once setup with the respective 422 * KVM device call. 423 */ 424 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) 425 return -EBUSY; 426 427 mutex_lock(&kvm->arch.config_lock); 428 ret = vgic_init(kvm); 429 mutex_unlock(&kvm->arch.config_lock); 430 } 431 432 return ret; 433 } 434 435 /* RESOURCE MAPPING */ 436 437 /** 438 * Map the MMIO regions depending on the VGIC model exposed to the guest 439 * called on the first VCPU run. 440 * Also map the virtual CPU interface into the VM. 441 * v2 calls vgic_init() if not already done. 442 * v3 and derivatives return an error if the VGIC is not initialized. 443 * vgic_ready() returns true if this function has succeeded. 444 * @kvm: kvm struct pointer 445 */ 446 int kvm_vgic_map_resources(struct kvm *kvm) 447 { 448 struct vgic_dist *dist = &kvm->arch.vgic; 449 enum vgic_type type; 450 gpa_t dist_base; 451 int ret = 0; 452 453 if (likely(vgic_ready(kvm))) 454 return 0; 455 456 mutex_lock(&kvm->slots_lock); 457 mutex_lock(&kvm->arch.config_lock); 458 if (vgic_ready(kvm)) 459 goto out; 460 461 if (!irqchip_in_kernel(kvm)) 462 goto out; 463 464 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { 465 ret = vgic_v2_map_resources(kvm); 466 type = VGIC_V2; 467 } else { 468 ret = vgic_v3_map_resources(kvm); 469 type = VGIC_V3; 470 } 471 472 if (ret) { 473 __kvm_vgic_destroy(kvm); 474 goto out; 475 } 476 dist->ready = true; 477 dist_base = dist->vgic_dist_base; 478 mutex_unlock(&kvm->arch.config_lock); 479 480 ret = vgic_register_dist_iodev(kvm, dist_base, type); 481 if (ret) { 482 kvm_err("Unable to register VGIC dist MMIO regions\n"); 483 kvm_vgic_destroy(kvm); 484 } 485 mutex_unlock(&kvm->slots_lock); 486 return ret; 487 488 out: 489 mutex_unlock(&kvm->arch.config_lock); 490 mutex_unlock(&kvm->slots_lock); 491 return ret; 492 } 493 494 /* GENERIC PROBE */ 495 496 void kvm_vgic_cpu_up(void) 497 { 498 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); 499 } 500 501 502 void kvm_vgic_cpu_down(void) 503 { 504 disable_percpu_irq(kvm_vgic_global_state.maint_irq); 505 } 506 507 static irqreturn_t vgic_maintenance_handler(int irq, void *data) 508 { 509 /* 510 * We cannot rely on the vgic maintenance interrupt to be 511 * delivered synchronously. This means we can only use it to 512 * exit the VM, and we perform the handling of EOIed 513 * interrupts on the exit path (see vgic_fold_lr_state). 514 */ 515 return IRQ_HANDLED; 516 } 517 518 static struct gic_kvm_info *gic_kvm_info; 519 520 void __init vgic_set_kvm_info(const struct gic_kvm_info *info) 521 { 522 BUG_ON(gic_kvm_info != NULL); 523 gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); 524 if (gic_kvm_info) 525 *gic_kvm_info = *info; 526 } 527 528 /** 529 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware 530 * 531 * For a specific CPU, initialize the GIC VE hardware. 532 */ 533 void kvm_vgic_init_cpu_hardware(void) 534 { 535 BUG_ON(preemptible()); 536 537 /* 538 * We want to make sure the list registers start out clear so that we 539 * only have the program the used registers. 540 */ 541 if (kvm_vgic_global_state.type == VGIC_V2) 542 vgic_v2_init_lrs(); 543 else 544 kvm_call_hyp(__vgic_v3_init_lrs); 545 } 546 547 /** 548 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable 549 * according to the host GIC model. Accordingly calls either 550 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be 551 * instantiated by a guest later on . 552 */ 553 int kvm_vgic_hyp_init(void) 554 { 555 bool has_mask; 556 int ret; 557 558 if (!gic_kvm_info) 559 return -ENODEV; 560 561 has_mask = !gic_kvm_info->no_maint_irq_mask; 562 563 if (has_mask && !gic_kvm_info->maint_irq) { 564 kvm_err("No vgic maintenance irq\n"); 565 return -ENXIO; 566 } 567 568 /* 569 * If we get one of these oddball non-GICs, taint the kernel, 570 * as we have no idea of how they *really* behave. 571 */ 572 if (gic_kvm_info->no_hw_deactivation) { 573 kvm_info("Non-architectural vgic, tainting kernel\n"); 574 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 575 kvm_vgic_global_state.no_hw_deactivation = true; 576 } 577 578 switch (gic_kvm_info->type) { 579 case GIC_V2: 580 ret = vgic_v2_probe(gic_kvm_info); 581 break; 582 case GIC_V3: 583 ret = vgic_v3_probe(gic_kvm_info); 584 if (!ret) { 585 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); 586 kvm_info("GIC system register CPU interface enabled\n"); 587 } 588 break; 589 default: 590 ret = -ENODEV; 591 } 592 593 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; 594 595 kfree(gic_kvm_info); 596 gic_kvm_info = NULL; 597 598 if (ret) 599 return ret; 600 601 if (!has_mask && !kvm_vgic_global_state.maint_irq) 602 return 0; 603 604 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, 605 vgic_maintenance_handler, 606 "vgic", kvm_get_running_vcpus()); 607 if (ret) { 608 kvm_err("Cannot register interrupt %d\n", 609 kvm_vgic_global_state.maint_irq); 610 return ret; 611 } 612 613 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); 614 return 0; 615 } 616