xref: /linux/arch/arm64/kvm/sys_regs.c (revision faf7714a47a25c626ec7fdbd8e85c6bfcd565fdc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 #include <linux/irqchip/arm-gic-v3.h>
21 
22 #include <asm/arm_pmuv3.h>
23 #include <asm/cacheflush.h>
24 #include <asm/cputype.h>
25 #include <asm/debug-monitors.h>
26 #include <asm/esr.h>
27 #include <asm/kvm_arm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/kvm_nested.h>
32 #include <asm/perf_event.h>
33 #include <asm/sysreg.h>
34 
35 #include <trace/events/kvm.h>
36 
37 #include "sys_regs.h"
38 #include "vgic/vgic.h"
39 
40 #include "trace.h"
41 
42 /*
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
49 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
50 		      u64 val);
51 
52 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
53 			 const struct sys_reg_desc *r)
54 {
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
59 static bool bad_trap(struct kvm_vcpu *vcpu,
60 		     struct sys_reg_params *params,
61 		     const struct sys_reg_desc *r,
62 		     const char *msg)
63 {
64 	WARN_ONCE(1, "Unexpected %s\n", msg);
65 	print_sys_reg_instr(params);
66 	return undef_access(vcpu, params, r);
67 }
68 
69 static bool read_from_write_only(struct kvm_vcpu *vcpu,
70 				 struct sys_reg_params *params,
71 				 const struct sys_reg_desc *r)
72 {
73 	return bad_trap(vcpu, params, r,
74 			"sys_reg read to write-only register");
75 }
76 
77 static bool write_to_read_only(struct kvm_vcpu *vcpu,
78 			       struct sys_reg_params *params,
79 			       const struct sys_reg_desc *r)
80 {
81 	return bad_trap(vcpu, params, r,
82 			"sys_reg write to read-only register");
83 }
84 
85 #define PURE_EL2_SYSREG(el2)						\
86 	case el2: {							\
87 		*el1r = el2;						\
88 		return true;						\
89 	}
90 
91 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
92 	case el2: {							\
93 		*xlate = fn;						\
94 		*el1r = el1;						\
95 		return true;						\
96 	}
97 
98 static bool get_el2_to_el1_mapping(unsigned int reg,
99 				   unsigned int *el1r, u64 (**xlate)(u64))
100 {
101 	switch (reg) {
102 		PURE_EL2_SYSREG(  VPIDR_EL2	);
103 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
104 		PURE_EL2_SYSREG(  ACTLR_EL2	);
105 		PURE_EL2_SYSREG(  HCR_EL2	);
106 		PURE_EL2_SYSREG(  MDCR_EL2	);
107 		PURE_EL2_SYSREG(  HSTR_EL2	);
108 		PURE_EL2_SYSREG(  HACR_EL2	);
109 		PURE_EL2_SYSREG(  VTTBR_EL2	);
110 		PURE_EL2_SYSREG(  VTCR_EL2	);
111 		PURE_EL2_SYSREG(  RVBAR_EL2	);
112 		PURE_EL2_SYSREG(  TPIDR_EL2	);
113 		PURE_EL2_SYSREG(  HPFAR_EL2	);
114 		PURE_EL2_SYSREG(  HCRX_EL2	);
115 		PURE_EL2_SYSREG(  HFGRTR_EL2	);
116 		PURE_EL2_SYSREG(  HFGWTR_EL2	);
117 		PURE_EL2_SYSREG(  HFGITR_EL2	);
118 		PURE_EL2_SYSREG(  HDFGRTR_EL2	);
119 		PURE_EL2_SYSREG(  HDFGWTR_EL2	);
120 		PURE_EL2_SYSREG(  HAFGRTR_EL2	);
121 		PURE_EL2_SYSREG(  CNTVOFF_EL2	);
122 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
123 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
124 				  translate_sctlr_el2_to_sctlr_el1	     );
125 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
126 				  translate_cptr_el2_to_cpacr_el1	     );
127 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
128 				  translate_ttbr0_el2_to_ttbr0_el1	     );
129 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
130 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
131 				  translate_tcr_el2_to_tcr_el1		     );
132 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
133 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
134 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
135 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
136 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
137 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
138 		MAPPED_EL2_SYSREG(TCR2_EL2,    TCR2_EL1,    NULL	     );
139 		MAPPED_EL2_SYSREG(PIR_EL2,     PIR_EL1,     NULL	     );
140 		MAPPED_EL2_SYSREG(PIRE0_EL2,   PIRE0_EL1,   NULL	     );
141 		MAPPED_EL2_SYSREG(POR_EL2,     POR_EL1,     NULL	     );
142 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
143 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
144 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
145 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
146 		MAPPED_EL2_SYSREG(CONTEXTIDR_EL2, CONTEXTIDR_EL1, NULL	     );
147 	default:
148 		return false;
149 	}
150 }
151 
152 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
153 {
154 	u64 val = 0x8badf00d8badf00d;
155 	u64 (*xlate)(u64) = NULL;
156 	unsigned int el1r;
157 
158 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
159 		goto memory_read;
160 
161 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
162 		if (!is_hyp_ctxt(vcpu))
163 			goto memory_read;
164 
165 		/*
166 		 * CNTHCTL_EL2 requires some special treatment to
167 		 * account for the bits that can be set via CNTKCTL_EL1.
168 		 */
169 		switch (reg) {
170 		case CNTHCTL_EL2:
171 			if (vcpu_el2_e2h_is_set(vcpu)) {
172 				val = read_sysreg_el1(SYS_CNTKCTL);
173 				val &= CNTKCTL_VALID_BITS;
174 				val |= __vcpu_sys_reg(vcpu, reg) & ~CNTKCTL_VALID_BITS;
175 				return val;
176 			}
177 			break;
178 		}
179 
180 		/*
181 		 * If this register does not have an EL1 counterpart,
182 		 * then read the stored EL2 version.
183 		 */
184 		if (reg == el1r)
185 			goto memory_read;
186 
187 		/*
188 		 * If we have a non-VHE guest and that the sysreg
189 		 * requires translation to be used at EL1, use the
190 		 * in-memory copy instead.
191 		 */
192 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
193 			goto memory_read;
194 
195 		/* Get the current version of the EL1 counterpart. */
196 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
197 		if (reg >= __SANITISED_REG_START__)
198 			val = kvm_vcpu_apply_reg_masks(vcpu, reg, val);
199 
200 		return val;
201 	}
202 
203 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
204 	if (unlikely(is_hyp_ctxt(vcpu)))
205 		goto memory_read;
206 
207 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
208 		return val;
209 
210 memory_read:
211 	return __vcpu_sys_reg(vcpu, reg);
212 }
213 
214 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
215 {
216 	u64 (*xlate)(u64) = NULL;
217 	unsigned int el1r;
218 
219 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
220 		goto memory_write;
221 
222 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
223 		if (!is_hyp_ctxt(vcpu))
224 			goto memory_write;
225 
226 		/*
227 		 * Always store a copy of the write to memory to avoid having
228 		 * to reverse-translate virtual EL2 system registers for a
229 		 * non-VHE guest hypervisor.
230 		 */
231 		__vcpu_sys_reg(vcpu, reg) = val;
232 
233 		switch (reg) {
234 		case CNTHCTL_EL2:
235 			/*
236 			 * If E2H=0, CNHTCTL_EL2 is a pure shadow register.
237 			 * Otherwise, some of the bits are backed by
238 			 * CNTKCTL_EL1, while the rest is kept in memory.
239 			 * Yes, this is fun stuff.
240 			 */
241 			if (vcpu_el2_e2h_is_set(vcpu))
242 				write_sysreg_el1(val, SYS_CNTKCTL);
243 			return;
244 		}
245 
246 		/* No EL1 counterpart? We're done here.? */
247 		if (reg == el1r)
248 			return;
249 
250 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
251 			val = xlate(val);
252 
253 		/* Redirect this to the EL1 version of the register. */
254 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
255 		return;
256 	}
257 
258 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
259 	if (unlikely(is_hyp_ctxt(vcpu)))
260 		goto memory_write;
261 
262 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
263 		return;
264 
265 memory_write:
266 	 __vcpu_sys_reg(vcpu, reg) = val;
267 }
268 
269 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
270 #define CSSELR_MAX 14
271 
272 /*
273  * Returns the minimum line size for the selected cache, expressed as
274  * Log2(bytes).
275  */
276 static u8 get_min_cache_line_size(bool icache)
277 {
278 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
279 	u8 field;
280 
281 	if (icache)
282 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
283 	else
284 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
285 
286 	/*
287 	 * Cache line size is represented as Log2(words) in CTR_EL0.
288 	 * Log2(bytes) can be derived with the following:
289 	 *
290 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
291 	 * 		   = Log2(bytes) - 2 + 2
292 	 * 		   = Log2(bytes)
293 	 */
294 	return field + 2;
295 }
296 
297 /* Which cache CCSIDR represents depends on CSSELR value. */
298 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
299 {
300 	u8 line_size;
301 
302 	if (vcpu->arch.ccsidr)
303 		return vcpu->arch.ccsidr[csselr];
304 
305 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
306 
307 	/*
308 	 * Fabricate a CCSIDR value as the overriding value does not exist.
309 	 * The real CCSIDR value will not be used as it can vary by the
310 	 * physical CPU which the vcpu currently resides in.
311 	 *
312 	 * The line size is determined with get_min_cache_line_size(), which
313 	 * should be valid for all CPUs even if they have different cache
314 	 * configuration.
315 	 *
316 	 * The associativity bits are cleared, meaning the geometry of all data
317 	 * and unified caches (which are guaranteed to be PIPT and thus
318 	 * non-aliasing) are 1 set and 1 way.
319 	 * Guests should not be doing cache operations by set/way at all, and
320 	 * for this reason, we trap them and attempt to infer the intent, so
321 	 * that we can flush the entire guest's address space at the appropriate
322 	 * time. The exposed geometry minimizes the number of the traps.
323 	 * [If guests should attempt to infer aliasing properties from the
324 	 * geometry (which is not permitted by the architecture), they would
325 	 * only do so for virtually indexed caches.]
326 	 *
327 	 * We don't check if the cache level exists as it is allowed to return
328 	 * an UNKNOWN value if not.
329 	 */
330 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
331 }
332 
333 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
334 {
335 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
336 	u32 *ccsidr = vcpu->arch.ccsidr;
337 	u32 i;
338 
339 	if ((val & CCSIDR_EL1_RES0) ||
340 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
341 		return -EINVAL;
342 
343 	if (!ccsidr) {
344 		if (val == get_ccsidr(vcpu, csselr))
345 			return 0;
346 
347 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
348 		if (!ccsidr)
349 			return -ENOMEM;
350 
351 		for (i = 0; i < CSSELR_MAX; i++)
352 			ccsidr[i] = get_ccsidr(vcpu, i);
353 
354 		vcpu->arch.ccsidr = ccsidr;
355 	}
356 
357 	ccsidr[csselr] = val;
358 
359 	return 0;
360 }
361 
362 static bool access_rw(struct kvm_vcpu *vcpu,
363 		      struct sys_reg_params *p,
364 		      const struct sys_reg_desc *r)
365 {
366 	if (p->is_write)
367 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
368 	else
369 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
370 
371 	return true;
372 }
373 
374 /*
375  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
376  */
377 static bool access_dcsw(struct kvm_vcpu *vcpu,
378 			struct sys_reg_params *p,
379 			const struct sys_reg_desc *r)
380 {
381 	if (!p->is_write)
382 		return read_from_write_only(vcpu, p, r);
383 
384 	/*
385 	 * Only track S/W ops if we don't have FWB. It still indicates
386 	 * that the guest is a bit broken (S/W operations should only
387 	 * be done by firmware, knowing that there is only a single
388 	 * CPU left in the system, and certainly not from non-secure
389 	 * software).
390 	 */
391 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
392 		kvm_set_way_flush(vcpu);
393 
394 	return true;
395 }
396 
397 static bool access_dcgsw(struct kvm_vcpu *vcpu,
398 			 struct sys_reg_params *p,
399 			 const struct sys_reg_desc *r)
400 {
401 	if (!kvm_has_mte(vcpu->kvm))
402 		return undef_access(vcpu, p, r);
403 
404 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
405 	return access_dcsw(vcpu, p, r);
406 }
407 
408 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
409 {
410 	switch (r->aarch32_map) {
411 	case AA32_LO:
412 		*mask = GENMASK_ULL(31, 0);
413 		*shift = 0;
414 		break;
415 	case AA32_HI:
416 		*mask = GENMASK_ULL(63, 32);
417 		*shift = 32;
418 		break;
419 	default:
420 		*mask = GENMASK_ULL(63, 0);
421 		*shift = 0;
422 		break;
423 	}
424 }
425 
426 /*
427  * Generic accessor for VM registers. Only called as long as HCR_TVM
428  * is set. If the guest enables the MMU, we stop trapping the VM
429  * sys_regs and leave it in complete control of the caches.
430  */
431 static bool access_vm_reg(struct kvm_vcpu *vcpu,
432 			  struct sys_reg_params *p,
433 			  const struct sys_reg_desc *r)
434 {
435 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
436 	u64 val, mask, shift;
437 
438 	BUG_ON(!p->is_write);
439 
440 	get_access_mask(r, &mask, &shift);
441 
442 	if (~mask) {
443 		val = vcpu_read_sys_reg(vcpu, r->reg);
444 		val &= ~mask;
445 	} else {
446 		val = 0;
447 	}
448 
449 	val |= (p->regval & (mask >> shift)) << shift;
450 	vcpu_write_sys_reg(vcpu, val, r->reg);
451 
452 	kvm_toggle_cache(vcpu, was_enabled);
453 	return true;
454 }
455 
456 static bool access_actlr(struct kvm_vcpu *vcpu,
457 			 struct sys_reg_params *p,
458 			 const struct sys_reg_desc *r)
459 {
460 	u64 mask, shift;
461 
462 	if (p->is_write)
463 		return ignore_write(vcpu, p);
464 
465 	get_access_mask(r, &mask, &shift);
466 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
467 
468 	return true;
469 }
470 
471 /*
472  * Trap handler for the GICv3 SGI generation system register.
473  * Forward the request to the VGIC emulation.
474  * The cp15_64 code makes sure this automatically works
475  * for both AArch64 and AArch32 accesses.
476  */
477 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
478 			   struct sys_reg_params *p,
479 			   const struct sys_reg_desc *r)
480 {
481 	bool g1;
482 
483 	if (!kvm_has_gicv3(vcpu->kvm))
484 		return undef_access(vcpu, p, r);
485 
486 	if (!p->is_write)
487 		return read_from_write_only(vcpu, p, r);
488 
489 	/*
490 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
491 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
492 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
493 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
494 	 * group.
495 	 */
496 	if (p->Op0 == 0) {		/* AArch32 */
497 		switch (p->Op1) {
498 		default:		/* Keep GCC quiet */
499 		case 0:			/* ICC_SGI1R */
500 			g1 = true;
501 			break;
502 		case 1:			/* ICC_ASGI1R */
503 		case 2:			/* ICC_SGI0R */
504 			g1 = false;
505 			break;
506 		}
507 	} else {			/* AArch64 */
508 		switch (p->Op2) {
509 		default:		/* Keep GCC quiet */
510 		case 5:			/* ICC_SGI1R_EL1 */
511 			g1 = true;
512 			break;
513 		case 6:			/* ICC_ASGI1R_EL1 */
514 		case 7:			/* ICC_SGI0R_EL1 */
515 			g1 = false;
516 			break;
517 		}
518 	}
519 
520 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
521 
522 	return true;
523 }
524 
525 static bool access_gic_sre(struct kvm_vcpu *vcpu,
526 			   struct sys_reg_params *p,
527 			   const struct sys_reg_desc *r)
528 {
529 	if (!kvm_has_gicv3(vcpu->kvm))
530 		return undef_access(vcpu, p, r);
531 
532 	if (p->is_write)
533 		return ignore_write(vcpu, p);
534 
535 	if (p->Op1 == 4) {	/* ICC_SRE_EL2 */
536 		p->regval = (ICC_SRE_EL2_ENABLE | ICC_SRE_EL2_SRE |
537 			     ICC_SRE_EL1_DIB | ICC_SRE_EL1_DFB);
538 	} else {		/* ICC_SRE_EL1 */
539 		p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
540 	}
541 
542 	return true;
543 }
544 
545 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
546 			struct sys_reg_params *p,
547 			const struct sys_reg_desc *r)
548 {
549 	if (p->is_write)
550 		return ignore_write(vcpu, p);
551 	else
552 		return read_zero(vcpu, p);
553 }
554 
555 /*
556  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
557  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
558  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
559  * treat it separately.
560  */
561 static bool trap_loregion(struct kvm_vcpu *vcpu,
562 			  struct sys_reg_params *p,
563 			  const struct sys_reg_desc *r)
564 {
565 	u32 sr = reg_to_encoding(r);
566 
567 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
568 		return undef_access(vcpu, p, r);
569 
570 	if (p->is_write && sr == SYS_LORID_EL1)
571 		return write_to_read_only(vcpu, p, r);
572 
573 	return trap_raz_wi(vcpu, p, r);
574 }
575 
576 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
577 			   struct sys_reg_params *p,
578 			   const struct sys_reg_desc *r)
579 {
580 	if (!p->is_write)
581 		return read_from_write_only(vcpu, p, r);
582 
583 	kvm_debug_handle_oslar(vcpu, p->regval);
584 	return true;
585 }
586 
587 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
588 			   struct sys_reg_params *p,
589 			   const struct sys_reg_desc *r)
590 {
591 	if (p->is_write)
592 		return write_to_read_only(vcpu, p, r);
593 
594 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
595 	return true;
596 }
597 
598 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
599 			 u64 val)
600 {
601 	/*
602 	 * The only modifiable bit is the OSLK bit. Refuse the write if
603 	 * userspace attempts to change any other bit in the register.
604 	 */
605 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
606 		return -EINVAL;
607 
608 	__vcpu_sys_reg(vcpu, rd->reg) = val;
609 	return 0;
610 }
611 
612 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
613 				   struct sys_reg_params *p,
614 				   const struct sys_reg_desc *r)
615 {
616 	if (p->is_write) {
617 		return ignore_write(vcpu, p);
618 	} else {
619 		p->regval = read_sysreg(dbgauthstatus_el1);
620 		return true;
621 	}
622 }
623 
624 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
625 			    struct sys_reg_params *p,
626 			    const struct sys_reg_desc *r)
627 {
628 	access_rw(vcpu, p, r);
629 
630 	kvm_debug_set_guest_ownership(vcpu);
631 	return true;
632 }
633 
634 /*
635  * reg_to_dbg/dbg_to_reg
636  *
637  * A 32 bit write to a debug register leave top bits alone
638  * A 32 bit read from a debug register only returns the bottom bits
639  */
640 static void reg_to_dbg(struct kvm_vcpu *vcpu,
641 		       struct sys_reg_params *p,
642 		       const struct sys_reg_desc *rd,
643 		       u64 *dbg_reg)
644 {
645 	u64 mask, shift, val;
646 
647 	get_access_mask(rd, &mask, &shift);
648 
649 	val = *dbg_reg;
650 	val &= ~mask;
651 	val |= (p->regval & (mask >> shift)) << shift;
652 	*dbg_reg = val;
653 }
654 
655 static void dbg_to_reg(struct kvm_vcpu *vcpu,
656 		       struct sys_reg_params *p,
657 		       const struct sys_reg_desc *rd,
658 		       u64 *dbg_reg)
659 {
660 	u64 mask, shift;
661 
662 	get_access_mask(rd, &mask, &shift);
663 	p->regval = (*dbg_reg & mask) >> shift;
664 }
665 
666 static u64 *demux_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
667 {
668 	struct kvm_guest_debug_arch *dbg = &vcpu->arch.vcpu_debug_state;
669 
670 	switch (rd->Op2) {
671 	case 0b100:
672 		return &dbg->dbg_bvr[rd->CRm];
673 	case 0b101:
674 		return &dbg->dbg_bcr[rd->CRm];
675 	case 0b110:
676 		return &dbg->dbg_wvr[rd->CRm];
677 	case 0b111:
678 		return &dbg->dbg_wcr[rd->CRm];
679 	default:
680 		KVM_BUG_ON(1, vcpu->kvm);
681 		return NULL;
682 	}
683 }
684 
685 static bool trap_dbg_wb_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
686 			    const struct sys_reg_desc *rd)
687 {
688 	u64 *reg = demux_wb_reg(vcpu, rd);
689 
690 	if (!reg)
691 		return false;
692 
693 	if (p->is_write)
694 		reg_to_dbg(vcpu, p, rd, reg);
695 	else
696 		dbg_to_reg(vcpu, p, rd, reg);
697 
698 	kvm_debug_set_guest_ownership(vcpu);
699 	return true;
700 }
701 
702 static int set_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
703 			  u64 val)
704 {
705 	u64 *reg = demux_wb_reg(vcpu, rd);
706 
707 	if (!reg)
708 		return -EINVAL;
709 
710 	*reg = val;
711 	return 0;
712 }
713 
714 static int get_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 			  u64 *val)
716 {
717 	u64 *reg = demux_wb_reg(vcpu, rd);
718 
719 	if (!reg)
720 		return -EINVAL;
721 
722 	*val = *reg;
723 	return 0;
724 }
725 
726 static u64 reset_dbg_wb_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd)
727 {
728 	u64 *reg = demux_wb_reg(vcpu, rd);
729 
730 	/*
731 	 * Bail early if we couldn't find storage for the register, the
732 	 * KVM_BUG_ON() in demux_wb_reg() will prevent this VM from ever
733 	 * being run.
734 	 */
735 	if (!reg)
736 		return 0;
737 
738 	*reg = rd->val;
739 	return rd->val;
740 }
741 
742 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743 {
744 	u64 amair = read_sysreg(amair_el1);
745 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
746 	return amair;
747 }
748 
749 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
750 {
751 	u64 actlr = read_sysreg(actlr_el1);
752 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
753 	return actlr;
754 }
755 
756 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
757 {
758 	u64 mpidr;
759 
760 	/*
761 	 * Map the vcpu_id into the first three affinity level fields of
762 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
763 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
764 	 * of the GICv3 to be able to address each CPU directly when
765 	 * sending IPIs.
766 	 */
767 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
768 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
769 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
770 	mpidr |= (1ULL << 31);
771 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
772 
773 	return mpidr;
774 }
775 
776 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
777 				   const struct sys_reg_desc *r)
778 {
779 	if (kvm_vcpu_has_pmu(vcpu))
780 		return 0;
781 
782 	return REG_HIDDEN;
783 }
784 
785 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
786 {
787 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
788 	u8 n = vcpu->kvm->arch.pmcr_n;
789 
790 	if (n)
791 		mask |= GENMASK(n - 1, 0);
792 
793 	reset_unknown(vcpu, r);
794 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
795 
796 	return __vcpu_sys_reg(vcpu, r->reg);
797 }
798 
799 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
800 {
801 	reset_unknown(vcpu, r);
802 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
803 
804 	return __vcpu_sys_reg(vcpu, r->reg);
805 }
806 
807 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
808 {
809 	/* This thing will UNDEF, who cares about the reset value? */
810 	if (!kvm_vcpu_has_pmu(vcpu))
811 		return 0;
812 
813 	reset_unknown(vcpu, r);
814 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
815 
816 	return __vcpu_sys_reg(vcpu, r->reg);
817 }
818 
819 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
820 {
821 	reset_unknown(vcpu, r);
822 	__vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK;
823 
824 	return __vcpu_sys_reg(vcpu, r->reg);
825 }
826 
827 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
828 {
829 	u64 pmcr = 0;
830 
831 	if (!kvm_supports_32bit_el0())
832 		pmcr |= ARMV8_PMU_PMCR_LC;
833 
834 	/*
835 	 * The value of PMCR.N field is included when the
836 	 * vCPU register is read via kvm_vcpu_read_pmcr().
837 	 */
838 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
839 
840 	return __vcpu_sys_reg(vcpu, r->reg);
841 }
842 
843 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
844 {
845 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
846 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
847 
848 	if (!enabled)
849 		kvm_inject_undefined(vcpu);
850 
851 	return !enabled;
852 }
853 
854 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
855 {
856 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
857 }
858 
859 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
860 {
861 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
862 }
863 
864 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
865 {
866 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
867 }
868 
869 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
870 {
871 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
872 }
873 
874 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
875 			const struct sys_reg_desc *r)
876 {
877 	u64 val;
878 
879 	if (pmu_access_el0_disabled(vcpu))
880 		return false;
881 
882 	if (p->is_write) {
883 		/*
884 		 * Only update writeable bits of PMCR (continuing into
885 		 * kvm_pmu_handle_pmcr() as well)
886 		 */
887 		val = kvm_vcpu_read_pmcr(vcpu);
888 		val &= ~ARMV8_PMU_PMCR_MASK;
889 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
890 		if (!kvm_supports_32bit_el0())
891 			val |= ARMV8_PMU_PMCR_LC;
892 		kvm_pmu_handle_pmcr(vcpu, val);
893 	} else {
894 		/* PMCR.P & PMCR.C are RAZ */
895 		val = kvm_vcpu_read_pmcr(vcpu)
896 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
897 		p->regval = val;
898 	}
899 
900 	return true;
901 }
902 
903 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
904 			  const struct sys_reg_desc *r)
905 {
906 	if (pmu_access_event_counter_el0_disabled(vcpu))
907 		return false;
908 
909 	if (p->is_write)
910 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
911 	else
912 		/* return PMSELR.SEL field */
913 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
914 			    & PMSELR_EL0_SEL_MASK;
915 
916 	return true;
917 }
918 
919 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920 			  const struct sys_reg_desc *r)
921 {
922 	u64 pmceid, mask, shift;
923 
924 	BUG_ON(p->is_write);
925 
926 	if (pmu_access_el0_disabled(vcpu))
927 		return false;
928 
929 	get_access_mask(r, &mask, &shift);
930 
931 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
932 	pmceid &= mask;
933 	pmceid >>= shift;
934 
935 	p->regval = pmceid;
936 
937 	return true;
938 }
939 
940 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
941 {
942 	u64 pmcr, val;
943 
944 	pmcr = kvm_vcpu_read_pmcr(vcpu);
945 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
946 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
947 		kvm_inject_undefined(vcpu);
948 		return false;
949 	}
950 
951 	return true;
952 }
953 
954 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
955 			  u64 *val)
956 {
957 	u64 idx;
958 
959 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
960 		/* PMCCNTR_EL0 */
961 		idx = ARMV8_PMU_CYCLE_IDX;
962 	else
963 		/* PMEVCNTRn_EL0 */
964 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
965 
966 	*val = kvm_pmu_get_counter_value(vcpu, idx);
967 	return 0;
968 }
969 
970 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
971 			      struct sys_reg_params *p,
972 			      const struct sys_reg_desc *r)
973 {
974 	u64 idx = ~0UL;
975 
976 	if (r->CRn == 9 && r->CRm == 13) {
977 		if (r->Op2 == 2) {
978 			/* PMXEVCNTR_EL0 */
979 			if (pmu_access_event_counter_el0_disabled(vcpu))
980 				return false;
981 
982 			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
983 					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
984 		} else if (r->Op2 == 0) {
985 			/* PMCCNTR_EL0 */
986 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
987 				return false;
988 
989 			idx = ARMV8_PMU_CYCLE_IDX;
990 		}
991 	} else if (r->CRn == 0 && r->CRm == 9) {
992 		/* PMCCNTR */
993 		if (pmu_access_event_counter_el0_disabled(vcpu))
994 			return false;
995 
996 		idx = ARMV8_PMU_CYCLE_IDX;
997 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
998 		/* PMEVCNTRn_EL0 */
999 		if (pmu_access_event_counter_el0_disabled(vcpu))
1000 			return false;
1001 
1002 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1003 	}
1004 
1005 	/* Catch any decoding mistake */
1006 	WARN_ON(idx == ~0UL);
1007 
1008 	if (!pmu_counter_idx_valid(vcpu, idx))
1009 		return false;
1010 
1011 	if (p->is_write) {
1012 		if (pmu_access_el0_disabled(vcpu))
1013 			return false;
1014 
1015 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1016 	} else {
1017 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1018 	}
1019 
1020 	return true;
1021 }
1022 
1023 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1024 			       const struct sys_reg_desc *r)
1025 {
1026 	u64 idx, reg;
1027 
1028 	if (pmu_access_el0_disabled(vcpu))
1029 		return false;
1030 
1031 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1032 		/* PMXEVTYPER_EL0 */
1033 		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1034 		reg = PMEVTYPER0_EL0 + idx;
1035 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1036 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1037 		if (idx == ARMV8_PMU_CYCLE_IDX)
1038 			reg = PMCCFILTR_EL0;
1039 		else
1040 			/* PMEVTYPERn_EL0 */
1041 			reg = PMEVTYPER0_EL0 + idx;
1042 	} else {
1043 		BUG();
1044 	}
1045 
1046 	if (!pmu_counter_idx_valid(vcpu, idx))
1047 		return false;
1048 
1049 	if (p->is_write) {
1050 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1051 		kvm_vcpu_pmu_restore_guest(vcpu);
1052 	} else {
1053 		p->regval = __vcpu_sys_reg(vcpu, reg);
1054 	}
1055 
1056 	return true;
1057 }
1058 
1059 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1060 {
1061 	bool set;
1062 
1063 	val &= kvm_pmu_accessible_counter_mask(vcpu);
1064 
1065 	switch (r->reg) {
1066 	case PMOVSSET_EL0:
1067 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1068 		set = r->CRm & 2;
1069 		break;
1070 	default:
1071 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1072 		set = r->Op2 & 1;
1073 		break;
1074 	}
1075 
1076 	if (set)
1077 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1078 	else
1079 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1080 
1081 	return 0;
1082 }
1083 
1084 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1085 {
1086 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1087 
1088 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1089 	return 0;
1090 }
1091 
1092 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1093 			   const struct sys_reg_desc *r)
1094 {
1095 	u64 val, mask;
1096 
1097 	if (pmu_access_el0_disabled(vcpu))
1098 		return false;
1099 
1100 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1101 	if (p->is_write) {
1102 		val = p->regval & mask;
1103 		if (r->Op2 & 0x1)
1104 			/* accessing PMCNTENSET_EL0 */
1105 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1106 		else
1107 			/* accessing PMCNTENCLR_EL0 */
1108 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1109 
1110 		kvm_pmu_reprogram_counter_mask(vcpu, val);
1111 	} else {
1112 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1113 	}
1114 
1115 	return true;
1116 }
1117 
1118 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1119 			   const struct sys_reg_desc *r)
1120 {
1121 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1122 
1123 	if (check_pmu_access_disabled(vcpu, 0))
1124 		return false;
1125 
1126 	if (p->is_write) {
1127 		u64 val = p->regval & mask;
1128 
1129 		if (r->Op2 & 0x1)
1130 			/* accessing PMINTENSET_EL1 */
1131 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1132 		else
1133 			/* accessing PMINTENCLR_EL1 */
1134 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1135 	} else {
1136 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1137 	}
1138 
1139 	return true;
1140 }
1141 
1142 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1143 			 const struct sys_reg_desc *r)
1144 {
1145 	u64 mask = kvm_pmu_accessible_counter_mask(vcpu);
1146 
1147 	if (pmu_access_el0_disabled(vcpu))
1148 		return false;
1149 
1150 	if (p->is_write) {
1151 		if (r->CRm & 0x2)
1152 			/* accessing PMOVSSET_EL0 */
1153 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1154 		else
1155 			/* accessing PMOVSCLR_EL0 */
1156 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1157 	} else {
1158 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1159 	}
1160 
1161 	return true;
1162 }
1163 
1164 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1165 			   const struct sys_reg_desc *r)
1166 {
1167 	u64 mask;
1168 
1169 	if (!p->is_write)
1170 		return read_from_write_only(vcpu, p, r);
1171 
1172 	if (pmu_write_swinc_el0_disabled(vcpu))
1173 		return false;
1174 
1175 	mask = kvm_pmu_accessible_counter_mask(vcpu);
1176 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1177 	return true;
1178 }
1179 
1180 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1181 			     const struct sys_reg_desc *r)
1182 {
1183 	if (p->is_write) {
1184 		if (!vcpu_mode_priv(vcpu))
1185 			return undef_access(vcpu, p, r);
1186 
1187 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1188 			       p->regval & ARMV8_PMU_USERENR_MASK;
1189 	} else {
1190 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1191 			    & ARMV8_PMU_USERENR_MASK;
1192 	}
1193 
1194 	return true;
1195 }
1196 
1197 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1198 		    u64 *val)
1199 {
1200 	*val = kvm_vcpu_read_pmcr(vcpu);
1201 	return 0;
1202 }
1203 
1204 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1205 		    u64 val)
1206 {
1207 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1208 	struct kvm *kvm = vcpu->kvm;
1209 
1210 	mutex_lock(&kvm->arch.config_lock);
1211 
1212 	/*
1213 	 * The vCPU can't have more counters than the PMU hardware
1214 	 * implements. Ignore this error to maintain compatibility
1215 	 * with the existing KVM behavior.
1216 	 */
1217 	if (!kvm_vm_has_ran_once(kvm) &&
1218 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1219 		kvm->arch.pmcr_n = new_n;
1220 
1221 	mutex_unlock(&kvm->arch.config_lock);
1222 
1223 	/*
1224 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1225 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1226 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1227 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1228 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1229 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1230 	 * if necessary).
1231 	 */
1232 	val &= ARMV8_PMU_PMCR_MASK;
1233 
1234 	/* The LC bit is RES1 when AArch32 is not supported */
1235 	if (!kvm_supports_32bit_el0())
1236 		val |= ARMV8_PMU_PMCR_LC;
1237 
1238 	__vcpu_sys_reg(vcpu, r->reg) = val;
1239 	return 0;
1240 }
1241 
1242 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1243 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1244 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1245 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1246 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1247 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1248 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1249 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1250 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1251 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1252 	  get_dbg_wb_reg, set_dbg_wb_reg },				\
1253 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1254 	  trap_dbg_wb_reg, reset_dbg_wb_reg, 0, 0,			\
1255 	  get_dbg_wb_reg, set_dbg_wb_reg }
1256 
1257 #define PMU_SYS_REG(name)						\
1258 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1259 	.visibility = pmu_visibility
1260 
1261 /* Macro to expand the PMEVCNTRn_EL0 register */
1262 #define PMU_PMEVCNTR_EL0(n)						\
1263 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1264 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1265 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1266 
1267 /* Macro to expand the PMEVTYPERn_EL0 register */
1268 #define PMU_PMEVTYPER_EL0(n)						\
1269 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1270 	  .reset = reset_pmevtyper,					\
1271 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1272 
1273 /* Macro to expand the AMU counter and type registers*/
1274 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1275 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1276 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1277 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1278 
1279 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1280 			const struct sys_reg_desc *rd)
1281 {
1282 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1283 }
1284 
1285 /*
1286  * If we land here on a PtrAuth access, that is because we didn't
1287  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1288  * way this happens is when the guest does not have PtrAuth support
1289  * enabled.
1290  */
1291 #define __PTRAUTH_KEY(k)						\
1292 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1293 	.visibility = ptrauth_visibility}
1294 
1295 #define PTRAUTH_KEY(k)							\
1296 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1297 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1298 
1299 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1300 			      struct sys_reg_params *p,
1301 			      const struct sys_reg_desc *r)
1302 {
1303 	enum kvm_arch_timers tmr;
1304 	enum kvm_arch_timer_regs treg;
1305 	u64 reg = reg_to_encoding(r);
1306 
1307 	switch (reg) {
1308 	case SYS_CNTP_TVAL_EL0:
1309 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1310 			tmr = TIMER_HPTIMER;
1311 		else
1312 			tmr = TIMER_PTIMER;
1313 		treg = TIMER_REG_TVAL;
1314 		break;
1315 
1316 	case SYS_CNTV_TVAL_EL0:
1317 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1318 			tmr = TIMER_HVTIMER;
1319 		else
1320 			tmr = TIMER_VTIMER;
1321 		treg = TIMER_REG_TVAL;
1322 		break;
1323 
1324 	case SYS_AARCH32_CNTP_TVAL:
1325 	case SYS_CNTP_TVAL_EL02:
1326 		tmr = TIMER_PTIMER;
1327 		treg = TIMER_REG_TVAL;
1328 		break;
1329 
1330 	case SYS_CNTV_TVAL_EL02:
1331 		tmr = TIMER_VTIMER;
1332 		treg = TIMER_REG_TVAL;
1333 		break;
1334 
1335 	case SYS_CNTHP_TVAL_EL2:
1336 		tmr = TIMER_HPTIMER;
1337 		treg = TIMER_REG_TVAL;
1338 		break;
1339 
1340 	case SYS_CNTHV_TVAL_EL2:
1341 		tmr = TIMER_HVTIMER;
1342 		treg = TIMER_REG_TVAL;
1343 		break;
1344 
1345 	case SYS_CNTP_CTL_EL0:
1346 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1347 			tmr = TIMER_HPTIMER;
1348 		else
1349 			tmr = TIMER_PTIMER;
1350 		treg = TIMER_REG_CTL;
1351 		break;
1352 
1353 	case SYS_CNTV_CTL_EL0:
1354 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1355 			tmr = TIMER_HVTIMER;
1356 		else
1357 			tmr = TIMER_VTIMER;
1358 		treg = TIMER_REG_CTL;
1359 		break;
1360 
1361 	case SYS_AARCH32_CNTP_CTL:
1362 	case SYS_CNTP_CTL_EL02:
1363 		tmr = TIMER_PTIMER;
1364 		treg = TIMER_REG_CTL;
1365 		break;
1366 
1367 	case SYS_CNTV_CTL_EL02:
1368 		tmr = TIMER_VTIMER;
1369 		treg = TIMER_REG_CTL;
1370 		break;
1371 
1372 	case SYS_CNTHP_CTL_EL2:
1373 		tmr = TIMER_HPTIMER;
1374 		treg = TIMER_REG_CTL;
1375 		break;
1376 
1377 	case SYS_CNTHV_CTL_EL2:
1378 		tmr = TIMER_HVTIMER;
1379 		treg = TIMER_REG_CTL;
1380 		break;
1381 
1382 	case SYS_CNTP_CVAL_EL0:
1383 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1384 			tmr = TIMER_HPTIMER;
1385 		else
1386 			tmr = TIMER_PTIMER;
1387 		treg = TIMER_REG_CVAL;
1388 		break;
1389 
1390 	case SYS_CNTV_CVAL_EL0:
1391 		if (is_hyp_ctxt(vcpu) && vcpu_el2_e2h_is_set(vcpu))
1392 			tmr = TIMER_HVTIMER;
1393 		else
1394 			tmr = TIMER_VTIMER;
1395 		treg = TIMER_REG_CVAL;
1396 		break;
1397 
1398 	case SYS_AARCH32_CNTP_CVAL:
1399 	case SYS_CNTP_CVAL_EL02:
1400 		tmr = TIMER_PTIMER;
1401 		treg = TIMER_REG_CVAL;
1402 		break;
1403 
1404 	case SYS_CNTV_CVAL_EL02:
1405 		tmr = TIMER_VTIMER;
1406 		treg = TIMER_REG_CVAL;
1407 		break;
1408 
1409 	case SYS_CNTHP_CVAL_EL2:
1410 		tmr = TIMER_HPTIMER;
1411 		treg = TIMER_REG_CVAL;
1412 		break;
1413 
1414 	case SYS_CNTHV_CVAL_EL2:
1415 		tmr = TIMER_HVTIMER;
1416 		treg = TIMER_REG_CVAL;
1417 		break;
1418 
1419 	case SYS_CNTPCT_EL0:
1420 	case SYS_CNTPCTSS_EL0:
1421 		if (is_hyp_ctxt(vcpu))
1422 			tmr = TIMER_HPTIMER;
1423 		else
1424 			tmr = TIMER_PTIMER;
1425 		treg = TIMER_REG_CNT;
1426 		break;
1427 
1428 	case SYS_AARCH32_CNTPCT:
1429 	case SYS_AARCH32_CNTPCTSS:
1430 		tmr = TIMER_PTIMER;
1431 		treg = TIMER_REG_CNT;
1432 		break;
1433 
1434 	case SYS_CNTVCT_EL0:
1435 	case SYS_CNTVCTSS_EL0:
1436 		if (is_hyp_ctxt(vcpu))
1437 			tmr = TIMER_HVTIMER;
1438 		else
1439 			tmr = TIMER_VTIMER;
1440 		treg = TIMER_REG_CNT;
1441 		break;
1442 
1443 	case SYS_AARCH32_CNTVCT:
1444 	case SYS_AARCH32_CNTVCTSS:
1445 		tmr = TIMER_VTIMER;
1446 		treg = TIMER_REG_CNT;
1447 		break;
1448 
1449 	default:
1450 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1451 		return undef_access(vcpu, p, r);
1452 	}
1453 
1454 	if (p->is_write)
1455 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1456 	else
1457 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1458 
1459 	return true;
1460 }
1461 
1462 static bool access_hv_timer(struct kvm_vcpu *vcpu,
1463 			    struct sys_reg_params *p,
1464 			    const struct sys_reg_desc *r)
1465 {
1466 	if (!vcpu_el2_e2h_is_set(vcpu))
1467 		return undef_access(vcpu, p, r);
1468 
1469 	return access_arch_timer(vcpu, p, r);
1470 }
1471 
1472 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1473 				    s64 new, s64 cur)
1474 {
1475 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1476 
1477 	/* Some features have different safe value type in KVM than host features */
1478 	switch (id) {
1479 	case SYS_ID_AA64DFR0_EL1:
1480 		switch (kvm_ftr.shift) {
1481 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1482 			kvm_ftr.type = FTR_LOWER_SAFE;
1483 			break;
1484 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1485 			kvm_ftr.type = FTR_LOWER_SAFE;
1486 			break;
1487 		}
1488 		break;
1489 	case SYS_ID_DFR0_EL1:
1490 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1491 			kvm_ftr.type = FTR_LOWER_SAFE;
1492 		break;
1493 	}
1494 
1495 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1496 }
1497 
1498 /*
1499  * arm64_check_features() - Check if a feature register value constitutes
1500  * a subset of features indicated by the idreg's KVM sanitised limit.
1501  *
1502  * This function will check if each feature field of @val is the "safe" value
1503  * against idreg's KVM sanitised limit return from reset() callback.
1504  * If a field value in @val is the same as the one in limit, it is always
1505  * considered the safe value regardless For register fields that are not in
1506  * writable, only the value in limit is considered the safe value.
1507  *
1508  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1509  */
1510 static int arm64_check_features(struct kvm_vcpu *vcpu,
1511 				const struct sys_reg_desc *rd,
1512 				u64 val)
1513 {
1514 	const struct arm64_ftr_reg *ftr_reg;
1515 	const struct arm64_ftr_bits *ftrp = NULL;
1516 	u32 id = reg_to_encoding(rd);
1517 	u64 writable_mask = rd->val;
1518 	u64 limit = rd->reset(vcpu, rd);
1519 	u64 mask = 0;
1520 
1521 	/*
1522 	 * Hidden and unallocated ID registers may not have a corresponding
1523 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1524 	 * only safe value is 0.
1525 	 */
1526 	if (sysreg_visible_as_raz(vcpu, rd))
1527 		return val ? -E2BIG : 0;
1528 
1529 	ftr_reg = get_arm64_ftr_reg(id);
1530 	if (!ftr_reg)
1531 		return -EINVAL;
1532 
1533 	ftrp = ftr_reg->ftr_bits;
1534 
1535 	for (; ftrp && ftrp->width; ftrp++) {
1536 		s64 f_val, f_lim, safe_val;
1537 		u64 ftr_mask;
1538 
1539 		ftr_mask = arm64_ftr_mask(ftrp);
1540 		if ((ftr_mask & writable_mask) != ftr_mask)
1541 			continue;
1542 
1543 		f_val = arm64_ftr_value(ftrp, val);
1544 		f_lim = arm64_ftr_value(ftrp, limit);
1545 		mask |= ftr_mask;
1546 
1547 		if (f_val == f_lim)
1548 			safe_val = f_val;
1549 		else
1550 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1551 
1552 		if (safe_val != f_val)
1553 			return -E2BIG;
1554 	}
1555 
1556 	/* For fields that are not writable, values in limit are the safe values. */
1557 	if ((val & ~mask) != (limit & ~mask))
1558 		return -E2BIG;
1559 
1560 	return 0;
1561 }
1562 
1563 static u8 pmuver_to_perfmon(u8 pmuver)
1564 {
1565 	switch (pmuver) {
1566 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1567 		return ID_DFR0_EL1_PerfMon_PMUv3;
1568 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1569 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1570 	default:
1571 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1572 		return pmuver;
1573 	}
1574 }
1575 
1576 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1577 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val);
1578 
1579 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1580 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1581 				       const struct sys_reg_desc *r)
1582 {
1583 	u32 id = reg_to_encoding(r);
1584 	u64 val;
1585 
1586 	if (sysreg_visible_as_raz(vcpu, r))
1587 		return 0;
1588 
1589 	val = read_sanitised_ftr_reg(id);
1590 
1591 	switch (id) {
1592 	case SYS_ID_AA64DFR0_EL1:
1593 		val = sanitise_id_aa64dfr0_el1(vcpu, val);
1594 		break;
1595 	case SYS_ID_AA64PFR0_EL1:
1596 		val = sanitise_id_aa64pfr0_el1(vcpu, val);
1597 		break;
1598 	case SYS_ID_AA64PFR1_EL1:
1599 		if (!kvm_has_mte(vcpu->kvm))
1600 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1601 
1602 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1603 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1604 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1605 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1606 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1607 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1608 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1609 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1610 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1611 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MPAM_frac);
1612 		break;
1613 	case SYS_ID_AA64PFR2_EL1:
1614 		/* We only expose FPMR */
1615 		val &= ID_AA64PFR2_EL1_FPMR;
1616 		break;
1617 	case SYS_ID_AA64ISAR1_EL1:
1618 		if (!vcpu_has_ptrauth(vcpu))
1619 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1620 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1621 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1622 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1623 		break;
1624 	case SYS_ID_AA64ISAR2_EL1:
1625 		if (!vcpu_has_ptrauth(vcpu))
1626 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1627 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1628 		if (!cpus_have_final_cap(ARM64_HAS_WFXT) ||
1629 		    has_broken_cntvoff())
1630 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1631 		break;
1632 	case SYS_ID_AA64ISAR3_EL1:
1633 		val &= ID_AA64ISAR3_EL1_FPRCVT | ID_AA64ISAR3_EL1_FAMINMAX;
1634 		break;
1635 	case SYS_ID_AA64MMFR2_EL1:
1636 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1637 		break;
1638 	case SYS_ID_AA64MMFR3_EL1:
1639 		val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1640 			ID_AA64MMFR3_EL1_S1PIE;
1641 		break;
1642 	case SYS_ID_MMFR4_EL1:
1643 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1644 		break;
1645 	}
1646 
1647 	return val;
1648 }
1649 
1650 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1651 				     const struct sys_reg_desc *r)
1652 {
1653 	return __kvm_read_sanitised_id_reg(vcpu, r);
1654 }
1655 
1656 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1657 {
1658 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1659 }
1660 
1661 static bool is_feature_id_reg(u32 encoding)
1662 {
1663 	return (sys_reg_Op0(encoding) == 3 &&
1664 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1665 		sys_reg_CRn(encoding) == 0 &&
1666 		sys_reg_CRm(encoding) <= 7);
1667 }
1668 
1669 /*
1670  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1671  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1672  * registers KVM maintains on a per-VM basis.
1673  */
1674 static inline bool is_vm_ftr_id_reg(u32 id)
1675 {
1676 	if (id == SYS_CTR_EL0)
1677 		return true;
1678 
1679 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1680 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1681 		sys_reg_CRm(id) < 8);
1682 }
1683 
1684 static inline bool is_vcpu_ftr_id_reg(u32 id)
1685 {
1686 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1687 }
1688 
1689 static inline bool is_aa32_id_reg(u32 id)
1690 {
1691 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1692 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1693 		sys_reg_CRm(id) <= 3);
1694 }
1695 
1696 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1697 				  const struct sys_reg_desc *r)
1698 {
1699 	u32 id = reg_to_encoding(r);
1700 
1701 	switch (id) {
1702 	case SYS_ID_AA64ZFR0_EL1:
1703 		if (!vcpu_has_sve(vcpu))
1704 			return REG_RAZ;
1705 		break;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1712 				       const struct sys_reg_desc *r)
1713 {
1714 	/*
1715 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1716 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1717 	 * systems.
1718 	 */
1719 	if (!kvm_supports_32bit_el0())
1720 		return REG_RAZ | REG_USER_WI;
1721 
1722 	return id_visibility(vcpu, r);
1723 }
1724 
1725 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1726 				   const struct sys_reg_desc *r)
1727 {
1728 	return REG_RAZ;
1729 }
1730 
1731 /* cpufeature ID register access trap handlers */
1732 
1733 static bool access_id_reg(struct kvm_vcpu *vcpu,
1734 			  struct sys_reg_params *p,
1735 			  const struct sys_reg_desc *r)
1736 {
1737 	if (p->is_write)
1738 		return write_to_read_only(vcpu, p, r);
1739 
1740 	p->regval = read_id_reg(vcpu, r);
1741 
1742 	return true;
1743 }
1744 
1745 /* Visibility overrides for SVE-specific control registers */
1746 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1747 				   const struct sys_reg_desc *rd)
1748 {
1749 	if (vcpu_has_sve(vcpu))
1750 		return 0;
1751 
1752 	return REG_HIDDEN;
1753 }
1754 
1755 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1756 				   const struct sys_reg_desc *rd)
1757 {
1758 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1759 		return 0;
1760 
1761 	return REG_HIDDEN;
1762 }
1763 
1764 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1765 				   const struct sys_reg_desc *rd)
1766 {
1767 	if (kvm_has_fpmr(vcpu->kvm))
1768 		return 0;
1769 
1770 	return REG_HIDDEN;
1771 }
1772 
1773 static u64 sanitise_id_aa64pfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1774 {
1775 	if (!vcpu_has_sve(vcpu))
1776 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1777 
1778 	/*
1779 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1780 	 * Although this is a per-CPU feature, we make it global because
1781 	 * asymmetric systems are just a nuisance.
1782 	 *
1783 	 * Userspace can override this as long as it doesn't promise
1784 	 * the impossible.
1785 	 */
1786 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1787 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1788 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1789 	}
1790 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1791 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1792 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1793 	}
1794 
1795 	if (kvm_vgic_global_state.type == VGIC_V3) {
1796 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1797 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1798 	}
1799 
1800 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1801 
1802 	/*
1803 	 * MPAM is disabled by default as KVM also needs a set of PARTID to
1804 	 * program the MPAMVPMx_EL2 PARTID remapping registers with. But some
1805 	 * older kernels let the guest see the ID bit.
1806 	 */
1807 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1808 
1809 	return val;
1810 }
1811 
1812 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1813 ({									       \
1814 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1815 	(val) &= ~reg##_##field##_MASK;					       \
1816 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1817 			    min(__f_val,				       \
1818 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1819 	(val);								       \
1820 })
1821 
1822 static u64 sanitise_id_aa64dfr0_el1(const struct kvm_vcpu *vcpu, u64 val)
1823 {
1824 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1825 
1826 	/*
1827 	 * Only initialize the PMU version if the vCPU was configured with one.
1828 	 */
1829 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1830 	if (kvm_vcpu_has_pmu(vcpu))
1831 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1832 				      kvm_arm_pmu_get_pmuver_limit());
1833 
1834 	/* Hide SPE from guests */
1835 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1836 
1837 	/* Hide BRBE from guests */
1838 	val &= ~ID_AA64DFR0_EL1_BRBE_MASK;
1839 
1840 	return val;
1841 }
1842 
1843 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1844 			       const struct sys_reg_desc *rd,
1845 			       u64 val)
1846 {
1847 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1848 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1849 
1850 	/*
1851 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1852 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1853 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1854 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1855 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1856 	 *
1857 	 * At minimum, we're on the hook to allow values that were given to
1858 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1859 	 * with a more sensible NI. The value of an ID register changing under
1860 	 * the nose of the guest is unfortunate, but is certainly no more
1861 	 * surprising than an ill-guided PMU driver poking at impdef system
1862 	 * registers that end in an UNDEF...
1863 	 */
1864 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1865 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1866 
1867 	/*
1868 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1869 	 * nonzero minimum safe value.
1870 	 */
1871 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1872 		return -EINVAL;
1873 
1874 	return set_id_reg(vcpu, rd, val);
1875 }
1876 
1877 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1878 				      const struct sys_reg_desc *rd)
1879 {
1880 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1881 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1882 
1883 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1884 	if (kvm_vcpu_has_pmu(vcpu))
1885 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1886 
1887 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1888 
1889 	return val;
1890 }
1891 
1892 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1893 			   const struct sys_reg_desc *rd,
1894 			   u64 val)
1895 {
1896 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1897 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1898 
1899 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1900 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1901 		perfmon = 0;
1902 	}
1903 
1904 	/*
1905 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1906 	 * it doesn't promise more than what the HW gives us on the
1907 	 * AArch64 side (as everything is emulated with that), and
1908 	 * that this is a PMUv3.
1909 	 */
1910 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1911 		return -EINVAL;
1912 
1913 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1914 		return -EINVAL;
1915 
1916 	return set_id_reg(vcpu, rd, val);
1917 }
1918 
1919 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1920 			       const struct sys_reg_desc *rd, u64 user_val)
1921 {
1922 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1923 	u64 mpam_mask = ID_AA64PFR0_EL1_MPAM_MASK;
1924 
1925 	/*
1926 	 * Commit 011e5f5bf529f ("arm64/cpufeature: Add remaining feature bits
1927 	 * in ID_AA64PFR0 register") exposed the MPAM field of AA64PFR0_EL1 to
1928 	 * guests, but didn't add trap handling. KVM doesn't support MPAM and
1929 	 * always returns an UNDEF for these registers. The guest must see 0
1930 	 * for this field.
1931 	 *
1932 	 * But KVM must also accept values from user-space that were provided
1933 	 * by KVM. On CPUs that support MPAM, permit user-space to write
1934 	 * the sanitizied value to ID_AA64PFR0_EL1.MPAM, but ignore this field.
1935 	 */
1936 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1937 		user_val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
1938 
1939 	return set_id_reg(vcpu, rd, user_val);
1940 }
1941 
1942 static int set_id_aa64pfr1_el1(struct kvm_vcpu *vcpu,
1943 			       const struct sys_reg_desc *rd, u64 user_val)
1944 {
1945 	u64 hw_val = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
1946 	u64 mpam_mask = ID_AA64PFR1_EL1_MPAM_frac_MASK;
1947 
1948 	/* See set_id_aa64pfr0_el1 for comment about MPAM */
1949 	if ((hw_val & mpam_mask) == (user_val & mpam_mask))
1950 		user_val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
1951 
1952 	return set_id_reg(vcpu, rd, user_val);
1953 }
1954 
1955 static int set_ctr_el0(struct kvm_vcpu *vcpu,
1956 		       const struct sys_reg_desc *rd, u64 user_val)
1957 {
1958 	u8 user_L1Ip = SYS_FIELD_GET(CTR_EL0, L1Ip, user_val);
1959 
1960 	/*
1961 	 * Both AIVIVT (0b01) and VPIPT (0b00) are documented as reserved.
1962 	 * Hence only allow to set VIPT(0b10) or PIPT(0b11) for L1Ip based
1963 	 * on what hardware reports.
1964 	 *
1965 	 * Using a VIPT software model on PIPT will lead to over invalidation,
1966 	 * but still correct. Hence, we can allow downgrading PIPT to VIPT,
1967 	 * but not the other way around. This is handled via arm64_ftr_safe_value()
1968 	 * as CTR_EL0 ftr_bits has L1Ip field with type FTR_EXACT and safe value
1969 	 * set as VIPT.
1970 	 */
1971 	switch (user_L1Ip) {
1972 	case CTR_EL0_L1Ip_RESERVED_VPIPT:
1973 	case CTR_EL0_L1Ip_RESERVED_AIVIVT:
1974 		return -EINVAL;
1975 	case CTR_EL0_L1Ip_VIPT:
1976 	case CTR_EL0_L1Ip_PIPT:
1977 		return set_id_reg(vcpu, rd, user_val);
1978 	default:
1979 		return -ENOENT;
1980 	}
1981 }
1982 
1983 /*
1984  * cpufeature ID register user accessors
1985  *
1986  * For now, these registers are immutable for userspace, so no values
1987  * are stored, and for set_id_reg() we don't allow the effective value
1988  * to be changed.
1989  */
1990 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1991 		      u64 *val)
1992 {
1993 	/*
1994 	 * Avoid locking if the VM has already started, as the ID registers are
1995 	 * guaranteed to be invariant at that point.
1996 	 */
1997 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1998 		*val = read_id_reg(vcpu, rd);
1999 		return 0;
2000 	}
2001 
2002 	mutex_lock(&vcpu->kvm->arch.config_lock);
2003 	*val = read_id_reg(vcpu, rd);
2004 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2005 
2006 	return 0;
2007 }
2008 
2009 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2010 		      u64 val)
2011 {
2012 	u32 id = reg_to_encoding(rd);
2013 	int ret;
2014 
2015 	mutex_lock(&vcpu->kvm->arch.config_lock);
2016 
2017 	/*
2018 	 * Once the VM has started the ID registers are immutable. Reject any
2019 	 * write that does not match the final register value.
2020 	 */
2021 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
2022 		if (val != read_id_reg(vcpu, rd))
2023 			ret = -EBUSY;
2024 		else
2025 			ret = 0;
2026 
2027 		mutex_unlock(&vcpu->kvm->arch.config_lock);
2028 		return ret;
2029 	}
2030 
2031 	ret = arm64_check_features(vcpu, rd, val);
2032 	if (!ret)
2033 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
2034 
2035 	mutex_unlock(&vcpu->kvm->arch.config_lock);
2036 
2037 	/*
2038 	 * arm64_check_features() returns -E2BIG to indicate the register's
2039 	 * feature set is a superset of the maximally-allowed register value.
2040 	 * While it would be nice to precisely describe this to userspace, the
2041 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
2042 	 * writes return -EINVAL.
2043 	 */
2044 	if (ret == -E2BIG)
2045 		ret = -EINVAL;
2046 	return ret;
2047 }
2048 
2049 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
2050 {
2051 	u64 *p = __vm_id_reg(&kvm->arch, reg);
2052 
2053 	lockdep_assert_held(&kvm->arch.config_lock);
2054 
2055 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
2056 		return;
2057 
2058 	*p = val;
2059 }
2060 
2061 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2062 		       u64 *val)
2063 {
2064 	*val = 0;
2065 	return 0;
2066 }
2067 
2068 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2069 		      u64 val)
2070 {
2071 	return 0;
2072 }
2073 
2074 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2075 		       const struct sys_reg_desc *r)
2076 {
2077 	if (p->is_write)
2078 		return write_to_read_only(vcpu, p, r);
2079 
2080 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
2081 	return true;
2082 }
2083 
2084 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2085 			 const struct sys_reg_desc *r)
2086 {
2087 	if (p->is_write)
2088 		return write_to_read_only(vcpu, p, r);
2089 
2090 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
2091 	return true;
2092 }
2093 
2094 /*
2095  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
2096  * by the physical CPU which the vcpu currently resides in.
2097  */
2098 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2099 {
2100 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2101 	u64 clidr;
2102 	u8 loc;
2103 
2104 	if ((ctr_el0 & CTR_EL0_IDC)) {
2105 		/*
2106 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
2107 		 * will not be set and a unified cache, which will be marked as
2108 		 * LoC, will be added.
2109 		 *
2110 		 * If not DIC, let the unified cache L2 so that an instruction
2111 		 * cache can be added as L1 later.
2112 		 */
2113 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
2114 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
2115 	} else {
2116 		/*
2117 		 * Data cache clean to the PoU is required so let L1 have a data
2118 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
2119 		 * it can be marked as LoC too.
2120 		 */
2121 		loc = 1;
2122 		clidr = 1 << CLIDR_LOUU_SHIFT;
2123 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
2124 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
2125 	}
2126 
2127 	/*
2128 	 * Instruction cache invalidation to the PoU is required so let L1 have
2129 	 * an instruction cache. If L1 already has a data cache, it will be
2130 	 * CACHE_TYPE_SEPARATE.
2131 	 */
2132 	if (!(ctr_el0 & CTR_EL0_DIC))
2133 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
2134 
2135 	clidr |= loc << CLIDR_LOC_SHIFT;
2136 
2137 	/*
2138 	 * Add tag cache unified to data cache. Allocation tags and data are
2139 	 * unified in a cache line so that it looks valid even if there is only
2140 	 * one cache line.
2141 	 */
2142 	if (kvm_has_mte(vcpu->kvm))
2143 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
2144 
2145 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
2146 
2147 	return __vcpu_sys_reg(vcpu, r->reg);
2148 }
2149 
2150 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2151 		      u64 val)
2152 {
2153 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2154 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2155 
2156 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2157 		return -EINVAL;
2158 
2159 	__vcpu_sys_reg(vcpu, rd->reg) = val;
2160 
2161 	return 0;
2162 }
2163 
2164 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2165 			  const struct sys_reg_desc *r)
2166 {
2167 	int reg = r->reg;
2168 
2169 	if (p->is_write)
2170 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2171 	else
2172 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2173 	return true;
2174 }
2175 
2176 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2177 			  const struct sys_reg_desc *r)
2178 {
2179 	u32 csselr;
2180 
2181 	if (p->is_write)
2182 		return write_to_read_only(vcpu, p, r);
2183 
2184 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2185 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2186 	if (csselr < CSSELR_MAX)
2187 		p->regval = get_ccsidr(vcpu, csselr);
2188 
2189 	return true;
2190 }
2191 
2192 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2193 				   const struct sys_reg_desc *rd)
2194 {
2195 	if (kvm_has_mte(vcpu->kvm))
2196 		return 0;
2197 
2198 	return REG_HIDDEN;
2199 }
2200 
2201 #define MTE_REG(name) {				\
2202 	SYS_DESC(SYS_##name),			\
2203 	.access = undef_access,			\
2204 	.reset = reset_unknown,			\
2205 	.reg = name,				\
2206 	.visibility = mte_visibility,		\
2207 }
2208 
2209 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2210 				   const struct sys_reg_desc *rd)
2211 {
2212 	if (vcpu_has_nv(vcpu))
2213 		return 0;
2214 
2215 	return REG_HIDDEN;
2216 }
2217 
2218 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2219 			  struct sys_reg_params *p,
2220 			  const struct sys_reg_desc *r)
2221 {
2222 	/*
2223 	 * We really shouldn't be here, and this is likely the result
2224 	 * of a misconfigured trap, as this register should target the
2225 	 * VNCR page, and nothing else.
2226 	 */
2227 	return bad_trap(vcpu, p, r,
2228 			"trap of VNCR-backed register");
2229 }
2230 
2231 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2232 			   struct sys_reg_params *p,
2233 			   const struct sys_reg_desc *r)
2234 {
2235 	/*
2236 	 * We really shouldn't be here, and this is likely the result
2237 	 * of a misconfigured trap, as this register should target the
2238 	 * corresponding EL1, and nothing else.
2239 	 */
2240 	return bad_trap(vcpu, p, r,
2241 			"trap of EL2 register redirected to EL1");
2242 }
2243 
2244 #define EL2_REG(name, acc, rst, v) {		\
2245 	SYS_DESC(SYS_##name),			\
2246 	.access = acc,				\
2247 	.reset = rst,				\
2248 	.reg = name,				\
2249 	.visibility = el2_visibility,		\
2250 	.val = v,				\
2251 }
2252 
2253 #define EL2_REG_FILTERED(name, acc, rst, v, filter) {	\
2254 	SYS_DESC(SYS_##name),			\
2255 	.access = acc,				\
2256 	.reset = rst,				\
2257 	.reg = name,				\
2258 	.visibility = filter,			\
2259 	.val = v,				\
2260 }
2261 
2262 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2263 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2264 
2265 /*
2266  * Since reset() callback and field val are not used for idregs, they will be
2267  * used for specific purposes for idregs.
2268  * The reset() would return KVM sanitised register value. The value would be the
2269  * same as the host kernel sanitised value if there is no KVM sanitisation.
2270  * The val would be used as a mask indicating writable fields for the idreg.
2271  * Only bits with 1 are writable from userspace. This mask might not be
2272  * necessary in the future whenever all ID registers are enabled as writable
2273  * from userspace.
2274  */
2275 
2276 #define ID_DESC(name)				\
2277 	SYS_DESC(SYS_##name),			\
2278 	.access	= access_id_reg,		\
2279 	.get_user = get_id_reg			\
2280 
2281 /* sys_reg_desc initialiser for known cpufeature ID registers */
2282 #define ID_SANITISED(name) {			\
2283 	ID_DESC(name),				\
2284 	.set_user = set_id_reg,			\
2285 	.visibility = id_visibility,		\
2286 	.reset = kvm_read_sanitised_id_reg,	\
2287 	.val = 0,				\
2288 }
2289 
2290 /* sys_reg_desc initialiser for known cpufeature ID registers */
2291 #define AA32_ID_SANITISED(name) {		\
2292 	ID_DESC(name),				\
2293 	.set_user = set_id_reg,			\
2294 	.visibility = aa32_id_visibility,	\
2295 	.reset = kvm_read_sanitised_id_reg,	\
2296 	.val = 0,				\
2297 }
2298 
2299 /* sys_reg_desc initialiser for writable ID registers */
2300 #define ID_WRITABLE(name, mask) {		\
2301 	ID_DESC(name),				\
2302 	.set_user = set_id_reg,			\
2303 	.visibility = id_visibility,		\
2304 	.reset = kvm_read_sanitised_id_reg,	\
2305 	.val = mask,				\
2306 }
2307 
2308 /* sys_reg_desc initialiser for cpufeature ID registers that need filtering */
2309 #define ID_FILTERED(sysreg, name, mask) {	\
2310 	ID_DESC(sysreg),				\
2311 	.set_user = set_##name,				\
2312 	.visibility = id_visibility,			\
2313 	.reset = kvm_read_sanitised_id_reg,		\
2314 	.val = (mask),					\
2315 }
2316 
2317 /*
2318  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2319  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2320  * (1 <= crm < 8, 0 <= Op2 < 8).
2321  */
2322 #define ID_UNALLOCATED(crm, op2) {			\
2323 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2324 	.access = access_id_reg,			\
2325 	.get_user = get_id_reg,				\
2326 	.set_user = set_id_reg,				\
2327 	.visibility = raz_visibility,			\
2328 	.reset = kvm_read_sanitised_id_reg,		\
2329 	.val = 0,					\
2330 }
2331 
2332 /*
2333  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2334  * For now, these are exposed just like unallocated ID regs: they appear
2335  * RAZ for the guest.
2336  */
2337 #define ID_HIDDEN(name) {			\
2338 	ID_DESC(name),				\
2339 	.set_user = set_id_reg,			\
2340 	.visibility = raz_visibility,		\
2341 	.reset = kvm_read_sanitised_id_reg,	\
2342 	.val = 0,				\
2343 }
2344 
2345 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2346 			  struct sys_reg_params *p,
2347 			  const struct sys_reg_desc *r)
2348 {
2349 	if (p->is_write)
2350 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2351 	else
2352 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2353 
2354 	return true;
2355 }
2356 
2357 static bool access_elr(struct kvm_vcpu *vcpu,
2358 		       struct sys_reg_params *p,
2359 		       const struct sys_reg_desc *r)
2360 {
2361 	if (p->is_write)
2362 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2363 	else
2364 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2365 
2366 	return true;
2367 }
2368 
2369 static bool access_spsr(struct kvm_vcpu *vcpu,
2370 			struct sys_reg_params *p,
2371 			const struct sys_reg_desc *r)
2372 {
2373 	if (p->is_write)
2374 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2375 	else
2376 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2377 
2378 	return true;
2379 }
2380 
2381 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2382 				struct sys_reg_params *p,
2383 				const struct sys_reg_desc *r)
2384 {
2385 	if (p->is_write)
2386 		__vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval;
2387 	else
2388 		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2389 
2390 	return true;
2391 }
2392 
2393 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2394 {
2395 	u64 val = r->val;
2396 
2397 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2398 		val |= HCR_E2H;
2399 
2400 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2401 }
2402 
2403 static unsigned int __el2_visibility(const struct kvm_vcpu *vcpu,
2404 				     const struct sys_reg_desc *rd,
2405 				     unsigned int (*fn)(const struct kvm_vcpu *,
2406 							const struct sys_reg_desc *))
2407 {
2408 	return el2_visibility(vcpu, rd) ?: fn(vcpu, rd);
2409 }
2410 
2411 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2412 				       const struct sys_reg_desc *rd)
2413 {
2414 	return __el2_visibility(vcpu, rd, sve_visibility);
2415 }
2416 
2417 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2418 			   struct sys_reg_params *p,
2419 			   const struct sys_reg_desc *r)
2420 {
2421 	unsigned int vq;
2422 
2423 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2424 		kvm_inject_nested_sve_trap(vcpu);
2425 		return true;
2426 	}
2427 
2428 	if (!p->is_write) {
2429 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2430 		return true;
2431 	}
2432 
2433 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2434 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2435 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2436 
2437 	return true;
2438 }
2439 
2440 static bool access_gic_vtr(struct kvm_vcpu *vcpu,
2441 			   struct sys_reg_params *p,
2442 			   const struct sys_reg_desc *r)
2443 {
2444 	if (p->is_write)
2445 		return write_to_read_only(vcpu, p, r);
2446 
2447 	p->regval = kvm_vgic_global_state.ich_vtr_el2;
2448 	p->regval &= ~(ICH_VTR_EL2_DVIM 	|
2449 		       ICH_VTR_EL2_A3V		|
2450 		       ICH_VTR_EL2_IDbits);
2451 	p->regval |= ICH_VTR_EL2_nV4;
2452 
2453 	return true;
2454 }
2455 
2456 static bool access_gic_misr(struct kvm_vcpu *vcpu,
2457 			    struct sys_reg_params *p,
2458 			    const struct sys_reg_desc *r)
2459 {
2460 	if (p->is_write)
2461 		return write_to_read_only(vcpu, p, r);
2462 
2463 	p->regval = vgic_v3_get_misr(vcpu);
2464 
2465 	return true;
2466 }
2467 
2468 static bool access_gic_eisr(struct kvm_vcpu *vcpu,
2469 			    struct sys_reg_params *p,
2470 			    const struct sys_reg_desc *r)
2471 {
2472 	if (p->is_write)
2473 		return write_to_read_only(vcpu, p, r);
2474 
2475 	p->regval = vgic_v3_get_eisr(vcpu);
2476 
2477 	return true;
2478 }
2479 
2480 static bool access_gic_elrsr(struct kvm_vcpu *vcpu,
2481 			     struct sys_reg_params *p,
2482 			     const struct sys_reg_desc *r)
2483 {
2484 	if (p->is_write)
2485 		return write_to_read_only(vcpu, p, r);
2486 
2487 	p->regval = vgic_v3_get_elrsr(vcpu);
2488 
2489 	return true;
2490 }
2491 
2492 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2493 				     const struct sys_reg_desc *rd)
2494 {
2495 	if (kvm_has_s1poe(vcpu->kvm))
2496 		return 0;
2497 
2498 	return REG_HIDDEN;
2499 }
2500 
2501 static unsigned int s1poe_el2_visibility(const struct kvm_vcpu *vcpu,
2502 					 const struct sys_reg_desc *rd)
2503 {
2504 	return __el2_visibility(vcpu, rd, s1poe_visibility);
2505 }
2506 
2507 static unsigned int tcr2_visibility(const struct kvm_vcpu *vcpu,
2508 				    const struct sys_reg_desc *rd)
2509 {
2510 	if (kvm_has_tcr2(vcpu->kvm))
2511 		return 0;
2512 
2513 	return REG_HIDDEN;
2514 }
2515 
2516 static unsigned int tcr2_el2_visibility(const struct kvm_vcpu *vcpu,
2517 				    const struct sys_reg_desc *rd)
2518 {
2519 	return __el2_visibility(vcpu, rd, tcr2_visibility);
2520 }
2521 
2522 static unsigned int s1pie_visibility(const struct kvm_vcpu *vcpu,
2523 				     const struct sys_reg_desc *rd)
2524 {
2525 	if (kvm_has_s1pie(vcpu->kvm))
2526 		return 0;
2527 
2528 	return REG_HIDDEN;
2529 }
2530 
2531 static unsigned int s1pie_el2_visibility(const struct kvm_vcpu *vcpu,
2532 					 const struct sys_reg_desc *rd)
2533 {
2534 	return __el2_visibility(vcpu, rd, s1pie_visibility);
2535 }
2536 
2537 static bool access_mdcr(struct kvm_vcpu *vcpu,
2538 			struct sys_reg_params *p,
2539 			const struct sys_reg_desc *r)
2540 {
2541 	u64 old = __vcpu_sys_reg(vcpu, MDCR_EL2);
2542 
2543 	if (!access_rw(vcpu, p, r))
2544 		return false;
2545 
2546 	/*
2547 	 * Request a reload of the PMU to enable/disable the counters affected
2548 	 * by HPME.
2549 	 */
2550 	if ((old ^ __vcpu_sys_reg(vcpu, MDCR_EL2)) & MDCR_EL2_HPME)
2551 		kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu);
2552 
2553 	return true;
2554 }
2555 
2556 
2557 /*
2558  * Architected system registers.
2559  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2560  *
2561  * Debug handling: We do trap most, if not all debug related system
2562  * registers. The implementation is good enough to ensure that a guest
2563  * can use these with minimal performance degradation. The drawback is
2564  * that we don't implement any of the external debug architecture.
2565  * This should be revisited if we ever encounter a more demanding
2566  * guest...
2567  */
2568 static const struct sys_reg_desc sys_reg_descs[] = {
2569 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2570 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2571 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2572 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2573 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2574 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2575 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2576 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2577 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2578 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2579 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2580 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2581 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2582 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2583 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2584 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2585 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2586 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2587 
2588 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2589 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2590 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2591 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2592 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2593 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2594 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2595 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2596 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2597 
2598 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2599 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2600 	// DBGDTR[TR]X_EL0 share the same encoding
2601 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2602 
2603 	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2604 
2605 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2606 
2607 	/*
2608 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2609 	 * entries in arm64_ftr_regs[].
2610 	 */
2611 
2612 	/* AArch64 mappings of the AArch32 ID registers */
2613 	/* CRm=1 */
2614 	AA32_ID_SANITISED(ID_PFR0_EL1),
2615 	AA32_ID_SANITISED(ID_PFR1_EL1),
2616 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2617 	  .access = access_id_reg,
2618 	  .get_user = get_id_reg,
2619 	  .set_user = set_id_dfr0_el1,
2620 	  .visibility = aa32_id_visibility,
2621 	  .reset = read_sanitised_id_dfr0_el1,
2622 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2623 		 ID_DFR0_EL1_CopDbg_MASK, },
2624 	ID_HIDDEN(ID_AFR0_EL1),
2625 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2626 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2627 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2628 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2629 
2630 	/* CRm=2 */
2631 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2632 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2633 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2634 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2635 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2636 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2637 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2638 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2639 
2640 	/* CRm=3 */
2641 	AA32_ID_SANITISED(MVFR0_EL1),
2642 	AA32_ID_SANITISED(MVFR1_EL1),
2643 	AA32_ID_SANITISED(MVFR2_EL1),
2644 	ID_UNALLOCATED(3,3),
2645 	AA32_ID_SANITISED(ID_PFR2_EL1),
2646 	ID_HIDDEN(ID_DFR1_EL1),
2647 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2648 	ID_UNALLOCATED(3,7),
2649 
2650 	/* AArch64 ID registers */
2651 	/* CRm=4 */
2652 	ID_FILTERED(ID_AA64PFR0_EL1, id_aa64pfr0_el1,
2653 		    ~(ID_AA64PFR0_EL1_AMU |
2654 		      ID_AA64PFR0_EL1_MPAM |
2655 		      ID_AA64PFR0_EL1_SVE |
2656 		      ID_AA64PFR0_EL1_RAS |
2657 		      ID_AA64PFR0_EL1_AdvSIMD |
2658 		      ID_AA64PFR0_EL1_FP)),
2659 	ID_FILTERED(ID_AA64PFR1_EL1, id_aa64pfr1_el1,
2660 				     ~(ID_AA64PFR1_EL1_PFAR |
2661 				       ID_AA64PFR1_EL1_DF2 |
2662 				       ID_AA64PFR1_EL1_MTEX |
2663 				       ID_AA64PFR1_EL1_THE |
2664 				       ID_AA64PFR1_EL1_GCS |
2665 				       ID_AA64PFR1_EL1_MTE_frac |
2666 				       ID_AA64PFR1_EL1_NMI |
2667 				       ID_AA64PFR1_EL1_RNDR_trap |
2668 				       ID_AA64PFR1_EL1_SME |
2669 				       ID_AA64PFR1_EL1_RES0 |
2670 				       ID_AA64PFR1_EL1_MPAM_frac |
2671 				       ID_AA64PFR1_EL1_RAS_frac |
2672 				       ID_AA64PFR1_EL1_MTE)),
2673 	ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2674 	ID_UNALLOCATED(4,3),
2675 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2676 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2677 	ID_UNALLOCATED(4,6),
2678 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2679 
2680 	/* CRm=5 */
2681 	/*
2682 	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2683 	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2684 	 * KVM does not trap + emulate the breakpoint registers, and as such
2685 	 * cannot support a layout that misaligns with the underlying hardware.
2686 	 * While it may be possible to describe a subset that aligns with
2687 	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2688 	 * simplicity.
2689 	 *
2690 	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2691 	 * of breakpoints for more details.
2692 	 */
2693 	ID_FILTERED(ID_AA64DFR0_EL1, id_aa64dfr0_el1,
2694 		    ID_AA64DFR0_EL1_DoubleLock_MASK |
2695 		    ID_AA64DFR0_EL1_WRPs_MASK |
2696 		    ID_AA64DFR0_EL1_PMUVer_MASK |
2697 		    ID_AA64DFR0_EL1_DebugVer_MASK),
2698 	ID_SANITISED(ID_AA64DFR1_EL1),
2699 	ID_UNALLOCATED(5,2),
2700 	ID_UNALLOCATED(5,3),
2701 	ID_HIDDEN(ID_AA64AFR0_EL1),
2702 	ID_HIDDEN(ID_AA64AFR1_EL1),
2703 	ID_UNALLOCATED(5,6),
2704 	ID_UNALLOCATED(5,7),
2705 
2706 	/* CRm=6 */
2707 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2708 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2709 					ID_AA64ISAR1_EL1_GPA |
2710 					ID_AA64ISAR1_EL1_API |
2711 					ID_AA64ISAR1_EL1_APA)),
2712 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2713 					ID_AA64ISAR2_EL1_APA3 |
2714 					ID_AA64ISAR2_EL1_GPA3)),
2715 	ID_WRITABLE(ID_AA64ISAR3_EL1, (ID_AA64ISAR3_EL1_FPRCVT |
2716 				       ID_AA64ISAR3_EL1_FAMINMAX)),
2717 	ID_UNALLOCATED(6,4),
2718 	ID_UNALLOCATED(6,5),
2719 	ID_UNALLOCATED(6,6),
2720 	ID_UNALLOCATED(6,7),
2721 
2722 	/* CRm=7 */
2723 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2724 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2725 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2726 					ID_AA64MMFR0_EL1_TGRAN16_2 |
2727 					ID_AA64MMFR0_EL1_ASIDBITS)),
2728 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2729 					ID_AA64MMFR1_EL1_HCX |
2730 					ID_AA64MMFR1_EL1_TWED |
2731 					ID_AA64MMFR1_EL1_XNX |
2732 					ID_AA64MMFR1_EL1_VH |
2733 					ID_AA64MMFR1_EL1_VMIDBits)),
2734 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2735 					ID_AA64MMFR2_EL1_EVT |
2736 					ID_AA64MMFR2_EL1_FWB |
2737 					ID_AA64MMFR2_EL1_IDS |
2738 					ID_AA64MMFR2_EL1_NV |
2739 					ID_AA64MMFR2_EL1_CCIDX)),
2740 	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
2741 				       ID_AA64MMFR3_EL1_S1PIE   |
2742 				       ID_AA64MMFR3_EL1_S1POE)),
2743 	ID_SANITISED(ID_AA64MMFR4_EL1),
2744 	ID_UNALLOCATED(7,5),
2745 	ID_UNALLOCATED(7,6),
2746 	ID_UNALLOCATED(7,7),
2747 
2748 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2749 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2750 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2751 
2752 	MTE_REG(RGSR_EL1),
2753 	MTE_REG(GCR_EL1),
2754 
2755 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2756 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2757 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2758 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2759 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2760 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2761 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2762 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0,
2763 	  .visibility = tcr2_visibility },
2764 
2765 	PTRAUTH_KEY(APIA),
2766 	PTRAUTH_KEY(APIB),
2767 	PTRAUTH_KEY(APDA),
2768 	PTRAUTH_KEY(APDB),
2769 	PTRAUTH_KEY(APGA),
2770 
2771 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2772 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2773 
2774 	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2775 
2776 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2777 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2778 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2779 
2780 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2781 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2782 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2783 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2784 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2785 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2786 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2787 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2788 
2789 	MTE_REG(TFSR_EL1),
2790 	MTE_REG(TFSRE0_EL1),
2791 
2792 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2793 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2794 
2795 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2796 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2797 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2798 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2799 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2800 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2801 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2802 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2803 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2804 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2805 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2806 	/* PMBIDR_EL1 is not trapped */
2807 
2808 	{ PMU_SYS_REG(PMINTENSET_EL1),
2809 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2810 	  .get_user = get_pmreg, .set_user = set_pmreg },
2811 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2812 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2813 	  .get_user = get_pmreg, .set_user = set_pmreg },
2814 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2815 
2816 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2817 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1,
2818 	  .visibility = s1pie_visibility },
2819 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1,
2820 	  .visibility = s1pie_visibility },
2821 	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
2822 	  .visibility = s1poe_visibility },
2823 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2824 
2825 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2826 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2827 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2828 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2829 	{ SYS_DESC(SYS_MPAMIDR_EL1), undef_access },
2830 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2831 
2832 	{ SYS_DESC(SYS_MPAM1_EL1), undef_access },
2833 	{ SYS_DESC(SYS_MPAM0_EL1), undef_access },
2834 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2835 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2836 
2837 	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
2838 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
2839 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
2840 	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
2841 	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
2842 	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
2843 	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
2844 	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
2845 	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
2846 	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
2847 	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
2848 	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
2849 	{ SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
2850 	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
2851 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2852 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2853 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2854 	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
2855 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
2856 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
2857 	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
2858 	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
2859 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2860 	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
2861 	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
2862 
2863 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2864 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2865 
2866 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2867 
2868 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2869 
2870 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2871 
2872 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2873 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2874 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
2875 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2876 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2877 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2878 	ID_FILTERED(CTR_EL0, ctr_el0,
2879 		    CTR_EL0_DIC_MASK |
2880 		    CTR_EL0_IDC_MASK |
2881 		    CTR_EL0_DminLine_MASK |
2882 		    CTR_EL0_L1Ip_MASK |
2883 		    CTR_EL0_IminLine_MASK),
2884 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
2885 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
2886 
2887 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2888 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2889 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2890 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2891 	  .get_user = get_pmreg, .set_user = set_pmreg },
2892 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2893 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2894 	  .get_user = get_pmreg, .set_user = set_pmreg },
2895 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2896 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2897 	  .get_user = get_pmreg, .set_user = set_pmreg },
2898 	/*
2899 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2900 	 * previously (and pointlessly) advertised in the past...
2901 	 */
2902 	{ PMU_SYS_REG(PMSWINC_EL0),
2903 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2904 	  .access = access_pmswinc, .reset = NULL },
2905 	{ PMU_SYS_REG(PMSELR_EL0),
2906 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2907 	{ PMU_SYS_REG(PMCEID0_EL0),
2908 	  .access = access_pmceid, .reset = NULL },
2909 	{ PMU_SYS_REG(PMCEID1_EL0),
2910 	  .access = access_pmceid, .reset = NULL },
2911 	{ PMU_SYS_REG(PMCCNTR_EL0),
2912 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2913 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2914 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2915 	  .access = access_pmu_evtyper, .reset = NULL },
2916 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2917 	  .access = access_pmu_evcntr, .reset = NULL },
2918 	/*
2919 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2920 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2921 	 */
2922 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2923 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2924 	{ PMU_SYS_REG(PMOVSSET_EL0),
2925 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2926 	  .get_user = get_pmreg, .set_user = set_pmreg },
2927 
2928 	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
2929 	  .visibility = s1poe_visibility },
2930 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2931 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2932 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2933 
2934 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2935 
2936 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2937 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2938 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2939 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2940 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2941 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2942 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2943 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2944 	AMU_AMEVCNTR0_EL0(0),
2945 	AMU_AMEVCNTR0_EL0(1),
2946 	AMU_AMEVCNTR0_EL0(2),
2947 	AMU_AMEVCNTR0_EL0(3),
2948 	AMU_AMEVCNTR0_EL0(4),
2949 	AMU_AMEVCNTR0_EL0(5),
2950 	AMU_AMEVCNTR0_EL0(6),
2951 	AMU_AMEVCNTR0_EL0(7),
2952 	AMU_AMEVCNTR0_EL0(8),
2953 	AMU_AMEVCNTR0_EL0(9),
2954 	AMU_AMEVCNTR0_EL0(10),
2955 	AMU_AMEVCNTR0_EL0(11),
2956 	AMU_AMEVCNTR0_EL0(12),
2957 	AMU_AMEVCNTR0_EL0(13),
2958 	AMU_AMEVCNTR0_EL0(14),
2959 	AMU_AMEVCNTR0_EL0(15),
2960 	AMU_AMEVTYPER0_EL0(0),
2961 	AMU_AMEVTYPER0_EL0(1),
2962 	AMU_AMEVTYPER0_EL0(2),
2963 	AMU_AMEVTYPER0_EL0(3),
2964 	AMU_AMEVTYPER0_EL0(4),
2965 	AMU_AMEVTYPER0_EL0(5),
2966 	AMU_AMEVTYPER0_EL0(6),
2967 	AMU_AMEVTYPER0_EL0(7),
2968 	AMU_AMEVTYPER0_EL0(8),
2969 	AMU_AMEVTYPER0_EL0(9),
2970 	AMU_AMEVTYPER0_EL0(10),
2971 	AMU_AMEVTYPER0_EL0(11),
2972 	AMU_AMEVTYPER0_EL0(12),
2973 	AMU_AMEVTYPER0_EL0(13),
2974 	AMU_AMEVTYPER0_EL0(14),
2975 	AMU_AMEVTYPER0_EL0(15),
2976 	AMU_AMEVCNTR1_EL0(0),
2977 	AMU_AMEVCNTR1_EL0(1),
2978 	AMU_AMEVCNTR1_EL0(2),
2979 	AMU_AMEVCNTR1_EL0(3),
2980 	AMU_AMEVCNTR1_EL0(4),
2981 	AMU_AMEVCNTR1_EL0(5),
2982 	AMU_AMEVCNTR1_EL0(6),
2983 	AMU_AMEVCNTR1_EL0(7),
2984 	AMU_AMEVCNTR1_EL0(8),
2985 	AMU_AMEVCNTR1_EL0(9),
2986 	AMU_AMEVCNTR1_EL0(10),
2987 	AMU_AMEVCNTR1_EL0(11),
2988 	AMU_AMEVCNTR1_EL0(12),
2989 	AMU_AMEVCNTR1_EL0(13),
2990 	AMU_AMEVCNTR1_EL0(14),
2991 	AMU_AMEVCNTR1_EL0(15),
2992 	AMU_AMEVTYPER1_EL0(0),
2993 	AMU_AMEVTYPER1_EL0(1),
2994 	AMU_AMEVTYPER1_EL0(2),
2995 	AMU_AMEVTYPER1_EL0(3),
2996 	AMU_AMEVTYPER1_EL0(4),
2997 	AMU_AMEVTYPER1_EL0(5),
2998 	AMU_AMEVTYPER1_EL0(6),
2999 	AMU_AMEVTYPER1_EL0(7),
3000 	AMU_AMEVTYPER1_EL0(8),
3001 	AMU_AMEVTYPER1_EL0(9),
3002 	AMU_AMEVTYPER1_EL0(10),
3003 	AMU_AMEVTYPER1_EL0(11),
3004 	AMU_AMEVTYPER1_EL0(12),
3005 	AMU_AMEVTYPER1_EL0(13),
3006 	AMU_AMEVTYPER1_EL0(14),
3007 	AMU_AMEVTYPER1_EL0(15),
3008 
3009 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
3010 	{ SYS_DESC(SYS_CNTVCT_EL0), access_arch_timer },
3011 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
3012 	{ SYS_DESC(SYS_CNTVCTSS_EL0), access_arch_timer },
3013 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
3014 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
3015 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
3016 
3017 	{ SYS_DESC(SYS_CNTV_TVAL_EL0), access_arch_timer },
3018 	{ SYS_DESC(SYS_CNTV_CTL_EL0), access_arch_timer },
3019 	{ SYS_DESC(SYS_CNTV_CVAL_EL0), access_arch_timer },
3020 
3021 	/* PMEVCNTRn_EL0 */
3022 	PMU_PMEVCNTR_EL0(0),
3023 	PMU_PMEVCNTR_EL0(1),
3024 	PMU_PMEVCNTR_EL0(2),
3025 	PMU_PMEVCNTR_EL0(3),
3026 	PMU_PMEVCNTR_EL0(4),
3027 	PMU_PMEVCNTR_EL0(5),
3028 	PMU_PMEVCNTR_EL0(6),
3029 	PMU_PMEVCNTR_EL0(7),
3030 	PMU_PMEVCNTR_EL0(8),
3031 	PMU_PMEVCNTR_EL0(9),
3032 	PMU_PMEVCNTR_EL0(10),
3033 	PMU_PMEVCNTR_EL0(11),
3034 	PMU_PMEVCNTR_EL0(12),
3035 	PMU_PMEVCNTR_EL0(13),
3036 	PMU_PMEVCNTR_EL0(14),
3037 	PMU_PMEVCNTR_EL0(15),
3038 	PMU_PMEVCNTR_EL0(16),
3039 	PMU_PMEVCNTR_EL0(17),
3040 	PMU_PMEVCNTR_EL0(18),
3041 	PMU_PMEVCNTR_EL0(19),
3042 	PMU_PMEVCNTR_EL0(20),
3043 	PMU_PMEVCNTR_EL0(21),
3044 	PMU_PMEVCNTR_EL0(22),
3045 	PMU_PMEVCNTR_EL0(23),
3046 	PMU_PMEVCNTR_EL0(24),
3047 	PMU_PMEVCNTR_EL0(25),
3048 	PMU_PMEVCNTR_EL0(26),
3049 	PMU_PMEVCNTR_EL0(27),
3050 	PMU_PMEVCNTR_EL0(28),
3051 	PMU_PMEVCNTR_EL0(29),
3052 	PMU_PMEVCNTR_EL0(30),
3053 	/* PMEVTYPERn_EL0 */
3054 	PMU_PMEVTYPER_EL0(0),
3055 	PMU_PMEVTYPER_EL0(1),
3056 	PMU_PMEVTYPER_EL0(2),
3057 	PMU_PMEVTYPER_EL0(3),
3058 	PMU_PMEVTYPER_EL0(4),
3059 	PMU_PMEVTYPER_EL0(5),
3060 	PMU_PMEVTYPER_EL0(6),
3061 	PMU_PMEVTYPER_EL0(7),
3062 	PMU_PMEVTYPER_EL0(8),
3063 	PMU_PMEVTYPER_EL0(9),
3064 	PMU_PMEVTYPER_EL0(10),
3065 	PMU_PMEVTYPER_EL0(11),
3066 	PMU_PMEVTYPER_EL0(12),
3067 	PMU_PMEVTYPER_EL0(13),
3068 	PMU_PMEVTYPER_EL0(14),
3069 	PMU_PMEVTYPER_EL0(15),
3070 	PMU_PMEVTYPER_EL0(16),
3071 	PMU_PMEVTYPER_EL0(17),
3072 	PMU_PMEVTYPER_EL0(18),
3073 	PMU_PMEVTYPER_EL0(19),
3074 	PMU_PMEVTYPER_EL0(20),
3075 	PMU_PMEVTYPER_EL0(21),
3076 	PMU_PMEVTYPER_EL0(22),
3077 	PMU_PMEVTYPER_EL0(23),
3078 	PMU_PMEVTYPER_EL0(24),
3079 	PMU_PMEVTYPER_EL0(25),
3080 	PMU_PMEVTYPER_EL0(26),
3081 	PMU_PMEVTYPER_EL0(27),
3082 	PMU_PMEVTYPER_EL0(28),
3083 	PMU_PMEVTYPER_EL0(29),
3084 	PMU_PMEVTYPER_EL0(30),
3085 	/*
3086 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
3087 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
3088 	 */
3089 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
3090 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
3091 
3092 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
3093 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
3094 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
3095 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
3096 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
3097 	EL2_REG(MDCR_EL2, access_mdcr, reset_val, 0),
3098 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
3099 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
3100 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
3101 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
3102 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
3103 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
3104 
3105 	EL2_REG_FILTERED(ZCR_EL2, access_zcr_el2, reset_val, 0,
3106 			 sve_el2_visibility),
3107 
3108 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
3109 
3110 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
3111 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
3112 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
3113 	EL2_REG_FILTERED(TCR2_EL2, access_rw, reset_val, TCR2_EL2_RES1,
3114 			 tcr2_el2_visibility),
3115 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
3116 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
3117 
3118 	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
3119 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
3120 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
3121 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
3122 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
3123 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
3124 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
3125 
3126 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
3127 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
3128 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
3129 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
3130 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
3131 
3132 	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
3133 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
3134 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
3135 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
3136 	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
3137 
3138 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
3139 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
3140 
3141 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
3142 	EL2_REG_FILTERED(PIRE0_EL2, access_rw, reset_val, 0,
3143 			 s1pie_el2_visibility),
3144 	EL2_REG_FILTERED(PIR_EL2, access_rw, reset_val, 0,
3145 			 s1pie_el2_visibility),
3146 	EL2_REG_FILTERED(POR_EL2, access_rw, reset_val, 0,
3147 			 s1poe_el2_visibility),
3148 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
3149 	{ SYS_DESC(SYS_MPAMHCR_EL2), undef_access },
3150 	{ SYS_DESC(SYS_MPAMVPMV_EL2), undef_access },
3151 	{ SYS_DESC(SYS_MPAM2_EL2), undef_access },
3152 	{ SYS_DESC(SYS_MPAMVPM0_EL2), undef_access },
3153 	{ SYS_DESC(SYS_MPAMVPM1_EL2), undef_access },
3154 	{ SYS_DESC(SYS_MPAMVPM2_EL2), undef_access },
3155 	{ SYS_DESC(SYS_MPAMVPM3_EL2), undef_access },
3156 	{ SYS_DESC(SYS_MPAMVPM4_EL2), undef_access },
3157 	{ SYS_DESC(SYS_MPAMVPM5_EL2), undef_access },
3158 	{ SYS_DESC(SYS_MPAMVPM6_EL2), undef_access },
3159 	{ SYS_DESC(SYS_MPAMVPM7_EL2), undef_access },
3160 
3161 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
3162 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
3163 	{ SYS_DESC(SYS_RMR_EL2), undef_access },
3164 
3165 	EL2_REG_VNCR(ICH_AP0R0_EL2, reset_val, 0),
3166 	EL2_REG_VNCR(ICH_AP0R1_EL2, reset_val, 0),
3167 	EL2_REG_VNCR(ICH_AP0R2_EL2, reset_val, 0),
3168 	EL2_REG_VNCR(ICH_AP0R3_EL2, reset_val, 0),
3169 	EL2_REG_VNCR(ICH_AP1R0_EL2, reset_val, 0),
3170 	EL2_REG_VNCR(ICH_AP1R1_EL2, reset_val, 0),
3171 	EL2_REG_VNCR(ICH_AP1R2_EL2, reset_val, 0),
3172 	EL2_REG_VNCR(ICH_AP1R3_EL2, reset_val, 0),
3173 
3174 	{ SYS_DESC(SYS_ICC_SRE_EL2), access_gic_sre },
3175 
3176 	EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
3177 	{ SYS_DESC(SYS_ICH_VTR_EL2), access_gic_vtr },
3178 	{ SYS_DESC(SYS_ICH_MISR_EL2), access_gic_misr },
3179 	{ SYS_DESC(SYS_ICH_EISR_EL2), access_gic_eisr },
3180 	{ SYS_DESC(SYS_ICH_ELRSR_EL2), access_gic_elrsr },
3181 	EL2_REG_VNCR(ICH_VMCR_EL2, reset_val, 0),
3182 
3183 	EL2_REG_VNCR(ICH_LR0_EL2, reset_val, 0),
3184 	EL2_REG_VNCR(ICH_LR1_EL2, reset_val, 0),
3185 	EL2_REG_VNCR(ICH_LR2_EL2, reset_val, 0),
3186 	EL2_REG_VNCR(ICH_LR3_EL2, reset_val, 0),
3187 	EL2_REG_VNCR(ICH_LR4_EL2, reset_val, 0),
3188 	EL2_REG_VNCR(ICH_LR5_EL2, reset_val, 0),
3189 	EL2_REG_VNCR(ICH_LR6_EL2, reset_val, 0),
3190 	EL2_REG_VNCR(ICH_LR7_EL2, reset_val, 0),
3191 	EL2_REG_VNCR(ICH_LR8_EL2, reset_val, 0),
3192 	EL2_REG_VNCR(ICH_LR9_EL2, reset_val, 0),
3193 	EL2_REG_VNCR(ICH_LR10_EL2, reset_val, 0),
3194 	EL2_REG_VNCR(ICH_LR11_EL2, reset_val, 0),
3195 	EL2_REG_VNCR(ICH_LR12_EL2, reset_val, 0),
3196 	EL2_REG_VNCR(ICH_LR13_EL2, reset_val, 0),
3197 	EL2_REG_VNCR(ICH_LR14_EL2, reset_val, 0),
3198 	EL2_REG_VNCR(ICH_LR15_EL2, reset_val, 0),
3199 
3200 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
3201 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
3202 
3203 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
3204 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
3205 	{ SYS_DESC(SYS_CNTHP_TVAL_EL2), access_arch_timer },
3206 	EL2_REG(CNTHP_CTL_EL2, access_arch_timer, reset_val, 0),
3207 	EL2_REG(CNTHP_CVAL_EL2, access_arch_timer, reset_val, 0),
3208 
3209 	{ SYS_DESC(SYS_CNTHV_TVAL_EL2), access_hv_timer },
3210 	EL2_REG(CNTHV_CTL_EL2, access_hv_timer, reset_val, 0),
3211 	EL2_REG(CNTHV_CVAL_EL2, access_hv_timer, reset_val, 0),
3212 
3213 	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
3214 
3215 	{ SYS_DESC(SYS_CNTP_TVAL_EL02), access_arch_timer },
3216 	{ SYS_DESC(SYS_CNTP_CTL_EL02), access_arch_timer },
3217 	{ SYS_DESC(SYS_CNTP_CVAL_EL02), access_arch_timer },
3218 
3219 	{ SYS_DESC(SYS_CNTV_TVAL_EL02), access_arch_timer },
3220 	{ SYS_DESC(SYS_CNTV_CTL_EL02), access_arch_timer },
3221 	{ SYS_DESC(SYS_CNTV_CVAL_EL02), access_arch_timer },
3222 
3223 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
3224 };
3225 
3226 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3227 			    const struct sys_reg_desc *r)
3228 {
3229 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3230 
3231 	__kvm_at_s1e01(vcpu, op, p->regval);
3232 
3233 	return true;
3234 }
3235 
3236 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3237 			   const struct sys_reg_desc *r)
3238 {
3239 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3240 
3241 	/* There is no FGT associated with AT S1E2A :-( */
3242 	if (op == OP_AT_S1E2A &&
3243 	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
3244 		kvm_inject_undefined(vcpu);
3245 		return false;
3246 	}
3247 
3248 	__kvm_at_s1e2(vcpu, op, p->regval);
3249 
3250 	return true;
3251 }
3252 
3253 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3254 			  const struct sys_reg_desc *r)
3255 {
3256 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3257 
3258 	__kvm_at_s12(vcpu, op, p->regval);
3259 
3260 	return true;
3261 }
3262 
3263 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
3264 {
3265 	struct kvm *kvm = vpcu->kvm;
3266 	u8 CRm = sys_reg_CRm(instr);
3267 
3268 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3269 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3270 		return false;
3271 
3272 	if (CRm == TLBI_CRm_nROS &&
3273 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3274 		return false;
3275 
3276 	return true;
3277 }
3278 
3279 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3280 			   const struct sys_reg_desc *r)
3281 {
3282 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3283 
3284 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3285 		return undef_access(vcpu, p, r);
3286 
3287 	write_lock(&vcpu->kvm->mmu_lock);
3288 
3289 	/*
3290 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
3291 	 * corresponding VMIDs.
3292 	 */
3293 	kvm_nested_s2_unmap(vcpu->kvm, true);
3294 
3295 	write_unlock(&vcpu->kvm->mmu_lock);
3296 
3297 	return true;
3298 }
3299 
3300 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
3301 {
3302 	struct kvm *kvm = vpcu->kvm;
3303 	u8 CRm = sys_reg_CRm(instr);
3304 	u8 Op2 = sys_reg_Op2(instr);
3305 
3306 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
3307 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
3308 		return false;
3309 
3310 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
3311 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3312 		return false;
3313 
3314 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
3315 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
3316 		return false;
3317 
3318 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
3319 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
3320 		return false;
3321 
3322 	return true;
3323 }
3324 
3325 /* Only defined here as this is an internal "abstraction" */
3326 union tlbi_info {
3327 	struct {
3328 		u64	start;
3329 		u64	size;
3330 	} range;
3331 
3332 	struct {
3333 		u64	addr;
3334 	} ipa;
3335 
3336 	struct {
3337 		u64	addr;
3338 		u32	encoding;
3339 	} va;
3340 };
3341 
3342 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
3343 			       const union tlbi_info *info)
3344 {
3345 	/*
3346 	 * The unmap operation is allowed to drop the MMU lock and block, which
3347 	 * means that @mmu could be used for a different context than the one
3348 	 * currently being invalidated.
3349 	 *
3350 	 * This behavior is still safe, as:
3351 	 *
3352 	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3353 	 *     the entire MMU before reusing it, which still honors the intent
3354 	 *     of a TLBI.
3355 	 *
3356 	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3357 	 *     and ERET to the guest), other vCPUs are allowed to use stale
3358 	 *     translations.
3359 	 *
3360 	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3361 	 *     at worst may cause more aborts for shadow stage-2 fills.
3362 	 *
3363 	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3364 	 * happen behind the back of the TLBI. This is still safe, though, as
3365 	 * the L1 needs to put its stage-2 in a consistent state before doing
3366 	 * the TLBI.
3367 	 */
3368 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3369 }
3370 
3371 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3372 				const struct sys_reg_desc *r)
3373 {
3374 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3375 	u64 limit, vttbr;
3376 
3377 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3378 		return undef_access(vcpu, p, r);
3379 
3380 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3381 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3382 
3383 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3384 				   &(union tlbi_info) {
3385 					   .range = {
3386 						   .start = 0,
3387 						   .size = limit,
3388 					   },
3389 				   },
3390 				   s2_mmu_unmap_range);
3391 
3392 	return true;
3393 }
3394 
3395 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3396 			      const struct sys_reg_desc *r)
3397 {
3398 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3399 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3400 	u64 base, range, tg, num, scale;
3401 	int shift;
3402 
3403 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3404 		return undef_access(vcpu, p, r);
3405 
3406 	/*
3407 	 * Because the shadow S2 structure doesn't necessarily reflect that
3408 	 * of the guest's S2 (different base granule size, for example), we
3409 	 * decide to ignore TTL and only use the described range.
3410 	 */
3411 	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
3412 	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
3413 	num	= FIELD_GET(GENMASK(43, 39), p->regval);
3414 	base	= p->regval & GENMASK(36, 0);
3415 
3416 	switch(tg) {
3417 	case 1:
3418 		shift = 12;
3419 		break;
3420 	case 2:
3421 		shift = 14;
3422 		break;
3423 	case 3:
3424 	default:		/* IMPDEF: handle tg==0 as 64k */
3425 		shift = 16;
3426 		break;
3427 	}
3428 
3429 	base <<= shift;
3430 	range = __TLBI_RANGE_PAGES(num, scale) << shift;
3431 
3432 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3433 				   &(union tlbi_info) {
3434 					   .range = {
3435 						   .start = base,
3436 						   .size = range,
3437 					   },
3438 				   },
3439 				   s2_mmu_unmap_range);
3440 
3441 	return true;
3442 }
3443 
3444 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3445 			     const union tlbi_info *info)
3446 {
3447 	unsigned long max_size;
3448 	u64 base_addr;
3449 
3450 	/*
3451 	 * We drop a number of things from the supplied value:
3452 	 *
3453 	 * - NS bit: we're non-secure only.
3454 	 *
3455 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3456 	 *
3457 	 * And of course, adjust the IPA to be on an actual address.
3458 	 */
3459 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3460 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3461 	base_addr &= ~(max_size - 1);
3462 
3463 	/*
3464 	 * See comment in s2_mmu_unmap_range() for why this is allowed to
3465 	 * reschedule.
3466 	 */
3467 	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3468 }
3469 
3470 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3471 			     const struct sys_reg_desc *r)
3472 {
3473 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3474 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3475 
3476 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3477 		return undef_access(vcpu, p, r);
3478 
3479 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3480 				   &(union tlbi_info) {
3481 					   .ipa = {
3482 						   .addr = p->regval,
3483 					   },
3484 				   },
3485 				   s2_mmu_unmap_ipa);
3486 
3487 	return true;
3488 }
3489 
3490 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3491 			     const union tlbi_info *info)
3492 {
3493 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3494 }
3495 
3496 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3497 			    const struct sys_reg_desc *r)
3498 {
3499 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3500 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3501 
3502 	/*
3503 	 * If we're here, this is because we've trapped on a EL1 TLBI
3504 	 * instruction that affects the EL1 translation regime while
3505 	 * we're running in a context that doesn't allow us to let the
3506 	 * HW do its thing (aka vEL2):
3507 	 *
3508 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3509 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3510 	 *
3511 	 * We don't expect these helpers to ever be called when running
3512 	 * in a vEL1 context.
3513 	 */
3514 
3515 	WARN_ON(!vcpu_is_el2(vcpu));
3516 
3517 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3518 		return undef_access(vcpu, p, r);
3519 
3520 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3521 				   &(union tlbi_info) {
3522 					   .va = {
3523 						   .addr = p->regval,
3524 						   .encoding = sys_encoding,
3525 					   },
3526 				   },
3527 				   s2_mmu_tlbi_s1e1);
3528 
3529 	return true;
3530 }
3531 
3532 #define SYS_INSN(insn, access_fn)					\
3533 	{								\
3534 		SYS_DESC(OP_##insn),					\
3535 		.access = (access_fn),					\
3536 	}
3537 
3538 static struct sys_reg_desc sys_insn_descs[] = {
3539 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3540 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3541 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3542 
3543 	SYS_INSN(AT_S1E1R, handle_at_s1e01),
3544 	SYS_INSN(AT_S1E1W, handle_at_s1e01),
3545 	SYS_INSN(AT_S1E0R, handle_at_s1e01),
3546 	SYS_INSN(AT_S1E0W, handle_at_s1e01),
3547 	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3548 	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3549 
3550 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3551 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3552 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3553 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3554 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3555 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3556 
3557 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3558 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3559 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3560 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3561 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3562 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3563 
3564 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3565 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3566 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3567 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3568 
3569 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3570 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3571 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3572 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3573 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3574 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3575 
3576 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3577 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3578 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3579 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3580 
3581 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3582 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3583 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3584 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3585 
3586 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3587 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3588 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3589 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3590 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3591 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3592 
3593 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3594 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3595 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3596 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3597 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3598 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3599 
3600 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3601 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3602 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3603 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3604 
3605 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3606 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3607 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3608 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3609 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3610 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3611 
3612 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3613 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3614 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3615 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3616 
3617 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3618 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3619 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3620 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3621 
3622 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3623 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3624 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3625 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3626 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3627 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3628 
3629 	SYS_INSN(AT_S1E2R, handle_at_s1e2),
3630 	SYS_INSN(AT_S1E2W, handle_at_s1e2),
3631 	SYS_INSN(AT_S12E1R, handle_at_s12),
3632 	SYS_INSN(AT_S12E1W, handle_at_s12),
3633 	SYS_INSN(AT_S12E0R, handle_at_s12),
3634 	SYS_INSN(AT_S12E0W, handle_at_s12),
3635 	SYS_INSN(AT_S1E2A, handle_at_s1e2),
3636 
3637 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3638 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3639 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3640 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3641 
3642 	SYS_INSN(TLBI_ALLE2OS, undef_access),
3643 	SYS_INSN(TLBI_VAE2OS, undef_access),
3644 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3645 	SYS_INSN(TLBI_VALE2OS, undef_access),
3646 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3647 
3648 	SYS_INSN(TLBI_RVAE2IS, undef_access),
3649 	SYS_INSN(TLBI_RVALE2IS, undef_access),
3650 
3651 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3652 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3653 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3654 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3655 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3656 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3657 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3658 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3659 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3660 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3661 	SYS_INSN(TLBI_RVAE2OS, undef_access),
3662 	SYS_INSN(TLBI_RVALE2OS, undef_access),
3663 	SYS_INSN(TLBI_RVAE2, undef_access),
3664 	SYS_INSN(TLBI_RVALE2, undef_access),
3665 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3666 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3667 
3668 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3669 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3670 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3671 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3672 
3673 	SYS_INSN(TLBI_ALLE2OSNXS, undef_access),
3674 	SYS_INSN(TLBI_VAE2OSNXS, undef_access),
3675 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3676 	SYS_INSN(TLBI_VALE2OSNXS, undef_access),
3677 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3678 
3679 	SYS_INSN(TLBI_RVAE2ISNXS, undef_access),
3680 	SYS_INSN(TLBI_RVALE2ISNXS, undef_access),
3681 	SYS_INSN(TLBI_ALLE2ISNXS, undef_access),
3682 	SYS_INSN(TLBI_VAE2ISNXS, undef_access),
3683 
3684 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3685 	SYS_INSN(TLBI_VALE2ISNXS, undef_access),
3686 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3687 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3688 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3689 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3690 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3691 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3692 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3693 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3694 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3695 	SYS_INSN(TLBI_RVAE2OSNXS, undef_access),
3696 	SYS_INSN(TLBI_RVALE2OSNXS, undef_access),
3697 	SYS_INSN(TLBI_RVAE2NXS, undef_access),
3698 	SYS_INSN(TLBI_RVALE2NXS, undef_access),
3699 	SYS_INSN(TLBI_ALLE2NXS, undef_access),
3700 	SYS_INSN(TLBI_VAE2NXS, undef_access),
3701 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3702 	SYS_INSN(TLBI_VALE2NXS, undef_access),
3703 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3704 };
3705 
3706 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3707 			struct sys_reg_params *p,
3708 			const struct sys_reg_desc *r)
3709 {
3710 	if (p->is_write) {
3711 		return ignore_write(vcpu, p);
3712 	} else {
3713 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3714 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3715 
3716 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3717 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3718 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3719 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3720 			     (1 << 15) | (el3 << 14) | (el3 << 12));
3721 		return true;
3722 	}
3723 }
3724 
3725 /*
3726  * AArch32 debug register mappings
3727  *
3728  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3729  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3730  *
3731  * None of the other registers share their location, so treat them as
3732  * if they were 64bit.
3733  */
3734 #define DBG_BCR_BVR_WCR_WVR(n)							\
3735 	/* DBGBVRn */								\
3736 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4),			\
3737 	  trap_dbg_wb_reg, NULL, n },						\
3738 	/* DBGBCRn */								\
3739 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_dbg_wb_reg, NULL, n },	\
3740 	/* DBGWVRn */								\
3741 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_dbg_wb_reg, NULL, n },	\
3742 	/* DBGWCRn */								\
3743 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_dbg_wb_reg, NULL, n }
3744 
3745 #define DBGBXVR(n)								\
3746 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1),			\
3747 	  trap_dbg_wb_reg, NULL, n }
3748 
3749 /*
3750  * Trapped cp14 registers. We generally ignore most of the external
3751  * debug, on the principle that they don't really make sense to a
3752  * guest. Revisit this one day, would this principle change.
3753  */
3754 static const struct sys_reg_desc cp14_regs[] = {
3755 	/* DBGDIDR */
3756 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3757 	/* DBGDTRRXext */
3758 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3759 
3760 	DBG_BCR_BVR_WCR_WVR(0),
3761 	/* DBGDSCRint */
3762 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3763 	DBG_BCR_BVR_WCR_WVR(1),
3764 	/* DBGDCCINT */
3765 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3766 	/* DBGDSCRext */
3767 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3768 	DBG_BCR_BVR_WCR_WVR(2),
3769 	/* DBGDTR[RT]Xint */
3770 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3771 	/* DBGDTR[RT]Xext */
3772 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3773 	DBG_BCR_BVR_WCR_WVR(3),
3774 	DBG_BCR_BVR_WCR_WVR(4),
3775 	DBG_BCR_BVR_WCR_WVR(5),
3776 	/* DBGWFAR */
3777 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3778 	/* DBGOSECCR */
3779 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3780 	DBG_BCR_BVR_WCR_WVR(6),
3781 	/* DBGVCR */
3782 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3783 	DBG_BCR_BVR_WCR_WVR(7),
3784 	DBG_BCR_BVR_WCR_WVR(8),
3785 	DBG_BCR_BVR_WCR_WVR(9),
3786 	DBG_BCR_BVR_WCR_WVR(10),
3787 	DBG_BCR_BVR_WCR_WVR(11),
3788 	DBG_BCR_BVR_WCR_WVR(12),
3789 	DBG_BCR_BVR_WCR_WVR(13),
3790 	DBG_BCR_BVR_WCR_WVR(14),
3791 	DBG_BCR_BVR_WCR_WVR(15),
3792 
3793 	/* DBGDRAR (32bit) */
3794 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3795 
3796 	DBGBXVR(0),
3797 	/* DBGOSLAR */
3798 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3799 	DBGBXVR(1),
3800 	/* DBGOSLSR */
3801 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3802 	DBGBXVR(2),
3803 	DBGBXVR(3),
3804 	/* DBGOSDLR */
3805 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3806 	DBGBXVR(4),
3807 	/* DBGPRCR */
3808 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3809 	DBGBXVR(5),
3810 	DBGBXVR(6),
3811 	DBGBXVR(7),
3812 	DBGBXVR(8),
3813 	DBGBXVR(9),
3814 	DBGBXVR(10),
3815 	DBGBXVR(11),
3816 	DBGBXVR(12),
3817 	DBGBXVR(13),
3818 	DBGBXVR(14),
3819 	DBGBXVR(15),
3820 
3821 	/* DBGDSAR (32bit) */
3822 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3823 
3824 	/* DBGDEVID2 */
3825 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3826 	/* DBGDEVID1 */
3827 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3828 	/* DBGDEVID */
3829 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3830 	/* DBGCLAIMSET */
3831 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3832 	/* DBGCLAIMCLR */
3833 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3834 	/* DBGAUTHSTATUS */
3835 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3836 };
3837 
3838 /* Trapped cp14 64bit registers */
3839 static const struct sys_reg_desc cp14_64_regs[] = {
3840 	/* DBGDRAR (64bit) */
3841 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3842 
3843 	/* DBGDSAR (64bit) */
3844 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3845 };
3846 
3847 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3848 	AA32(_map),							\
3849 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3850 	.visibility = pmu_visibility
3851 
3852 /* Macro to expand the PMEVCNTRn register */
3853 #define PMU_PMEVCNTR(n)							\
3854 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3855 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3856 	  .access = access_pmu_evcntr }
3857 
3858 /* Macro to expand the PMEVTYPERn register */
3859 #define PMU_PMEVTYPER(n)						\
3860 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3861 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3862 	  .access = access_pmu_evtyper }
3863 /*
3864  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
3865  * depending on the way they are accessed (as a 32bit or a 64bit
3866  * register).
3867  */
3868 static const struct sys_reg_desc cp15_regs[] = {
3869 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
3870 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
3871 	/* ACTLR */
3872 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
3873 	/* ACTLR2 */
3874 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
3875 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3876 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
3877 	/* TTBCR */
3878 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
3879 	/* TTBCR2 */
3880 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
3881 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
3882 	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
3883 	/* DFSR */
3884 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
3885 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
3886 	/* ADFSR */
3887 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
3888 	/* AIFSR */
3889 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
3890 	/* DFAR */
3891 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
3892 	/* IFAR */
3893 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
3894 
3895 	/*
3896 	 * DC{C,I,CI}SW operations:
3897 	 */
3898 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
3899 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
3900 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
3901 
3902 	/* PMU */
3903 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
3904 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
3905 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
3906 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
3907 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
3908 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
3909 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
3910 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
3911 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
3912 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
3913 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
3914 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
3915 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
3916 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
3917 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
3918 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
3919 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
3920 	/* PMMIR */
3921 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
3922 
3923 	/* PRRR/MAIR0 */
3924 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
3925 	/* NMRR/MAIR1 */
3926 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
3927 	/* AMAIR0 */
3928 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
3929 	/* AMAIR1 */
3930 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
3931 
3932 	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3933 	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3934 	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3935 	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3936 	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3937 	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3938 	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3939 	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3940 	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3941 	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3942 	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3943 	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3944 	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
3945 	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3946 	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3947 	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3948 	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3949 	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3950 	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3951 	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3952 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3953 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3954 
3955 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
3956 
3957 	/* Arch Tmers */
3958 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
3959 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
3960 
3961 	/* PMEVCNTRn */
3962 	PMU_PMEVCNTR(0),
3963 	PMU_PMEVCNTR(1),
3964 	PMU_PMEVCNTR(2),
3965 	PMU_PMEVCNTR(3),
3966 	PMU_PMEVCNTR(4),
3967 	PMU_PMEVCNTR(5),
3968 	PMU_PMEVCNTR(6),
3969 	PMU_PMEVCNTR(7),
3970 	PMU_PMEVCNTR(8),
3971 	PMU_PMEVCNTR(9),
3972 	PMU_PMEVCNTR(10),
3973 	PMU_PMEVCNTR(11),
3974 	PMU_PMEVCNTR(12),
3975 	PMU_PMEVCNTR(13),
3976 	PMU_PMEVCNTR(14),
3977 	PMU_PMEVCNTR(15),
3978 	PMU_PMEVCNTR(16),
3979 	PMU_PMEVCNTR(17),
3980 	PMU_PMEVCNTR(18),
3981 	PMU_PMEVCNTR(19),
3982 	PMU_PMEVCNTR(20),
3983 	PMU_PMEVCNTR(21),
3984 	PMU_PMEVCNTR(22),
3985 	PMU_PMEVCNTR(23),
3986 	PMU_PMEVCNTR(24),
3987 	PMU_PMEVCNTR(25),
3988 	PMU_PMEVCNTR(26),
3989 	PMU_PMEVCNTR(27),
3990 	PMU_PMEVCNTR(28),
3991 	PMU_PMEVCNTR(29),
3992 	PMU_PMEVCNTR(30),
3993 	/* PMEVTYPERn */
3994 	PMU_PMEVTYPER(0),
3995 	PMU_PMEVTYPER(1),
3996 	PMU_PMEVTYPER(2),
3997 	PMU_PMEVTYPER(3),
3998 	PMU_PMEVTYPER(4),
3999 	PMU_PMEVTYPER(5),
4000 	PMU_PMEVTYPER(6),
4001 	PMU_PMEVTYPER(7),
4002 	PMU_PMEVTYPER(8),
4003 	PMU_PMEVTYPER(9),
4004 	PMU_PMEVTYPER(10),
4005 	PMU_PMEVTYPER(11),
4006 	PMU_PMEVTYPER(12),
4007 	PMU_PMEVTYPER(13),
4008 	PMU_PMEVTYPER(14),
4009 	PMU_PMEVTYPER(15),
4010 	PMU_PMEVTYPER(16),
4011 	PMU_PMEVTYPER(17),
4012 	PMU_PMEVTYPER(18),
4013 	PMU_PMEVTYPER(19),
4014 	PMU_PMEVTYPER(20),
4015 	PMU_PMEVTYPER(21),
4016 	PMU_PMEVTYPER(22),
4017 	PMU_PMEVTYPER(23),
4018 	PMU_PMEVTYPER(24),
4019 	PMU_PMEVTYPER(25),
4020 	PMU_PMEVTYPER(26),
4021 	PMU_PMEVTYPER(27),
4022 	PMU_PMEVTYPER(28),
4023 	PMU_PMEVTYPER(29),
4024 	PMU_PMEVTYPER(30),
4025 	/* PMCCFILTR */
4026 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
4027 
4028 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
4029 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
4030 
4031 	/* CCSIDR2 */
4032 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
4033 
4034 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
4035 };
4036 
4037 static const struct sys_reg_desc cp15_64_regs[] = {
4038 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
4039 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
4040 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
4041 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
4042 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
4043 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
4044 	{ SYS_DESC(SYS_AARCH32_CNTVCT),	      access_arch_timer },
4045 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
4046 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
4047 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
4048 	{ SYS_DESC(SYS_AARCH32_CNTVCTSS),     access_arch_timer },
4049 };
4050 
4051 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
4052 			       bool is_32)
4053 {
4054 	unsigned int i;
4055 
4056 	for (i = 0; i < n; i++) {
4057 		if (!is_32 && table[i].reg && !table[i].reset) {
4058 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
4059 				&table[i], i, table[i].name);
4060 			return false;
4061 		}
4062 
4063 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
4064 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
4065 				&table[i], i, table[i - 1].name, table[i].name);
4066 			return false;
4067 		}
4068 	}
4069 
4070 	return true;
4071 }
4072 
4073 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
4074 {
4075 	kvm_inject_undefined(vcpu);
4076 	return 1;
4077 }
4078 
4079 static void perform_access(struct kvm_vcpu *vcpu,
4080 			   struct sys_reg_params *params,
4081 			   const struct sys_reg_desc *r)
4082 {
4083 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
4084 
4085 	/* Check for regs disabled by runtime config */
4086 	if (sysreg_hidden(vcpu, r)) {
4087 		kvm_inject_undefined(vcpu);
4088 		return;
4089 	}
4090 
4091 	/*
4092 	 * Not having an accessor means that we have configured a trap
4093 	 * that we don't know how to handle. This certainly qualifies
4094 	 * as a gross bug that should be fixed right away.
4095 	 */
4096 	BUG_ON(!r->access);
4097 
4098 	/* Skip instruction if instructed so */
4099 	if (likely(r->access(vcpu, params, r)))
4100 		kvm_incr_pc(vcpu);
4101 }
4102 
4103 /*
4104  * emulate_cp --  tries to match a sys_reg access in a handling table, and
4105  *                call the corresponding trap handler.
4106  *
4107  * @params: pointer to the descriptor of the access
4108  * @table: array of trap descriptors
4109  * @num: size of the trap descriptor array
4110  *
4111  * Return true if the access has been handled, false if not.
4112  */
4113 static bool emulate_cp(struct kvm_vcpu *vcpu,
4114 		       struct sys_reg_params *params,
4115 		       const struct sys_reg_desc *table,
4116 		       size_t num)
4117 {
4118 	const struct sys_reg_desc *r;
4119 
4120 	if (!table)
4121 		return false;	/* Not handled */
4122 
4123 	r = find_reg(params, table, num);
4124 
4125 	if (r) {
4126 		perform_access(vcpu, params, r);
4127 		return true;
4128 	}
4129 
4130 	/* Not handled */
4131 	return false;
4132 }
4133 
4134 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
4135 				struct sys_reg_params *params)
4136 {
4137 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
4138 	int cp = -1;
4139 
4140 	switch (esr_ec) {
4141 	case ESR_ELx_EC_CP15_32:
4142 	case ESR_ELx_EC_CP15_64:
4143 		cp = 15;
4144 		break;
4145 	case ESR_ELx_EC_CP14_MR:
4146 	case ESR_ELx_EC_CP14_64:
4147 		cp = 14;
4148 		break;
4149 	default:
4150 		WARN_ON(1);
4151 	}
4152 
4153 	print_sys_reg_msg(params,
4154 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
4155 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4156 	kvm_inject_undefined(vcpu);
4157 }
4158 
4159 /**
4160  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
4161  * @vcpu: The VCPU pointer
4162  * @global: &struct sys_reg_desc
4163  * @nr_global: size of the @global array
4164  */
4165 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
4166 			    const struct sys_reg_desc *global,
4167 			    size_t nr_global)
4168 {
4169 	struct sys_reg_params params;
4170 	u64 esr = kvm_vcpu_get_esr(vcpu);
4171 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4172 	int Rt2 = (esr >> 10) & 0x1f;
4173 
4174 	params.CRm = (esr >> 1) & 0xf;
4175 	params.is_write = ((esr & 1) == 0);
4176 
4177 	params.Op0 = 0;
4178 	params.Op1 = (esr >> 16) & 0xf;
4179 	params.Op2 = 0;
4180 	params.CRn = 0;
4181 
4182 	/*
4183 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
4184 	 * backends between AArch32 and AArch64, we get away with it.
4185 	 */
4186 	if (params.is_write) {
4187 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
4188 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
4189 	}
4190 
4191 	/*
4192 	 * If the table contains a handler, handle the
4193 	 * potential register operation in the case of a read and return
4194 	 * with success.
4195 	 */
4196 	if (emulate_cp(vcpu, &params, global, nr_global)) {
4197 		/* Split up the value between registers for the read side */
4198 		if (!params.is_write) {
4199 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
4200 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
4201 		}
4202 
4203 		return 1;
4204 	}
4205 
4206 	unhandled_cp_access(vcpu, &params);
4207 	return 1;
4208 }
4209 
4210 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
4211 
4212 /*
4213  * The CP10 ID registers are architecturally mapped to AArch64 feature
4214  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
4215  * from AArch32.
4216  */
4217 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
4218 {
4219 	u8 reg_id = (esr >> 10) & 0xf;
4220 	bool valid;
4221 
4222 	params->is_write = ((esr & 1) == 0);
4223 	params->Op0 = 3;
4224 	params->Op1 = 0;
4225 	params->CRn = 0;
4226 	params->CRm = 3;
4227 
4228 	/* CP10 ID registers are read-only */
4229 	valid = !params->is_write;
4230 
4231 	switch (reg_id) {
4232 	/* MVFR0 */
4233 	case 0b0111:
4234 		params->Op2 = 0;
4235 		break;
4236 	/* MVFR1 */
4237 	case 0b0110:
4238 		params->Op2 = 1;
4239 		break;
4240 	/* MVFR2 */
4241 	case 0b0101:
4242 		params->Op2 = 2;
4243 		break;
4244 	default:
4245 		valid = false;
4246 	}
4247 
4248 	if (valid)
4249 		return true;
4250 
4251 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
4252 		      params->is_write ? "write" : "read", reg_id);
4253 	return false;
4254 }
4255 
4256 /**
4257  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
4258  *			  VFP Register' from AArch32.
4259  * @vcpu: The vCPU pointer
4260  *
4261  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
4262  * Work out the correct AArch64 system register encoding and reroute to the
4263  * AArch64 system register emulation.
4264  */
4265 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
4266 {
4267 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4268 	u64 esr = kvm_vcpu_get_esr(vcpu);
4269 	struct sys_reg_params params;
4270 
4271 	/* UNDEF on any unhandled register access */
4272 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
4273 		kvm_inject_undefined(vcpu);
4274 		return 1;
4275 	}
4276 
4277 	if (emulate_sys_reg(vcpu, &params))
4278 		vcpu_set_reg(vcpu, Rt, params.regval);
4279 
4280 	return 1;
4281 }
4282 
4283 /**
4284  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
4285  *			       CRn=0, which corresponds to the AArch32 feature
4286  *			       registers.
4287  * @vcpu: the vCPU pointer
4288  * @params: the system register access parameters.
4289  *
4290  * Our cp15 system register tables do not enumerate the AArch32 feature
4291  * registers. Conveniently, our AArch64 table does, and the AArch32 system
4292  * register encoding can be trivially remapped into the AArch64 for the feature
4293  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
4294  *
4295  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
4296  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
4297  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
4298  * treat undefined registers in this range as RAZ.
4299  */
4300 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
4301 				   struct sys_reg_params *params)
4302 {
4303 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4304 
4305 	/* Treat impossible writes to RO registers as UNDEFINED */
4306 	if (params->is_write) {
4307 		unhandled_cp_access(vcpu, params);
4308 		return 1;
4309 	}
4310 
4311 	params->Op0 = 3;
4312 
4313 	/*
4314 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
4315 	 * Avoid conflicting with future expansion of AArch64 feature registers
4316 	 * and simply treat them as RAZ here.
4317 	 */
4318 	if (params->CRm > 3)
4319 		params->regval = 0;
4320 	else if (!emulate_sys_reg(vcpu, params))
4321 		return 1;
4322 
4323 	vcpu_set_reg(vcpu, Rt, params->regval);
4324 	return 1;
4325 }
4326 
4327 /**
4328  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
4329  * @vcpu: The VCPU pointer
4330  * @params: &struct sys_reg_params
4331  * @global: &struct sys_reg_desc
4332  * @nr_global: size of the @global array
4333  */
4334 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
4335 			    struct sys_reg_params *params,
4336 			    const struct sys_reg_desc *global,
4337 			    size_t nr_global)
4338 {
4339 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
4340 
4341 	params->regval = vcpu_get_reg(vcpu, Rt);
4342 
4343 	if (emulate_cp(vcpu, params, global, nr_global)) {
4344 		if (!params->is_write)
4345 			vcpu_set_reg(vcpu, Rt, params->regval);
4346 		return 1;
4347 	}
4348 
4349 	unhandled_cp_access(vcpu, params);
4350 	return 1;
4351 }
4352 
4353 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
4354 {
4355 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4356 }
4357 
4358 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4359 {
4360 	struct sys_reg_params params;
4361 
4362 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4363 
4364 	/*
4365 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4366 	 * system register table. Registers in the ID range where CRm=0 are
4367 	 * excluded from this scheme as they do not trivially map into AArch64
4368 	 * system register encodings.
4369 	 */
4370 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
4371 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4372 
4373 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4374 }
4375 
4376 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4377 {
4378 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4379 }
4380 
4381 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4382 {
4383 	struct sys_reg_params params;
4384 
4385 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4386 
4387 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4388 }
4389 
4390 /**
4391  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4392  * @vcpu: The VCPU pointer
4393  * @params: Decoded system register parameters
4394  *
4395  * Return: true if the system register access was successful, false otherwise.
4396  */
4397 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4398 			    struct sys_reg_params *params)
4399 {
4400 	const struct sys_reg_desc *r;
4401 
4402 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4403 	if (likely(r)) {
4404 		perform_access(vcpu, params, r);
4405 		return true;
4406 	}
4407 
4408 	print_sys_reg_msg(params,
4409 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4410 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4411 	kvm_inject_undefined(vcpu);
4412 
4413 	return false;
4414 }
4415 
4416 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4417 {
4418 	unsigned long i, idreg_idx = 0;
4419 
4420 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4421 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4422 
4423 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4424 			continue;
4425 
4426 		if (idreg_idx == pos)
4427 			return r;
4428 
4429 		idreg_idx++;
4430 	}
4431 
4432 	return NULL;
4433 }
4434 
4435 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4436 {
4437 	struct kvm *kvm = s->private;
4438 	u8 *iter;
4439 
4440 	mutex_lock(&kvm->arch.config_lock);
4441 
4442 	iter = &kvm->arch.idreg_debugfs_iter;
4443 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4444 	    *iter == (u8)~0) {
4445 		*iter = *pos;
4446 		if (!idregs_debug_find(kvm, *iter))
4447 			iter = NULL;
4448 	} else {
4449 		iter = ERR_PTR(-EBUSY);
4450 	}
4451 
4452 	mutex_unlock(&kvm->arch.config_lock);
4453 
4454 	return iter;
4455 }
4456 
4457 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4458 {
4459 	struct kvm *kvm = s->private;
4460 
4461 	(*pos)++;
4462 
4463 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4464 		kvm->arch.idreg_debugfs_iter++;
4465 
4466 		return &kvm->arch.idreg_debugfs_iter;
4467 	}
4468 
4469 	return NULL;
4470 }
4471 
4472 static void idregs_debug_stop(struct seq_file *s, void *v)
4473 {
4474 	struct kvm *kvm = s->private;
4475 
4476 	if (IS_ERR(v))
4477 		return;
4478 
4479 	mutex_lock(&kvm->arch.config_lock);
4480 
4481 	kvm->arch.idreg_debugfs_iter = ~0;
4482 
4483 	mutex_unlock(&kvm->arch.config_lock);
4484 }
4485 
4486 static int idregs_debug_show(struct seq_file *s, void *v)
4487 {
4488 	const struct sys_reg_desc *desc;
4489 	struct kvm *kvm = s->private;
4490 
4491 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4492 
4493 	if (!desc->name)
4494 		return 0;
4495 
4496 	seq_printf(s, "%20s:\t%016llx\n",
4497 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4498 
4499 	return 0;
4500 }
4501 
4502 static const struct seq_operations idregs_debug_sops = {
4503 	.start	= idregs_debug_start,
4504 	.next	= idregs_debug_next,
4505 	.stop	= idregs_debug_stop,
4506 	.show	= idregs_debug_show,
4507 };
4508 
4509 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4510 
4511 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4512 {
4513 	kvm->arch.idreg_debugfs_iter = ~0;
4514 
4515 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4516 			    &idregs_debug_fops);
4517 }
4518 
4519 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4520 {
4521 	u32 id = reg_to_encoding(reg);
4522 	struct kvm *kvm = vcpu->kvm;
4523 
4524 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4525 		return;
4526 
4527 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4528 }
4529 
4530 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4531 				  const struct sys_reg_desc *reg)
4532 {
4533 	if (kvm_vcpu_initialized(vcpu))
4534 		return;
4535 
4536 	reg->reset(vcpu, reg);
4537 }
4538 
4539 /**
4540  * kvm_reset_sys_regs - sets system registers to reset value
4541  * @vcpu: The VCPU pointer
4542  *
4543  * This function finds the right table above and sets the registers on the
4544  * virtual CPU struct to their architecturally defined reset values.
4545  */
4546 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4547 {
4548 	struct kvm *kvm = vcpu->kvm;
4549 	unsigned long i;
4550 
4551 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4552 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4553 
4554 		if (!r->reset)
4555 			continue;
4556 
4557 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4558 			reset_vm_ftr_id_reg(vcpu, r);
4559 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4560 			reset_vcpu_ftr_id_reg(vcpu, r);
4561 		else
4562 			r->reset(vcpu, r);
4563 
4564 		if (r->reg >= __SANITISED_REG_START__ && r->reg < NR_SYS_REGS)
4565 			(void)__vcpu_sys_reg(vcpu, r->reg);
4566 	}
4567 
4568 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4569 }
4570 
4571 /**
4572  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4573  *			 trap on a guest execution
4574  * @vcpu: The VCPU pointer
4575  */
4576 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4577 {
4578 	const struct sys_reg_desc *desc = NULL;
4579 	struct sys_reg_params params;
4580 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4581 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4582 	int sr_idx;
4583 
4584 	trace_kvm_handle_sys_reg(esr);
4585 
4586 	if (triage_sysreg_trap(vcpu, &sr_idx))
4587 		return 1;
4588 
4589 	params = esr_sys64_to_params(esr);
4590 	params.regval = vcpu_get_reg(vcpu, Rt);
4591 
4592 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4593 	if (params.Op0 == 2 || params.Op0 == 3)
4594 		desc = &sys_reg_descs[sr_idx];
4595 	else
4596 		desc = &sys_insn_descs[sr_idx];
4597 
4598 	perform_access(vcpu, &params, desc);
4599 
4600 	/* Read from system register? */
4601 	if (!params.is_write &&
4602 	    (params.Op0 == 2 || params.Op0 == 3))
4603 		vcpu_set_reg(vcpu, Rt, params.regval);
4604 
4605 	return 1;
4606 }
4607 
4608 /******************************************************************************
4609  * Userspace API
4610  *****************************************************************************/
4611 
4612 static bool index_to_params(u64 id, struct sys_reg_params *params)
4613 {
4614 	switch (id & KVM_REG_SIZE_MASK) {
4615 	case KVM_REG_SIZE_U64:
4616 		/* Any unused index bits means it's not valid. */
4617 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4618 			      | KVM_REG_ARM_COPROC_MASK
4619 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4620 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4621 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4622 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4623 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4624 			return false;
4625 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4626 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4627 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4628 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4629 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4630 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4631 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4632 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4633 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4634 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4635 		return true;
4636 	default:
4637 		return false;
4638 	}
4639 }
4640 
4641 const struct sys_reg_desc *get_reg_by_id(u64 id,
4642 					 const struct sys_reg_desc table[],
4643 					 unsigned int num)
4644 {
4645 	struct sys_reg_params params;
4646 
4647 	if (!index_to_params(id, &params))
4648 		return NULL;
4649 
4650 	return find_reg(&params, table, num);
4651 }
4652 
4653 /* Decode an index value, and find the sys_reg_desc entry. */
4654 static const struct sys_reg_desc *
4655 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4656 		   const struct sys_reg_desc table[], unsigned int num)
4657 
4658 {
4659 	const struct sys_reg_desc *r;
4660 
4661 	/* We only do sys_reg for now. */
4662 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4663 		return NULL;
4664 
4665 	r = get_reg_by_id(id, table, num);
4666 
4667 	/* Not saved in the sys_reg array and not otherwise accessible? */
4668 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4669 		r = NULL;
4670 
4671 	return r;
4672 }
4673 
4674 /*
4675  * These are the invariant sys_reg registers: we let the guest see the
4676  * host versions of these, so they're part of the guest state.
4677  *
4678  * A future CPU may provide a mechanism to present different values to
4679  * the guest, or a future kvm may trap them.
4680  */
4681 
4682 #define FUNCTION_INVARIANT(reg)						\
4683 	static u64 reset_##reg(struct kvm_vcpu *v,			\
4684 			       const struct sys_reg_desc *r)		\
4685 	{								\
4686 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
4687 		return ((struct sys_reg_desc *)r)->val;			\
4688 	}
4689 
4690 FUNCTION_INVARIANT(midr_el1)
4691 FUNCTION_INVARIANT(revidr_el1)
4692 FUNCTION_INVARIANT(aidr_el1)
4693 
4694 /* ->val is filled in by kvm_sys_reg_table_init() */
4695 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
4696 	{ SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 },
4697 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 },
4698 	{ SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 },
4699 };
4700 
4701 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
4702 {
4703 	const struct sys_reg_desc *r;
4704 
4705 	r = get_reg_by_id(id, invariant_sys_regs,
4706 			  ARRAY_SIZE(invariant_sys_regs));
4707 	if (!r)
4708 		return -ENOENT;
4709 
4710 	return put_user(r->val, uaddr);
4711 }
4712 
4713 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
4714 {
4715 	const struct sys_reg_desc *r;
4716 	u64 val;
4717 
4718 	r = get_reg_by_id(id, invariant_sys_regs,
4719 			  ARRAY_SIZE(invariant_sys_regs));
4720 	if (!r)
4721 		return -ENOENT;
4722 
4723 	if (get_user(val, uaddr))
4724 		return -EFAULT;
4725 
4726 	/* This is what we mean by invariant: you can't change it. */
4727 	if (r->val != val)
4728 		return -EINVAL;
4729 
4730 	return 0;
4731 }
4732 
4733 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4734 {
4735 	u32 val;
4736 	u32 __user *uval = uaddr;
4737 
4738 	/* Fail if we have unknown bits set. */
4739 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4740 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4741 		return -ENOENT;
4742 
4743 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4744 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4745 		if (KVM_REG_SIZE(id) != 4)
4746 			return -ENOENT;
4747 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4748 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4749 		if (val >= CSSELR_MAX)
4750 			return -ENOENT;
4751 
4752 		return put_user(get_ccsidr(vcpu, val), uval);
4753 	default:
4754 		return -ENOENT;
4755 	}
4756 }
4757 
4758 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4759 {
4760 	u32 val, newval;
4761 	u32 __user *uval = uaddr;
4762 
4763 	/* Fail if we have unknown bits set. */
4764 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4765 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4766 		return -ENOENT;
4767 
4768 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4769 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4770 		if (KVM_REG_SIZE(id) != 4)
4771 			return -ENOENT;
4772 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4773 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4774 		if (val >= CSSELR_MAX)
4775 			return -ENOENT;
4776 
4777 		if (get_user(newval, uval))
4778 			return -EFAULT;
4779 
4780 		return set_ccsidr(vcpu, val, newval);
4781 	default:
4782 		return -ENOENT;
4783 	}
4784 }
4785 
4786 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4787 			 const struct sys_reg_desc table[], unsigned int num)
4788 {
4789 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4790 	const struct sys_reg_desc *r;
4791 	u64 val;
4792 	int ret;
4793 
4794 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4795 	if (!r || sysreg_hidden(vcpu, r))
4796 		return -ENOENT;
4797 
4798 	if (r->get_user) {
4799 		ret = (r->get_user)(vcpu, r, &val);
4800 	} else {
4801 		val = __vcpu_sys_reg(vcpu, r->reg);
4802 		ret = 0;
4803 	}
4804 
4805 	if (!ret)
4806 		ret = put_user(val, uaddr);
4807 
4808 	return ret;
4809 }
4810 
4811 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4812 {
4813 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4814 	int err;
4815 
4816 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4817 		return demux_c15_get(vcpu, reg->id, uaddr);
4818 
4819 	err = get_invariant_sys_reg(reg->id, uaddr);
4820 	if (err != -ENOENT)
4821 		return err;
4822 
4823 	return kvm_sys_reg_get_user(vcpu, reg,
4824 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4825 }
4826 
4827 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4828 			 const struct sys_reg_desc table[], unsigned int num)
4829 {
4830 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4831 	const struct sys_reg_desc *r;
4832 	u64 val;
4833 	int ret;
4834 
4835 	if (get_user(val, uaddr))
4836 		return -EFAULT;
4837 
4838 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4839 	if (!r || sysreg_hidden(vcpu, r))
4840 		return -ENOENT;
4841 
4842 	if (sysreg_user_write_ignore(vcpu, r))
4843 		return 0;
4844 
4845 	if (r->set_user) {
4846 		ret = (r->set_user)(vcpu, r, val);
4847 	} else {
4848 		__vcpu_sys_reg(vcpu, r->reg) = val;
4849 		ret = 0;
4850 	}
4851 
4852 	return ret;
4853 }
4854 
4855 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4856 {
4857 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4858 	int err;
4859 
4860 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4861 		return demux_c15_set(vcpu, reg->id, uaddr);
4862 
4863 	err = set_invariant_sys_reg(reg->id, uaddr);
4864 	if (err != -ENOENT)
4865 		return err;
4866 
4867 	return kvm_sys_reg_set_user(vcpu, reg,
4868 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4869 }
4870 
4871 static unsigned int num_demux_regs(void)
4872 {
4873 	return CSSELR_MAX;
4874 }
4875 
4876 static int write_demux_regids(u64 __user *uindices)
4877 {
4878 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4879 	unsigned int i;
4880 
4881 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4882 	for (i = 0; i < CSSELR_MAX; i++) {
4883 		if (put_user(val | i, uindices))
4884 			return -EFAULT;
4885 		uindices++;
4886 	}
4887 	return 0;
4888 }
4889 
4890 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4891 {
4892 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4893 		KVM_REG_ARM64_SYSREG |
4894 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4895 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4896 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4897 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4898 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4899 }
4900 
4901 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4902 {
4903 	if (!*uind)
4904 		return true;
4905 
4906 	if (put_user(sys_reg_to_index(reg), *uind))
4907 		return false;
4908 
4909 	(*uind)++;
4910 	return true;
4911 }
4912 
4913 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
4914 			    const struct sys_reg_desc *rd,
4915 			    u64 __user **uind,
4916 			    unsigned int *total)
4917 {
4918 	/*
4919 	 * Ignore registers we trap but don't save,
4920 	 * and for which no custom user accessor is provided.
4921 	 */
4922 	if (!(rd->reg || rd->get_user))
4923 		return 0;
4924 
4925 	if (sysreg_hidden(vcpu, rd))
4926 		return 0;
4927 
4928 	if (!copy_reg_to_user(rd, uind))
4929 		return -EFAULT;
4930 
4931 	(*total)++;
4932 	return 0;
4933 }
4934 
4935 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
4936 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
4937 {
4938 	const struct sys_reg_desc *i2, *end2;
4939 	unsigned int total = 0;
4940 	int err;
4941 
4942 	i2 = sys_reg_descs;
4943 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
4944 
4945 	while (i2 != end2) {
4946 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
4947 		if (err)
4948 			return err;
4949 	}
4950 	return total;
4951 }
4952 
4953 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
4954 {
4955 	return ARRAY_SIZE(invariant_sys_regs)
4956 		+ num_demux_regs()
4957 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
4958 }
4959 
4960 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
4961 {
4962 	unsigned int i;
4963 	int err;
4964 
4965 	/* Then give them all the invariant registers' indices. */
4966 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
4967 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
4968 			return -EFAULT;
4969 		uindices++;
4970 	}
4971 
4972 	err = walk_sys_regs(vcpu, uindices);
4973 	if (err < 0)
4974 		return err;
4975 	uindices += err;
4976 
4977 	return write_demux_regids(uindices);
4978 }
4979 
4980 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
4981 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
4982 		sys_reg_Op1(r),					\
4983 		sys_reg_CRn(r),					\
4984 		sys_reg_CRm(r),					\
4985 		sys_reg_Op2(r))
4986 
4987 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4988 {
4989 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4990 	u64 __user *masks = (u64 __user *)range->addr;
4991 
4992 	/* Only feature id range is supported, reserved[13] must be zero. */
4993 	if (range->range ||
4994 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4995 		return -EINVAL;
4996 
4997 	/* Wipe the whole thing first */
4998 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4999 		return -EFAULT;
5000 
5001 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
5002 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
5003 		u32 encoding = reg_to_encoding(reg);
5004 		u64 val;
5005 
5006 		if (!is_feature_id_reg(encoding) || !reg->set_user)
5007 			continue;
5008 
5009 		if (!reg->val ||
5010 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
5011 			continue;
5012 		}
5013 		val = reg->val;
5014 
5015 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
5016 			return -EFAULT;
5017 	}
5018 
5019 	return 0;
5020 }
5021 
5022 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
5023 {
5024 	struct kvm *kvm = vcpu->kvm;
5025 
5026 	if (has_vhe() || has_hvhe())
5027 		vcpu->arch.hcr_el2 |= HCR_E2H;
5028 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
5029 		/* route synchronous external abort exceptions to EL2 */
5030 		vcpu->arch.hcr_el2 |= HCR_TEA;
5031 		/* trap error record accesses */
5032 		vcpu->arch.hcr_el2 |= HCR_TERR;
5033 	}
5034 
5035 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
5036 		vcpu->arch.hcr_el2 |= HCR_FWB;
5037 
5038 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
5039 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
5040 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
5041 		vcpu->arch.hcr_el2 |= HCR_TID4;
5042 	else
5043 		vcpu->arch.hcr_el2 |= HCR_TID2;
5044 
5045 	if (vcpu_el1_is_32bit(vcpu))
5046 		vcpu->arch.hcr_el2 &= ~HCR_RW;
5047 
5048 	if (kvm_has_mte(vcpu->kvm))
5049 		vcpu->arch.hcr_el2 |= HCR_ATA;
5050 
5051 	/*
5052 	 * In the absence of FGT, we cannot independently trap TLBI
5053 	 * Range instructions. This isn't great, but trapping all
5054 	 * TLBIs would be far worse. Live with it...
5055 	 */
5056 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5057 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
5058 }
5059 
5060 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
5061 {
5062 	struct kvm *kvm = vcpu->kvm;
5063 
5064 	mutex_lock(&kvm->arch.config_lock);
5065 	vcpu_set_hcr(vcpu);
5066 	vcpu_set_ich_hcr(vcpu);
5067 
5068 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
5069 		/*
5070 		 * In general, all HCRX_EL2 bits are gated by a feature.
5071 		 * The only reason we can set SMPME without checking any
5072 		 * feature is that its effects are not directly observable
5073 		 * from the guest.
5074 		 */
5075 		vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME;
5076 
5077 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
5078 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
5079 
5080 		if (kvm_has_tcr2(kvm))
5081 			vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En;
5082 
5083 		if (kvm_has_fpmr(kvm))
5084 			vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM;
5085 	}
5086 
5087 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
5088 		goto out;
5089 
5090 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
5091 				       HFGxTR_EL2_nMAIR2_EL1		|
5092 				       HFGxTR_EL2_nS2POR_EL1		|
5093 				       HFGxTR_EL2_nACCDATA_EL1		|
5094 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
5095 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
5096 
5097 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
5098 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
5099 						HFGITR_EL2_TLBIRVALE1OS	|
5100 						HFGITR_EL2_TLBIRVAAE1OS	|
5101 						HFGITR_EL2_TLBIRVAE1OS	|
5102 						HFGITR_EL2_TLBIVAALE1OS	|
5103 						HFGITR_EL2_TLBIVALE1OS	|
5104 						HFGITR_EL2_TLBIVAAE1OS	|
5105 						HFGITR_EL2_TLBIASIDE1OS	|
5106 						HFGITR_EL2_TLBIVAE1OS	|
5107 						HFGITR_EL2_TLBIVMALLE1OS);
5108 
5109 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
5110 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
5111 						HFGITR_EL2_TLBIRVALE1	|
5112 						HFGITR_EL2_TLBIRVAAE1	|
5113 						HFGITR_EL2_TLBIRVAE1	|
5114 						HFGITR_EL2_TLBIRVAALE1IS|
5115 						HFGITR_EL2_TLBIRVALE1IS	|
5116 						HFGITR_EL2_TLBIRVAAE1IS	|
5117 						HFGITR_EL2_TLBIRVAE1IS	|
5118 						HFGITR_EL2_TLBIRVAALE1OS|
5119 						HFGITR_EL2_TLBIRVALE1OS	|
5120 						HFGITR_EL2_TLBIRVAAE1OS	|
5121 						HFGITR_EL2_TLBIRVAE1OS);
5122 
5123 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
5124 		kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
5125 
5126 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
5127 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
5128 						HFGITR_EL2_ATS1E1WP);
5129 
5130 	if (!kvm_has_s1pie(kvm))
5131 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
5132 						HFGxTR_EL2_nPIR_EL1);
5133 
5134 	if (!kvm_has_s1poe(kvm))
5135 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 |
5136 						HFGxTR_EL2_nPOR_EL0);
5137 
5138 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
5139 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
5140 						  HAFGRTR_EL2_RES1);
5141 
5142 	if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) {
5143 		kvm->arch.fgu[HDFGRTR_GROUP] |= (HDFGRTR_EL2_nBRBDATA  |
5144 						 HDFGRTR_EL2_nBRBCTL   |
5145 						 HDFGRTR_EL2_nBRBIDR);
5146 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_nBRBINJ |
5147 						HFGITR_EL2_nBRBIALL);
5148 	}
5149 
5150 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
5151 out:
5152 	mutex_unlock(&kvm->arch.config_lock);
5153 }
5154 
5155 /*
5156  * Perform last adjustments to the ID registers that are implied by the
5157  * configuration outside of the ID regs themselves, as well as any
5158  * initialisation that directly depend on these ID registers (such as
5159  * RES0/RES1 behaviours). This is not the place to configure traps though.
5160  *
5161  * Because this can be called once per CPU, changes must be idempotent.
5162  */
5163 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
5164 {
5165 	struct kvm *kvm = vcpu->kvm;
5166 
5167 	guard(mutex)(&kvm->arch.config_lock);
5168 
5169 	if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
5170 	      irqchip_in_kernel(kvm) &&
5171 	      kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
5172 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
5173 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
5174 	}
5175 
5176 	if (vcpu_has_nv(vcpu)) {
5177 		int ret = kvm_init_nv_sysregs(vcpu);
5178 		if (ret)
5179 			return ret;
5180 	}
5181 
5182 	return 0;
5183 }
5184 
5185 int __init kvm_sys_reg_table_init(void)
5186 {
5187 	bool valid = true;
5188 	unsigned int i;
5189 	int ret = 0;
5190 
5191 	/* Make sure tables are unique and in order. */
5192 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
5193 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
5194 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
5195 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
5196 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
5197 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
5198 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
5199 
5200 	if (!valid)
5201 		return -EINVAL;
5202 
5203 	/* We abuse the reset function to overwrite the table itself. */
5204 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
5205 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
5206 
5207 	ret = populate_nv_trap_config();
5208 
5209 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
5210 		ret = populate_sysreg_config(sys_reg_descs + i, i);
5211 
5212 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
5213 		ret = populate_sysreg_config(sys_insn_descs + i, i);
5214 
5215 	return ret;
5216 }
5217