1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/coproc.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Authors: Rusty Russell <rusty@rustcorp.com.au> 9 * Christoffer Dall <c.dall@virtualopensystems.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/bsearch.h> 14 #include <linux/cacheinfo.h> 15 #include <linux/debugfs.h> 16 #include <linux/kvm_host.h> 17 #include <linux/mm.h> 18 #include <linux/printk.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/cacheflush.h> 22 #include <asm/cputype.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/esr.h> 25 #include <asm/kvm_arm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/kvm_nested.h> 30 #include <asm/perf_event.h> 31 #include <asm/sysreg.h> 32 33 #include <trace/events/kvm.h> 34 35 #include "sys_regs.h" 36 37 #include "trace.h" 38 39 /* 40 * For AArch32, we only take care of what is being trapped. Anything 41 * that has to do with init and userspace access has to go via the 42 * 64bit interface. 43 */ 44 45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg); 46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 47 u64 val); 48 49 static bool bad_trap(struct kvm_vcpu *vcpu, 50 struct sys_reg_params *params, 51 const struct sys_reg_desc *r, 52 const char *msg) 53 { 54 WARN_ONCE(1, "Unexpected %s\n", msg); 55 print_sys_reg_instr(params); 56 kvm_inject_undefined(vcpu); 57 return false; 58 } 59 60 static bool read_from_write_only(struct kvm_vcpu *vcpu, 61 struct sys_reg_params *params, 62 const struct sys_reg_desc *r) 63 { 64 return bad_trap(vcpu, params, r, 65 "sys_reg read to write-only register"); 66 } 67 68 static bool write_to_read_only(struct kvm_vcpu *vcpu, 69 struct sys_reg_params *params, 70 const struct sys_reg_desc *r) 71 { 72 return bad_trap(vcpu, params, r, 73 "sys_reg write to read-only register"); 74 } 75 76 #define PURE_EL2_SYSREG(el2) \ 77 case el2: { \ 78 *el1r = el2; \ 79 return true; \ 80 } 81 82 #define MAPPED_EL2_SYSREG(el2, el1, fn) \ 83 case el2: { \ 84 *xlate = fn; \ 85 *el1r = el1; \ 86 return true; \ 87 } 88 89 static bool get_el2_to_el1_mapping(unsigned int reg, 90 unsigned int *el1r, u64 (**xlate)(u64)) 91 { 92 switch (reg) { 93 PURE_EL2_SYSREG( VPIDR_EL2 ); 94 PURE_EL2_SYSREG( VMPIDR_EL2 ); 95 PURE_EL2_SYSREG( ACTLR_EL2 ); 96 PURE_EL2_SYSREG( HCR_EL2 ); 97 PURE_EL2_SYSREG( MDCR_EL2 ); 98 PURE_EL2_SYSREG( HSTR_EL2 ); 99 PURE_EL2_SYSREG( HACR_EL2 ); 100 PURE_EL2_SYSREG( VTTBR_EL2 ); 101 PURE_EL2_SYSREG( VTCR_EL2 ); 102 PURE_EL2_SYSREG( RVBAR_EL2 ); 103 PURE_EL2_SYSREG( TPIDR_EL2 ); 104 PURE_EL2_SYSREG( HPFAR_EL2 ); 105 PURE_EL2_SYSREG( CNTHCTL_EL2 ); 106 MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, 107 translate_sctlr_el2_to_sctlr_el1 ); 108 MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, 109 translate_cptr_el2_to_cpacr_el1 ); 110 MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, 111 translate_ttbr0_el2_to_ttbr0_el1 ); 112 MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); 113 MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, 114 translate_tcr_el2_to_tcr_el1 ); 115 MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); 116 MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); 117 MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); 118 MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); 119 MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); 120 MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); 121 MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); 122 MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); 123 MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); 124 default: 125 return false; 126 } 127 } 128 129 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) 130 { 131 u64 val = 0x8badf00d8badf00d; 132 u64 (*xlate)(u64) = NULL; 133 unsigned int el1r; 134 135 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) 136 goto memory_read; 137 138 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { 139 if (!is_hyp_ctxt(vcpu)) 140 goto memory_read; 141 142 /* 143 * If this register does not have an EL1 counterpart, 144 * then read the stored EL2 version. 145 */ 146 if (reg == el1r) 147 goto memory_read; 148 149 /* 150 * If we have a non-VHE guest and that the sysreg 151 * requires translation to be used at EL1, use the 152 * in-memory copy instead. 153 */ 154 if (!vcpu_el2_e2h_is_set(vcpu) && xlate) 155 goto memory_read; 156 157 /* Get the current version of the EL1 counterpart. */ 158 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); 159 return val; 160 } 161 162 /* EL1 register can't be on the CPU if the guest is in vEL2. */ 163 if (unlikely(is_hyp_ctxt(vcpu))) 164 goto memory_read; 165 166 if (__vcpu_read_sys_reg_from_cpu(reg, &val)) 167 return val; 168 169 memory_read: 170 return __vcpu_sys_reg(vcpu, reg); 171 } 172 173 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) 174 { 175 u64 (*xlate)(u64) = NULL; 176 unsigned int el1r; 177 178 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) 179 goto memory_write; 180 181 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { 182 if (!is_hyp_ctxt(vcpu)) 183 goto memory_write; 184 185 /* 186 * Always store a copy of the write to memory to avoid having 187 * to reverse-translate virtual EL2 system registers for a 188 * non-VHE guest hypervisor. 189 */ 190 __vcpu_sys_reg(vcpu, reg) = val; 191 192 /* No EL1 counterpart? We're done here.? */ 193 if (reg == el1r) 194 return; 195 196 if (!vcpu_el2_e2h_is_set(vcpu) && xlate) 197 val = xlate(val); 198 199 /* Redirect this to the EL1 version of the register. */ 200 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); 201 return; 202 } 203 204 /* EL1 register can't be on the CPU if the guest is in vEL2. */ 205 if (unlikely(is_hyp_ctxt(vcpu))) 206 goto memory_write; 207 208 if (__vcpu_write_sys_reg_to_cpu(val, reg)) 209 return; 210 211 memory_write: 212 __vcpu_sys_reg(vcpu, reg) = val; 213 } 214 215 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 216 #define CSSELR_MAX 14 217 218 /* 219 * Returns the minimum line size for the selected cache, expressed as 220 * Log2(bytes). 221 */ 222 static u8 get_min_cache_line_size(bool icache) 223 { 224 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); 225 u8 field; 226 227 if (icache) 228 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); 229 else 230 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); 231 232 /* 233 * Cache line size is represented as Log2(words) in CTR_EL0. 234 * Log2(bytes) can be derived with the following: 235 * 236 * Log2(words) + 2 = Log2(bytes / 4) + 2 237 * = Log2(bytes) - 2 + 2 238 * = Log2(bytes) 239 */ 240 return field + 2; 241 } 242 243 /* Which cache CCSIDR represents depends on CSSELR value. */ 244 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) 245 { 246 u8 line_size; 247 248 if (vcpu->arch.ccsidr) 249 return vcpu->arch.ccsidr[csselr]; 250 251 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); 252 253 /* 254 * Fabricate a CCSIDR value as the overriding value does not exist. 255 * The real CCSIDR value will not be used as it can vary by the 256 * physical CPU which the vcpu currently resides in. 257 * 258 * The line size is determined with get_min_cache_line_size(), which 259 * should be valid for all CPUs even if they have different cache 260 * configuration. 261 * 262 * The associativity bits are cleared, meaning the geometry of all data 263 * and unified caches (which are guaranteed to be PIPT and thus 264 * non-aliasing) are 1 set and 1 way. 265 * Guests should not be doing cache operations by set/way at all, and 266 * for this reason, we trap them and attempt to infer the intent, so 267 * that we can flush the entire guest's address space at the appropriate 268 * time. The exposed geometry minimizes the number of the traps. 269 * [If guests should attempt to infer aliasing properties from the 270 * geometry (which is not permitted by the architecture), they would 271 * only do so for virtually indexed caches.] 272 * 273 * We don't check if the cache level exists as it is allowed to return 274 * an UNKNOWN value if not. 275 */ 276 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); 277 } 278 279 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) 280 { 281 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; 282 u32 *ccsidr = vcpu->arch.ccsidr; 283 u32 i; 284 285 if ((val & CCSIDR_EL1_RES0) || 286 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) 287 return -EINVAL; 288 289 if (!ccsidr) { 290 if (val == get_ccsidr(vcpu, csselr)) 291 return 0; 292 293 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); 294 if (!ccsidr) 295 return -ENOMEM; 296 297 for (i = 0; i < CSSELR_MAX; i++) 298 ccsidr[i] = get_ccsidr(vcpu, i); 299 300 vcpu->arch.ccsidr = ccsidr; 301 } 302 303 ccsidr[csselr] = val; 304 305 return 0; 306 } 307 308 static bool access_rw(struct kvm_vcpu *vcpu, 309 struct sys_reg_params *p, 310 const struct sys_reg_desc *r) 311 { 312 if (p->is_write) 313 vcpu_write_sys_reg(vcpu, p->regval, r->reg); 314 else 315 p->regval = vcpu_read_sys_reg(vcpu, r->reg); 316 317 return true; 318 } 319 320 /* 321 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 322 */ 323 static bool access_dcsw(struct kvm_vcpu *vcpu, 324 struct sys_reg_params *p, 325 const struct sys_reg_desc *r) 326 { 327 if (!p->is_write) 328 return read_from_write_only(vcpu, p, r); 329 330 /* 331 * Only track S/W ops if we don't have FWB. It still indicates 332 * that the guest is a bit broken (S/W operations should only 333 * be done by firmware, knowing that there is only a single 334 * CPU left in the system, and certainly not from non-secure 335 * software). 336 */ 337 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 338 kvm_set_way_flush(vcpu); 339 340 return true; 341 } 342 343 static bool access_dcgsw(struct kvm_vcpu *vcpu, 344 struct sys_reg_params *p, 345 const struct sys_reg_desc *r) 346 { 347 if (!kvm_has_mte(vcpu->kvm)) { 348 kvm_inject_undefined(vcpu); 349 return false; 350 } 351 352 /* Treat MTE S/W ops as we treat the classic ones: with contempt */ 353 return access_dcsw(vcpu, p, r); 354 } 355 356 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) 357 { 358 switch (r->aarch32_map) { 359 case AA32_LO: 360 *mask = GENMASK_ULL(31, 0); 361 *shift = 0; 362 break; 363 case AA32_HI: 364 *mask = GENMASK_ULL(63, 32); 365 *shift = 32; 366 break; 367 default: 368 *mask = GENMASK_ULL(63, 0); 369 *shift = 0; 370 break; 371 } 372 } 373 374 /* 375 * Generic accessor for VM registers. Only called as long as HCR_TVM 376 * is set. If the guest enables the MMU, we stop trapping the VM 377 * sys_regs and leave it in complete control of the caches. 378 */ 379 static bool access_vm_reg(struct kvm_vcpu *vcpu, 380 struct sys_reg_params *p, 381 const struct sys_reg_desc *r) 382 { 383 bool was_enabled = vcpu_has_cache_enabled(vcpu); 384 u64 val, mask, shift; 385 386 BUG_ON(!p->is_write); 387 388 get_access_mask(r, &mask, &shift); 389 390 if (~mask) { 391 val = vcpu_read_sys_reg(vcpu, r->reg); 392 val &= ~mask; 393 } else { 394 val = 0; 395 } 396 397 val |= (p->regval & (mask >> shift)) << shift; 398 vcpu_write_sys_reg(vcpu, val, r->reg); 399 400 kvm_toggle_cache(vcpu, was_enabled); 401 return true; 402 } 403 404 static bool access_actlr(struct kvm_vcpu *vcpu, 405 struct sys_reg_params *p, 406 const struct sys_reg_desc *r) 407 { 408 u64 mask, shift; 409 410 if (p->is_write) 411 return ignore_write(vcpu, p); 412 413 get_access_mask(r, &mask, &shift); 414 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; 415 416 return true; 417 } 418 419 /* 420 * Trap handler for the GICv3 SGI generation system register. 421 * Forward the request to the VGIC emulation. 422 * The cp15_64 code makes sure this automatically works 423 * for both AArch64 and AArch32 accesses. 424 */ 425 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 426 struct sys_reg_params *p, 427 const struct sys_reg_desc *r) 428 { 429 bool g1; 430 431 if (!p->is_write) 432 return read_from_write_only(vcpu, p, r); 433 434 /* 435 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates 436 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, 437 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively 438 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure 439 * group. 440 */ 441 if (p->Op0 == 0) { /* AArch32 */ 442 switch (p->Op1) { 443 default: /* Keep GCC quiet */ 444 case 0: /* ICC_SGI1R */ 445 g1 = true; 446 break; 447 case 1: /* ICC_ASGI1R */ 448 case 2: /* ICC_SGI0R */ 449 g1 = false; 450 break; 451 } 452 } else { /* AArch64 */ 453 switch (p->Op2) { 454 default: /* Keep GCC quiet */ 455 case 5: /* ICC_SGI1R_EL1 */ 456 g1 = true; 457 break; 458 case 6: /* ICC_ASGI1R_EL1 */ 459 case 7: /* ICC_SGI0R_EL1 */ 460 g1 = false; 461 break; 462 } 463 } 464 465 vgic_v3_dispatch_sgi(vcpu, p->regval, g1); 466 467 return true; 468 } 469 470 static bool access_gic_sre(struct kvm_vcpu *vcpu, 471 struct sys_reg_params *p, 472 const struct sys_reg_desc *r) 473 { 474 if (p->is_write) 475 return ignore_write(vcpu, p); 476 477 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; 478 return true; 479 } 480 481 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 482 struct sys_reg_params *p, 483 const struct sys_reg_desc *r) 484 { 485 if (p->is_write) 486 return ignore_write(vcpu, p); 487 else 488 return read_zero(vcpu, p); 489 } 490 491 static bool trap_undef(struct kvm_vcpu *vcpu, 492 struct sys_reg_params *p, 493 const struct sys_reg_desc *r) 494 { 495 kvm_inject_undefined(vcpu); 496 return false; 497 } 498 499 /* 500 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the 501 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 502 * system, these registers should UNDEF. LORID_EL1 being a RO register, we 503 * treat it separately. 504 */ 505 static bool trap_loregion(struct kvm_vcpu *vcpu, 506 struct sys_reg_params *p, 507 const struct sys_reg_desc *r) 508 { 509 u32 sr = reg_to_encoding(r); 510 511 if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) { 512 kvm_inject_undefined(vcpu); 513 return false; 514 } 515 516 if (p->is_write && sr == SYS_LORID_EL1) 517 return write_to_read_only(vcpu, p, r); 518 519 return trap_raz_wi(vcpu, p, r); 520 } 521 522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu, 523 struct sys_reg_params *p, 524 const struct sys_reg_desc *r) 525 { 526 u64 oslsr; 527 528 if (!p->is_write) 529 return read_from_write_only(vcpu, p, r); 530 531 /* Forward the OSLK bit to OSLSR */ 532 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; 533 if (p->regval & OSLAR_EL1_OSLK) 534 oslsr |= OSLSR_EL1_OSLK; 535 536 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; 537 return true; 538 } 539 540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 541 struct sys_reg_params *p, 542 const struct sys_reg_desc *r) 543 { 544 if (p->is_write) 545 return write_to_read_only(vcpu, p, r); 546 547 p->regval = __vcpu_sys_reg(vcpu, r->reg); 548 return true; 549 } 550 551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 552 u64 val) 553 { 554 /* 555 * The only modifiable bit is the OSLK bit. Refuse the write if 556 * userspace attempts to change any other bit in the register. 557 */ 558 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) 559 return -EINVAL; 560 561 __vcpu_sys_reg(vcpu, rd->reg) = val; 562 return 0; 563 } 564 565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 566 struct sys_reg_params *p, 567 const struct sys_reg_desc *r) 568 { 569 if (p->is_write) { 570 return ignore_write(vcpu, p); 571 } else { 572 p->regval = read_sysreg(dbgauthstatus_el1); 573 return true; 574 } 575 } 576 577 /* 578 * We want to avoid world-switching all the DBG registers all the 579 * time: 580 * 581 * - If we've touched any debug register, it is likely that we're 582 * going to touch more of them. It then makes sense to disable the 583 * traps and start doing the save/restore dance 584 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 585 * then mandatory to save/restore the registers, as the guest 586 * depends on them. 587 * 588 * For this, we use a DIRTY bit, indicating the guest has modified the 589 * debug registers, used as follow: 590 * 591 * On guest entry: 592 * - If the dirty bit is set (because we're coming back from trapping), 593 * disable the traps, save host registers, restore guest registers. 594 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 595 * set the dirty bit, disable the traps, save host registers, 596 * restore guest registers. 597 * - Otherwise, enable the traps 598 * 599 * On guest exit: 600 * - If the dirty bit is set, save guest registers, restore host 601 * registers and clear the dirty bit. This ensure that the host can 602 * now use the debug registers. 603 */ 604 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 605 struct sys_reg_params *p, 606 const struct sys_reg_desc *r) 607 { 608 access_rw(vcpu, p, r); 609 if (p->is_write) 610 vcpu_set_flag(vcpu, DEBUG_DIRTY); 611 612 trace_trap_reg(__func__, r->reg, p->is_write, p->regval); 613 614 return true; 615 } 616 617 /* 618 * reg_to_dbg/dbg_to_reg 619 * 620 * A 32 bit write to a debug register leave top bits alone 621 * A 32 bit read from a debug register only returns the bottom bits 622 * 623 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code 624 * switches between host and guest values in future. 625 */ 626 static void reg_to_dbg(struct kvm_vcpu *vcpu, 627 struct sys_reg_params *p, 628 const struct sys_reg_desc *rd, 629 u64 *dbg_reg) 630 { 631 u64 mask, shift, val; 632 633 get_access_mask(rd, &mask, &shift); 634 635 val = *dbg_reg; 636 val &= ~mask; 637 val |= (p->regval & (mask >> shift)) << shift; 638 *dbg_reg = val; 639 640 vcpu_set_flag(vcpu, DEBUG_DIRTY); 641 } 642 643 static void dbg_to_reg(struct kvm_vcpu *vcpu, 644 struct sys_reg_params *p, 645 const struct sys_reg_desc *rd, 646 u64 *dbg_reg) 647 { 648 u64 mask, shift; 649 650 get_access_mask(rd, &mask, &shift); 651 p->regval = (*dbg_reg & mask) >> shift; 652 } 653 654 static bool trap_bvr(struct kvm_vcpu *vcpu, 655 struct sys_reg_params *p, 656 const struct sys_reg_desc *rd) 657 { 658 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 659 660 if (p->is_write) 661 reg_to_dbg(vcpu, p, rd, dbg_reg); 662 else 663 dbg_to_reg(vcpu, p, rd, dbg_reg); 664 665 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 666 667 return true; 668 } 669 670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 671 u64 val) 672 { 673 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; 674 return 0; 675 } 676 677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 678 u64 *val) 679 { 680 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 681 return 0; 682 } 683 684 static u64 reset_bvr(struct kvm_vcpu *vcpu, 685 const struct sys_reg_desc *rd) 686 { 687 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; 688 return rd->val; 689 } 690 691 static bool trap_bcr(struct kvm_vcpu *vcpu, 692 struct sys_reg_params *p, 693 const struct sys_reg_desc *rd) 694 { 695 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 696 697 if (p->is_write) 698 reg_to_dbg(vcpu, p, rd, dbg_reg); 699 else 700 dbg_to_reg(vcpu, p, rd, dbg_reg); 701 702 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 703 704 return true; 705 } 706 707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 708 u64 val) 709 { 710 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; 711 return 0; 712 } 713 714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 715 u64 *val) 716 { 717 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 718 return 0; 719 } 720 721 static u64 reset_bcr(struct kvm_vcpu *vcpu, 722 const struct sys_reg_desc *rd) 723 { 724 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; 725 return rd->val; 726 } 727 728 static bool trap_wvr(struct kvm_vcpu *vcpu, 729 struct sys_reg_params *p, 730 const struct sys_reg_desc *rd) 731 { 732 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 733 734 if (p->is_write) 735 reg_to_dbg(vcpu, p, rd, dbg_reg); 736 else 737 dbg_to_reg(vcpu, p, rd, dbg_reg); 738 739 trace_trap_reg(__func__, rd->CRm, p->is_write, 740 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); 741 742 return true; 743 } 744 745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 746 u64 val) 747 { 748 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; 749 return 0; 750 } 751 752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 753 u64 *val) 754 { 755 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 756 return 0; 757 } 758 759 static u64 reset_wvr(struct kvm_vcpu *vcpu, 760 const struct sys_reg_desc *rd) 761 { 762 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; 763 return rd->val; 764 } 765 766 static bool trap_wcr(struct kvm_vcpu *vcpu, 767 struct sys_reg_params *p, 768 const struct sys_reg_desc *rd) 769 { 770 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 771 772 if (p->is_write) 773 reg_to_dbg(vcpu, p, rd, dbg_reg); 774 else 775 dbg_to_reg(vcpu, p, rd, dbg_reg); 776 777 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 778 779 return true; 780 } 781 782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 783 u64 val) 784 { 785 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; 786 return 0; 787 } 788 789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 790 u64 *val) 791 { 792 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 793 return 0; 794 } 795 796 static u64 reset_wcr(struct kvm_vcpu *vcpu, 797 const struct sys_reg_desc *rd) 798 { 799 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; 800 return rd->val; 801 } 802 803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 804 { 805 u64 amair = read_sysreg(amair_el1); 806 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); 807 return amair; 808 } 809 810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 811 { 812 u64 actlr = read_sysreg(actlr_el1); 813 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); 814 return actlr; 815 } 816 817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 818 { 819 u64 mpidr; 820 821 /* 822 * Map the vcpu_id into the first three affinity level fields of 823 * the MPIDR. We limit the number of VCPUs in level 0 due to a 824 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 825 * of the GICv3 to be able to address each CPU directly when 826 * sending IPIs. 827 */ 828 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 829 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 830 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 831 mpidr |= (1ULL << 31); 832 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); 833 834 return mpidr; 835 } 836 837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, 838 const struct sys_reg_desc *r) 839 { 840 if (kvm_vcpu_has_pmu(vcpu)) 841 return 0; 842 843 return REG_HIDDEN; 844 } 845 846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 847 { 848 u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); 849 u8 n = vcpu->kvm->arch.pmcr_n; 850 851 if (n) 852 mask |= GENMASK(n - 1, 0); 853 854 reset_unknown(vcpu, r); 855 __vcpu_sys_reg(vcpu, r->reg) &= mask; 856 857 return __vcpu_sys_reg(vcpu, r->reg); 858 } 859 860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 861 { 862 reset_unknown(vcpu, r); 863 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); 864 865 return __vcpu_sys_reg(vcpu, r->reg); 866 } 867 868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 869 { 870 /* This thing will UNDEF, who cares about the reset value? */ 871 if (!kvm_vcpu_has_pmu(vcpu)) 872 return 0; 873 874 reset_unknown(vcpu, r); 875 __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); 876 877 return __vcpu_sys_reg(vcpu, r->reg); 878 } 879 880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 881 { 882 reset_unknown(vcpu, r); 883 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; 884 885 return __vcpu_sys_reg(vcpu, r->reg); 886 } 887 888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 889 { 890 u64 pmcr = 0; 891 892 if (!kvm_supports_32bit_el0()) 893 pmcr |= ARMV8_PMU_PMCR_LC; 894 895 /* 896 * The value of PMCR.N field is included when the 897 * vCPU register is read via kvm_vcpu_read_pmcr(). 898 */ 899 __vcpu_sys_reg(vcpu, r->reg) = pmcr; 900 901 return __vcpu_sys_reg(vcpu, r->reg); 902 } 903 904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) 905 { 906 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); 907 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); 908 909 if (!enabled) 910 kvm_inject_undefined(vcpu); 911 912 return !enabled; 913 } 914 915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) 916 { 917 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); 918 } 919 920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) 921 { 922 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); 923 } 924 925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) 926 { 927 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); 928 } 929 930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) 931 { 932 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); 933 } 934 935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 936 const struct sys_reg_desc *r) 937 { 938 u64 val; 939 940 if (pmu_access_el0_disabled(vcpu)) 941 return false; 942 943 if (p->is_write) { 944 /* 945 * Only update writeable bits of PMCR (continuing into 946 * kvm_pmu_handle_pmcr() as well) 947 */ 948 val = kvm_vcpu_read_pmcr(vcpu); 949 val &= ~ARMV8_PMU_PMCR_MASK; 950 val |= p->regval & ARMV8_PMU_PMCR_MASK; 951 if (!kvm_supports_32bit_el0()) 952 val |= ARMV8_PMU_PMCR_LC; 953 kvm_pmu_handle_pmcr(vcpu, val); 954 } else { 955 /* PMCR.P & PMCR.C are RAZ */ 956 val = kvm_vcpu_read_pmcr(vcpu) 957 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); 958 p->regval = val; 959 } 960 961 return true; 962 } 963 964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 965 const struct sys_reg_desc *r) 966 { 967 if (pmu_access_event_counter_el0_disabled(vcpu)) 968 return false; 969 970 if (p->is_write) 971 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; 972 else 973 /* return PMSELR.SEL field */ 974 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) 975 & ARMV8_PMU_COUNTER_MASK; 976 977 return true; 978 } 979 980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 981 const struct sys_reg_desc *r) 982 { 983 u64 pmceid, mask, shift; 984 985 BUG_ON(p->is_write); 986 987 if (pmu_access_el0_disabled(vcpu)) 988 return false; 989 990 get_access_mask(r, &mask, &shift); 991 992 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); 993 pmceid &= mask; 994 pmceid >>= shift; 995 996 p->regval = pmceid; 997 998 return true; 999 } 1000 1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) 1002 { 1003 u64 pmcr, val; 1004 1005 pmcr = kvm_vcpu_read_pmcr(vcpu); 1006 val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); 1007 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { 1008 kvm_inject_undefined(vcpu); 1009 return false; 1010 } 1011 1012 return true; 1013 } 1014 1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1016 u64 *val) 1017 { 1018 u64 idx; 1019 1020 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) 1021 /* PMCCNTR_EL0 */ 1022 idx = ARMV8_PMU_CYCLE_IDX; 1023 else 1024 /* PMEVCNTRn_EL0 */ 1025 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1026 1027 *val = kvm_pmu_get_counter_value(vcpu, idx); 1028 return 0; 1029 } 1030 1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, 1032 struct sys_reg_params *p, 1033 const struct sys_reg_desc *r) 1034 { 1035 u64 idx = ~0UL; 1036 1037 if (r->CRn == 9 && r->CRm == 13) { 1038 if (r->Op2 == 2) { 1039 /* PMXEVCNTR_EL0 */ 1040 if (pmu_access_event_counter_el0_disabled(vcpu)) 1041 return false; 1042 1043 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) 1044 & ARMV8_PMU_COUNTER_MASK; 1045 } else if (r->Op2 == 0) { 1046 /* PMCCNTR_EL0 */ 1047 if (pmu_access_cycle_counter_el0_disabled(vcpu)) 1048 return false; 1049 1050 idx = ARMV8_PMU_CYCLE_IDX; 1051 } 1052 } else if (r->CRn == 0 && r->CRm == 9) { 1053 /* PMCCNTR */ 1054 if (pmu_access_event_counter_el0_disabled(vcpu)) 1055 return false; 1056 1057 idx = ARMV8_PMU_CYCLE_IDX; 1058 } else if (r->CRn == 14 && (r->CRm & 12) == 8) { 1059 /* PMEVCNTRn_EL0 */ 1060 if (pmu_access_event_counter_el0_disabled(vcpu)) 1061 return false; 1062 1063 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1064 } 1065 1066 /* Catch any decoding mistake */ 1067 WARN_ON(idx == ~0UL); 1068 1069 if (!pmu_counter_idx_valid(vcpu, idx)) 1070 return false; 1071 1072 if (p->is_write) { 1073 if (pmu_access_el0_disabled(vcpu)) 1074 return false; 1075 1076 kvm_pmu_set_counter_value(vcpu, idx, p->regval); 1077 } else { 1078 p->regval = kvm_pmu_get_counter_value(vcpu, idx); 1079 } 1080 1081 return true; 1082 } 1083 1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1085 const struct sys_reg_desc *r) 1086 { 1087 u64 idx, reg; 1088 1089 if (pmu_access_el0_disabled(vcpu)) 1090 return false; 1091 1092 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { 1093 /* PMXEVTYPER_EL0 */ 1094 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; 1095 reg = PMEVTYPER0_EL0 + idx; 1096 } else if (r->CRn == 14 && (r->CRm & 12) == 12) { 1097 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1098 if (idx == ARMV8_PMU_CYCLE_IDX) 1099 reg = PMCCFILTR_EL0; 1100 else 1101 /* PMEVTYPERn_EL0 */ 1102 reg = PMEVTYPER0_EL0 + idx; 1103 } else { 1104 BUG(); 1105 } 1106 1107 if (!pmu_counter_idx_valid(vcpu, idx)) 1108 return false; 1109 1110 if (p->is_write) { 1111 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); 1112 kvm_vcpu_pmu_restore_guest(vcpu); 1113 } else { 1114 p->regval = __vcpu_sys_reg(vcpu, reg); 1115 } 1116 1117 return true; 1118 } 1119 1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) 1121 { 1122 bool set; 1123 1124 val &= kvm_pmu_valid_counter_mask(vcpu); 1125 1126 switch (r->reg) { 1127 case PMOVSSET_EL0: 1128 /* CRm[1] being set indicates a SET register, and CLR otherwise */ 1129 set = r->CRm & 2; 1130 break; 1131 default: 1132 /* Op2[0] being set indicates a SET register, and CLR otherwise */ 1133 set = r->Op2 & 1; 1134 break; 1135 } 1136 1137 if (set) 1138 __vcpu_sys_reg(vcpu, r->reg) |= val; 1139 else 1140 __vcpu_sys_reg(vcpu, r->reg) &= ~val; 1141 1142 return 0; 1143 } 1144 1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) 1146 { 1147 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1148 1149 *val = __vcpu_sys_reg(vcpu, r->reg) & mask; 1150 return 0; 1151 } 1152 1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1154 const struct sys_reg_desc *r) 1155 { 1156 u64 val, mask; 1157 1158 if (pmu_access_el0_disabled(vcpu)) 1159 return false; 1160 1161 mask = kvm_pmu_valid_counter_mask(vcpu); 1162 if (p->is_write) { 1163 val = p->regval & mask; 1164 if (r->Op2 & 0x1) { 1165 /* accessing PMCNTENSET_EL0 */ 1166 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; 1167 kvm_pmu_enable_counter_mask(vcpu, val); 1168 kvm_vcpu_pmu_restore_guest(vcpu); 1169 } else { 1170 /* accessing PMCNTENCLR_EL0 */ 1171 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; 1172 kvm_pmu_disable_counter_mask(vcpu, val); 1173 } 1174 } else { 1175 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); 1176 } 1177 1178 return true; 1179 } 1180 1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1182 const struct sys_reg_desc *r) 1183 { 1184 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1185 1186 if (check_pmu_access_disabled(vcpu, 0)) 1187 return false; 1188 1189 if (p->is_write) { 1190 u64 val = p->regval & mask; 1191 1192 if (r->Op2 & 0x1) 1193 /* accessing PMINTENSET_EL1 */ 1194 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; 1195 else 1196 /* accessing PMINTENCLR_EL1 */ 1197 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; 1198 } else { 1199 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); 1200 } 1201 1202 return true; 1203 } 1204 1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1206 const struct sys_reg_desc *r) 1207 { 1208 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1209 1210 if (pmu_access_el0_disabled(vcpu)) 1211 return false; 1212 1213 if (p->is_write) { 1214 if (r->CRm & 0x2) 1215 /* accessing PMOVSSET_EL0 */ 1216 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); 1217 else 1218 /* accessing PMOVSCLR_EL0 */ 1219 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); 1220 } else { 1221 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); 1222 } 1223 1224 return true; 1225 } 1226 1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1228 const struct sys_reg_desc *r) 1229 { 1230 u64 mask; 1231 1232 if (!p->is_write) 1233 return read_from_write_only(vcpu, p, r); 1234 1235 if (pmu_write_swinc_el0_disabled(vcpu)) 1236 return false; 1237 1238 mask = kvm_pmu_valid_counter_mask(vcpu); 1239 kvm_pmu_software_increment(vcpu, p->regval & mask); 1240 return true; 1241 } 1242 1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1244 const struct sys_reg_desc *r) 1245 { 1246 if (p->is_write) { 1247 if (!vcpu_mode_priv(vcpu)) { 1248 kvm_inject_undefined(vcpu); 1249 return false; 1250 } 1251 1252 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = 1253 p->regval & ARMV8_PMU_USERENR_MASK; 1254 } else { 1255 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) 1256 & ARMV8_PMU_USERENR_MASK; 1257 } 1258 1259 return true; 1260 } 1261 1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1263 u64 *val) 1264 { 1265 *val = kvm_vcpu_read_pmcr(vcpu); 1266 return 0; 1267 } 1268 1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1270 u64 val) 1271 { 1272 u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); 1273 struct kvm *kvm = vcpu->kvm; 1274 1275 mutex_lock(&kvm->arch.config_lock); 1276 1277 /* 1278 * The vCPU can't have more counters than the PMU hardware 1279 * implements. Ignore this error to maintain compatibility 1280 * with the existing KVM behavior. 1281 */ 1282 if (!kvm_vm_has_ran_once(kvm) && 1283 new_n <= kvm_arm_pmu_get_max_counters(kvm)) 1284 kvm->arch.pmcr_n = new_n; 1285 1286 mutex_unlock(&kvm->arch.config_lock); 1287 1288 /* 1289 * Ignore writes to RES0 bits, read only bits that are cleared on 1290 * vCPU reset, and writable bits that KVM doesn't support yet. 1291 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) 1292 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. 1293 * But, we leave the bit as it is here, as the vCPU's PMUver might 1294 * be changed later (NOTE: the bit will be cleared on first vCPU run 1295 * if necessary). 1296 */ 1297 val &= ARMV8_PMU_PMCR_MASK; 1298 1299 /* The LC bit is RES1 when AArch32 is not supported */ 1300 if (!kvm_supports_32bit_el0()) 1301 val |= ARMV8_PMU_PMCR_LC; 1302 1303 __vcpu_sys_reg(vcpu, r->reg) = val; 1304 return 0; 1305 } 1306 1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 1309 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ 1310 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ 1311 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ 1312 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ 1313 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ 1314 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ 1315 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ 1316 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } 1317 1318 #define PMU_SYS_REG(name) \ 1319 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ 1320 .visibility = pmu_visibility 1321 1322 /* Macro to expand the PMEVCNTRn_EL0 register */ 1323 #define PMU_PMEVCNTR_EL0(n) \ 1324 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ 1325 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ 1326 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } 1327 1328 /* Macro to expand the PMEVTYPERn_EL0 register */ 1329 #define PMU_PMEVTYPER_EL0(n) \ 1330 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ 1331 .reset = reset_pmevtyper, \ 1332 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } 1333 1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1335 const struct sys_reg_desc *r) 1336 { 1337 kvm_inject_undefined(vcpu); 1338 1339 return false; 1340 } 1341 1342 /* Macro to expand the AMU counter and type registers*/ 1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } 1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } 1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } 1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } 1347 1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, 1349 const struct sys_reg_desc *rd) 1350 { 1351 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; 1352 } 1353 1354 /* 1355 * If we land here on a PtrAuth access, that is because we didn't 1356 * fixup the access on exit by allowing the PtrAuth sysregs. The only 1357 * way this happens is when the guest does not have PtrAuth support 1358 * enabled. 1359 */ 1360 #define __PTRAUTH_KEY(k) \ 1361 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ 1362 .visibility = ptrauth_visibility} 1363 1364 #define PTRAUTH_KEY(k) \ 1365 __PTRAUTH_KEY(k ## KEYLO_EL1), \ 1366 __PTRAUTH_KEY(k ## KEYHI_EL1) 1367 1368 static bool access_arch_timer(struct kvm_vcpu *vcpu, 1369 struct sys_reg_params *p, 1370 const struct sys_reg_desc *r) 1371 { 1372 enum kvm_arch_timers tmr; 1373 enum kvm_arch_timer_regs treg; 1374 u64 reg = reg_to_encoding(r); 1375 1376 switch (reg) { 1377 case SYS_CNTP_TVAL_EL0: 1378 case SYS_AARCH32_CNTP_TVAL: 1379 tmr = TIMER_PTIMER; 1380 treg = TIMER_REG_TVAL; 1381 break; 1382 case SYS_CNTP_CTL_EL0: 1383 case SYS_AARCH32_CNTP_CTL: 1384 tmr = TIMER_PTIMER; 1385 treg = TIMER_REG_CTL; 1386 break; 1387 case SYS_CNTP_CVAL_EL0: 1388 case SYS_AARCH32_CNTP_CVAL: 1389 tmr = TIMER_PTIMER; 1390 treg = TIMER_REG_CVAL; 1391 break; 1392 case SYS_CNTPCT_EL0: 1393 case SYS_CNTPCTSS_EL0: 1394 case SYS_AARCH32_CNTPCT: 1395 tmr = TIMER_PTIMER; 1396 treg = TIMER_REG_CNT; 1397 break; 1398 default: 1399 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); 1400 kvm_inject_undefined(vcpu); 1401 return false; 1402 } 1403 1404 if (p->is_write) 1405 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); 1406 else 1407 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); 1408 1409 return true; 1410 } 1411 1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, 1413 s64 new, s64 cur) 1414 { 1415 struct arm64_ftr_bits kvm_ftr = *ftrp; 1416 1417 /* Some features have different safe value type in KVM than host features */ 1418 switch (id) { 1419 case SYS_ID_AA64DFR0_EL1: 1420 switch (kvm_ftr.shift) { 1421 case ID_AA64DFR0_EL1_PMUVer_SHIFT: 1422 kvm_ftr.type = FTR_LOWER_SAFE; 1423 break; 1424 case ID_AA64DFR0_EL1_DebugVer_SHIFT: 1425 kvm_ftr.type = FTR_LOWER_SAFE; 1426 break; 1427 } 1428 break; 1429 case SYS_ID_DFR0_EL1: 1430 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) 1431 kvm_ftr.type = FTR_LOWER_SAFE; 1432 break; 1433 } 1434 1435 return arm64_ftr_safe_value(&kvm_ftr, new, cur); 1436 } 1437 1438 /* 1439 * arm64_check_features() - Check if a feature register value constitutes 1440 * a subset of features indicated by the idreg's KVM sanitised limit. 1441 * 1442 * This function will check if each feature field of @val is the "safe" value 1443 * against idreg's KVM sanitised limit return from reset() callback. 1444 * If a field value in @val is the same as the one in limit, it is always 1445 * considered the safe value regardless For register fields that are not in 1446 * writable, only the value in limit is considered the safe value. 1447 * 1448 * Return: 0 if all the fields are safe. Otherwise, return negative errno. 1449 */ 1450 static int arm64_check_features(struct kvm_vcpu *vcpu, 1451 const struct sys_reg_desc *rd, 1452 u64 val) 1453 { 1454 const struct arm64_ftr_reg *ftr_reg; 1455 const struct arm64_ftr_bits *ftrp = NULL; 1456 u32 id = reg_to_encoding(rd); 1457 u64 writable_mask = rd->val; 1458 u64 limit = rd->reset(vcpu, rd); 1459 u64 mask = 0; 1460 1461 /* 1462 * Hidden and unallocated ID registers may not have a corresponding 1463 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the 1464 * only safe value is 0. 1465 */ 1466 if (sysreg_visible_as_raz(vcpu, rd)) 1467 return val ? -E2BIG : 0; 1468 1469 ftr_reg = get_arm64_ftr_reg(id); 1470 if (!ftr_reg) 1471 return -EINVAL; 1472 1473 ftrp = ftr_reg->ftr_bits; 1474 1475 for (; ftrp && ftrp->width; ftrp++) { 1476 s64 f_val, f_lim, safe_val; 1477 u64 ftr_mask; 1478 1479 ftr_mask = arm64_ftr_mask(ftrp); 1480 if ((ftr_mask & writable_mask) != ftr_mask) 1481 continue; 1482 1483 f_val = arm64_ftr_value(ftrp, val); 1484 f_lim = arm64_ftr_value(ftrp, limit); 1485 mask |= ftr_mask; 1486 1487 if (f_val == f_lim) 1488 safe_val = f_val; 1489 else 1490 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); 1491 1492 if (safe_val != f_val) 1493 return -E2BIG; 1494 } 1495 1496 /* For fields that are not writable, values in limit are the safe values. */ 1497 if ((val & ~mask) != (limit & ~mask)) 1498 return -E2BIG; 1499 1500 return 0; 1501 } 1502 1503 static u8 pmuver_to_perfmon(u8 pmuver) 1504 { 1505 switch (pmuver) { 1506 case ID_AA64DFR0_EL1_PMUVer_IMP: 1507 return ID_DFR0_EL1_PerfMon_PMUv3; 1508 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: 1509 return ID_DFR0_EL1_PerfMon_IMPDEF; 1510 default: 1511 /* Anything ARMv8.1+ and NI have the same value. For now. */ 1512 return pmuver; 1513 } 1514 } 1515 1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */ 1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, 1518 const struct sys_reg_desc *r) 1519 { 1520 u32 id = reg_to_encoding(r); 1521 u64 val; 1522 1523 if (sysreg_visible_as_raz(vcpu, r)) 1524 return 0; 1525 1526 val = read_sanitised_ftr_reg(id); 1527 1528 switch (id) { 1529 case SYS_ID_AA64PFR1_EL1: 1530 if (!kvm_has_mte(vcpu->kvm)) 1531 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); 1532 1533 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); 1534 break; 1535 case SYS_ID_AA64ISAR1_EL1: 1536 if (!vcpu_has_ptrauth(vcpu)) 1537 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | 1538 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | 1539 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | 1540 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); 1541 break; 1542 case SYS_ID_AA64ISAR2_EL1: 1543 if (!vcpu_has_ptrauth(vcpu)) 1544 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | 1545 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); 1546 if (!cpus_have_final_cap(ARM64_HAS_WFXT)) 1547 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); 1548 break; 1549 case SYS_ID_AA64MMFR2_EL1: 1550 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; 1551 break; 1552 case SYS_ID_MMFR4_EL1: 1553 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); 1554 break; 1555 } 1556 1557 return val; 1558 } 1559 1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, 1561 const struct sys_reg_desc *r) 1562 { 1563 return __kvm_read_sanitised_id_reg(vcpu, r); 1564 } 1565 1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 1567 { 1568 return IDREG(vcpu->kvm, reg_to_encoding(r)); 1569 } 1570 1571 /* 1572 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is 1573 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8. 1574 */ 1575 static inline bool is_id_reg(u32 id) 1576 { 1577 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && 1578 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && 1579 sys_reg_CRm(id) < 8); 1580 } 1581 1582 static inline bool is_aa32_id_reg(u32 id) 1583 { 1584 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && 1585 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && 1586 sys_reg_CRm(id) <= 3); 1587 } 1588 1589 static unsigned int id_visibility(const struct kvm_vcpu *vcpu, 1590 const struct sys_reg_desc *r) 1591 { 1592 u32 id = reg_to_encoding(r); 1593 1594 switch (id) { 1595 case SYS_ID_AA64ZFR0_EL1: 1596 if (!vcpu_has_sve(vcpu)) 1597 return REG_RAZ; 1598 break; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, 1605 const struct sys_reg_desc *r) 1606 { 1607 /* 1608 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any 1609 * EL. Promote to RAZ/WI in order to guarantee consistency between 1610 * systems. 1611 */ 1612 if (!kvm_supports_32bit_el0()) 1613 return REG_RAZ | REG_USER_WI; 1614 1615 return id_visibility(vcpu, r); 1616 } 1617 1618 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, 1619 const struct sys_reg_desc *r) 1620 { 1621 return REG_RAZ; 1622 } 1623 1624 /* cpufeature ID register access trap handlers */ 1625 1626 static bool access_id_reg(struct kvm_vcpu *vcpu, 1627 struct sys_reg_params *p, 1628 const struct sys_reg_desc *r) 1629 { 1630 if (p->is_write) 1631 return write_to_read_only(vcpu, p, r); 1632 1633 p->regval = read_id_reg(vcpu, r); 1634 1635 return true; 1636 } 1637 1638 /* Visibility overrides for SVE-specific control registers */ 1639 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, 1640 const struct sys_reg_desc *rd) 1641 { 1642 if (vcpu_has_sve(vcpu)) 1643 return 0; 1644 1645 return REG_HIDDEN; 1646 } 1647 1648 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, 1649 const struct sys_reg_desc *rd) 1650 { 1651 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1652 1653 if (!vcpu_has_sve(vcpu)) 1654 val &= ~ID_AA64PFR0_EL1_SVE_MASK; 1655 1656 /* 1657 * The default is to expose CSV2 == 1 if the HW isn't affected. 1658 * Although this is a per-CPU feature, we make it global because 1659 * asymmetric systems are just a nuisance. 1660 * 1661 * Userspace can override this as long as it doesn't promise 1662 * the impossible. 1663 */ 1664 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { 1665 val &= ~ID_AA64PFR0_EL1_CSV2_MASK; 1666 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); 1667 } 1668 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { 1669 val &= ~ID_AA64PFR0_EL1_CSV3_MASK; 1670 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); 1671 } 1672 1673 if (kvm_vgic_global_state.type == VGIC_V3) { 1674 val &= ~ID_AA64PFR0_EL1_GIC_MASK; 1675 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); 1676 } 1677 1678 val &= ~ID_AA64PFR0_EL1_AMU_MASK; 1679 1680 return val; 1681 } 1682 1683 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ 1684 ({ \ 1685 u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ 1686 (val) &= ~reg##_##field##_MASK; \ 1687 (val) |= FIELD_PREP(reg##_##field##_MASK, \ 1688 min(__f_val, \ 1689 (u64)SYS_FIELD_VALUE(reg, field, limit))); \ 1690 (val); \ 1691 }) 1692 1693 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, 1694 const struct sys_reg_desc *rd) 1695 { 1696 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); 1697 1698 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); 1699 1700 /* 1701 * Only initialize the PMU version if the vCPU was configured with one. 1702 */ 1703 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; 1704 if (kvm_vcpu_has_pmu(vcpu)) 1705 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, 1706 kvm_arm_pmu_get_pmuver_limit()); 1707 1708 /* Hide SPE from guests */ 1709 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; 1710 1711 return val; 1712 } 1713 1714 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, 1715 const struct sys_reg_desc *rd, 1716 u64 val) 1717 { 1718 u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); 1719 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); 1720 1721 /* 1722 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the 1723 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously 1724 * exposed an IMP_DEF PMU to userspace and the guest on systems w/ 1725 * non-architectural PMUs. Of course, PMUv3 is the only game in town for 1726 * PMU virtualization, so the IMP_DEF value was rather user-hostile. 1727 * 1728 * At minimum, we're on the hook to allow values that were given to 1729 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value 1730 * with a more sensible NI. The value of an ID register changing under 1731 * the nose of the guest is unfortunate, but is certainly no more 1732 * surprising than an ill-guided PMU driver poking at impdef system 1733 * registers that end in an UNDEF... 1734 */ 1735 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) 1736 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; 1737 1738 /* 1739 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a 1740 * nonzero minimum safe value. 1741 */ 1742 if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) 1743 return -EINVAL; 1744 1745 return set_id_reg(vcpu, rd, val); 1746 } 1747 1748 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, 1749 const struct sys_reg_desc *rd) 1750 { 1751 u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); 1752 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); 1753 1754 val &= ~ID_DFR0_EL1_PerfMon_MASK; 1755 if (kvm_vcpu_has_pmu(vcpu)) 1756 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); 1757 1758 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); 1759 1760 return val; 1761 } 1762 1763 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, 1764 const struct sys_reg_desc *rd, 1765 u64 val) 1766 { 1767 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); 1768 u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); 1769 1770 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { 1771 val &= ~ID_DFR0_EL1_PerfMon_MASK; 1772 perfmon = 0; 1773 } 1774 1775 /* 1776 * Allow DFR0_EL1.PerfMon to be set from userspace as long as 1777 * it doesn't promise more than what the HW gives us on the 1778 * AArch64 side (as everything is emulated with that), and 1779 * that this is a PMUv3. 1780 */ 1781 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) 1782 return -EINVAL; 1783 1784 if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) 1785 return -EINVAL; 1786 1787 return set_id_reg(vcpu, rd, val); 1788 } 1789 1790 /* 1791 * cpufeature ID register user accessors 1792 * 1793 * For now, these registers are immutable for userspace, so no values 1794 * are stored, and for set_id_reg() we don't allow the effective value 1795 * to be changed. 1796 */ 1797 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1798 u64 *val) 1799 { 1800 /* 1801 * Avoid locking if the VM has already started, as the ID registers are 1802 * guaranteed to be invariant at that point. 1803 */ 1804 if (kvm_vm_has_ran_once(vcpu->kvm)) { 1805 *val = read_id_reg(vcpu, rd); 1806 return 0; 1807 } 1808 1809 mutex_lock(&vcpu->kvm->arch.config_lock); 1810 *val = read_id_reg(vcpu, rd); 1811 mutex_unlock(&vcpu->kvm->arch.config_lock); 1812 1813 return 0; 1814 } 1815 1816 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1817 u64 val) 1818 { 1819 u32 id = reg_to_encoding(rd); 1820 int ret; 1821 1822 mutex_lock(&vcpu->kvm->arch.config_lock); 1823 1824 /* 1825 * Once the VM has started the ID registers are immutable. Reject any 1826 * write that does not match the final register value. 1827 */ 1828 if (kvm_vm_has_ran_once(vcpu->kvm)) { 1829 if (val != read_id_reg(vcpu, rd)) 1830 ret = -EBUSY; 1831 else 1832 ret = 0; 1833 1834 mutex_unlock(&vcpu->kvm->arch.config_lock); 1835 return ret; 1836 } 1837 1838 ret = arm64_check_features(vcpu, rd, val); 1839 if (!ret) 1840 IDREG(vcpu->kvm, id) = val; 1841 1842 mutex_unlock(&vcpu->kvm->arch.config_lock); 1843 1844 /* 1845 * arm64_check_features() returns -E2BIG to indicate the register's 1846 * feature set is a superset of the maximally-allowed register value. 1847 * While it would be nice to precisely describe this to userspace, the 1848 * existing UAPI for KVM_SET_ONE_REG has it that invalid register 1849 * writes return -EINVAL. 1850 */ 1851 if (ret == -E2BIG) 1852 ret = -EINVAL; 1853 return ret; 1854 } 1855 1856 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1857 u64 *val) 1858 { 1859 *val = 0; 1860 return 0; 1861 } 1862 1863 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1864 u64 val) 1865 { 1866 return 0; 1867 } 1868 1869 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1870 const struct sys_reg_desc *r) 1871 { 1872 if (p->is_write) 1873 return write_to_read_only(vcpu, p, r); 1874 1875 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); 1876 return true; 1877 } 1878 1879 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1880 const struct sys_reg_desc *r) 1881 { 1882 if (p->is_write) 1883 return write_to_read_only(vcpu, p, r); 1884 1885 p->regval = __vcpu_sys_reg(vcpu, r->reg); 1886 return true; 1887 } 1888 1889 /* 1890 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary 1891 * by the physical CPU which the vcpu currently resides in. 1892 */ 1893 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 1894 { 1895 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); 1896 u64 clidr; 1897 u8 loc; 1898 1899 if ((ctr_el0 & CTR_EL0_IDC)) { 1900 /* 1901 * Data cache clean to the PoU is not required so LoUU and LoUIS 1902 * will not be set and a unified cache, which will be marked as 1903 * LoC, will be added. 1904 * 1905 * If not DIC, let the unified cache L2 so that an instruction 1906 * cache can be added as L1 later. 1907 */ 1908 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; 1909 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); 1910 } else { 1911 /* 1912 * Data cache clean to the PoU is required so let L1 have a data 1913 * cache and mark it as LoUU and LoUIS. As L1 has a data cache, 1914 * it can be marked as LoC too. 1915 */ 1916 loc = 1; 1917 clidr = 1 << CLIDR_LOUU_SHIFT; 1918 clidr |= 1 << CLIDR_LOUIS_SHIFT; 1919 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); 1920 } 1921 1922 /* 1923 * Instruction cache invalidation to the PoU is required so let L1 have 1924 * an instruction cache. If L1 already has a data cache, it will be 1925 * CACHE_TYPE_SEPARATE. 1926 */ 1927 if (!(ctr_el0 & CTR_EL0_DIC)) 1928 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); 1929 1930 clidr |= loc << CLIDR_LOC_SHIFT; 1931 1932 /* 1933 * Add tag cache unified to data cache. Allocation tags and data are 1934 * unified in a cache line so that it looks valid even if there is only 1935 * one cache line. 1936 */ 1937 if (kvm_has_mte(vcpu->kvm)) 1938 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); 1939 1940 __vcpu_sys_reg(vcpu, r->reg) = clidr; 1941 1942 return __vcpu_sys_reg(vcpu, r->reg); 1943 } 1944 1945 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1946 u64 val) 1947 { 1948 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); 1949 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); 1950 1951 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) 1952 return -EINVAL; 1953 1954 __vcpu_sys_reg(vcpu, rd->reg) = val; 1955 1956 return 0; 1957 } 1958 1959 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1960 const struct sys_reg_desc *r) 1961 { 1962 int reg = r->reg; 1963 1964 if (p->is_write) 1965 vcpu_write_sys_reg(vcpu, p->regval, reg); 1966 else 1967 p->regval = vcpu_read_sys_reg(vcpu, reg); 1968 return true; 1969 } 1970 1971 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1972 const struct sys_reg_desc *r) 1973 { 1974 u32 csselr; 1975 1976 if (p->is_write) 1977 return write_to_read_only(vcpu, p, r); 1978 1979 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); 1980 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; 1981 if (csselr < CSSELR_MAX) 1982 p->regval = get_ccsidr(vcpu, csselr); 1983 1984 return true; 1985 } 1986 1987 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, 1988 const struct sys_reg_desc *rd) 1989 { 1990 if (kvm_has_mte(vcpu->kvm)) 1991 return 0; 1992 1993 return REG_HIDDEN; 1994 } 1995 1996 #define MTE_REG(name) { \ 1997 SYS_DESC(SYS_##name), \ 1998 .access = undef_access, \ 1999 .reset = reset_unknown, \ 2000 .reg = name, \ 2001 .visibility = mte_visibility, \ 2002 } 2003 2004 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, 2005 const struct sys_reg_desc *rd) 2006 { 2007 if (vcpu_has_nv(vcpu)) 2008 return 0; 2009 2010 return REG_HIDDEN; 2011 } 2012 2013 static bool bad_vncr_trap(struct kvm_vcpu *vcpu, 2014 struct sys_reg_params *p, 2015 const struct sys_reg_desc *r) 2016 { 2017 /* 2018 * We really shouldn't be here, and this is likely the result 2019 * of a misconfigured trap, as this register should target the 2020 * VNCR page, and nothing else. 2021 */ 2022 return bad_trap(vcpu, p, r, 2023 "trap of VNCR-backed register"); 2024 } 2025 2026 static bool bad_redir_trap(struct kvm_vcpu *vcpu, 2027 struct sys_reg_params *p, 2028 const struct sys_reg_desc *r) 2029 { 2030 /* 2031 * We really shouldn't be here, and this is likely the result 2032 * of a misconfigured trap, as this register should target the 2033 * corresponding EL1, and nothing else. 2034 */ 2035 return bad_trap(vcpu, p, r, 2036 "trap of EL2 register redirected to EL1"); 2037 } 2038 2039 #define EL2_REG(name, acc, rst, v) { \ 2040 SYS_DESC(SYS_##name), \ 2041 .access = acc, \ 2042 .reset = rst, \ 2043 .reg = name, \ 2044 .visibility = el2_visibility, \ 2045 .val = v, \ 2046 } 2047 2048 #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) 2049 #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) 2050 2051 /* 2052 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when 2053 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of 2054 * handling traps. Given that, they are always hidden from userspace. 2055 */ 2056 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu, 2057 const struct sys_reg_desc *rd) 2058 { 2059 return REG_HIDDEN_USER; 2060 } 2061 2062 #define EL12_REG(name, acc, rst, v) { \ 2063 SYS_DESC(SYS_##name##_EL12), \ 2064 .access = acc, \ 2065 .reset = rst, \ 2066 .reg = name##_EL1, \ 2067 .val = v, \ 2068 .visibility = hidden_user_visibility, \ 2069 } 2070 2071 /* 2072 * Since reset() callback and field val are not used for idregs, they will be 2073 * used for specific purposes for idregs. 2074 * The reset() would return KVM sanitised register value. The value would be the 2075 * same as the host kernel sanitised value if there is no KVM sanitisation. 2076 * The val would be used as a mask indicating writable fields for the idreg. 2077 * Only bits with 1 are writable from userspace. This mask might not be 2078 * necessary in the future whenever all ID registers are enabled as writable 2079 * from userspace. 2080 */ 2081 2082 #define ID_DESC(name) \ 2083 SYS_DESC(SYS_##name), \ 2084 .access = access_id_reg, \ 2085 .get_user = get_id_reg \ 2086 2087 /* sys_reg_desc initialiser for known cpufeature ID registers */ 2088 #define ID_SANITISED(name) { \ 2089 ID_DESC(name), \ 2090 .set_user = set_id_reg, \ 2091 .visibility = id_visibility, \ 2092 .reset = kvm_read_sanitised_id_reg, \ 2093 .val = 0, \ 2094 } 2095 2096 /* sys_reg_desc initialiser for known cpufeature ID registers */ 2097 #define AA32_ID_SANITISED(name) { \ 2098 ID_DESC(name), \ 2099 .set_user = set_id_reg, \ 2100 .visibility = aa32_id_visibility, \ 2101 .reset = kvm_read_sanitised_id_reg, \ 2102 .val = 0, \ 2103 } 2104 2105 /* sys_reg_desc initialiser for writable ID registers */ 2106 #define ID_WRITABLE(name, mask) { \ 2107 ID_DESC(name), \ 2108 .set_user = set_id_reg, \ 2109 .visibility = id_visibility, \ 2110 .reset = kvm_read_sanitised_id_reg, \ 2111 .val = mask, \ 2112 } 2113 2114 /* 2115 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID 2116 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 2117 * (1 <= crm < 8, 0 <= Op2 < 8). 2118 */ 2119 #define ID_UNALLOCATED(crm, op2) { \ 2120 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ 2121 .access = access_id_reg, \ 2122 .get_user = get_id_reg, \ 2123 .set_user = set_id_reg, \ 2124 .visibility = raz_visibility, \ 2125 .reset = kvm_read_sanitised_id_reg, \ 2126 .val = 0, \ 2127 } 2128 2129 /* 2130 * sys_reg_desc initialiser for known ID registers that we hide from guests. 2131 * For now, these are exposed just like unallocated ID regs: they appear 2132 * RAZ for the guest. 2133 */ 2134 #define ID_HIDDEN(name) { \ 2135 ID_DESC(name), \ 2136 .set_user = set_id_reg, \ 2137 .visibility = raz_visibility, \ 2138 .reset = kvm_read_sanitised_id_reg, \ 2139 .val = 0, \ 2140 } 2141 2142 static bool access_sp_el1(struct kvm_vcpu *vcpu, 2143 struct sys_reg_params *p, 2144 const struct sys_reg_desc *r) 2145 { 2146 if (p->is_write) 2147 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; 2148 else 2149 p->regval = __vcpu_sys_reg(vcpu, SP_EL1); 2150 2151 return true; 2152 } 2153 2154 static bool access_elr(struct kvm_vcpu *vcpu, 2155 struct sys_reg_params *p, 2156 const struct sys_reg_desc *r) 2157 { 2158 if (p->is_write) 2159 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); 2160 else 2161 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); 2162 2163 return true; 2164 } 2165 2166 static bool access_spsr(struct kvm_vcpu *vcpu, 2167 struct sys_reg_params *p, 2168 const struct sys_reg_desc *r) 2169 { 2170 if (p->is_write) 2171 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; 2172 else 2173 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); 2174 2175 return true; 2176 } 2177 2178 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 2179 { 2180 u64 val = r->val; 2181 2182 if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) 2183 val |= HCR_E2H; 2184 2185 return __vcpu_sys_reg(vcpu, r->reg) = val; 2186 } 2187 2188 /* 2189 * Architected system registers. 2190 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 2191 * 2192 * Debug handling: We do trap most, if not all debug related system 2193 * registers. The implementation is good enough to ensure that a guest 2194 * can use these with minimal performance degradation. The drawback is 2195 * that we don't implement any of the external debug architecture. 2196 * This should be revisited if we ever encounter a more demanding 2197 * guest... 2198 */ 2199 static const struct sys_reg_desc sys_reg_descs[] = { 2200 DBG_BCR_BVR_WCR_WVR_EL1(0), 2201 DBG_BCR_BVR_WCR_WVR_EL1(1), 2202 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 2203 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 2204 DBG_BCR_BVR_WCR_WVR_EL1(2), 2205 DBG_BCR_BVR_WCR_WVR_EL1(3), 2206 DBG_BCR_BVR_WCR_WVR_EL1(4), 2207 DBG_BCR_BVR_WCR_WVR_EL1(5), 2208 DBG_BCR_BVR_WCR_WVR_EL1(6), 2209 DBG_BCR_BVR_WCR_WVR_EL1(7), 2210 DBG_BCR_BVR_WCR_WVR_EL1(8), 2211 DBG_BCR_BVR_WCR_WVR_EL1(9), 2212 DBG_BCR_BVR_WCR_WVR_EL1(10), 2213 DBG_BCR_BVR_WCR_WVR_EL1(11), 2214 DBG_BCR_BVR_WCR_WVR_EL1(12), 2215 DBG_BCR_BVR_WCR_WVR_EL1(13), 2216 DBG_BCR_BVR_WCR_WVR_EL1(14), 2217 DBG_BCR_BVR_WCR_WVR_EL1(15), 2218 2219 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, 2220 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, 2221 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, 2222 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, 2223 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, 2224 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, 2225 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, 2226 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, 2227 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, 2228 2229 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, 2230 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, 2231 // DBGDTR[TR]X_EL0 share the same encoding 2232 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, 2233 2234 { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 }, 2235 2236 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, 2237 2238 /* 2239 * ID regs: all ID_SANITISED() entries here must have corresponding 2240 * entries in arm64_ftr_regs[]. 2241 */ 2242 2243 /* AArch64 mappings of the AArch32 ID registers */ 2244 /* CRm=1 */ 2245 AA32_ID_SANITISED(ID_PFR0_EL1), 2246 AA32_ID_SANITISED(ID_PFR1_EL1), 2247 { SYS_DESC(SYS_ID_DFR0_EL1), 2248 .access = access_id_reg, 2249 .get_user = get_id_reg, 2250 .set_user = set_id_dfr0_el1, 2251 .visibility = aa32_id_visibility, 2252 .reset = read_sanitised_id_dfr0_el1, 2253 .val = ID_DFR0_EL1_PerfMon_MASK | 2254 ID_DFR0_EL1_CopDbg_MASK, }, 2255 ID_HIDDEN(ID_AFR0_EL1), 2256 AA32_ID_SANITISED(ID_MMFR0_EL1), 2257 AA32_ID_SANITISED(ID_MMFR1_EL1), 2258 AA32_ID_SANITISED(ID_MMFR2_EL1), 2259 AA32_ID_SANITISED(ID_MMFR3_EL1), 2260 2261 /* CRm=2 */ 2262 AA32_ID_SANITISED(ID_ISAR0_EL1), 2263 AA32_ID_SANITISED(ID_ISAR1_EL1), 2264 AA32_ID_SANITISED(ID_ISAR2_EL1), 2265 AA32_ID_SANITISED(ID_ISAR3_EL1), 2266 AA32_ID_SANITISED(ID_ISAR4_EL1), 2267 AA32_ID_SANITISED(ID_ISAR5_EL1), 2268 AA32_ID_SANITISED(ID_MMFR4_EL1), 2269 AA32_ID_SANITISED(ID_ISAR6_EL1), 2270 2271 /* CRm=3 */ 2272 AA32_ID_SANITISED(MVFR0_EL1), 2273 AA32_ID_SANITISED(MVFR1_EL1), 2274 AA32_ID_SANITISED(MVFR2_EL1), 2275 ID_UNALLOCATED(3,3), 2276 AA32_ID_SANITISED(ID_PFR2_EL1), 2277 ID_HIDDEN(ID_DFR1_EL1), 2278 AA32_ID_SANITISED(ID_MMFR5_EL1), 2279 ID_UNALLOCATED(3,7), 2280 2281 /* AArch64 ID registers */ 2282 /* CRm=4 */ 2283 { SYS_DESC(SYS_ID_AA64PFR0_EL1), 2284 .access = access_id_reg, 2285 .get_user = get_id_reg, 2286 .set_user = set_id_reg, 2287 .reset = read_sanitised_id_aa64pfr0_el1, 2288 .val = ~(ID_AA64PFR0_EL1_AMU | 2289 ID_AA64PFR0_EL1_MPAM | 2290 ID_AA64PFR0_EL1_SVE | 2291 ID_AA64PFR0_EL1_RAS | 2292 ID_AA64PFR0_EL1_GIC | 2293 ID_AA64PFR0_EL1_AdvSIMD | 2294 ID_AA64PFR0_EL1_FP), }, 2295 ID_SANITISED(ID_AA64PFR1_EL1), 2296 ID_UNALLOCATED(4,2), 2297 ID_UNALLOCATED(4,3), 2298 ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), 2299 ID_HIDDEN(ID_AA64SMFR0_EL1), 2300 ID_UNALLOCATED(4,6), 2301 ID_UNALLOCATED(4,7), 2302 2303 /* CRm=5 */ 2304 { SYS_DESC(SYS_ID_AA64DFR0_EL1), 2305 .access = access_id_reg, 2306 .get_user = get_id_reg, 2307 .set_user = set_id_aa64dfr0_el1, 2308 .reset = read_sanitised_id_aa64dfr0_el1, 2309 .val = ID_AA64DFR0_EL1_PMUVer_MASK | 2310 ID_AA64DFR0_EL1_DebugVer_MASK, }, 2311 ID_SANITISED(ID_AA64DFR1_EL1), 2312 ID_UNALLOCATED(5,2), 2313 ID_UNALLOCATED(5,3), 2314 ID_HIDDEN(ID_AA64AFR0_EL1), 2315 ID_HIDDEN(ID_AA64AFR1_EL1), 2316 ID_UNALLOCATED(5,6), 2317 ID_UNALLOCATED(5,7), 2318 2319 /* CRm=6 */ 2320 ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), 2321 ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | 2322 ID_AA64ISAR1_EL1_GPA | 2323 ID_AA64ISAR1_EL1_API | 2324 ID_AA64ISAR1_EL1_APA)), 2325 ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | 2326 ID_AA64ISAR2_EL1_APA3 | 2327 ID_AA64ISAR2_EL1_GPA3)), 2328 ID_UNALLOCATED(6,3), 2329 ID_UNALLOCATED(6,4), 2330 ID_UNALLOCATED(6,5), 2331 ID_UNALLOCATED(6,6), 2332 ID_UNALLOCATED(6,7), 2333 2334 /* CRm=7 */ 2335 ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | 2336 ID_AA64MMFR0_EL1_TGRAN4_2 | 2337 ID_AA64MMFR0_EL1_TGRAN64_2 | 2338 ID_AA64MMFR0_EL1_TGRAN16_2)), 2339 ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | 2340 ID_AA64MMFR1_EL1_HCX | 2341 ID_AA64MMFR1_EL1_XNX | 2342 ID_AA64MMFR1_EL1_TWED | 2343 ID_AA64MMFR1_EL1_XNX | 2344 ID_AA64MMFR1_EL1_VH | 2345 ID_AA64MMFR1_EL1_VMIDBits)), 2346 ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | 2347 ID_AA64MMFR2_EL1_EVT | 2348 ID_AA64MMFR2_EL1_FWB | 2349 ID_AA64MMFR2_EL1_IDS | 2350 ID_AA64MMFR2_EL1_NV | 2351 ID_AA64MMFR2_EL1_CCIDX)), 2352 ID_SANITISED(ID_AA64MMFR3_EL1), 2353 ID_SANITISED(ID_AA64MMFR4_EL1), 2354 ID_UNALLOCATED(7,5), 2355 ID_UNALLOCATED(7,6), 2356 ID_UNALLOCATED(7,7), 2357 2358 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 2359 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, 2360 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, 2361 2362 MTE_REG(RGSR_EL1), 2363 MTE_REG(GCR_EL1), 2364 2365 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, 2366 { SYS_DESC(SYS_TRFCR_EL1), undef_access }, 2367 { SYS_DESC(SYS_SMPRI_EL1), undef_access }, 2368 { SYS_DESC(SYS_SMCR_EL1), undef_access }, 2369 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, 2370 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, 2371 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, 2372 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, 2373 2374 PTRAUTH_KEY(APIA), 2375 PTRAUTH_KEY(APIB), 2376 PTRAUTH_KEY(APDA), 2377 PTRAUTH_KEY(APDB), 2378 PTRAUTH_KEY(APGA), 2379 2380 { SYS_DESC(SYS_SPSR_EL1), access_spsr}, 2381 { SYS_DESC(SYS_ELR_EL1), access_elr}, 2382 2383 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, 2384 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, 2385 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, 2386 2387 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, 2388 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, 2389 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, 2390 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, 2391 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, 2392 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, 2393 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, 2394 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, 2395 2396 MTE_REG(TFSR_EL1), 2397 MTE_REG(TFSRE0_EL1), 2398 2399 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, 2400 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, 2401 2402 { SYS_DESC(SYS_PMSCR_EL1), undef_access }, 2403 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, 2404 { SYS_DESC(SYS_PMSICR_EL1), undef_access }, 2405 { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, 2406 { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, 2407 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, 2408 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, 2409 { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, 2410 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, 2411 { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, 2412 { SYS_DESC(SYS_PMBSR_EL1), undef_access }, 2413 /* PMBIDR_EL1 is not trapped */ 2414 2415 { PMU_SYS_REG(PMINTENSET_EL1), 2416 .access = access_pminten, .reg = PMINTENSET_EL1, 2417 .get_user = get_pmreg, .set_user = set_pmreg }, 2418 { PMU_SYS_REG(PMINTENCLR_EL1), 2419 .access = access_pminten, .reg = PMINTENSET_EL1, 2420 .get_user = get_pmreg, .set_user = set_pmreg }, 2421 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, 2422 2423 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, 2424 { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, 2425 { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, 2426 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 2427 2428 { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, 2429 { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, 2430 { SYS_DESC(SYS_LORN_EL1), trap_loregion }, 2431 { SYS_DESC(SYS_LORC_EL1), trap_loregion }, 2432 { SYS_DESC(SYS_LORID_EL1), trap_loregion }, 2433 2434 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, 2435 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, 2436 2437 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, 2438 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, 2439 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, 2440 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, 2441 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, 2442 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, 2443 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, 2444 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, 2445 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, 2446 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, 2447 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, 2448 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, 2449 2450 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 2451 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, 2452 2453 { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, 2454 2455 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, 2456 2457 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, 2458 2459 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, 2460 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, 2461 .set_user = set_clidr }, 2462 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, 2463 { SYS_DESC(SYS_SMIDR_EL1), undef_access }, 2464 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, 2465 { SYS_DESC(SYS_CTR_EL0), access_ctr }, 2466 { SYS_DESC(SYS_SVCR), undef_access }, 2467 2468 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, 2469 .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, 2470 { PMU_SYS_REG(PMCNTENSET_EL0), 2471 .access = access_pmcnten, .reg = PMCNTENSET_EL0, 2472 .get_user = get_pmreg, .set_user = set_pmreg }, 2473 { PMU_SYS_REG(PMCNTENCLR_EL0), 2474 .access = access_pmcnten, .reg = PMCNTENSET_EL0, 2475 .get_user = get_pmreg, .set_user = set_pmreg }, 2476 { PMU_SYS_REG(PMOVSCLR_EL0), 2477 .access = access_pmovs, .reg = PMOVSSET_EL0, 2478 .get_user = get_pmreg, .set_user = set_pmreg }, 2479 /* 2480 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was 2481 * previously (and pointlessly) advertised in the past... 2482 */ 2483 { PMU_SYS_REG(PMSWINC_EL0), 2484 .get_user = get_raz_reg, .set_user = set_wi_reg, 2485 .access = access_pmswinc, .reset = NULL }, 2486 { PMU_SYS_REG(PMSELR_EL0), 2487 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, 2488 { PMU_SYS_REG(PMCEID0_EL0), 2489 .access = access_pmceid, .reset = NULL }, 2490 { PMU_SYS_REG(PMCEID1_EL0), 2491 .access = access_pmceid, .reset = NULL }, 2492 { PMU_SYS_REG(PMCCNTR_EL0), 2493 .access = access_pmu_evcntr, .reset = reset_unknown, 2494 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, 2495 { PMU_SYS_REG(PMXEVTYPER_EL0), 2496 .access = access_pmu_evtyper, .reset = NULL }, 2497 { PMU_SYS_REG(PMXEVCNTR_EL0), 2498 .access = access_pmu_evcntr, .reset = NULL }, 2499 /* 2500 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero 2501 * in 32bit mode. Here we choose to reset it as zero for consistency. 2502 */ 2503 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, 2504 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, 2505 { PMU_SYS_REG(PMOVSSET_EL0), 2506 .access = access_pmovs, .reg = PMOVSSET_EL0, 2507 .get_user = get_pmreg, .set_user = set_pmreg }, 2508 2509 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, 2510 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, 2511 { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, 2512 2513 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, 2514 2515 { SYS_DESC(SYS_AMCR_EL0), undef_access }, 2516 { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, 2517 { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, 2518 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, 2519 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, 2520 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, 2521 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, 2522 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, 2523 AMU_AMEVCNTR0_EL0(0), 2524 AMU_AMEVCNTR0_EL0(1), 2525 AMU_AMEVCNTR0_EL0(2), 2526 AMU_AMEVCNTR0_EL0(3), 2527 AMU_AMEVCNTR0_EL0(4), 2528 AMU_AMEVCNTR0_EL0(5), 2529 AMU_AMEVCNTR0_EL0(6), 2530 AMU_AMEVCNTR0_EL0(7), 2531 AMU_AMEVCNTR0_EL0(8), 2532 AMU_AMEVCNTR0_EL0(9), 2533 AMU_AMEVCNTR0_EL0(10), 2534 AMU_AMEVCNTR0_EL0(11), 2535 AMU_AMEVCNTR0_EL0(12), 2536 AMU_AMEVCNTR0_EL0(13), 2537 AMU_AMEVCNTR0_EL0(14), 2538 AMU_AMEVCNTR0_EL0(15), 2539 AMU_AMEVTYPER0_EL0(0), 2540 AMU_AMEVTYPER0_EL0(1), 2541 AMU_AMEVTYPER0_EL0(2), 2542 AMU_AMEVTYPER0_EL0(3), 2543 AMU_AMEVTYPER0_EL0(4), 2544 AMU_AMEVTYPER0_EL0(5), 2545 AMU_AMEVTYPER0_EL0(6), 2546 AMU_AMEVTYPER0_EL0(7), 2547 AMU_AMEVTYPER0_EL0(8), 2548 AMU_AMEVTYPER0_EL0(9), 2549 AMU_AMEVTYPER0_EL0(10), 2550 AMU_AMEVTYPER0_EL0(11), 2551 AMU_AMEVTYPER0_EL0(12), 2552 AMU_AMEVTYPER0_EL0(13), 2553 AMU_AMEVTYPER0_EL0(14), 2554 AMU_AMEVTYPER0_EL0(15), 2555 AMU_AMEVCNTR1_EL0(0), 2556 AMU_AMEVCNTR1_EL0(1), 2557 AMU_AMEVCNTR1_EL0(2), 2558 AMU_AMEVCNTR1_EL0(3), 2559 AMU_AMEVCNTR1_EL0(4), 2560 AMU_AMEVCNTR1_EL0(5), 2561 AMU_AMEVCNTR1_EL0(6), 2562 AMU_AMEVCNTR1_EL0(7), 2563 AMU_AMEVCNTR1_EL0(8), 2564 AMU_AMEVCNTR1_EL0(9), 2565 AMU_AMEVCNTR1_EL0(10), 2566 AMU_AMEVCNTR1_EL0(11), 2567 AMU_AMEVCNTR1_EL0(12), 2568 AMU_AMEVCNTR1_EL0(13), 2569 AMU_AMEVCNTR1_EL0(14), 2570 AMU_AMEVCNTR1_EL0(15), 2571 AMU_AMEVTYPER1_EL0(0), 2572 AMU_AMEVTYPER1_EL0(1), 2573 AMU_AMEVTYPER1_EL0(2), 2574 AMU_AMEVTYPER1_EL0(3), 2575 AMU_AMEVTYPER1_EL0(4), 2576 AMU_AMEVTYPER1_EL0(5), 2577 AMU_AMEVTYPER1_EL0(6), 2578 AMU_AMEVTYPER1_EL0(7), 2579 AMU_AMEVTYPER1_EL0(8), 2580 AMU_AMEVTYPER1_EL0(9), 2581 AMU_AMEVTYPER1_EL0(10), 2582 AMU_AMEVTYPER1_EL0(11), 2583 AMU_AMEVTYPER1_EL0(12), 2584 AMU_AMEVTYPER1_EL0(13), 2585 AMU_AMEVTYPER1_EL0(14), 2586 AMU_AMEVTYPER1_EL0(15), 2587 2588 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, 2589 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, 2590 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, 2591 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, 2592 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, 2593 2594 /* PMEVCNTRn_EL0 */ 2595 PMU_PMEVCNTR_EL0(0), 2596 PMU_PMEVCNTR_EL0(1), 2597 PMU_PMEVCNTR_EL0(2), 2598 PMU_PMEVCNTR_EL0(3), 2599 PMU_PMEVCNTR_EL0(4), 2600 PMU_PMEVCNTR_EL0(5), 2601 PMU_PMEVCNTR_EL0(6), 2602 PMU_PMEVCNTR_EL0(7), 2603 PMU_PMEVCNTR_EL0(8), 2604 PMU_PMEVCNTR_EL0(9), 2605 PMU_PMEVCNTR_EL0(10), 2606 PMU_PMEVCNTR_EL0(11), 2607 PMU_PMEVCNTR_EL0(12), 2608 PMU_PMEVCNTR_EL0(13), 2609 PMU_PMEVCNTR_EL0(14), 2610 PMU_PMEVCNTR_EL0(15), 2611 PMU_PMEVCNTR_EL0(16), 2612 PMU_PMEVCNTR_EL0(17), 2613 PMU_PMEVCNTR_EL0(18), 2614 PMU_PMEVCNTR_EL0(19), 2615 PMU_PMEVCNTR_EL0(20), 2616 PMU_PMEVCNTR_EL0(21), 2617 PMU_PMEVCNTR_EL0(22), 2618 PMU_PMEVCNTR_EL0(23), 2619 PMU_PMEVCNTR_EL0(24), 2620 PMU_PMEVCNTR_EL0(25), 2621 PMU_PMEVCNTR_EL0(26), 2622 PMU_PMEVCNTR_EL0(27), 2623 PMU_PMEVCNTR_EL0(28), 2624 PMU_PMEVCNTR_EL0(29), 2625 PMU_PMEVCNTR_EL0(30), 2626 /* PMEVTYPERn_EL0 */ 2627 PMU_PMEVTYPER_EL0(0), 2628 PMU_PMEVTYPER_EL0(1), 2629 PMU_PMEVTYPER_EL0(2), 2630 PMU_PMEVTYPER_EL0(3), 2631 PMU_PMEVTYPER_EL0(4), 2632 PMU_PMEVTYPER_EL0(5), 2633 PMU_PMEVTYPER_EL0(6), 2634 PMU_PMEVTYPER_EL0(7), 2635 PMU_PMEVTYPER_EL0(8), 2636 PMU_PMEVTYPER_EL0(9), 2637 PMU_PMEVTYPER_EL0(10), 2638 PMU_PMEVTYPER_EL0(11), 2639 PMU_PMEVTYPER_EL0(12), 2640 PMU_PMEVTYPER_EL0(13), 2641 PMU_PMEVTYPER_EL0(14), 2642 PMU_PMEVTYPER_EL0(15), 2643 PMU_PMEVTYPER_EL0(16), 2644 PMU_PMEVTYPER_EL0(17), 2645 PMU_PMEVTYPER_EL0(18), 2646 PMU_PMEVTYPER_EL0(19), 2647 PMU_PMEVTYPER_EL0(20), 2648 PMU_PMEVTYPER_EL0(21), 2649 PMU_PMEVTYPER_EL0(22), 2650 PMU_PMEVTYPER_EL0(23), 2651 PMU_PMEVTYPER_EL0(24), 2652 PMU_PMEVTYPER_EL0(25), 2653 PMU_PMEVTYPER_EL0(26), 2654 PMU_PMEVTYPER_EL0(27), 2655 PMU_PMEVTYPER_EL0(28), 2656 PMU_PMEVTYPER_EL0(29), 2657 PMU_PMEVTYPER_EL0(30), 2658 /* 2659 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero 2660 * in 32bit mode. Here we choose to reset it as zero for consistency. 2661 */ 2662 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, 2663 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, 2664 2665 EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), 2666 EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), 2667 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), 2668 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), 2669 EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), 2670 EL2_REG(MDCR_EL2, access_rw, reset_val, 0), 2671 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), 2672 EL2_REG_VNCR(HSTR_EL2, reset_val, 0), 2673 EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), 2674 EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), 2675 EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), 2676 EL2_REG_VNCR(HACR_EL2, reset_val, 0), 2677 2678 EL2_REG_VNCR(HCRX_EL2, reset_val, 0), 2679 2680 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), 2681 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), 2682 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), 2683 EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), 2684 EL2_REG_VNCR(VTCR_EL2, reset_val, 0), 2685 2686 { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 }, 2687 EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), 2688 EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), 2689 EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), 2690 EL2_REG_REDIR(SPSR_EL2, reset_val, 0), 2691 EL2_REG_REDIR(ELR_EL2, reset_val, 0), 2692 { SYS_DESC(SYS_SP_EL1), access_sp_el1}, 2693 2694 /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ 2695 { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi, 2696 .visibility = hidden_user_visibility }, 2697 { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi, 2698 .visibility = hidden_user_visibility }, 2699 { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi, 2700 .visibility = hidden_user_visibility }, 2701 { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi, 2702 .visibility = hidden_user_visibility }, 2703 2704 { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 }, 2705 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), 2706 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), 2707 EL2_REG_REDIR(ESR_EL2, reset_val, 0), 2708 { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 }, 2709 2710 EL2_REG_REDIR(FAR_EL2, reset_val, 0), 2711 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), 2712 2713 EL2_REG(MAIR_EL2, access_rw, reset_val, 0), 2714 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), 2715 2716 EL2_REG(VBAR_EL2, access_rw, reset_val, 0), 2717 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), 2718 { SYS_DESC(SYS_RMR_EL2), trap_undef }, 2719 2720 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), 2721 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), 2722 2723 EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), 2724 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), 2725 2726 EL12_REG(CNTKCTL, access_rw, reset_val, 0), 2727 2728 EL2_REG(SP_EL2, NULL, reset_unknown, 0), 2729 }; 2730 2731 static struct sys_reg_desc sys_insn_descs[] = { 2732 { SYS_DESC(SYS_DC_ISW), access_dcsw }, 2733 { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, 2734 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, 2735 { SYS_DESC(SYS_DC_CSW), access_dcsw }, 2736 { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, 2737 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, 2738 { SYS_DESC(SYS_DC_CISW), access_dcsw }, 2739 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, 2740 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, 2741 }; 2742 2743 static const struct sys_reg_desc *first_idreg; 2744 2745 static bool trap_dbgdidr(struct kvm_vcpu *vcpu, 2746 struct sys_reg_params *p, 2747 const struct sys_reg_desc *r) 2748 { 2749 if (p->is_write) { 2750 return ignore_write(vcpu, p); 2751 } else { 2752 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1); 2753 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); 2754 2755 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | 2756 (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | 2757 (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | 2758 (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | 2759 (1 << 15) | (el3 << 14) | (el3 << 12)); 2760 return true; 2761 } 2762 } 2763 2764 /* 2765 * AArch32 debug register mappings 2766 * 2767 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 2768 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 2769 * 2770 * None of the other registers share their location, so treat them as 2771 * if they were 64bit. 2772 */ 2773 #define DBG_BCR_BVR_WCR_WVR(n) \ 2774 /* DBGBVRn */ \ 2775 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 2776 /* DBGBCRn */ \ 2777 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 2778 /* DBGWVRn */ \ 2779 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 2780 /* DBGWCRn */ \ 2781 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 2782 2783 #define DBGBXVR(n) \ 2784 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } 2785 2786 /* 2787 * Trapped cp14 registers. We generally ignore most of the external 2788 * debug, on the principle that they don't really make sense to a 2789 * guest. Revisit this one day, would this principle change. 2790 */ 2791 static const struct sys_reg_desc cp14_regs[] = { 2792 /* DBGDIDR */ 2793 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, 2794 /* DBGDTRRXext */ 2795 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 2796 2797 DBG_BCR_BVR_WCR_WVR(0), 2798 /* DBGDSCRint */ 2799 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 2800 DBG_BCR_BVR_WCR_WVR(1), 2801 /* DBGDCCINT */ 2802 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, 2803 /* DBGDSCRext */ 2804 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, 2805 DBG_BCR_BVR_WCR_WVR(2), 2806 /* DBGDTR[RT]Xint */ 2807 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 2808 /* DBGDTR[RT]Xext */ 2809 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 2810 DBG_BCR_BVR_WCR_WVR(3), 2811 DBG_BCR_BVR_WCR_WVR(4), 2812 DBG_BCR_BVR_WCR_WVR(5), 2813 /* DBGWFAR */ 2814 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 2815 /* DBGOSECCR */ 2816 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 2817 DBG_BCR_BVR_WCR_WVR(6), 2818 /* DBGVCR */ 2819 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, 2820 DBG_BCR_BVR_WCR_WVR(7), 2821 DBG_BCR_BVR_WCR_WVR(8), 2822 DBG_BCR_BVR_WCR_WVR(9), 2823 DBG_BCR_BVR_WCR_WVR(10), 2824 DBG_BCR_BVR_WCR_WVR(11), 2825 DBG_BCR_BVR_WCR_WVR(12), 2826 DBG_BCR_BVR_WCR_WVR(13), 2827 DBG_BCR_BVR_WCR_WVR(14), 2828 DBG_BCR_BVR_WCR_WVR(15), 2829 2830 /* DBGDRAR (32bit) */ 2831 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 2832 2833 DBGBXVR(0), 2834 /* DBGOSLAR */ 2835 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, 2836 DBGBXVR(1), 2837 /* DBGOSLSR */ 2838 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, 2839 DBGBXVR(2), 2840 DBGBXVR(3), 2841 /* DBGOSDLR */ 2842 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 2843 DBGBXVR(4), 2844 /* DBGPRCR */ 2845 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 2846 DBGBXVR(5), 2847 DBGBXVR(6), 2848 DBGBXVR(7), 2849 DBGBXVR(8), 2850 DBGBXVR(9), 2851 DBGBXVR(10), 2852 DBGBXVR(11), 2853 DBGBXVR(12), 2854 DBGBXVR(13), 2855 DBGBXVR(14), 2856 DBGBXVR(15), 2857 2858 /* DBGDSAR (32bit) */ 2859 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 2860 2861 /* DBGDEVID2 */ 2862 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 2863 /* DBGDEVID1 */ 2864 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 2865 /* DBGDEVID */ 2866 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 2867 /* DBGCLAIMSET */ 2868 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 2869 /* DBGCLAIMCLR */ 2870 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 2871 /* DBGAUTHSTATUS */ 2872 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 2873 }; 2874 2875 /* Trapped cp14 64bit registers */ 2876 static const struct sys_reg_desc cp14_64_regs[] = { 2877 /* DBGDRAR (64bit) */ 2878 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 2879 2880 /* DBGDSAR (64bit) */ 2881 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 2882 }; 2883 2884 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ 2885 AA32(_map), \ 2886 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ 2887 .visibility = pmu_visibility 2888 2889 /* Macro to expand the PMEVCNTRn register */ 2890 #define PMU_PMEVCNTR(n) \ 2891 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2892 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2893 .access = access_pmu_evcntr } 2894 2895 /* Macro to expand the PMEVTYPERn register */ 2896 #define PMU_PMEVTYPER(n) \ 2897 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2898 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2899 .access = access_pmu_evtyper } 2900 /* 2901 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 2902 * depending on the way they are accessed (as a 32bit or a 64bit 2903 * register). 2904 */ 2905 static const struct sys_reg_desc cp15_regs[] = { 2906 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, 2907 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, 2908 /* ACTLR */ 2909 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, 2910 /* ACTLR2 */ 2911 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, 2912 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2913 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, 2914 /* TTBCR */ 2915 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, 2916 /* TTBCR2 */ 2917 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, 2918 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, 2919 /* DFSR */ 2920 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, 2921 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, 2922 /* ADFSR */ 2923 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, 2924 /* AIFSR */ 2925 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, 2926 /* DFAR */ 2927 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, 2928 /* IFAR */ 2929 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, 2930 2931 /* 2932 * DC{C,I,CI}SW operations: 2933 */ 2934 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 2935 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 2936 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 2937 2938 /* PMU */ 2939 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, 2940 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, 2941 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, 2942 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, 2943 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, 2944 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, 2945 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, 2946 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, 2947 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, 2948 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, 2949 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, 2950 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, 2951 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, 2952 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, 2953 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, 2954 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, 2955 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, 2956 /* PMMIR */ 2957 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, 2958 2959 /* PRRR/MAIR0 */ 2960 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, 2961 /* NMRR/MAIR1 */ 2962 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, 2963 /* AMAIR0 */ 2964 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, 2965 /* AMAIR1 */ 2966 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, 2967 2968 /* ICC_SRE */ 2969 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, 2970 2971 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, 2972 2973 /* Arch Tmers */ 2974 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, 2975 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, 2976 2977 /* PMEVCNTRn */ 2978 PMU_PMEVCNTR(0), 2979 PMU_PMEVCNTR(1), 2980 PMU_PMEVCNTR(2), 2981 PMU_PMEVCNTR(3), 2982 PMU_PMEVCNTR(4), 2983 PMU_PMEVCNTR(5), 2984 PMU_PMEVCNTR(6), 2985 PMU_PMEVCNTR(7), 2986 PMU_PMEVCNTR(8), 2987 PMU_PMEVCNTR(9), 2988 PMU_PMEVCNTR(10), 2989 PMU_PMEVCNTR(11), 2990 PMU_PMEVCNTR(12), 2991 PMU_PMEVCNTR(13), 2992 PMU_PMEVCNTR(14), 2993 PMU_PMEVCNTR(15), 2994 PMU_PMEVCNTR(16), 2995 PMU_PMEVCNTR(17), 2996 PMU_PMEVCNTR(18), 2997 PMU_PMEVCNTR(19), 2998 PMU_PMEVCNTR(20), 2999 PMU_PMEVCNTR(21), 3000 PMU_PMEVCNTR(22), 3001 PMU_PMEVCNTR(23), 3002 PMU_PMEVCNTR(24), 3003 PMU_PMEVCNTR(25), 3004 PMU_PMEVCNTR(26), 3005 PMU_PMEVCNTR(27), 3006 PMU_PMEVCNTR(28), 3007 PMU_PMEVCNTR(29), 3008 PMU_PMEVCNTR(30), 3009 /* PMEVTYPERn */ 3010 PMU_PMEVTYPER(0), 3011 PMU_PMEVTYPER(1), 3012 PMU_PMEVTYPER(2), 3013 PMU_PMEVTYPER(3), 3014 PMU_PMEVTYPER(4), 3015 PMU_PMEVTYPER(5), 3016 PMU_PMEVTYPER(6), 3017 PMU_PMEVTYPER(7), 3018 PMU_PMEVTYPER(8), 3019 PMU_PMEVTYPER(9), 3020 PMU_PMEVTYPER(10), 3021 PMU_PMEVTYPER(11), 3022 PMU_PMEVTYPER(12), 3023 PMU_PMEVTYPER(13), 3024 PMU_PMEVTYPER(14), 3025 PMU_PMEVTYPER(15), 3026 PMU_PMEVTYPER(16), 3027 PMU_PMEVTYPER(17), 3028 PMU_PMEVTYPER(18), 3029 PMU_PMEVTYPER(19), 3030 PMU_PMEVTYPER(20), 3031 PMU_PMEVTYPER(21), 3032 PMU_PMEVTYPER(22), 3033 PMU_PMEVTYPER(23), 3034 PMU_PMEVTYPER(24), 3035 PMU_PMEVTYPER(25), 3036 PMU_PMEVTYPER(26), 3037 PMU_PMEVTYPER(27), 3038 PMU_PMEVTYPER(28), 3039 PMU_PMEVTYPER(29), 3040 PMU_PMEVTYPER(30), 3041 /* PMCCFILTR */ 3042 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, 3043 3044 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, 3045 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, 3046 3047 /* CCSIDR2 */ 3048 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, 3049 3050 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, 3051 }; 3052 3053 static const struct sys_reg_desc cp15_64_regs[] = { 3054 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 3055 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, 3056 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ 3057 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, 3058 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, 3059 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ 3060 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ 3061 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, 3062 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, 3063 }; 3064 3065 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, 3066 bool is_32) 3067 { 3068 unsigned int i; 3069 3070 for (i = 0; i < n; i++) { 3071 if (!is_32 && table[i].reg && !table[i].reset) { 3072 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); 3073 return false; 3074 } 3075 3076 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 3077 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); 3078 return false; 3079 } 3080 } 3081 3082 return true; 3083 } 3084 3085 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) 3086 { 3087 kvm_inject_undefined(vcpu); 3088 return 1; 3089 } 3090 3091 static void perform_access(struct kvm_vcpu *vcpu, 3092 struct sys_reg_params *params, 3093 const struct sys_reg_desc *r) 3094 { 3095 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); 3096 3097 /* Check for regs disabled by runtime config */ 3098 if (sysreg_hidden(vcpu, r)) { 3099 kvm_inject_undefined(vcpu); 3100 return; 3101 } 3102 3103 /* 3104 * Not having an accessor means that we have configured a trap 3105 * that we don't know how to handle. This certainly qualifies 3106 * as a gross bug that should be fixed right away. 3107 */ 3108 BUG_ON(!r->access); 3109 3110 /* Skip instruction if instructed so */ 3111 if (likely(r->access(vcpu, params, r))) 3112 kvm_incr_pc(vcpu); 3113 } 3114 3115 /* 3116 * emulate_cp -- tries to match a sys_reg access in a handling table, and 3117 * call the corresponding trap handler. 3118 * 3119 * @params: pointer to the descriptor of the access 3120 * @table: array of trap descriptors 3121 * @num: size of the trap descriptor array 3122 * 3123 * Return true if the access has been handled, false if not. 3124 */ 3125 static bool emulate_cp(struct kvm_vcpu *vcpu, 3126 struct sys_reg_params *params, 3127 const struct sys_reg_desc *table, 3128 size_t num) 3129 { 3130 const struct sys_reg_desc *r; 3131 3132 if (!table) 3133 return false; /* Not handled */ 3134 3135 r = find_reg(params, table, num); 3136 3137 if (r) { 3138 perform_access(vcpu, params, r); 3139 return true; 3140 } 3141 3142 /* Not handled */ 3143 return false; 3144 } 3145 3146 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 3147 struct sys_reg_params *params) 3148 { 3149 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 3150 int cp = -1; 3151 3152 switch (esr_ec) { 3153 case ESR_ELx_EC_CP15_32: 3154 case ESR_ELx_EC_CP15_64: 3155 cp = 15; 3156 break; 3157 case ESR_ELx_EC_CP14_MR: 3158 case ESR_ELx_EC_CP14_64: 3159 cp = 14; 3160 break; 3161 default: 3162 WARN_ON(1); 3163 } 3164 3165 print_sys_reg_msg(params, 3166 "Unsupported guest CP%d access at: %08lx [%08lx]\n", 3167 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 3168 kvm_inject_undefined(vcpu); 3169 } 3170 3171 /** 3172 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access 3173 * @vcpu: The VCPU pointer 3174 * @global: &struct sys_reg_desc 3175 * @nr_global: size of the @global array 3176 */ 3177 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 3178 const struct sys_reg_desc *global, 3179 size_t nr_global) 3180 { 3181 struct sys_reg_params params; 3182 u64 esr = kvm_vcpu_get_esr(vcpu); 3183 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3184 int Rt2 = (esr >> 10) & 0x1f; 3185 3186 params.CRm = (esr >> 1) & 0xf; 3187 params.is_write = ((esr & 1) == 0); 3188 3189 params.Op0 = 0; 3190 params.Op1 = (esr >> 16) & 0xf; 3191 params.Op2 = 0; 3192 params.CRn = 0; 3193 3194 /* 3195 * Make a 64-bit value out of Rt and Rt2. As we use the same trap 3196 * backends between AArch32 and AArch64, we get away with it. 3197 */ 3198 if (params.is_write) { 3199 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; 3200 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; 3201 } 3202 3203 /* 3204 * If the table contains a handler, handle the 3205 * potential register operation in the case of a read and return 3206 * with success. 3207 */ 3208 if (emulate_cp(vcpu, ¶ms, global, nr_global)) { 3209 /* Split up the value between registers for the read side */ 3210 if (!params.is_write) { 3211 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); 3212 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); 3213 } 3214 3215 return 1; 3216 } 3217 3218 unhandled_cp_access(vcpu, ¶ms); 3219 return 1; 3220 } 3221 3222 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); 3223 3224 /* 3225 * The CP10 ID registers are architecturally mapped to AArch64 feature 3226 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses 3227 * from AArch32. 3228 */ 3229 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) 3230 { 3231 u8 reg_id = (esr >> 10) & 0xf; 3232 bool valid; 3233 3234 params->is_write = ((esr & 1) == 0); 3235 params->Op0 = 3; 3236 params->Op1 = 0; 3237 params->CRn = 0; 3238 params->CRm = 3; 3239 3240 /* CP10 ID registers are read-only */ 3241 valid = !params->is_write; 3242 3243 switch (reg_id) { 3244 /* MVFR0 */ 3245 case 0b0111: 3246 params->Op2 = 0; 3247 break; 3248 /* MVFR1 */ 3249 case 0b0110: 3250 params->Op2 = 1; 3251 break; 3252 /* MVFR2 */ 3253 case 0b0101: 3254 params->Op2 = 2; 3255 break; 3256 default: 3257 valid = false; 3258 } 3259 3260 if (valid) 3261 return true; 3262 3263 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", 3264 params->is_write ? "write" : "read", reg_id); 3265 return false; 3266 } 3267 3268 /** 3269 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and 3270 * VFP Register' from AArch32. 3271 * @vcpu: The vCPU pointer 3272 * 3273 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. 3274 * Work out the correct AArch64 system register encoding and reroute to the 3275 * AArch64 system register emulation. 3276 */ 3277 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) 3278 { 3279 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3280 u64 esr = kvm_vcpu_get_esr(vcpu); 3281 struct sys_reg_params params; 3282 3283 /* UNDEF on any unhandled register access */ 3284 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { 3285 kvm_inject_undefined(vcpu); 3286 return 1; 3287 } 3288 3289 if (emulate_sys_reg(vcpu, ¶ms)) 3290 vcpu_set_reg(vcpu, Rt, params.regval); 3291 3292 return 1; 3293 } 3294 3295 /** 3296 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where 3297 * CRn=0, which corresponds to the AArch32 feature 3298 * registers. 3299 * @vcpu: the vCPU pointer 3300 * @params: the system register access parameters. 3301 * 3302 * Our cp15 system register tables do not enumerate the AArch32 feature 3303 * registers. Conveniently, our AArch64 table does, and the AArch32 system 3304 * register encoding can be trivially remapped into the AArch64 for the feature 3305 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. 3306 * 3307 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit 3308 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this 3309 * range are either UNKNOWN or RES0. Rerouting remains architectural as we 3310 * treat undefined registers in this range as RAZ. 3311 */ 3312 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, 3313 struct sys_reg_params *params) 3314 { 3315 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3316 3317 /* Treat impossible writes to RO registers as UNDEFINED */ 3318 if (params->is_write) { 3319 unhandled_cp_access(vcpu, params); 3320 return 1; 3321 } 3322 3323 params->Op0 = 3; 3324 3325 /* 3326 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. 3327 * Avoid conflicting with future expansion of AArch64 feature registers 3328 * and simply treat them as RAZ here. 3329 */ 3330 if (params->CRm > 3) 3331 params->regval = 0; 3332 else if (!emulate_sys_reg(vcpu, params)) 3333 return 1; 3334 3335 vcpu_set_reg(vcpu, Rt, params->regval); 3336 return 1; 3337 } 3338 3339 /** 3340 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access 3341 * @vcpu: The VCPU pointer 3342 * @params: &struct sys_reg_params 3343 * @global: &struct sys_reg_desc 3344 * @nr_global: size of the @global array 3345 */ 3346 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 3347 struct sys_reg_params *params, 3348 const struct sys_reg_desc *global, 3349 size_t nr_global) 3350 { 3351 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3352 3353 params->regval = vcpu_get_reg(vcpu, Rt); 3354 3355 if (emulate_cp(vcpu, params, global, nr_global)) { 3356 if (!params->is_write) 3357 vcpu_set_reg(vcpu, Rt, params->regval); 3358 return 1; 3359 } 3360 3361 unhandled_cp_access(vcpu, params); 3362 return 1; 3363 } 3364 3365 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) 3366 { 3367 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); 3368 } 3369 3370 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) 3371 { 3372 struct sys_reg_params params; 3373 3374 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 3375 3376 /* 3377 * Certain AArch32 ID registers are handled by rerouting to the AArch64 3378 * system register table. Registers in the ID range where CRm=0 are 3379 * excluded from this scheme as they do not trivially map into AArch64 3380 * system register encodings. 3381 */ 3382 if (params.Op1 == 0 && params.CRn == 0 && params.CRm) 3383 return kvm_emulate_cp15_id_reg(vcpu, ¶ms); 3384 3385 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); 3386 } 3387 3388 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) 3389 { 3390 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); 3391 } 3392 3393 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) 3394 { 3395 struct sys_reg_params params; 3396 3397 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 3398 3399 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); 3400 } 3401 3402 /** 3403 * emulate_sys_reg - Emulate a guest access to an AArch64 system register 3404 * @vcpu: The VCPU pointer 3405 * @params: Decoded system register parameters 3406 * 3407 * Return: true if the system register access was successful, false otherwise. 3408 */ 3409 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, 3410 struct sys_reg_params *params) 3411 { 3412 const struct sys_reg_desc *r; 3413 3414 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3415 if (likely(r)) { 3416 perform_access(vcpu, params, r); 3417 return true; 3418 } 3419 3420 print_sys_reg_msg(params, 3421 "Unsupported guest sys_reg access at: %lx [%08lx]\n", 3422 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 3423 kvm_inject_undefined(vcpu); 3424 3425 return false; 3426 } 3427 3428 static void *idregs_debug_start(struct seq_file *s, loff_t *pos) 3429 { 3430 struct kvm *kvm = s->private; 3431 u8 *iter; 3432 3433 mutex_lock(&kvm->arch.config_lock); 3434 3435 iter = &kvm->arch.idreg_debugfs_iter; 3436 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && 3437 *iter == (u8)~0) { 3438 *iter = *pos; 3439 if (*iter >= KVM_ARM_ID_REG_NUM) 3440 iter = NULL; 3441 } else { 3442 iter = ERR_PTR(-EBUSY); 3443 } 3444 3445 mutex_unlock(&kvm->arch.config_lock); 3446 3447 return iter; 3448 } 3449 3450 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) 3451 { 3452 struct kvm *kvm = s->private; 3453 3454 (*pos)++; 3455 3456 if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) { 3457 kvm->arch.idreg_debugfs_iter++; 3458 3459 return &kvm->arch.idreg_debugfs_iter; 3460 } 3461 3462 return NULL; 3463 } 3464 3465 static void idregs_debug_stop(struct seq_file *s, void *v) 3466 { 3467 struct kvm *kvm = s->private; 3468 3469 if (IS_ERR(v)) 3470 return; 3471 3472 mutex_lock(&kvm->arch.config_lock); 3473 3474 kvm->arch.idreg_debugfs_iter = ~0; 3475 3476 mutex_unlock(&kvm->arch.config_lock); 3477 } 3478 3479 static int idregs_debug_show(struct seq_file *s, void *v) 3480 { 3481 struct kvm *kvm = s->private; 3482 const struct sys_reg_desc *desc; 3483 3484 desc = first_idreg + kvm->arch.idreg_debugfs_iter; 3485 3486 if (!desc->name) 3487 return 0; 3488 3489 seq_printf(s, "%20s:\t%016llx\n", 3490 desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter))); 3491 3492 return 0; 3493 } 3494 3495 static const struct seq_operations idregs_debug_sops = { 3496 .start = idregs_debug_start, 3497 .next = idregs_debug_next, 3498 .stop = idregs_debug_stop, 3499 .show = idregs_debug_show, 3500 }; 3501 3502 DEFINE_SEQ_ATTRIBUTE(idregs_debug); 3503 3504 void kvm_sys_regs_create_debugfs(struct kvm *kvm) 3505 { 3506 kvm->arch.idreg_debugfs_iter = ~0; 3507 3508 debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, 3509 &idregs_debug_fops); 3510 } 3511 3512 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu) 3513 { 3514 const struct sys_reg_desc *idreg = first_idreg; 3515 u32 id = reg_to_encoding(idreg); 3516 struct kvm *kvm = vcpu->kvm; 3517 3518 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) 3519 return; 3520 3521 lockdep_assert_held(&kvm->arch.config_lock); 3522 3523 /* Initialize all idregs */ 3524 while (is_id_reg(id)) { 3525 IDREG(kvm, id) = idreg->reset(vcpu, idreg); 3526 3527 idreg++; 3528 id = reg_to_encoding(idreg); 3529 } 3530 3531 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); 3532 } 3533 3534 /** 3535 * kvm_reset_sys_regs - sets system registers to reset value 3536 * @vcpu: The VCPU pointer 3537 * 3538 * This function finds the right table above and sets the registers on the 3539 * virtual CPU struct to their architecturally defined reset values. 3540 */ 3541 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 3542 { 3543 unsigned long i; 3544 3545 kvm_reset_id_regs(vcpu); 3546 3547 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { 3548 const struct sys_reg_desc *r = &sys_reg_descs[i]; 3549 3550 if (is_id_reg(reg_to_encoding(r))) 3551 continue; 3552 3553 if (r->reset) 3554 r->reset(vcpu, r); 3555 } 3556 } 3557 3558 /** 3559 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction 3560 * trap on a guest execution 3561 * @vcpu: The VCPU pointer 3562 */ 3563 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) 3564 { 3565 const struct sys_reg_desc *desc = NULL; 3566 struct sys_reg_params params; 3567 unsigned long esr = kvm_vcpu_get_esr(vcpu); 3568 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3569 int sr_idx; 3570 3571 trace_kvm_handle_sys_reg(esr); 3572 3573 if (triage_sysreg_trap(vcpu, &sr_idx)) 3574 return 1; 3575 3576 params = esr_sys64_to_params(esr); 3577 params.regval = vcpu_get_reg(vcpu, Rt); 3578 3579 /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ 3580 if (params.Op0 == 2 || params.Op0 == 3) 3581 desc = &sys_reg_descs[sr_idx]; 3582 else 3583 desc = &sys_insn_descs[sr_idx]; 3584 3585 perform_access(vcpu, ¶ms, desc); 3586 3587 /* Read from system register? */ 3588 if (!params.is_write && 3589 (params.Op0 == 2 || params.Op0 == 3)) 3590 vcpu_set_reg(vcpu, Rt, params.regval); 3591 3592 return 1; 3593 } 3594 3595 /****************************************************************************** 3596 * Userspace API 3597 *****************************************************************************/ 3598 3599 static bool index_to_params(u64 id, struct sys_reg_params *params) 3600 { 3601 switch (id & KVM_REG_SIZE_MASK) { 3602 case KVM_REG_SIZE_U64: 3603 /* Any unused index bits means it's not valid. */ 3604 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 3605 | KVM_REG_ARM_COPROC_MASK 3606 | KVM_REG_ARM64_SYSREG_OP0_MASK 3607 | KVM_REG_ARM64_SYSREG_OP1_MASK 3608 | KVM_REG_ARM64_SYSREG_CRN_MASK 3609 | KVM_REG_ARM64_SYSREG_CRM_MASK 3610 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 3611 return false; 3612 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 3613 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 3614 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 3615 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 3616 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 3617 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 3618 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 3619 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 3620 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 3621 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 3622 return true; 3623 default: 3624 return false; 3625 } 3626 } 3627 3628 const struct sys_reg_desc *get_reg_by_id(u64 id, 3629 const struct sys_reg_desc table[], 3630 unsigned int num) 3631 { 3632 struct sys_reg_params params; 3633 3634 if (!index_to_params(id, ¶ms)) 3635 return NULL; 3636 3637 return find_reg(¶ms, table, num); 3638 } 3639 3640 /* Decode an index value, and find the sys_reg_desc entry. */ 3641 static const struct sys_reg_desc * 3642 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, 3643 const struct sys_reg_desc table[], unsigned int num) 3644 3645 { 3646 const struct sys_reg_desc *r; 3647 3648 /* We only do sys_reg for now. */ 3649 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 3650 return NULL; 3651 3652 r = get_reg_by_id(id, table, num); 3653 3654 /* Not saved in the sys_reg array and not otherwise accessible? */ 3655 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) 3656 r = NULL; 3657 3658 return r; 3659 } 3660 3661 /* 3662 * These are the invariant sys_reg registers: we let the guest see the 3663 * host versions of these, so they're part of the guest state. 3664 * 3665 * A future CPU may provide a mechanism to present different values to 3666 * the guest, or a future kvm may trap them. 3667 */ 3668 3669 #define FUNCTION_INVARIANT(reg) \ 3670 static u64 get_##reg(struct kvm_vcpu *v, \ 3671 const struct sys_reg_desc *r) \ 3672 { \ 3673 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ 3674 return ((struct sys_reg_desc *)r)->val; \ 3675 } 3676 3677 FUNCTION_INVARIANT(midr_el1) 3678 FUNCTION_INVARIANT(revidr_el1) 3679 FUNCTION_INVARIANT(aidr_el1) 3680 3681 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) 3682 { 3683 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); 3684 return ((struct sys_reg_desc *)r)->val; 3685 } 3686 3687 /* ->val is filled in by kvm_sys_reg_table_init() */ 3688 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { 3689 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, 3690 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, 3691 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, 3692 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, 3693 }; 3694 3695 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) 3696 { 3697 const struct sys_reg_desc *r; 3698 3699 r = get_reg_by_id(id, invariant_sys_regs, 3700 ARRAY_SIZE(invariant_sys_regs)); 3701 if (!r) 3702 return -ENOENT; 3703 3704 return put_user(r->val, uaddr); 3705 } 3706 3707 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) 3708 { 3709 const struct sys_reg_desc *r; 3710 u64 val; 3711 3712 r = get_reg_by_id(id, invariant_sys_regs, 3713 ARRAY_SIZE(invariant_sys_regs)); 3714 if (!r) 3715 return -ENOENT; 3716 3717 if (get_user(val, uaddr)) 3718 return -EFAULT; 3719 3720 /* This is what we mean by invariant: you can't change it. */ 3721 if (r->val != val) 3722 return -EINVAL; 3723 3724 return 0; 3725 } 3726 3727 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) 3728 { 3729 u32 val; 3730 u32 __user *uval = uaddr; 3731 3732 /* Fail if we have unknown bits set. */ 3733 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 3734 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 3735 return -ENOENT; 3736 3737 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 3738 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 3739 if (KVM_REG_SIZE(id) != 4) 3740 return -ENOENT; 3741 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 3742 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 3743 if (val >= CSSELR_MAX) 3744 return -ENOENT; 3745 3746 return put_user(get_ccsidr(vcpu, val), uval); 3747 default: 3748 return -ENOENT; 3749 } 3750 } 3751 3752 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) 3753 { 3754 u32 val, newval; 3755 u32 __user *uval = uaddr; 3756 3757 /* Fail if we have unknown bits set. */ 3758 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 3759 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 3760 return -ENOENT; 3761 3762 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 3763 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 3764 if (KVM_REG_SIZE(id) != 4) 3765 return -ENOENT; 3766 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 3767 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 3768 if (val >= CSSELR_MAX) 3769 return -ENOENT; 3770 3771 if (get_user(newval, uval)) 3772 return -EFAULT; 3773 3774 return set_ccsidr(vcpu, val, newval); 3775 default: 3776 return -ENOENT; 3777 } 3778 } 3779 3780 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 3781 const struct sys_reg_desc table[], unsigned int num) 3782 { 3783 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 3784 const struct sys_reg_desc *r; 3785 u64 val; 3786 int ret; 3787 3788 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 3789 if (!r || sysreg_hidden_user(vcpu, r)) 3790 return -ENOENT; 3791 3792 if (r->get_user) { 3793 ret = (r->get_user)(vcpu, r, &val); 3794 } else { 3795 val = __vcpu_sys_reg(vcpu, r->reg); 3796 ret = 0; 3797 } 3798 3799 if (!ret) 3800 ret = put_user(val, uaddr); 3801 3802 return ret; 3803 } 3804 3805 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 3806 { 3807 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 3808 int err; 3809 3810 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 3811 return demux_c15_get(vcpu, reg->id, uaddr); 3812 3813 err = get_invariant_sys_reg(reg->id, uaddr); 3814 if (err != -ENOENT) 3815 return err; 3816 3817 return kvm_sys_reg_get_user(vcpu, reg, 3818 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3819 } 3820 3821 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 3822 const struct sys_reg_desc table[], unsigned int num) 3823 { 3824 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 3825 const struct sys_reg_desc *r; 3826 u64 val; 3827 int ret; 3828 3829 if (get_user(val, uaddr)) 3830 return -EFAULT; 3831 3832 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 3833 if (!r || sysreg_hidden_user(vcpu, r)) 3834 return -ENOENT; 3835 3836 if (sysreg_user_write_ignore(vcpu, r)) 3837 return 0; 3838 3839 if (r->set_user) { 3840 ret = (r->set_user)(vcpu, r, val); 3841 } else { 3842 __vcpu_sys_reg(vcpu, r->reg) = val; 3843 ret = 0; 3844 } 3845 3846 return ret; 3847 } 3848 3849 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 3850 { 3851 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 3852 int err; 3853 3854 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 3855 return demux_c15_set(vcpu, reg->id, uaddr); 3856 3857 err = set_invariant_sys_reg(reg->id, uaddr); 3858 if (err != -ENOENT) 3859 return err; 3860 3861 return kvm_sys_reg_set_user(vcpu, reg, 3862 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3863 } 3864 3865 static unsigned int num_demux_regs(void) 3866 { 3867 return CSSELR_MAX; 3868 } 3869 3870 static int write_demux_regids(u64 __user *uindices) 3871 { 3872 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 3873 unsigned int i; 3874 3875 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 3876 for (i = 0; i < CSSELR_MAX; i++) { 3877 if (put_user(val | i, uindices)) 3878 return -EFAULT; 3879 uindices++; 3880 } 3881 return 0; 3882 } 3883 3884 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 3885 { 3886 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 3887 KVM_REG_ARM64_SYSREG | 3888 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 3889 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 3890 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 3891 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 3892 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 3893 } 3894 3895 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 3896 { 3897 if (!*uind) 3898 return true; 3899 3900 if (put_user(sys_reg_to_index(reg), *uind)) 3901 return false; 3902 3903 (*uind)++; 3904 return true; 3905 } 3906 3907 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, 3908 const struct sys_reg_desc *rd, 3909 u64 __user **uind, 3910 unsigned int *total) 3911 { 3912 /* 3913 * Ignore registers we trap but don't save, 3914 * and for which no custom user accessor is provided. 3915 */ 3916 if (!(rd->reg || rd->get_user)) 3917 return 0; 3918 3919 if (sysreg_hidden_user(vcpu, rd)) 3920 return 0; 3921 3922 if (!copy_reg_to_user(rd, uind)) 3923 return -EFAULT; 3924 3925 (*total)++; 3926 return 0; 3927 } 3928 3929 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 3930 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 3931 { 3932 const struct sys_reg_desc *i2, *end2; 3933 unsigned int total = 0; 3934 int err; 3935 3936 i2 = sys_reg_descs; 3937 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 3938 3939 while (i2 != end2) { 3940 err = walk_one_sys_reg(vcpu, i2++, &uind, &total); 3941 if (err) 3942 return err; 3943 } 3944 return total; 3945 } 3946 3947 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 3948 { 3949 return ARRAY_SIZE(invariant_sys_regs) 3950 + num_demux_regs() 3951 + walk_sys_regs(vcpu, (u64 __user *)NULL); 3952 } 3953 3954 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 3955 { 3956 unsigned int i; 3957 int err; 3958 3959 /* Then give them all the invariant registers' indices. */ 3960 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 3961 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 3962 return -EFAULT; 3963 uindices++; 3964 } 3965 3966 err = walk_sys_regs(vcpu, uindices); 3967 if (err < 0) 3968 return err; 3969 uindices += err; 3970 3971 return write_demux_regids(uindices); 3972 } 3973 3974 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ 3975 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ 3976 sys_reg_Op1(r), \ 3977 sys_reg_CRn(r), \ 3978 sys_reg_CRm(r), \ 3979 sys_reg_Op2(r)) 3980 3981 static bool is_feature_id_reg(u32 encoding) 3982 { 3983 return (sys_reg_Op0(encoding) == 3 && 3984 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && 3985 sys_reg_CRn(encoding) == 0 && 3986 sys_reg_CRm(encoding) <= 7); 3987 } 3988 3989 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) 3990 { 3991 const void *zero_page = page_to_virt(ZERO_PAGE(0)); 3992 u64 __user *masks = (u64 __user *)range->addr; 3993 3994 /* Only feature id range is supported, reserved[13] must be zero. */ 3995 if (range->range || 3996 memcmp(range->reserved, zero_page, sizeof(range->reserved))) 3997 return -EINVAL; 3998 3999 /* Wipe the whole thing first */ 4000 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) 4001 return -EFAULT; 4002 4003 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { 4004 const struct sys_reg_desc *reg = &sys_reg_descs[i]; 4005 u32 encoding = reg_to_encoding(reg); 4006 u64 val; 4007 4008 if (!is_feature_id_reg(encoding) || !reg->set_user) 4009 continue; 4010 4011 /* 4012 * For ID registers, we return the writable mask. Other feature 4013 * registers return a full 64bit mask. That's not necessary 4014 * compliant with a given revision of the architecture, but the 4015 * RES0/RES1 definitions allow us to do that. 4016 */ 4017 if (is_id_reg(encoding)) { 4018 if (!reg->val || 4019 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) 4020 continue; 4021 val = reg->val; 4022 } else { 4023 val = ~0UL; 4024 } 4025 4026 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) 4027 return -EFAULT; 4028 } 4029 4030 return 0; 4031 } 4032 4033 void kvm_init_sysreg(struct kvm_vcpu *vcpu) 4034 { 4035 struct kvm *kvm = vcpu->kvm; 4036 4037 mutex_lock(&kvm->arch.config_lock); 4038 4039 /* 4040 * In the absence of FGT, we cannot independently trap TLBI 4041 * Range instructions. This isn't great, but trapping all 4042 * TLBIs would be far worse. Live with it... 4043 */ 4044 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) 4045 vcpu->arch.hcr_el2 |= HCR_TTLBOS; 4046 4047 if (cpus_have_final_cap(ARM64_HAS_HCX)) { 4048 vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS; 4049 4050 if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) 4051 vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); 4052 } 4053 4054 if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) 4055 goto out; 4056 4057 kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | 4058 HFGxTR_EL2_nMAIR2_EL1 | 4059 HFGxTR_EL2_nS2POR_EL1 | 4060 HFGxTR_EL2_nPOR_EL1 | 4061 HFGxTR_EL2_nPOR_EL0 | 4062 HFGxTR_EL2_nACCDATA_EL1 | 4063 HFGxTR_EL2_nSMPRI_EL1_MASK | 4064 HFGxTR_EL2_nTPIDR2_EL0_MASK); 4065 4066 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) 4067 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| 4068 HFGITR_EL2_TLBIRVALE1OS | 4069 HFGITR_EL2_TLBIRVAAE1OS | 4070 HFGITR_EL2_TLBIRVAE1OS | 4071 HFGITR_EL2_TLBIVAALE1OS | 4072 HFGITR_EL2_TLBIVALE1OS | 4073 HFGITR_EL2_TLBIVAAE1OS | 4074 HFGITR_EL2_TLBIASIDE1OS | 4075 HFGITR_EL2_TLBIVAE1OS | 4076 HFGITR_EL2_TLBIVMALLE1OS); 4077 4078 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) 4079 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | 4080 HFGITR_EL2_TLBIRVALE1 | 4081 HFGITR_EL2_TLBIRVAAE1 | 4082 HFGITR_EL2_TLBIRVAE1 | 4083 HFGITR_EL2_TLBIRVAALE1IS| 4084 HFGITR_EL2_TLBIRVALE1IS | 4085 HFGITR_EL2_TLBIRVAAE1IS | 4086 HFGITR_EL2_TLBIRVAE1IS | 4087 HFGITR_EL2_TLBIRVAALE1OS| 4088 HFGITR_EL2_TLBIRVALE1OS | 4089 HFGITR_EL2_TLBIRVAAE1OS | 4090 HFGITR_EL2_TLBIRVAE1OS); 4091 4092 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) 4093 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | 4094 HFGxTR_EL2_nPIR_EL1); 4095 4096 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) 4097 kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | 4098 HAFGRTR_EL2_RES1); 4099 4100 set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); 4101 out: 4102 mutex_unlock(&kvm->arch.config_lock); 4103 } 4104 4105 int __init kvm_sys_reg_table_init(void) 4106 { 4107 struct sys_reg_params params; 4108 bool valid = true; 4109 unsigned int i; 4110 int ret = 0; 4111 4112 /* Make sure tables are unique and in order. */ 4113 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); 4114 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); 4115 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); 4116 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); 4117 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); 4118 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); 4119 valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); 4120 4121 if (!valid) 4122 return -EINVAL; 4123 4124 /* We abuse the reset function to overwrite the table itself. */ 4125 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 4126 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 4127 4128 /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */ 4129 params = encoding_to_params(SYS_ID_PFR0_EL1); 4130 first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 4131 if (!first_idreg) 4132 return -EINVAL; 4133 4134 ret = populate_nv_trap_config(); 4135 4136 for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) 4137 ret = populate_sysreg_config(sys_reg_descs + i, i); 4138 4139 for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) 4140 ret = populate_sysreg_config(sys_insn_descs + i, i); 4141 4142 return ret; 4143 } 4144