xref: /linux/arch/arm64/kvm/vgic/vgic-init.c (revision 5d83b9cbe7cf40746948a419c5018f4d617a86fa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015, 2016 ARM Ltd.
4  */
5 
6 #include <linux/uaccess.h>
7 #include <linux/interrupt.h>
8 #include <linux/cpu.h>
9 #include <linux/kvm_host.h>
10 #include <kvm/arm_vgic.h>
11 #include <asm/kvm_emulate.h>
12 #include <asm/kvm_mmu.h>
13 #include "vgic.h"
14 
15 /*
16  * Initialization rules: there are multiple stages to the vgic
17  * initialization, both for the distributor and the CPU interfaces.  The basic
18  * idea is that even though the VGIC is not functional or not requested from
19  * user space, the critical path of the run loop can still call VGIC functions
20  * that just won't do anything, without them having to check additional
21  * initialization flags to ensure they don't look at uninitialized data
22  * structures.
23  *
24  * Distributor:
25  *
26  * - kvm_vgic_early_init(): initialization of static data that doesn't
27  *   depend on any sizing information or emulation type. No allocation
28  *   is allowed there.
29  *
30  * - vgic_init(): allocation and initialization of the generic data
31  *   structures that depend on sizing information (number of CPUs,
32  *   number of interrupts). Also initializes the vcpu specific data
33  *   structures. Can be executed lazily for GICv2.
34  *
35  * CPU Interface:
36  *
37  * - kvm_vgic_vcpu_init(): initialization of static data that
38  *   doesn't depend on any sizing information or emulation type. No
39  *   allocation is allowed there.
40  */
41 
42 /* EARLY INIT */
43 
44 /**
45  * kvm_vgic_early_init() - Initialize static VGIC VCPU data structures
46  * @kvm: The VM whose VGIC districutor should be initialized
47  *
48  * Only do initialization of static structures that don't require any
49  * allocation or sizing information from userspace.  vgic_init() called
50  * kvm_vgic_dist_init() which takes care of the rest.
51  */
52 void kvm_vgic_early_init(struct kvm *kvm)
53 {
54 	struct vgic_dist *dist = &kvm->arch.vgic;
55 
56 	INIT_LIST_HEAD(&dist->lpi_translation_cache);
57 	raw_spin_lock_init(&dist->lpi_list_lock);
58 	xa_init_flags(&dist->lpi_xa, XA_FLAGS_LOCK_IRQ);
59 }
60 
61 /* CREATION */
62 
63 /**
64  * kvm_vgic_create: triggered by the instantiation of the VGIC device by
65  * user space, either through the legacy KVM_CREATE_IRQCHIP ioctl (v2 only)
66  * or through the generic KVM_CREATE_DEVICE API ioctl.
67  * irqchip_in_kernel() tells you if this function succeeded or not.
68  * @kvm: kvm struct pointer
69  * @type: KVM_DEV_TYPE_ARM_VGIC_V[23]
70  */
71 int kvm_vgic_create(struct kvm *kvm, u32 type)
72 {
73 	struct kvm_vcpu *vcpu;
74 	unsigned long i;
75 	int ret;
76 
77 	/*
78 	 * This function is also called by the KVM_CREATE_IRQCHIP handler,
79 	 * which had no chance yet to check the availability of the GICv2
80 	 * emulation. So check this here again. KVM_CREATE_DEVICE does
81 	 * the proper checks already.
82 	 */
83 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2 &&
84 		!kvm_vgic_global_state.can_emulate_gicv2)
85 		return -ENODEV;
86 
87 	/* Must be held to avoid race with vCPU creation */
88 	lockdep_assert_held(&kvm->lock);
89 
90 	ret = -EBUSY;
91 	if (!lock_all_vcpus(kvm))
92 		return ret;
93 
94 	mutex_lock(&kvm->arch.config_lock);
95 
96 	if (irqchip_in_kernel(kvm)) {
97 		ret = -EEXIST;
98 		goto out_unlock;
99 	}
100 
101 	kvm_for_each_vcpu(i, vcpu, kvm) {
102 		if (vcpu_has_run_once(vcpu))
103 			goto out_unlock;
104 	}
105 	ret = 0;
106 
107 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
108 		kvm->max_vcpus = VGIC_V2_MAX_CPUS;
109 	else
110 		kvm->max_vcpus = VGIC_V3_MAX_CPUS;
111 
112 	if (atomic_read(&kvm->online_vcpus) > kvm->max_vcpus) {
113 		ret = -E2BIG;
114 		goto out_unlock;
115 	}
116 
117 	kvm->arch.vgic.in_kernel = true;
118 	kvm->arch.vgic.vgic_model = type;
119 
120 	kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
121 
122 	if (type == KVM_DEV_TYPE_ARM_VGIC_V2)
123 		kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
124 	else
125 		INIT_LIST_HEAD(&kvm->arch.vgic.rd_regions);
126 
127 out_unlock:
128 	mutex_unlock(&kvm->arch.config_lock);
129 	unlock_all_vcpus(kvm);
130 	return ret;
131 }
132 
133 /* INIT/DESTROY */
134 
135 /**
136  * kvm_vgic_dist_init: initialize the dist data structures
137  * @kvm: kvm struct pointer
138  * @nr_spis: number of spis, frozen by caller
139  */
140 static int kvm_vgic_dist_init(struct kvm *kvm, unsigned int nr_spis)
141 {
142 	struct vgic_dist *dist = &kvm->arch.vgic;
143 	struct kvm_vcpu *vcpu0 = kvm_get_vcpu(kvm, 0);
144 	int i;
145 
146 	dist->spis = kcalloc(nr_spis, sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
147 	if (!dist->spis)
148 		return  -ENOMEM;
149 
150 	/*
151 	 * In the following code we do not take the irq struct lock since
152 	 * no other action on irq structs can happen while the VGIC is
153 	 * not initialized yet:
154 	 * If someone wants to inject an interrupt or does a MMIO access, we
155 	 * require prior initialization in case of a virtual GICv3 or trigger
156 	 * initialization when using a virtual GICv2.
157 	 */
158 	for (i = 0; i < nr_spis; i++) {
159 		struct vgic_irq *irq = &dist->spis[i];
160 
161 		irq->intid = i + VGIC_NR_PRIVATE_IRQS;
162 		INIT_LIST_HEAD(&irq->ap_list);
163 		raw_spin_lock_init(&irq->irq_lock);
164 		irq->vcpu = NULL;
165 		irq->target_vcpu = vcpu0;
166 		kref_init(&irq->refcount);
167 		switch (dist->vgic_model) {
168 		case KVM_DEV_TYPE_ARM_VGIC_V2:
169 			irq->targets = 0;
170 			irq->group = 0;
171 			break;
172 		case KVM_DEV_TYPE_ARM_VGIC_V3:
173 			irq->mpidr = 0;
174 			irq->group = 1;
175 			break;
176 		default:
177 			kfree(dist->spis);
178 			dist->spis = NULL;
179 			return -EINVAL;
180 		}
181 	}
182 	return 0;
183 }
184 
185 /**
186  * kvm_vgic_vcpu_init() - Initialize static VGIC VCPU data
187  * structures and register VCPU-specific KVM iodevs
188  *
189  * @vcpu: pointer to the VCPU being created and initialized
190  *
191  * Only do initialization, but do not actually enable the
192  * VGIC CPU interface
193  */
194 int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
195 {
196 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
197 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
198 	int ret = 0;
199 	int i;
200 
201 	vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
202 
203 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
204 	raw_spin_lock_init(&vgic_cpu->ap_list_lock);
205 	atomic_set(&vgic_cpu->vgic_v3.its_vpe.vlpi_count, 0);
206 
207 	/*
208 	 * Enable and configure all SGIs to be edge-triggered and
209 	 * configure all PPIs as level-triggered.
210 	 */
211 	for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
212 		struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
213 
214 		INIT_LIST_HEAD(&irq->ap_list);
215 		raw_spin_lock_init(&irq->irq_lock);
216 		irq->intid = i;
217 		irq->vcpu = NULL;
218 		irq->target_vcpu = vcpu;
219 		kref_init(&irq->refcount);
220 		if (vgic_irq_is_sgi(i)) {
221 			/* SGIs */
222 			irq->enabled = 1;
223 			irq->config = VGIC_CONFIG_EDGE;
224 		} else {
225 			/* PPIs */
226 			irq->config = VGIC_CONFIG_LEVEL;
227 		}
228 	}
229 
230 	if (!irqchip_in_kernel(vcpu->kvm))
231 		return 0;
232 
233 	/*
234 	 * If we are creating a VCPU with a GICv3 we must also register the
235 	 * KVM io device for the redistributor that belongs to this VCPU.
236 	 */
237 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
238 		mutex_lock(&vcpu->kvm->slots_lock);
239 		ret = vgic_register_redist_iodev(vcpu);
240 		mutex_unlock(&vcpu->kvm->slots_lock);
241 	}
242 	return ret;
243 }
244 
245 static void kvm_vgic_vcpu_enable(struct kvm_vcpu *vcpu)
246 {
247 	if (kvm_vgic_global_state.type == VGIC_V2)
248 		vgic_v2_enable(vcpu);
249 	else
250 		vgic_v3_enable(vcpu);
251 }
252 
253 /*
254  * vgic_init: allocates and initializes dist and vcpu data structures
255  * depending on two dimensioning parameters:
256  * - the number of spis
257  * - the number of vcpus
258  * The function is generally called when nr_spis has been explicitly set
259  * by the guest through the KVM DEVICE API. If not nr_spis is set to 256.
260  * vgic_initialized() returns true when this function has succeeded.
261  */
262 int vgic_init(struct kvm *kvm)
263 {
264 	struct vgic_dist *dist = &kvm->arch.vgic;
265 	struct kvm_vcpu *vcpu;
266 	int ret = 0, i;
267 	unsigned long idx;
268 
269 	lockdep_assert_held(&kvm->arch.config_lock);
270 
271 	if (vgic_initialized(kvm))
272 		return 0;
273 
274 	/* Are we also in the middle of creating a VCPU? */
275 	if (kvm->created_vcpus != atomic_read(&kvm->online_vcpus))
276 		return -EBUSY;
277 
278 	/* freeze the number of spis */
279 	if (!dist->nr_spis)
280 		dist->nr_spis = VGIC_NR_IRQS_LEGACY - VGIC_NR_PRIVATE_IRQS;
281 
282 	ret = kvm_vgic_dist_init(kvm, dist->nr_spis);
283 	if (ret)
284 		goto out;
285 
286 	/* Initialize groups on CPUs created before the VGIC type was known */
287 	kvm_for_each_vcpu(idx, vcpu, kvm) {
288 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
289 
290 		for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) {
291 			struct vgic_irq *irq = &vgic_cpu->private_irqs[i];
292 			switch (dist->vgic_model) {
293 			case KVM_DEV_TYPE_ARM_VGIC_V3:
294 				irq->group = 1;
295 				irq->mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
296 				break;
297 			case KVM_DEV_TYPE_ARM_VGIC_V2:
298 				irq->group = 0;
299 				irq->targets = 1U << idx;
300 				break;
301 			default:
302 				ret = -EINVAL;
303 				goto out;
304 			}
305 		}
306 	}
307 
308 	if (vgic_has_its(kvm))
309 		vgic_lpi_translation_cache_init(kvm);
310 
311 	/*
312 	 * If we have GICv4.1 enabled, unconditionally request enable the
313 	 * v4 support so that we get HW-accelerated vSGIs. Otherwise, only
314 	 * enable it if we present a virtual ITS to the guest.
315 	 */
316 	if (vgic_supports_direct_msis(kvm)) {
317 		ret = vgic_v4_init(kvm);
318 		if (ret)
319 			goto out;
320 	}
321 
322 	kvm_for_each_vcpu(idx, vcpu, kvm)
323 		kvm_vgic_vcpu_enable(vcpu);
324 
325 	ret = kvm_vgic_setup_default_irq_routing(kvm);
326 	if (ret)
327 		goto out;
328 
329 	vgic_debug_init(kvm);
330 
331 	/*
332 	 * If userspace didn't set the GIC implementation revision,
333 	 * default to the latest and greatest. You know want it.
334 	 */
335 	if (!dist->implementation_rev)
336 		dist->implementation_rev = KVM_VGIC_IMP_REV_LATEST;
337 	dist->initialized = true;
338 
339 out:
340 	return ret;
341 }
342 
343 static void kvm_vgic_dist_destroy(struct kvm *kvm)
344 {
345 	struct vgic_dist *dist = &kvm->arch.vgic;
346 	struct vgic_redist_region *rdreg, *next;
347 
348 	dist->ready = false;
349 	dist->initialized = false;
350 
351 	kfree(dist->spis);
352 	dist->spis = NULL;
353 	dist->nr_spis = 0;
354 	dist->vgic_dist_base = VGIC_ADDR_UNDEF;
355 
356 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
357 		list_for_each_entry_safe(rdreg, next, &dist->rd_regions, list)
358 			vgic_v3_free_redist_region(rdreg);
359 		INIT_LIST_HEAD(&dist->rd_regions);
360 	} else {
361 		dist->vgic_cpu_base = VGIC_ADDR_UNDEF;
362 	}
363 
364 	if (vgic_has_its(kvm))
365 		vgic_lpi_translation_cache_destroy(kvm);
366 
367 	if (vgic_supports_direct_msis(kvm))
368 		vgic_v4_teardown(kvm);
369 
370 	xa_destroy(&dist->lpi_xa);
371 }
372 
373 static void __kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
374 {
375 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
376 
377 	/*
378 	 * Retire all pending LPIs on this vcpu anyway as we're
379 	 * going to destroy it.
380 	 */
381 	vgic_flush_pending_lpis(vcpu);
382 
383 	INIT_LIST_HEAD(&vgic_cpu->ap_list_head);
384 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
385 		vgic_unregister_redist_iodev(vcpu);
386 		vgic_cpu->rd_iodev.base_addr = VGIC_ADDR_UNDEF;
387 	}
388 }
389 
390 void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
391 {
392 	struct kvm *kvm = vcpu->kvm;
393 
394 	mutex_lock(&kvm->slots_lock);
395 	__kvm_vgic_vcpu_destroy(vcpu);
396 	mutex_unlock(&kvm->slots_lock);
397 }
398 
399 void kvm_vgic_destroy(struct kvm *kvm)
400 {
401 	struct kvm_vcpu *vcpu;
402 	unsigned long i;
403 
404 	mutex_lock(&kvm->slots_lock);
405 
406 	vgic_debug_destroy(kvm);
407 
408 	kvm_for_each_vcpu(i, vcpu, kvm)
409 		__kvm_vgic_vcpu_destroy(vcpu);
410 
411 	mutex_lock(&kvm->arch.config_lock);
412 
413 	kvm_vgic_dist_destroy(kvm);
414 
415 	mutex_unlock(&kvm->arch.config_lock);
416 	mutex_unlock(&kvm->slots_lock);
417 }
418 
419 /**
420  * vgic_lazy_init: Lazy init is only allowed if the GIC exposed to the guest
421  * is a GICv2. A GICv3 must be explicitly initialized by userspace using the
422  * KVM_DEV_ARM_VGIC_GRP_CTRL KVM_DEVICE group.
423  * @kvm: kvm struct pointer
424  */
425 int vgic_lazy_init(struct kvm *kvm)
426 {
427 	int ret = 0;
428 
429 	if (unlikely(!vgic_initialized(kvm))) {
430 		/*
431 		 * We only provide the automatic initialization of the VGIC
432 		 * for the legacy case of a GICv2. Any other type must
433 		 * be explicitly initialized once setup with the respective
434 		 * KVM device call.
435 		 */
436 		if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
437 			return -EBUSY;
438 
439 		mutex_lock(&kvm->arch.config_lock);
440 		ret = vgic_init(kvm);
441 		mutex_unlock(&kvm->arch.config_lock);
442 	}
443 
444 	return ret;
445 }
446 
447 /* RESOURCE MAPPING */
448 
449 /**
450  * kvm_vgic_map_resources - map the MMIO regions
451  * @kvm: kvm struct pointer
452  *
453  * Map the MMIO regions depending on the VGIC model exposed to the guest
454  * called on the first VCPU run.
455  * Also map the virtual CPU interface into the VM.
456  * v2 calls vgic_init() if not already done.
457  * v3 and derivatives return an error if the VGIC is not initialized.
458  * vgic_ready() returns true if this function has succeeded.
459  */
460 int kvm_vgic_map_resources(struct kvm *kvm)
461 {
462 	struct vgic_dist *dist = &kvm->arch.vgic;
463 	enum vgic_type type;
464 	gpa_t dist_base;
465 	int ret = 0;
466 
467 	if (likely(vgic_ready(kvm)))
468 		return 0;
469 
470 	mutex_lock(&kvm->slots_lock);
471 	mutex_lock(&kvm->arch.config_lock);
472 	if (vgic_ready(kvm))
473 		goto out;
474 
475 	if (!irqchip_in_kernel(kvm))
476 		goto out;
477 
478 	if (dist->vgic_model == KVM_DEV_TYPE_ARM_VGIC_V2) {
479 		ret = vgic_v2_map_resources(kvm);
480 		type = VGIC_V2;
481 	} else {
482 		ret = vgic_v3_map_resources(kvm);
483 		type = VGIC_V3;
484 	}
485 
486 	if (ret)
487 		goto out;
488 
489 	dist->ready = true;
490 	dist_base = dist->vgic_dist_base;
491 	mutex_unlock(&kvm->arch.config_lock);
492 
493 	ret = vgic_register_dist_iodev(kvm, dist_base, type);
494 	if (ret)
495 		kvm_err("Unable to register VGIC dist MMIO regions\n");
496 
497 	goto out_slots;
498 out:
499 	mutex_unlock(&kvm->arch.config_lock);
500 out_slots:
501 	mutex_unlock(&kvm->slots_lock);
502 
503 	if (ret)
504 		kvm_vgic_destroy(kvm);
505 
506 	return ret;
507 }
508 
509 /* GENERIC PROBE */
510 
511 void kvm_vgic_cpu_up(void)
512 {
513 	enable_percpu_irq(kvm_vgic_global_state.maint_irq, 0);
514 }
515 
516 
517 void kvm_vgic_cpu_down(void)
518 {
519 	disable_percpu_irq(kvm_vgic_global_state.maint_irq);
520 }
521 
522 static irqreturn_t vgic_maintenance_handler(int irq, void *data)
523 {
524 	/*
525 	 * We cannot rely on the vgic maintenance interrupt to be
526 	 * delivered synchronously. This means we can only use it to
527 	 * exit the VM, and we perform the handling of EOIed
528 	 * interrupts on the exit path (see vgic_fold_lr_state).
529 	 */
530 	return IRQ_HANDLED;
531 }
532 
533 static struct gic_kvm_info *gic_kvm_info;
534 
535 void __init vgic_set_kvm_info(const struct gic_kvm_info *info)
536 {
537 	BUG_ON(gic_kvm_info != NULL);
538 	gic_kvm_info = kmalloc(sizeof(*info), GFP_KERNEL);
539 	if (gic_kvm_info)
540 		*gic_kvm_info = *info;
541 }
542 
543 /**
544  * kvm_vgic_init_cpu_hardware - initialize the GIC VE hardware
545  *
546  * For a specific CPU, initialize the GIC VE hardware.
547  */
548 void kvm_vgic_init_cpu_hardware(void)
549 {
550 	BUG_ON(preemptible());
551 
552 	/*
553 	 * We want to make sure the list registers start out clear so that we
554 	 * only have the program the used registers.
555 	 */
556 	if (kvm_vgic_global_state.type == VGIC_V2)
557 		vgic_v2_init_lrs();
558 	else
559 		kvm_call_hyp(__vgic_v3_init_lrs);
560 }
561 
562 /**
563  * kvm_vgic_hyp_init: populates the kvm_vgic_global_state variable
564  * according to the host GIC model. Accordingly calls either
565  * vgic_v2/v3_probe which registers the KVM_DEVICE that can be
566  * instantiated by a guest later on .
567  */
568 int kvm_vgic_hyp_init(void)
569 {
570 	bool has_mask;
571 	int ret;
572 
573 	if (!gic_kvm_info)
574 		return -ENODEV;
575 
576 	has_mask = !gic_kvm_info->no_maint_irq_mask;
577 
578 	if (has_mask && !gic_kvm_info->maint_irq) {
579 		kvm_err("No vgic maintenance irq\n");
580 		return -ENXIO;
581 	}
582 
583 	/*
584 	 * If we get one of these oddball non-GICs, taint the kernel,
585 	 * as we have no idea of how they *really* behave.
586 	 */
587 	if (gic_kvm_info->no_hw_deactivation) {
588 		kvm_info("Non-architectural vgic, tainting kernel\n");
589 		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
590 		kvm_vgic_global_state.no_hw_deactivation = true;
591 	}
592 
593 	switch (gic_kvm_info->type) {
594 	case GIC_V2:
595 		ret = vgic_v2_probe(gic_kvm_info);
596 		break;
597 	case GIC_V3:
598 		ret = vgic_v3_probe(gic_kvm_info);
599 		if (!ret) {
600 			static_branch_enable(&kvm_vgic_global_state.gicv3_cpuif);
601 			kvm_info("GIC system register CPU interface enabled\n");
602 		}
603 		break;
604 	default:
605 		ret = -ENODEV;
606 	}
607 
608 	kvm_vgic_global_state.maint_irq = gic_kvm_info->maint_irq;
609 
610 	kfree(gic_kvm_info);
611 	gic_kvm_info = NULL;
612 
613 	if (ret)
614 		return ret;
615 
616 	if (!has_mask && !kvm_vgic_global_state.maint_irq)
617 		return 0;
618 
619 	ret = request_percpu_irq(kvm_vgic_global_state.maint_irq,
620 				 vgic_maintenance_handler,
621 				 "vgic", kvm_get_running_vcpus());
622 	if (ret) {
623 		kvm_err("Cannot register interrupt %d\n",
624 			kvm_vgic_global_state.maint_irq);
625 		return ret;
626 	}
627 
628 	kvm_info("vgic interrupt IRQ%d\n", kvm_vgic_global_state.maint_irq);
629 	return 0;
630 }
631