1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2015, 2016 ARM Ltd. 4 */ 5 6 #include <linux/uaccess.h> 7 #include <linux/interrupt.h> 8 #include <linux/cpu.h> 9 #include <linux/kvm_host.h> 10 #include <kvm/arm_vgic.h> 11 #include <asm/kvm_emulate.h> 12 #include <asm/kvm_mmu.h> 13 #include "vgic.h" 14 15 /* 16 * Initialization rules: there are multiple stages to the vgic 17 * initialization, both for the distributor and the CPU interfaces. The basic 18 * idea is that even though the VGIC is not functional or not requested from 19 * user space, the critical path of the run loop can still call VGIC functions 20 * that just won't do anything, without them having to check additional 21 * initialization flags to ensure they don't look at uninitialized data 22 * structures. 23 * 24 * Distributor: 25 * 26 * - kvm_vgic_early_init(): initialization of static data that doesn't 27 * depend on any sizing information or emulation type. No allocation 28 * is allowed there. 29 * 30 * - vgic_init(): allocation and initialization of the generic data 31 * structures that depend on sizing information (number of CPUs, 32 * number of interrupts). Also initializes the vcpu specific data 33 * structures. Can be executed lazily for GICv2. 34 * 35 * CPU Interface: 36 * 37 * - kvm_vgic_vcpu_init(): initialization of static data that doesn't depend 38 * on any sizing information. Private interrupts are allocated if not 39 * already allocated at vgic-creation time. 40 */ 41 42 /* EARLY INIT */ 43 44 /** 45 * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures 46 * @kvm: The VM whose VGIC districutor should be initialized 47 * 48 * Only do initialization of static structures that don't require any 49 * allocation or sizing information from userspace. vgic_init() called 50 * kvm_vgic_dist_init() which takes care of the rest. 51 */ 52 void kvm_vgic_early_init(struct kvm *kvm) 53 { 54 struct vgic_dist *dist = &kvm->arch.vgic; 55 56 xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ); 57 } 58 59 /* CREATION */ 60 61 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type); 62 63 /** 64 * kvm_vgic_create: triggered by the instantiation of the VGIC device by 65 * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only) 66 * or through the generic KVM_CREATE_DEVICE API ioctl. 67 * irqchip_in_kernel() tells you if this function succeeded or not. 68 * @kvm: kvm struct pointer 69 * @type: KVM_DEV_TYPE_ARM_VGIC_V[23] 70 */ 71 int kvm_vgic_create(struct kvm *kvm, u32 type) 72 { 73 struct kvm_vcpu *vcpu; 74 unsigned long i; 75 int ret; 76 77 /* 78 * This function is also called by the KVM_CREATE_IRQCHIP handler, 79 * which had no chance yet to check the availability of the GICv2 80 * emulation. So check this here again. KVM_CREATE_DEVICE does 81 * the proper checks already. 82 */ 83 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && 84 !kvm_vgic_global_state.can_emulate_gicv2) 85 return -ENODEV; 86 87 /* 88 * Ensure mutual exclusion with vCPU creation and any vCPU ioctls by: 89 * 90 * - Holding kvm->lock to prevent KVM_CREATE_VCPU from reaching 91 * kvm_arch_vcpu_precreate() and ensuring created_vcpus is stable. 92 * This alone is insufficient, as kvm_vm_ioctl_create_vcpu() drops 93 * the kvm->lock before completing the vCPU creation. 94 */ 95 lockdep_assert_held(&kvm->lock); 96 97 /* 98 * - Acquiring the vCPU mutex for every *online* vCPU to prevent 99 * concurrent vCPU ioctls for vCPUs already visible to userspace. 100 */ 101 ret = -EBUSY; 102 if (kvm_trylock_all_vcpus(kvm)) 103 return ret; 104 105 /* 106 * - Taking the config_lock which protects VGIC data structures such 107 * as the per-vCPU arrays of private IRQs (SGIs, PPIs). 108 */ 109 mutex_lock(&kvm->arch.config_lock); 110 111 /* 112 * - Bailing on the entire thing if a vCPU is in the middle of creation, 113 * dropped the kvm->lock, but hasn't reached kvm_arch_vcpu_create(). 114 * 115 * The whole combination of this guarantees that no vCPU can get into 116 * KVM with a VGIC configuration inconsistent with the VM's VGIC. 117 */ 118 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 119 goto out_unlock; 120 121 if (irqchip_in_kernel(kvm)) { 122 ret = -EEXIST; 123 goto out_unlock; 124 } 125 126 kvm_for_each_vcpu(i, vcpu, kvm) { 127 if (vcpu_has_run_once(vcpu)) 128 goto out_unlock; 129 } 130 ret = 0; 131 132 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 133 kvm->max_vcpus = VGIC_V2_MAX_CPUS; 134 else 135 kvm->max_vcpus = VGIC_V3_MAX_CPUS; 136 137 if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) { 138 ret = -E2BIG; 139 goto out_unlock; 140 } 141 142 kvm_for_each_vcpu(i, vcpu, kvm) { 143 ret = vgic_allocate_private_irqs_locked(vcpu, type); 144 if (ret) 145 break; 146 } 147 148 if (ret) { 149 kvm_for_each_vcpu(i, vcpu, kvm) { 150 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 151 kfree(vgic_cpu->private_irqs); 152 vgic_cpu->private_irqs = NULL; 153 } 154 155 goto out_unlock; 156 } 157 158 kvm->arch.vgic.in_kernel = true; 159 kvm->arch.vgic.vgic_model = type; 160 kvm->arch.vgic.implementation_rev = KVM_VGIC_IMP_REV_LATEST; 161 162 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; 163 164 if (type == KVM_DEV_TYPE_ARM_VGIC_V2) 165 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; 166 else 167 INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions); 168 169 if (type == KVM_DEV_TYPE_ARM_VGIC_V3) 170 kvm->arch.vgic.nassgicap = system_supports_direct_sgis(); 171 172 out_unlock: 173 mutex_unlock(&kvm->arch.config_lock); 174 kvm_unlock_all_vcpus(kvm); 175 return ret; 176 } 177 178 /* INIT/DESTROY */ 179 180 /** 181 * kvm_vgic_dist_init: initialize the dist data structures 182 * @kvm: kvm struct pointer 183 * @nr_spis: number of spis, frozen by caller 184 */ 185 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis) 186 { 187 struct vgic_dist *dist = &kvm->arch.vgic; 188 struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0); 189 int i; 190 191 dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT); 192 if (!dist->spis) 193 return -ENOMEM; 194 195 /* 196 * In the following code we do not take the irq struct lock since 197 * no other action on irq structs can happen while the VGIC is 198 * not initialized yet: 199 * If someone wants to inject an interrupt or does a MMIO access, we 200 * require prior initialization in case of a virtual GICv3 or trigger 201 * initialization when using a virtual GICv2. 202 */ 203 for (i = 0; i < nr_spis; i++) { 204 struct vgic_irq *irq = &dist->spis[i]; 205 206 irq->intid = i + VGIC_NR_PRIVATE_IRQS; 207 INIT_LIST_HEAD(&irq->ap_list); 208 raw_spin_lock_init(&irq->irq_lock); 209 irq->vcpu = NULL; 210 irq->target_vcpu = vcpu0; 211 kref_init(&irq->refcount); 212 switch (dist->vgic_model) { 213 case KVM_DEV_TYPE_ARM_VGIC_V2: 214 irq->targets = 0; 215 irq->group = 0; 216 break; 217 case KVM_DEV_TYPE_ARM_VGIC_V3: 218 irq->mpidr = 0; 219 irq->group = 1; 220 break; 221 default: 222 kfree(dist->spis); 223 dist->spis = NULL; 224 return -EINVAL; 225 } 226 } 227 return 0; 228 } 229 230 /* Default GICv3 Maintenance Interrupt INTID, as per SBSA */ 231 #define DEFAULT_MI_INTID 25 232 233 int kvm_vgic_vcpu_nv_init(struct kvm_vcpu *vcpu) 234 { 235 int ret; 236 237 guard(mutex)(&vcpu->kvm->arch.config_lock); 238 239 /* 240 * Matching the tradition established with the timers, provide 241 * a default PPI for the maintenance interrupt. It makes 242 * things easier to reason about. 243 */ 244 if (vcpu->kvm->arch.vgic.mi_intid == 0) 245 vcpu->kvm->arch.vgic.mi_intid = DEFAULT_MI_INTID; 246 ret = kvm_vgic_set_owner(vcpu, vcpu->kvm->arch.vgic.mi_intid, vcpu); 247 248 return ret; 249 } 250 251 static int vgic_allocate_private_irqs_locked(struct kvm_vcpu *vcpu, u32 type) 252 { 253 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 254 int i; 255 256 lockdep_assert_held(&vcpu->kvm->arch.config_lock); 257 258 if (vgic_cpu->private_irqs) 259 return 0; 260 261 vgic_cpu->private_irqs = kcalloc(VGIC_NR_PRIVATE_IRQS, 262 sizeof(struct vgic_irq), 263 GFP_KERNEL_ACCOUNT); 264 265 if (!vgic_cpu->private_irqs) 266 return -ENOMEM; 267 268 /* 269 * Enable and configure all SGIs to be edge-triggered and 270 * configure all PPIs as level-triggered. 271 */ 272 for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { 273 struct vgic_irq *irq = &vgic_cpu->private_irqs[i]; 274 275 INIT_LIST_HEAD(&irq->ap_list); 276 raw_spin_lock_init(&irq->irq_lock); 277 irq->intid = i; 278 irq->vcpu = NULL; 279 irq->target_vcpu = vcpu; 280 kref_init(&irq->refcount); 281 if (vgic_irq_is_sgi(i)) { 282 /* SGIs */ 283 irq->enabled = 1; 284 irq->config = VGIC_CONFIG_EDGE; 285 } else { 286 /* PPIs */ 287 irq->config = VGIC_CONFIG_LEVEL; 288 } 289 290 switch (type) { 291 case KVM_DEV_TYPE_ARM_VGIC_V3: 292 irq->group = 1; 293 irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu); 294 break; 295 case KVM_DEV_TYPE_ARM_VGIC_V2: 296 irq->group = 0; 297 irq->targets = BIT(vcpu->vcpu_id); 298 break; 299 } 300 } 301 302 return 0; 303 } 304 305 static int vgic_allocate_private_irqs(struct kvm_vcpu *vcpu, u32 type) 306 { 307 int ret; 308 309 mutex_lock(&vcpu->kvm->arch.config_lock); 310 ret = vgic_allocate_private_irqs_locked(vcpu, type); 311 mutex_unlock(&vcpu->kvm->arch.config_lock); 312 313 return ret; 314 } 315 316 /** 317 * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data 318 * structures and register VCPU-specific KVM iodevs 319 * 320 * @vcpu: pointer to the VCPU being created and initialized 321 * 322 * Only do initialization, but do not actually enable the 323 * VGIC CPU interface 324 */ 325 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) 326 { 327 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 328 struct vgic_dist *dist = &vcpu->kvm->arch.vgic; 329 int ret = 0; 330 331 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 332 333 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 334 raw_spin_lock_init(&vgic_cpu->ap_list_lock); 335 atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0); 336 337 if (!irqchip_in_kernel(vcpu->kvm)) 338 return 0; 339 340 ret = vgic_allocate_private_irqs(vcpu, dist->vgic_model); 341 if (ret) 342 return ret; 343 344 /* 345 * If we are creating a VCPU with a GICv3 we must also register the 346 * KVM io device for the redistributor that belongs to this VCPU. 347 */ 348 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 349 mutex_lock(&vcpu->kvm->slots_lock); 350 ret = vgic_register_redist_iodev(vcpu); 351 mutex_unlock(&vcpu->kvm->slots_lock); 352 } 353 return ret; 354 } 355 356 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu) 357 { 358 if (kvm_vgic_global_state.type == VGIC_V2) 359 vgic_v2_enable(vcpu); 360 else 361 vgic_v3_enable(vcpu); 362 } 363 364 /* 365 * vgic_init: allocates and initializes dist and vcpu data structures 366 * depending on two dimensioning parameters: 367 * - the number of spis 368 * - the number of vcpus 369 * The function is generally called when nr_spis has been explicitly set 370 * by the guest through the KVM DEVICE API. If not nr_spis is set to 256. 371 * vgic_initialized() returns true when this function has succeeded. 372 */ 373 int vgic_init(struct kvm *kvm) 374 { 375 struct vgic_dist *dist = &kvm->arch.vgic; 376 struct kvm_vcpu *vcpu; 377 int ret = 0; 378 unsigned long idx; 379 380 lockdep_assert_held(&kvm->arch.config_lock); 381 382 if (vgic_initialized(kvm)) 383 return 0; 384 385 /* Are we also in the middle of creating a VCPU? */ 386 if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus)) 387 return -EBUSY; 388 389 /* freeze the number of spis */ 390 if (!dist->nr_spis) 391 dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS; 392 393 ret = kvm_vgic_dist_init(kvm, dist->nr_spis); 394 if (ret) 395 goto out; 396 397 /* 398 * Ensure vPEs are allocated if direct IRQ injection (e.g. vSGIs, 399 * vLPIs) is supported. 400 */ 401 if (vgic_supports_direct_irqs(kvm)) { 402 ret = vgic_v4_init(kvm); 403 if (ret) 404 goto out; 405 } 406 407 kvm_for_each_vcpu(idx, vcpu, kvm) 408 kvm_vgic_vcpu_enable(vcpu); 409 410 ret = kvm_vgic_setup_default_irq_routing(kvm); 411 if (ret) 412 goto out; 413 414 vgic_debug_init(kvm); 415 dist->initialized = true; 416 out: 417 return ret; 418 } 419 420 static void kvm_vgic_dist_destroy(struct kvm *kvm) 421 { 422 struct vgic_dist *dist = &kvm->arch.vgic; 423 struct vgic_redist_region *rdreg, *next; 424 425 dist->ready = false; 426 dist->initialized = false; 427 428 kfree(dist->spis); 429 dist->spis = NULL; 430 dist->nr_spis = 0; 431 dist->vgic_dist_base = VGIC_ADDR_UNDEF; 432 433 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 434 list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list) 435 vgic_v3_free_redist_region(kvm, rdreg); 436 INIT_LIST_HEAD(&dist->rd_regions); 437 } else { 438 dist->vgic_cpu_base = VGIC_ADDR_UNDEF; 439 } 440 441 if (vgic_supports_direct_irqs(kvm)) 442 vgic_v4_teardown(kvm); 443 444 xa_destroy(&dist->lpi_xa); 445 } 446 447 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 448 { 449 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; 450 451 /* 452 * Retire all pending LPIs on this vcpu anyway as we're 453 * going to destroy it. 454 */ 455 vgic_flush_pending_lpis(vcpu); 456 457 INIT_LIST_HEAD(&vgic_cpu->ap_list_head); 458 kfree(vgic_cpu->private_irqs); 459 vgic_cpu->private_irqs = NULL; 460 461 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { 462 /* 463 * If this vCPU is being destroyed because of a failed creation 464 * then unregister the redistributor to avoid leaving behind a 465 * dangling pointer to the vCPU struct. 466 * 467 * vCPUs that have been successfully created (i.e. added to 468 * kvm->vcpu_array) get unregistered in kvm_vgic_destroy(), as 469 * this function gets called while holding kvm->arch.config_lock 470 * in the VM teardown path and would otherwise introduce a lock 471 * inversion w.r.t. kvm->srcu. 472 * 473 * vCPUs that failed creation are torn down outside of the 474 * kvm->arch.config_lock and do not get unregistered in 475 * kvm_vgic_destroy(), meaning it is both safe and necessary to 476 * do so here. 477 */ 478 if (kvm_get_vcpu_by_id(vcpu->kvm, vcpu->vcpu_id) != vcpu) 479 vgic_unregister_redist_iodev(vcpu); 480 481 vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF; 482 } 483 } 484 485 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) 486 { 487 struct kvm *kvm = vcpu->kvm; 488 489 mutex_lock(&kvm->slots_lock); 490 __kvm_vgic_vcpu_destroy(vcpu); 491 mutex_unlock(&kvm->slots_lock); 492 } 493 494 void kvm_vgic_destroy(struct kvm *kvm) 495 { 496 struct kvm_vcpu *vcpu; 497 unsigned long i; 498 499 mutex_lock(&kvm->slots_lock); 500 mutex_lock(&kvm->arch.config_lock); 501 502 vgic_debug_destroy(kvm); 503 504 kvm_for_each_vcpu(i, vcpu, kvm) 505 __kvm_vgic_vcpu_destroy(vcpu); 506 507 kvm_vgic_dist_destroy(kvm); 508 509 mutex_unlock(&kvm->arch.config_lock); 510 511 if (kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) 512 kvm_for_each_vcpu(i, vcpu, kvm) 513 vgic_unregister_redist_iodev(vcpu); 514 515 mutex_unlock(&kvm->slots_lock); 516 } 517 518 /** 519 * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest 520 * is a GICv2. A GICv3 must be explicitly initialized by userspace using the 521 * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group. 522 * @kvm: kvm struct pointer 523 */ 524 int vgic_lazy_init(struct kvm *kvm) 525 { 526 int ret = 0; 527 528 if (unlikely(!vgic_initialized(kvm))) { 529 /* 530 * We only provide the automatic initialization of the VGIC 531 * for the legacy case of a GICv2. Any other type must 532 * be explicitly initialized once setup with the respective 533 * KVM device call. 534 */ 535 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) 536 return -EBUSY; 537 538 mutex_lock(&kvm->arch.config_lock); 539 ret = vgic_init(kvm); 540 mutex_unlock(&kvm->arch.config_lock); 541 } 542 543 return ret; 544 } 545 546 /* RESOURCE MAPPING */ 547 548 /** 549 * kvm_vgic_map_resources - map the MMIO regions 550 * @kvm: kvm struct pointer 551 * 552 * Map the MMIO regions depending on the VGIC model exposed to the guest 553 * called on the first VCPU run. 554 * Also map the virtual CPU interface into the VM. 555 * v2 calls vgic_init() if not already done. 556 * v3 and derivatives return an error if the VGIC is not initialized. 557 * vgic_ready() returns true if this function has succeeded. 558 */ 559 int kvm_vgic_map_resources(struct kvm *kvm) 560 { 561 struct vgic_dist *dist = &kvm->arch.vgic; 562 enum vgic_type type; 563 gpa_t dist_base; 564 int ret = 0; 565 566 if (likely(vgic_ready(kvm))) 567 return 0; 568 569 mutex_lock(&kvm->slots_lock); 570 mutex_lock(&kvm->arch.config_lock); 571 if (vgic_ready(kvm)) 572 goto out; 573 574 if (!irqchip_in_kernel(kvm)) 575 goto out; 576 577 if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) { 578 ret = vgic_v2_map_resources(kvm); 579 type = VGIC_V2; 580 } else { 581 ret = vgic_v3_map_resources(kvm); 582 type = VGIC_V3; 583 } 584 585 if (ret) 586 goto out; 587 588 dist_base = dist->vgic_dist_base; 589 mutex_unlock(&kvm->arch.config_lock); 590 591 ret = vgic_register_dist_iodev(kvm, dist_base, type); 592 if (ret) { 593 kvm_err("Unable to register VGIC dist MMIO regions\n"); 594 goto out_slots; 595 } 596 597 /* 598 * kvm_io_bus_register_dev() guarantees all readers see the new MMIO 599 * registration before returning through synchronize_srcu(), which also 600 * implies a full memory barrier. As such, marking the distributor as 601 * 'ready' here is guaranteed to be ordered after all vCPUs having seen 602 * a completely configured distributor. 603 */ 604 dist->ready = true; 605 goto out_slots; 606 out: 607 mutex_unlock(&kvm->arch.config_lock); 608 out_slots: 609 if (ret) 610 kvm_vm_dead(kvm); 611 612 mutex_unlock(&kvm->slots_lock); 613 614 return ret; 615 } 616 617 /* GENERIC PROBE */ 618 619 void kvm_vgic_cpu_up(void) 620 { 621 enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0); 622 } 623 624 625 void kvm_vgic_cpu_down(void) 626 { 627 disable_percpu_irq(kvm_vgic_global_state.maint_irq); 628 } 629 630 static irqreturn_t vgic_maintenance_handler(int irq, void *data) 631 { 632 struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)data; 633 634 /* 635 * We cannot rely on the vgic maintenance interrupt to be 636 * delivered synchronously. This means we can only use it to 637 * exit the VM, and we perform the handling of EOIed 638 * interrupts on the exit path (see vgic_fold_lr_state). 639 * 640 * Of course, NV throws a wrench in this plan, and needs 641 * something special. 642 */ 643 if (vcpu && vgic_state_is_nested(vcpu)) 644 vgic_v3_handle_nested_maint_irq(vcpu); 645 646 return IRQ_HANDLED; 647 } 648 649 static struct gic_kvm_info *gic_kvm_info; 650 651 void __init vgic_set_kvm_info(const struct gic_kvm_info *info) 652 { 653 BUG_ON(gic_kvm_info != NULL); 654 gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL); 655 if (gic_kvm_info) 656 *gic_kvm_info = *info; 657 } 658 659 /** 660 * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware 661 * 662 * For a specific CPU, initialize the GIC VE hardware. 663 */ 664 void kvm_vgic_init_cpu_hardware(void) 665 { 666 BUG_ON(preemptible()); 667 668 /* 669 * We want to make sure the list registers start out clear so that we 670 * only have the program the used registers. 671 */ 672 if (kvm_vgic_global_state.type == VGIC_V2) { 673 vgic_v2_init_lrs(); 674 } else if (kvm_vgic_global_state.type == VGIC_V3 || 675 kvm_vgic_global_state.has_gcie_v3_compat) { 676 kvm_call_hyp(__vgic_v3_init_lrs); 677 } 678 } 679 680 /** 681 * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable 682 * according to the host GIC model. Accordingly calls either 683 * vgic_v2/v3_probe which registers the KVM_DEVICE that can be 684 * instantiated by a guest later on . 685 */ 686 int kvm_vgic_hyp_init(void) 687 { 688 bool has_mask; 689 int ret; 690 691 if (!gic_kvm_info) 692 return -ENODEV; 693 694 has_mask = !gic_kvm_info->no_maint_irq_mask; 695 696 if (has_mask && !gic_kvm_info->maint_irq) { 697 kvm_err("No vgic maintenance irq\n"); 698 return -ENXIO; 699 } 700 701 /* 702 * If we get one of these oddball non-GICs, taint the kernel, 703 * as we have no idea of how they *really* behave. 704 */ 705 if (gic_kvm_info->no_hw_deactivation) { 706 kvm_info("Non-architectural vgic, tainting kernel\n"); 707 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 708 kvm_vgic_global_state.no_hw_deactivation = true; 709 } 710 711 switch (gic_kvm_info->type) { 712 case GIC_V2: 713 ret = vgic_v2_probe(gic_kvm_info); 714 break; 715 case GIC_V3: 716 ret = vgic_v3_probe(gic_kvm_info); 717 if (!ret) { 718 static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif); 719 kvm_info("GIC system register CPU interface enabled\n"); 720 } 721 break; 722 case GIC_V5: 723 ret = vgic_v5_probe(gic_kvm_info); 724 break; 725 default: 726 ret = -ENODEV; 727 } 728 729 kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq; 730 731 kfree(gic_kvm_info); 732 gic_kvm_info = NULL; 733 734 if (ret) 735 return ret; 736 737 if (!has_mask && !kvm_vgic_global_state.maint_irq) 738 return 0; 739 740 ret = request_percpu_irq(kvm_vgic_global_state.maint_irq, 741 vgic_maintenance_handler, 742 "vgic", kvm_get_running_vcpus()); 743 if (ret) { 744 kvm_err("Cannot register interrupt %d\n", 745 kvm_vgic_global_state.maint_irq); 746 return ret; 747 } 748 749 kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq); 750 return 0; 751 } 752