xref: /linux/arch/arm64/kvm/sys_regs.c (revision e77a8005748547fb1f10645097f13ccdd804d7e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/arm_pmuv3.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cputype.h>
24 #include <asm/debug-monitors.h>
25 #include <asm/esr.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_hyp.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/kvm_nested.h>
31 #include <asm/perf_event.h>
32 #include <asm/sysreg.h>
33 
34 #include <trace/events/kvm.h>
35 
36 #include "sys_regs.h"
37 #include "vgic/vgic.h"
38 
39 #include "trace.h"
40 
41 /*
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
48 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
49 		      u64 val);
50 
51 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
52 			 const struct sys_reg_desc *r)
53 {
54 	kvm_inject_undefined(vcpu);
55 	return false;
56 }
57 
58 static bool bad_trap(struct kvm_vcpu *vcpu,
59 		     struct sys_reg_params *params,
60 		     const struct sys_reg_desc *r,
61 		     const char *msg)
62 {
63 	WARN_ONCE(1, "Unexpected %s\n", msg);
64 	print_sys_reg_instr(params);
65 	return undef_access(vcpu, params, r);
66 }
67 
68 static bool read_from_write_only(struct kvm_vcpu *vcpu,
69 				 struct sys_reg_params *params,
70 				 const struct sys_reg_desc *r)
71 {
72 	return bad_trap(vcpu, params, r,
73 			"sys_reg read to write-only register");
74 }
75 
76 static bool write_to_read_only(struct kvm_vcpu *vcpu,
77 			       struct sys_reg_params *params,
78 			       const struct sys_reg_desc *r)
79 {
80 	return bad_trap(vcpu, params, r,
81 			"sys_reg write to read-only register");
82 }
83 
84 #define PURE_EL2_SYSREG(el2)						\
85 	case el2: {							\
86 		*el1r = el2;						\
87 		return true;						\
88 	}
89 
90 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
91 	case el2: {							\
92 		*xlate = fn;						\
93 		*el1r = el1;						\
94 		return true;						\
95 	}
96 
97 static bool get_el2_to_el1_mapping(unsigned int reg,
98 				   unsigned int *el1r, u64 (**xlate)(u64))
99 {
100 	switch (reg) {
101 		PURE_EL2_SYSREG(  VPIDR_EL2	);
102 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
103 		PURE_EL2_SYSREG(  ACTLR_EL2	);
104 		PURE_EL2_SYSREG(  HCR_EL2	);
105 		PURE_EL2_SYSREG(  MDCR_EL2	);
106 		PURE_EL2_SYSREG(  HSTR_EL2	);
107 		PURE_EL2_SYSREG(  HACR_EL2	);
108 		PURE_EL2_SYSREG(  VTTBR_EL2	);
109 		PURE_EL2_SYSREG(  VTCR_EL2	);
110 		PURE_EL2_SYSREG(  RVBAR_EL2	);
111 		PURE_EL2_SYSREG(  TPIDR_EL2	);
112 		PURE_EL2_SYSREG(  HPFAR_EL2	);
113 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
114 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
115 				  translate_sctlr_el2_to_sctlr_el1	     );
116 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
117 				  translate_cptr_el2_to_cpacr_el1	     );
118 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
119 				  translate_ttbr0_el2_to_ttbr0_el1	     );
120 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
121 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
122 				  translate_tcr_el2_to_tcr_el1		     );
123 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
124 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
125 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
126 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
127 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
128 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
129 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
130 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
131 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
132 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
133 	default:
134 		return false;
135 	}
136 }
137 
138 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
139 {
140 	u64 val = 0x8badf00d8badf00d;
141 	u64 (*xlate)(u64) = NULL;
142 	unsigned int el1r;
143 
144 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
145 		goto memory_read;
146 
147 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
148 		if (!is_hyp_ctxt(vcpu))
149 			goto memory_read;
150 
151 		/*
152 		 * If this register does not have an EL1 counterpart,
153 		 * then read the stored EL2 version.
154 		 */
155 		if (reg == el1r)
156 			goto memory_read;
157 
158 		/*
159 		 * If we have a non-VHE guest and that the sysreg
160 		 * requires translation to be used at EL1, use the
161 		 * in-memory copy instead.
162 		 */
163 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
164 			goto memory_read;
165 
166 		/* Get the current version of the EL1 counterpart. */
167 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
168 		return val;
169 	}
170 
171 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
172 	if (unlikely(is_hyp_ctxt(vcpu)))
173 		goto memory_read;
174 
175 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
176 		return val;
177 
178 memory_read:
179 	return __vcpu_sys_reg(vcpu, reg);
180 }
181 
182 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
183 {
184 	u64 (*xlate)(u64) = NULL;
185 	unsigned int el1r;
186 
187 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
188 		goto memory_write;
189 
190 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
191 		if (!is_hyp_ctxt(vcpu))
192 			goto memory_write;
193 
194 		/*
195 		 * Always store a copy of the write to memory to avoid having
196 		 * to reverse-translate virtual EL2 system registers for a
197 		 * non-VHE guest hypervisor.
198 		 */
199 		__vcpu_sys_reg(vcpu, reg) = val;
200 
201 		/* No EL1 counterpart? We're done here.? */
202 		if (reg == el1r)
203 			return;
204 
205 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
206 			val = xlate(val);
207 
208 		/* Redirect this to the EL1 version of the register. */
209 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
210 		return;
211 	}
212 
213 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
214 	if (unlikely(is_hyp_ctxt(vcpu)))
215 		goto memory_write;
216 
217 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
218 		return;
219 
220 memory_write:
221 	 __vcpu_sys_reg(vcpu, reg) = val;
222 }
223 
224 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
225 #define CSSELR_MAX 14
226 
227 /*
228  * Returns the minimum line size for the selected cache, expressed as
229  * Log2(bytes).
230  */
231 static u8 get_min_cache_line_size(bool icache)
232 {
233 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
234 	u8 field;
235 
236 	if (icache)
237 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
238 	else
239 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
240 
241 	/*
242 	 * Cache line size is represented as Log2(words) in CTR_EL0.
243 	 * Log2(bytes) can be derived with the following:
244 	 *
245 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
246 	 * 		   = Log2(bytes) - 2 + 2
247 	 * 		   = Log2(bytes)
248 	 */
249 	return field + 2;
250 }
251 
252 /* Which cache CCSIDR represents depends on CSSELR value. */
253 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
254 {
255 	u8 line_size;
256 
257 	if (vcpu->arch.ccsidr)
258 		return vcpu->arch.ccsidr[csselr];
259 
260 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
261 
262 	/*
263 	 * Fabricate a CCSIDR value as the overriding value does not exist.
264 	 * The real CCSIDR value will not be used as it can vary by the
265 	 * physical CPU which the vcpu currently resides in.
266 	 *
267 	 * The line size is determined with get_min_cache_line_size(), which
268 	 * should be valid for all CPUs even if they have different cache
269 	 * configuration.
270 	 *
271 	 * The associativity bits are cleared, meaning the geometry of all data
272 	 * and unified caches (which are guaranteed to be PIPT and thus
273 	 * non-aliasing) are 1 set and 1 way.
274 	 * Guests should not be doing cache operations by set/way at all, and
275 	 * for this reason, we trap them and attempt to infer the intent, so
276 	 * that we can flush the entire guest's address space at the appropriate
277 	 * time. The exposed geometry minimizes the number of the traps.
278 	 * [If guests should attempt to infer aliasing properties from the
279 	 * geometry (which is not permitted by the architecture), they would
280 	 * only do so for virtually indexed caches.]
281 	 *
282 	 * We don't check if the cache level exists as it is allowed to return
283 	 * an UNKNOWN value if not.
284 	 */
285 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
286 }
287 
288 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
289 {
290 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
291 	u32 *ccsidr = vcpu->arch.ccsidr;
292 	u32 i;
293 
294 	if ((val & CCSIDR_EL1_RES0) ||
295 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
296 		return -EINVAL;
297 
298 	if (!ccsidr) {
299 		if (val == get_ccsidr(vcpu, csselr))
300 			return 0;
301 
302 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
303 		if (!ccsidr)
304 			return -ENOMEM;
305 
306 		for (i = 0; i < CSSELR_MAX; i++)
307 			ccsidr[i] = get_ccsidr(vcpu, i);
308 
309 		vcpu->arch.ccsidr = ccsidr;
310 	}
311 
312 	ccsidr[csselr] = val;
313 
314 	return 0;
315 }
316 
317 static bool access_rw(struct kvm_vcpu *vcpu,
318 		      struct sys_reg_params *p,
319 		      const struct sys_reg_desc *r)
320 {
321 	if (p->is_write)
322 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
323 	else
324 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
325 
326 	return true;
327 }
328 
329 /*
330  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
331  */
332 static bool access_dcsw(struct kvm_vcpu *vcpu,
333 			struct sys_reg_params *p,
334 			const struct sys_reg_desc *r)
335 {
336 	if (!p->is_write)
337 		return read_from_write_only(vcpu, p, r);
338 
339 	/*
340 	 * Only track S/W ops if we don't have FWB. It still indicates
341 	 * that the guest is a bit broken (S/W operations should only
342 	 * be done by firmware, knowing that there is only a single
343 	 * CPU left in the system, and certainly not from non-secure
344 	 * software).
345 	 */
346 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
347 		kvm_set_way_flush(vcpu);
348 
349 	return true;
350 }
351 
352 static bool access_dcgsw(struct kvm_vcpu *vcpu,
353 			 struct sys_reg_params *p,
354 			 const struct sys_reg_desc *r)
355 {
356 	if (!kvm_has_mte(vcpu->kvm))
357 		return undef_access(vcpu, p, r);
358 
359 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
360 	return access_dcsw(vcpu, p, r);
361 }
362 
363 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
364 {
365 	switch (r->aarch32_map) {
366 	case AA32_LO:
367 		*mask = GENMASK_ULL(31, 0);
368 		*shift = 0;
369 		break;
370 	case AA32_HI:
371 		*mask = GENMASK_ULL(63, 32);
372 		*shift = 32;
373 		break;
374 	default:
375 		*mask = GENMASK_ULL(63, 0);
376 		*shift = 0;
377 		break;
378 	}
379 }
380 
381 /*
382  * Generic accessor for VM registers. Only called as long as HCR_TVM
383  * is set. If the guest enables the MMU, we stop trapping the VM
384  * sys_regs and leave it in complete control of the caches.
385  */
386 static bool access_vm_reg(struct kvm_vcpu *vcpu,
387 			  struct sys_reg_params *p,
388 			  const struct sys_reg_desc *r)
389 {
390 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
391 	u64 val, mask, shift;
392 
393 	if (reg_to_encoding(r) == SYS_TCR2_EL1 &&
394 	    !kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
395 		return undef_access(vcpu, p, r);
396 
397 	BUG_ON(!p->is_write);
398 
399 	get_access_mask(r, &mask, &shift);
400 
401 	if (~mask) {
402 		val = vcpu_read_sys_reg(vcpu, r->reg);
403 		val &= ~mask;
404 	} else {
405 		val = 0;
406 	}
407 
408 	val |= (p->regval & (mask >> shift)) << shift;
409 	vcpu_write_sys_reg(vcpu, val, r->reg);
410 
411 	kvm_toggle_cache(vcpu, was_enabled);
412 	return true;
413 }
414 
415 static bool access_actlr(struct kvm_vcpu *vcpu,
416 			 struct sys_reg_params *p,
417 			 const struct sys_reg_desc *r)
418 {
419 	u64 mask, shift;
420 
421 	if (p->is_write)
422 		return ignore_write(vcpu, p);
423 
424 	get_access_mask(r, &mask, &shift);
425 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
426 
427 	return true;
428 }
429 
430 /*
431  * Trap handler for the GICv3 SGI generation system register.
432  * Forward the request to the VGIC emulation.
433  * The cp15_64 code makes sure this automatically works
434  * for both AArch64 and AArch32 accesses.
435  */
436 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
437 			   struct sys_reg_params *p,
438 			   const struct sys_reg_desc *r)
439 {
440 	bool g1;
441 
442 	if (!kvm_has_gicv3(vcpu->kvm))
443 		return undef_access(vcpu, p, r);
444 
445 	if (!p->is_write)
446 		return read_from_write_only(vcpu, p, r);
447 
448 	/*
449 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
450 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
451 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
452 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
453 	 * group.
454 	 */
455 	if (p->Op0 == 0) {		/* AArch32 */
456 		switch (p->Op1) {
457 		default:		/* Keep GCC quiet */
458 		case 0:			/* ICC_SGI1R */
459 			g1 = true;
460 			break;
461 		case 1:			/* ICC_ASGI1R */
462 		case 2:			/* ICC_SGI0R */
463 			g1 = false;
464 			break;
465 		}
466 	} else {			/* AArch64 */
467 		switch (p->Op2) {
468 		default:		/* Keep GCC quiet */
469 		case 5:			/* ICC_SGI1R_EL1 */
470 			g1 = true;
471 			break;
472 		case 6:			/* ICC_ASGI1R_EL1 */
473 		case 7:			/* ICC_SGI0R_EL1 */
474 			g1 = false;
475 			break;
476 		}
477 	}
478 
479 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
480 
481 	return true;
482 }
483 
484 static bool access_gic_sre(struct kvm_vcpu *vcpu,
485 			   struct sys_reg_params *p,
486 			   const struct sys_reg_desc *r)
487 {
488 	if (!kvm_has_gicv3(vcpu->kvm))
489 		return undef_access(vcpu, p, r);
490 
491 	if (p->is_write)
492 		return ignore_write(vcpu, p);
493 
494 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
495 	return true;
496 }
497 
498 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
499 			struct sys_reg_params *p,
500 			const struct sys_reg_desc *r)
501 {
502 	if (p->is_write)
503 		return ignore_write(vcpu, p);
504 	else
505 		return read_zero(vcpu, p);
506 }
507 
508 /*
509  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
510  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
511  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
512  * treat it separately.
513  */
514 static bool trap_loregion(struct kvm_vcpu *vcpu,
515 			  struct sys_reg_params *p,
516 			  const struct sys_reg_desc *r)
517 {
518 	u32 sr = reg_to_encoding(r);
519 
520 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP))
521 		return undef_access(vcpu, p, r);
522 
523 	if (p->is_write && sr == SYS_LORID_EL1)
524 		return write_to_read_only(vcpu, p, r);
525 
526 	return trap_raz_wi(vcpu, p, r);
527 }
528 
529 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
530 			   struct sys_reg_params *p,
531 			   const struct sys_reg_desc *r)
532 {
533 	u64 oslsr;
534 
535 	if (!p->is_write)
536 		return read_from_write_only(vcpu, p, r);
537 
538 	/* Forward the OSLK bit to OSLSR */
539 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
540 	if (p->regval & OSLAR_EL1_OSLK)
541 		oslsr |= OSLSR_EL1_OSLK;
542 
543 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
544 	return true;
545 }
546 
547 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
548 			   struct sys_reg_params *p,
549 			   const struct sys_reg_desc *r)
550 {
551 	if (p->is_write)
552 		return write_to_read_only(vcpu, p, r);
553 
554 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
555 	return true;
556 }
557 
558 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
559 			 u64 val)
560 {
561 	/*
562 	 * The only modifiable bit is the OSLK bit. Refuse the write if
563 	 * userspace attempts to change any other bit in the register.
564 	 */
565 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
566 		return -EINVAL;
567 
568 	__vcpu_sys_reg(vcpu, rd->reg) = val;
569 	return 0;
570 }
571 
572 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
573 				   struct sys_reg_params *p,
574 				   const struct sys_reg_desc *r)
575 {
576 	if (p->is_write) {
577 		return ignore_write(vcpu, p);
578 	} else {
579 		p->regval = read_sysreg(dbgauthstatus_el1);
580 		return true;
581 	}
582 }
583 
584 /*
585  * We want to avoid world-switching all the DBG registers all the
586  * time:
587  *
588  * - If we've touched any debug register, it is likely that we're
589  *   going to touch more of them. It then makes sense to disable the
590  *   traps and start doing the save/restore dance
591  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
592  *   then mandatory to save/restore the registers, as the guest
593  *   depends on them.
594  *
595  * For this, we use a DIRTY bit, indicating the guest has modified the
596  * debug registers, used as follow:
597  *
598  * On guest entry:
599  * - If the dirty bit is set (because we're coming back from trapping),
600  *   disable the traps, save host registers, restore guest registers.
601  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
602  *   set the dirty bit, disable the traps, save host registers,
603  *   restore guest registers.
604  * - Otherwise, enable the traps
605  *
606  * On guest exit:
607  * - If the dirty bit is set, save guest registers, restore host
608  *   registers and clear the dirty bit. This ensure that the host can
609  *   now use the debug registers.
610  */
611 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
612 			    struct sys_reg_params *p,
613 			    const struct sys_reg_desc *r)
614 {
615 	access_rw(vcpu, p, r);
616 	if (p->is_write)
617 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
618 
619 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
620 
621 	return true;
622 }
623 
624 /*
625  * reg_to_dbg/dbg_to_reg
626  *
627  * A 32 bit write to a debug register leave top bits alone
628  * A 32 bit read from a debug register only returns the bottom bits
629  *
630  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
631  * switches between host and guest values in future.
632  */
633 static void reg_to_dbg(struct kvm_vcpu *vcpu,
634 		       struct sys_reg_params *p,
635 		       const struct sys_reg_desc *rd,
636 		       u64 *dbg_reg)
637 {
638 	u64 mask, shift, val;
639 
640 	get_access_mask(rd, &mask, &shift);
641 
642 	val = *dbg_reg;
643 	val &= ~mask;
644 	val |= (p->regval & (mask >> shift)) << shift;
645 	*dbg_reg = val;
646 
647 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
648 }
649 
650 static void dbg_to_reg(struct kvm_vcpu *vcpu,
651 		       struct sys_reg_params *p,
652 		       const struct sys_reg_desc *rd,
653 		       u64 *dbg_reg)
654 {
655 	u64 mask, shift;
656 
657 	get_access_mask(rd, &mask, &shift);
658 	p->regval = (*dbg_reg & mask) >> shift;
659 }
660 
661 static bool trap_bvr(struct kvm_vcpu *vcpu,
662 		     struct sys_reg_params *p,
663 		     const struct sys_reg_desc *rd)
664 {
665 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
666 
667 	if (p->is_write)
668 		reg_to_dbg(vcpu, p, rd, dbg_reg);
669 	else
670 		dbg_to_reg(vcpu, p, rd, dbg_reg);
671 
672 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
673 
674 	return true;
675 }
676 
677 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678 		   u64 val)
679 {
680 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
681 	return 0;
682 }
683 
684 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
685 		   u64 *val)
686 {
687 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
688 	return 0;
689 }
690 
691 static u64 reset_bvr(struct kvm_vcpu *vcpu,
692 		      const struct sys_reg_desc *rd)
693 {
694 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
695 	return rd->val;
696 }
697 
698 static bool trap_bcr(struct kvm_vcpu *vcpu,
699 		     struct sys_reg_params *p,
700 		     const struct sys_reg_desc *rd)
701 {
702 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
703 
704 	if (p->is_write)
705 		reg_to_dbg(vcpu, p, rd, dbg_reg);
706 	else
707 		dbg_to_reg(vcpu, p, rd, dbg_reg);
708 
709 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
710 
711 	return true;
712 }
713 
714 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 		   u64 val)
716 {
717 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
718 	return 0;
719 }
720 
721 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
722 		   u64 *val)
723 {
724 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
725 	return 0;
726 }
727 
728 static u64 reset_bcr(struct kvm_vcpu *vcpu,
729 		      const struct sys_reg_desc *rd)
730 {
731 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
732 	return rd->val;
733 }
734 
735 static bool trap_wvr(struct kvm_vcpu *vcpu,
736 		     struct sys_reg_params *p,
737 		     const struct sys_reg_desc *rd)
738 {
739 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
740 
741 	if (p->is_write)
742 		reg_to_dbg(vcpu, p, rd, dbg_reg);
743 	else
744 		dbg_to_reg(vcpu, p, rd, dbg_reg);
745 
746 	trace_trap_reg(__func__, rd->CRm, p->is_write,
747 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
748 
749 	return true;
750 }
751 
752 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753 		   u64 val)
754 {
755 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
756 	return 0;
757 }
758 
759 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
760 		   u64 *val)
761 {
762 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
763 	return 0;
764 }
765 
766 static u64 reset_wvr(struct kvm_vcpu *vcpu,
767 		      const struct sys_reg_desc *rd)
768 {
769 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
770 	return rd->val;
771 }
772 
773 static bool trap_wcr(struct kvm_vcpu *vcpu,
774 		     struct sys_reg_params *p,
775 		     const struct sys_reg_desc *rd)
776 {
777 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
778 
779 	if (p->is_write)
780 		reg_to_dbg(vcpu, p, rd, dbg_reg);
781 	else
782 		dbg_to_reg(vcpu, p, rd, dbg_reg);
783 
784 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
785 
786 	return true;
787 }
788 
789 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790 		   u64 val)
791 {
792 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
793 	return 0;
794 }
795 
796 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
797 		   u64 *val)
798 {
799 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
800 	return 0;
801 }
802 
803 static u64 reset_wcr(struct kvm_vcpu *vcpu,
804 		      const struct sys_reg_desc *rd)
805 {
806 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
807 	return rd->val;
808 }
809 
810 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812 	u64 amair = read_sysreg(amair_el1);
813 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
814 	return amair;
815 }
816 
817 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819 	u64 actlr = read_sysreg(actlr_el1);
820 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
821 	return actlr;
822 }
823 
824 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
825 {
826 	u64 mpidr;
827 
828 	/*
829 	 * Map the vcpu_id into the first three affinity level fields of
830 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
831 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
832 	 * of the GICv3 to be able to address each CPU directly when
833 	 * sending IPIs.
834 	 */
835 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
836 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
837 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
838 	mpidr |= (1ULL << 31);
839 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
840 
841 	return mpidr;
842 }
843 
844 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
845 				   const struct sys_reg_desc *r)
846 {
847 	if (kvm_vcpu_has_pmu(vcpu))
848 		return 0;
849 
850 	return REG_HIDDEN;
851 }
852 
853 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
854 {
855 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
856 	u8 n = vcpu->kvm->arch.pmcr_n;
857 
858 	if (n)
859 		mask |= GENMASK(n - 1, 0);
860 
861 	reset_unknown(vcpu, r);
862 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
863 
864 	return __vcpu_sys_reg(vcpu, r->reg);
865 }
866 
867 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
868 {
869 	reset_unknown(vcpu, r);
870 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
871 
872 	return __vcpu_sys_reg(vcpu, r->reg);
873 }
874 
875 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
876 {
877 	/* This thing will UNDEF, who cares about the reset value? */
878 	if (!kvm_vcpu_has_pmu(vcpu))
879 		return 0;
880 
881 	reset_unknown(vcpu, r);
882 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
883 
884 	return __vcpu_sys_reg(vcpu, r->reg);
885 }
886 
887 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
888 {
889 	reset_unknown(vcpu, r);
890 	__vcpu_sys_reg(vcpu, r->reg) &= PMSELR_EL0_SEL_MASK;
891 
892 	return __vcpu_sys_reg(vcpu, r->reg);
893 }
894 
895 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
896 {
897 	u64 pmcr = 0;
898 
899 	if (!kvm_supports_32bit_el0())
900 		pmcr |= ARMV8_PMU_PMCR_LC;
901 
902 	/*
903 	 * The value of PMCR.N field is included when the
904 	 * vCPU register is read via kvm_vcpu_read_pmcr().
905 	 */
906 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
907 
908 	return __vcpu_sys_reg(vcpu, r->reg);
909 }
910 
911 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
912 {
913 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
914 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
915 
916 	if (!enabled)
917 		kvm_inject_undefined(vcpu);
918 
919 	return !enabled;
920 }
921 
922 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
923 {
924 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
925 }
926 
927 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
928 {
929 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
930 }
931 
932 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
933 {
934 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
935 }
936 
937 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
938 {
939 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
940 }
941 
942 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
943 			const struct sys_reg_desc *r)
944 {
945 	u64 val;
946 
947 	if (pmu_access_el0_disabled(vcpu))
948 		return false;
949 
950 	if (p->is_write) {
951 		/*
952 		 * Only update writeable bits of PMCR (continuing into
953 		 * kvm_pmu_handle_pmcr() as well)
954 		 */
955 		val = kvm_vcpu_read_pmcr(vcpu);
956 		val &= ~ARMV8_PMU_PMCR_MASK;
957 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
958 		if (!kvm_supports_32bit_el0())
959 			val |= ARMV8_PMU_PMCR_LC;
960 		kvm_pmu_handle_pmcr(vcpu, val);
961 	} else {
962 		/* PMCR.P & PMCR.C are RAZ */
963 		val = kvm_vcpu_read_pmcr(vcpu)
964 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
965 		p->regval = val;
966 	}
967 
968 	return true;
969 }
970 
971 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
972 			  const struct sys_reg_desc *r)
973 {
974 	if (pmu_access_event_counter_el0_disabled(vcpu))
975 		return false;
976 
977 	if (p->is_write)
978 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
979 	else
980 		/* return PMSELR.SEL field */
981 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
982 			    & PMSELR_EL0_SEL_MASK;
983 
984 	return true;
985 }
986 
987 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
988 			  const struct sys_reg_desc *r)
989 {
990 	u64 pmceid, mask, shift;
991 
992 	BUG_ON(p->is_write);
993 
994 	if (pmu_access_el0_disabled(vcpu))
995 		return false;
996 
997 	get_access_mask(r, &mask, &shift);
998 
999 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
1000 	pmceid &= mask;
1001 	pmceid >>= shift;
1002 
1003 	p->regval = pmceid;
1004 
1005 	return true;
1006 }
1007 
1008 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1009 {
1010 	u64 pmcr, val;
1011 
1012 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1013 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1014 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1015 		kvm_inject_undefined(vcpu);
1016 		return false;
1017 	}
1018 
1019 	return true;
1020 }
1021 
1022 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1023 			  u64 *val)
1024 {
1025 	u64 idx;
1026 
1027 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1028 		/* PMCCNTR_EL0 */
1029 		idx = ARMV8_PMU_CYCLE_IDX;
1030 	else
1031 		/* PMEVCNTRn_EL0 */
1032 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1033 
1034 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1035 	return 0;
1036 }
1037 
1038 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1039 			      struct sys_reg_params *p,
1040 			      const struct sys_reg_desc *r)
1041 {
1042 	u64 idx = ~0UL;
1043 
1044 	if (r->CRn == 9 && r->CRm == 13) {
1045 		if (r->Op2 == 2) {
1046 			/* PMXEVCNTR_EL0 */
1047 			if (pmu_access_event_counter_el0_disabled(vcpu))
1048 				return false;
1049 
1050 			idx = SYS_FIELD_GET(PMSELR_EL0, SEL,
1051 					    __vcpu_sys_reg(vcpu, PMSELR_EL0));
1052 		} else if (r->Op2 == 0) {
1053 			/* PMCCNTR_EL0 */
1054 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1055 				return false;
1056 
1057 			idx = ARMV8_PMU_CYCLE_IDX;
1058 		}
1059 	} else if (r->CRn == 0 && r->CRm == 9) {
1060 		/* PMCCNTR */
1061 		if (pmu_access_event_counter_el0_disabled(vcpu))
1062 			return false;
1063 
1064 		idx = ARMV8_PMU_CYCLE_IDX;
1065 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1066 		/* PMEVCNTRn_EL0 */
1067 		if (pmu_access_event_counter_el0_disabled(vcpu))
1068 			return false;
1069 
1070 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1071 	}
1072 
1073 	/* Catch any decoding mistake */
1074 	WARN_ON(idx == ~0UL);
1075 
1076 	if (!pmu_counter_idx_valid(vcpu, idx))
1077 		return false;
1078 
1079 	if (p->is_write) {
1080 		if (pmu_access_el0_disabled(vcpu))
1081 			return false;
1082 
1083 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1084 	} else {
1085 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1086 	}
1087 
1088 	return true;
1089 }
1090 
1091 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1092 			       const struct sys_reg_desc *r)
1093 {
1094 	u64 idx, reg;
1095 
1096 	if (pmu_access_el0_disabled(vcpu))
1097 		return false;
1098 
1099 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1100 		/* PMXEVTYPER_EL0 */
1101 		idx = SYS_FIELD_GET(PMSELR_EL0, SEL, __vcpu_sys_reg(vcpu, PMSELR_EL0));
1102 		reg = PMEVTYPER0_EL0 + idx;
1103 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1104 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1105 		if (idx == ARMV8_PMU_CYCLE_IDX)
1106 			reg = PMCCFILTR_EL0;
1107 		else
1108 			/* PMEVTYPERn_EL0 */
1109 			reg = PMEVTYPER0_EL0 + idx;
1110 	} else {
1111 		BUG();
1112 	}
1113 
1114 	if (!pmu_counter_idx_valid(vcpu, idx))
1115 		return false;
1116 
1117 	if (p->is_write) {
1118 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1119 		kvm_vcpu_pmu_restore_guest(vcpu);
1120 	} else {
1121 		p->regval = __vcpu_sys_reg(vcpu, reg);
1122 	}
1123 
1124 	return true;
1125 }
1126 
1127 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1128 {
1129 	bool set;
1130 
1131 	val &= kvm_pmu_valid_counter_mask(vcpu);
1132 
1133 	switch (r->reg) {
1134 	case PMOVSSET_EL0:
1135 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1136 		set = r->CRm & 2;
1137 		break;
1138 	default:
1139 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1140 		set = r->Op2 & 1;
1141 		break;
1142 	}
1143 
1144 	if (set)
1145 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1146 	else
1147 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1148 
1149 	return 0;
1150 }
1151 
1152 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1153 {
1154 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1155 
1156 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1157 	return 0;
1158 }
1159 
1160 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1161 			   const struct sys_reg_desc *r)
1162 {
1163 	u64 val, mask;
1164 
1165 	if (pmu_access_el0_disabled(vcpu))
1166 		return false;
1167 
1168 	mask = kvm_pmu_valid_counter_mask(vcpu);
1169 	if (p->is_write) {
1170 		val = p->regval & mask;
1171 		if (r->Op2 & 0x1) {
1172 			/* accessing PMCNTENSET_EL0 */
1173 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1174 			kvm_pmu_enable_counter_mask(vcpu, val);
1175 			kvm_vcpu_pmu_restore_guest(vcpu);
1176 		} else {
1177 			/* accessing PMCNTENCLR_EL0 */
1178 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1179 			kvm_pmu_disable_counter_mask(vcpu, val);
1180 		}
1181 	} else {
1182 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1183 	}
1184 
1185 	return true;
1186 }
1187 
1188 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1189 			   const struct sys_reg_desc *r)
1190 {
1191 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1192 
1193 	if (check_pmu_access_disabled(vcpu, 0))
1194 		return false;
1195 
1196 	if (p->is_write) {
1197 		u64 val = p->regval & mask;
1198 
1199 		if (r->Op2 & 0x1)
1200 			/* accessing PMINTENSET_EL1 */
1201 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1202 		else
1203 			/* accessing PMINTENCLR_EL1 */
1204 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1205 	} else {
1206 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1207 	}
1208 
1209 	return true;
1210 }
1211 
1212 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1213 			 const struct sys_reg_desc *r)
1214 {
1215 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1216 
1217 	if (pmu_access_el0_disabled(vcpu))
1218 		return false;
1219 
1220 	if (p->is_write) {
1221 		if (r->CRm & 0x2)
1222 			/* accessing PMOVSSET_EL0 */
1223 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1224 		else
1225 			/* accessing PMOVSCLR_EL0 */
1226 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1227 	} else {
1228 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1229 	}
1230 
1231 	return true;
1232 }
1233 
1234 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1235 			   const struct sys_reg_desc *r)
1236 {
1237 	u64 mask;
1238 
1239 	if (!p->is_write)
1240 		return read_from_write_only(vcpu, p, r);
1241 
1242 	if (pmu_write_swinc_el0_disabled(vcpu))
1243 		return false;
1244 
1245 	mask = kvm_pmu_valid_counter_mask(vcpu);
1246 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1247 	return true;
1248 }
1249 
1250 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1251 			     const struct sys_reg_desc *r)
1252 {
1253 	if (p->is_write) {
1254 		if (!vcpu_mode_priv(vcpu))
1255 			return undef_access(vcpu, p, r);
1256 
1257 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1258 			       p->regval & ARMV8_PMU_USERENR_MASK;
1259 	} else {
1260 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1261 			    & ARMV8_PMU_USERENR_MASK;
1262 	}
1263 
1264 	return true;
1265 }
1266 
1267 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1268 		    u64 *val)
1269 {
1270 	*val = kvm_vcpu_read_pmcr(vcpu);
1271 	return 0;
1272 }
1273 
1274 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1275 		    u64 val)
1276 {
1277 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1278 	struct kvm *kvm = vcpu->kvm;
1279 
1280 	mutex_lock(&kvm->arch.config_lock);
1281 
1282 	/*
1283 	 * The vCPU can't have more counters than the PMU hardware
1284 	 * implements. Ignore this error to maintain compatibility
1285 	 * with the existing KVM behavior.
1286 	 */
1287 	if (!kvm_vm_has_ran_once(kvm) &&
1288 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1289 		kvm->arch.pmcr_n = new_n;
1290 
1291 	mutex_unlock(&kvm->arch.config_lock);
1292 
1293 	/*
1294 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1295 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1296 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1297 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1298 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1299 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1300 	 * if necessary).
1301 	 */
1302 	val &= ARMV8_PMU_PMCR_MASK;
1303 
1304 	/* The LC bit is RES1 when AArch32 is not supported */
1305 	if (!kvm_supports_32bit_el0())
1306 		val |= ARMV8_PMU_PMCR_LC;
1307 
1308 	__vcpu_sys_reg(vcpu, r->reg) = val;
1309 	return 0;
1310 }
1311 
1312 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1313 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1314 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1315 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1316 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1317 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1318 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1319 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1320 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1321 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1322 
1323 #define PMU_SYS_REG(name)						\
1324 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1325 	.visibility = pmu_visibility
1326 
1327 /* Macro to expand the PMEVCNTRn_EL0 register */
1328 #define PMU_PMEVCNTR_EL0(n)						\
1329 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1330 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1331 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1332 
1333 /* Macro to expand the PMEVTYPERn_EL0 register */
1334 #define PMU_PMEVTYPER_EL0(n)						\
1335 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1336 	  .reset = reset_pmevtyper,					\
1337 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1338 
1339 /* Macro to expand the AMU counter and type registers*/
1340 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1341 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1342 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1343 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1344 
1345 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1346 			const struct sys_reg_desc *rd)
1347 {
1348 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1349 }
1350 
1351 /*
1352  * If we land here on a PtrAuth access, that is because we didn't
1353  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1354  * way this happens is when the guest does not have PtrAuth support
1355  * enabled.
1356  */
1357 #define __PTRAUTH_KEY(k)						\
1358 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1359 	.visibility = ptrauth_visibility}
1360 
1361 #define PTRAUTH_KEY(k)							\
1362 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1363 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1364 
1365 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1366 			      struct sys_reg_params *p,
1367 			      const struct sys_reg_desc *r)
1368 {
1369 	enum kvm_arch_timers tmr;
1370 	enum kvm_arch_timer_regs treg;
1371 	u64 reg = reg_to_encoding(r);
1372 
1373 	switch (reg) {
1374 	case SYS_CNTP_TVAL_EL0:
1375 	case SYS_AARCH32_CNTP_TVAL:
1376 		tmr = TIMER_PTIMER;
1377 		treg = TIMER_REG_TVAL;
1378 		break;
1379 	case SYS_CNTP_CTL_EL0:
1380 	case SYS_AARCH32_CNTP_CTL:
1381 		tmr = TIMER_PTIMER;
1382 		treg = TIMER_REG_CTL;
1383 		break;
1384 	case SYS_CNTP_CVAL_EL0:
1385 	case SYS_AARCH32_CNTP_CVAL:
1386 		tmr = TIMER_PTIMER;
1387 		treg = TIMER_REG_CVAL;
1388 		break;
1389 	case SYS_CNTPCT_EL0:
1390 	case SYS_CNTPCTSS_EL0:
1391 	case SYS_AARCH32_CNTPCT:
1392 		tmr = TIMER_PTIMER;
1393 		treg = TIMER_REG_CNT;
1394 		break;
1395 	default:
1396 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1397 		return undef_access(vcpu, p, r);
1398 	}
1399 
1400 	if (p->is_write)
1401 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1402 	else
1403 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1404 
1405 	return true;
1406 }
1407 
1408 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1409 				    s64 new, s64 cur)
1410 {
1411 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1412 
1413 	/* Some features have different safe value type in KVM than host features */
1414 	switch (id) {
1415 	case SYS_ID_AA64DFR0_EL1:
1416 		switch (kvm_ftr.shift) {
1417 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1418 			kvm_ftr.type = FTR_LOWER_SAFE;
1419 			break;
1420 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1421 			kvm_ftr.type = FTR_LOWER_SAFE;
1422 			break;
1423 		}
1424 		break;
1425 	case SYS_ID_DFR0_EL1:
1426 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1427 			kvm_ftr.type = FTR_LOWER_SAFE;
1428 		break;
1429 	}
1430 
1431 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1432 }
1433 
1434 /*
1435  * arm64_check_features() - Check if a feature register value constitutes
1436  * a subset of features indicated by the idreg's KVM sanitised limit.
1437  *
1438  * This function will check if each feature field of @val is the "safe" value
1439  * against idreg's KVM sanitised limit return from reset() callback.
1440  * If a field value in @val is the same as the one in limit, it is always
1441  * considered the safe value regardless For register fields that are not in
1442  * writable, only the value in limit is considered the safe value.
1443  *
1444  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1445  */
1446 static int arm64_check_features(struct kvm_vcpu *vcpu,
1447 				const struct sys_reg_desc *rd,
1448 				u64 val)
1449 {
1450 	const struct arm64_ftr_reg *ftr_reg;
1451 	const struct arm64_ftr_bits *ftrp = NULL;
1452 	u32 id = reg_to_encoding(rd);
1453 	u64 writable_mask = rd->val;
1454 	u64 limit = rd->reset(vcpu, rd);
1455 	u64 mask = 0;
1456 
1457 	/*
1458 	 * Hidden and unallocated ID registers may not have a corresponding
1459 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1460 	 * only safe value is 0.
1461 	 */
1462 	if (sysreg_visible_as_raz(vcpu, rd))
1463 		return val ? -E2BIG : 0;
1464 
1465 	ftr_reg = get_arm64_ftr_reg(id);
1466 	if (!ftr_reg)
1467 		return -EINVAL;
1468 
1469 	ftrp = ftr_reg->ftr_bits;
1470 
1471 	for (; ftrp && ftrp->width; ftrp++) {
1472 		s64 f_val, f_lim, safe_val;
1473 		u64 ftr_mask;
1474 
1475 		ftr_mask = arm64_ftr_mask(ftrp);
1476 		if ((ftr_mask & writable_mask) != ftr_mask)
1477 			continue;
1478 
1479 		f_val = arm64_ftr_value(ftrp, val);
1480 		f_lim = arm64_ftr_value(ftrp, limit);
1481 		mask |= ftr_mask;
1482 
1483 		if (f_val == f_lim)
1484 			safe_val = f_val;
1485 		else
1486 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1487 
1488 		if (safe_val != f_val)
1489 			return -E2BIG;
1490 	}
1491 
1492 	/* For fields that are not writable, values in limit are the safe values. */
1493 	if ((val & ~mask) != (limit & ~mask))
1494 		return -E2BIG;
1495 
1496 	return 0;
1497 }
1498 
1499 static u8 pmuver_to_perfmon(u8 pmuver)
1500 {
1501 	switch (pmuver) {
1502 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1503 		return ID_DFR0_EL1_PerfMon_PMUv3;
1504 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1505 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1506 	default:
1507 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1508 		return pmuver;
1509 	}
1510 }
1511 
1512 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1513 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1514 				       const struct sys_reg_desc *r)
1515 {
1516 	u32 id = reg_to_encoding(r);
1517 	u64 val;
1518 
1519 	if (sysreg_visible_as_raz(vcpu, r))
1520 		return 0;
1521 
1522 	val = read_sanitised_ftr_reg(id);
1523 
1524 	switch (id) {
1525 	case SYS_ID_AA64PFR1_EL1:
1526 		if (!kvm_has_mte(vcpu->kvm))
1527 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1528 
1529 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1530 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_RNDR_trap);
1531 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_NMI);
1532 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac);
1533 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_GCS);
1534 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_THE);
1535 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTEX);
1536 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_DF2);
1537 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_PFAR);
1538 		break;
1539 	case SYS_ID_AA64PFR2_EL1:
1540 		/* We only expose FPMR */
1541 		val &= ID_AA64PFR2_EL1_FPMR;
1542 		break;
1543 	case SYS_ID_AA64ISAR1_EL1:
1544 		if (!vcpu_has_ptrauth(vcpu))
1545 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1546 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1547 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1548 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1549 		break;
1550 	case SYS_ID_AA64ISAR2_EL1:
1551 		if (!vcpu_has_ptrauth(vcpu))
1552 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1553 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1554 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1555 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1556 		break;
1557 	case SYS_ID_AA64MMFR2_EL1:
1558 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1559 		break;
1560 	case SYS_ID_AA64MMFR3_EL1:
1561 		val &= ID_AA64MMFR3_EL1_TCRX | ID_AA64MMFR3_EL1_S1POE |
1562 			ID_AA64MMFR3_EL1_S1PIE;
1563 		break;
1564 	case SYS_ID_MMFR4_EL1:
1565 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1566 		break;
1567 	}
1568 
1569 	return val;
1570 }
1571 
1572 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1573 				     const struct sys_reg_desc *r)
1574 {
1575 	return __kvm_read_sanitised_id_reg(vcpu, r);
1576 }
1577 
1578 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1579 {
1580 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1581 }
1582 
1583 static bool is_feature_id_reg(u32 encoding)
1584 {
1585 	return (sys_reg_Op0(encoding) == 3 &&
1586 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1587 		sys_reg_CRn(encoding) == 0 &&
1588 		sys_reg_CRm(encoding) <= 7);
1589 }
1590 
1591 /*
1592  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1593  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1594  * registers KVM maintains on a per-VM basis.
1595  */
1596 static inline bool is_vm_ftr_id_reg(u32 id)
1597 {
1598 	if (id == SYS_CTR_EL0)
1599 		return true;
1600 
1601 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1602 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1603 		sys_reg_CRm(id) < 8);
1604 }
1605 
1606 static inline bool is_vcpu_ftr_id_reg(u32 id)
1607 {
1608 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1609 }
1610 
1611 static inline bool is_aa32_id_reg(u32 id)
1612 {
1613 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1614 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1615 		sys_reg_CRm(id) <= 3);
1616 }
1617 
1618 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1619 				  const struct sys_reg_desc *r)
1620 {
1621 	u32 id = reg_to_encoding(r);
1622 
1623 	switch (id) {
1624 	case SYS_ID_AA64ZFR0_EL1:
1625 		if (!vcpu_has_sve(vcpu))
1626 			return REG_RAZ;
1627 		break;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1634 				       const struct sys_reg_desc *r)
1635 {
1636 	/*
1637 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1638 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1639 	 * systems.
1640 	 */
1641 	if (!kvm_supports_32bit_el0())
1642 		return REG_RAZ | REG_USER_WI;
1643 
1644 	return id_visibility(vcpu, r);
1645 }
1646 
1647 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1648 				   const struct sys_reg_desc *r)
1649 {
1650 	return REG_RAZ;
1651 }
1652 
1653 /* cpufeature ID register access trap handlers */
1654 
1655 static bool access_id_reg(struct kvm_vcpu *vcpu,
1656 			  struct sys_reg_params *p,
1657 			  const struct sys_reg_desc *r)
1658 {
1659 	if (p->is_write)
1660 		return write_to_read_only(vcpu, p, r);
1661 
1662 	p->regval = read_id_reg(vcpu, r);
1663 
1664 	return true;
1665 }
1666 
1667 /* Visibility overrides for SVE-specific control registers */
1668 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1669 				   const struct sys_reg_desc *rd)
1670 {
1671 	if (vcpu_has_sve(vcpu))
1672 		return 0;
1673 
1674 	return REG_HIDDEN;
1675 }
1676 
1677 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1678 				   const struct sys_reg_desc *rd)
1679 {
1680 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1681 		return 0;
1682 
1683 	return REG_HIDDEN;
1684 }
1685 
1686 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1687 				   const struct sys_reg_desc *rd)
1688 {
1689 	if (kvm_has_fpmr(vcpu->kvm))
1690 		return 0;
1691 
1692 	return REG_HIDDEN;
1693 }
1694 
1695 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1696 					  const struct sys_reg_desc *rd)
1697 {
1698 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1699 
1700 	if (!vcpu_has_sve(vcpu))
1701 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1702 
1703 	/*
1704 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1705 	 * Although this is a per-CPU feature, we make it global because
1706 	 * asymmetric systems are just a nuisance.
1707 	 *
1708 	 * Userspace can override this as long as it doesn't promise
1709 	 * the impossible.
1710 	 */
1711 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1712 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1713 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1714 	}
1715 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1716 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1717 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1718 	}
1719 
1720 	if (kvm_vgic_global_state.type == VGIC_V3) {
1721 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1722 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1723 	}
1724 
1725 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1726 
1727 	return val;
1728 }
1729 
1730 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1731 ({									       \
1732 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1733 	(val) &= ~reg##_##field##_MASK;					       \
1734 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1735 			    min(__f_val,				       \
1736 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1737 	(val);								       \
1738 })
1739 
1740 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1741 					  const struct sys_reg_desc *rd)
1742 {
1743 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1744 
1745 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1746 
1747 	/*
1748 	 * Only initialize the PMU version if the vCPU was configured with one.
1749 	 */
1750 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1751 	if (kvm_vcpu_has_pmu(vcpu))
1752 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1753 				      kvm_arm_pmu_get_pmuver_limit());
1754 
1755 	/* Hide SPE from guests */
1756 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1757 
1758 	return val;
1759 }
1760 
1761 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1762 			       const struct sys_reg_desc *rd,
1763 			       u64 val)
1764 {
1765 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1766 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1767 
1768 	/*
1769 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1770 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1771 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1772 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1773 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1774 	 *
1775 	 * At minimum, we're on the hook to allow values that were given to
1776 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1777 	 * with a more sensible NI. The value of an ID register changing under
1778 	 * the nose of the guest is unfortunate, but is certainly no more
1779 	 * surprising than an ill-guided PMU driver poking at impdef system
1780 	 * registers that end in an UNDEF...
1781 	 */
1782 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1783 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1784 
1785 	/*
1786 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1787 	 * nonzero minimum safe value.
1788 	 */
1789 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1790 		return -EINVAL;
1791 
1792 	return set_id_reg(vcpu, rd, val);
1793 }
1794 
1795 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1796 				      const struct sys_reg_desc *rd)
1797 {
1798 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1799 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1800 
1801 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1802 	if (kvm_vcpu_has_pmu(vcpu))
1803 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1804 
1805 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1806 
1807 	return val;
1808 }
1809 
1810 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1811 			   const struct sys_reg_desc *rd,
1812 			   u64 val)
1813 {
1814 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1815 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1816 
1817 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1818 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1819 		perfmon = 0;
1820 	}
1821 
1822 	/*
1823 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1824 	 * it doesn't promise more than what the HW gives us on the
1825 	 * AArch64 side (as everything is emulated with that), and
1826 	 * that this is a PMUv3.
1827 	 */
1828 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1829 		return -EINVAL;
1830 
1831 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1832 		return -EINVAL;
1833 
1834 	return set_id_reg(vcpu, rd, val);
1835 }
1836 
1837 /*
1838  * cpufeature ID register user accessors
1839  *
1840  * For now, these registers are immutable for userspace, so no values
1841  * are stored, and for set_id_reg() we don't allow the effective value
1842  * to be changed.
1843  */
1844 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1845 		      u64 *val)
1846 {
1847 	/*
1848 	 * Avoid locking if the VM has already started, as the ID registers are
1849 	 * guaranteed to be invariant at that point.
1850 	 */
1851 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1852 		*val = read_id_reg(vcpu, rd);
1853 		return 0;
1854 	}
1855 
1856 	mutex_lock(&vcpu->kvm->arch.config_lock);
1857 	*val = read_id_reg(vcpu, rd);
1858 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1859 
1860 	return 0;
1861 }
1862 
1863 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1864 		      u64 val)
1865 {
1866 	u32 id = reg_to_encoding(rd);
1867 	int ret;
1868 
1869 	mutex_lock(&vcpu->kvm->arch.config_lock);
1870 
1871 	/*
1872 	 * Once the VM has started the ID registers are immutable. Reject any
1873 	 * write that does not match the final register value.
1874 	 */
1875 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1876 		if (val != read_id_reg(vcpu, rd))
1877 			ret = -EBUSY;
1878 		else
1879 			ret = 0;
1880 
1881 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1882 		return ret;
1883 	}
1884 
1885 	ret = arm64_check_features(vcpu, rd, val);
1886 	if (!ret)
1887 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
1888 
1889 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1890 
1891 	/*
1892 	 * arm64_check_features() returns -E2BIG to indicate the register's
1893 	 * feature set is a superset of the maximally-allowed register value.
1894 	 * While it would be nice to precisely describe this to userspace, the
1895 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1896 	 * writes return -EINVAL.
1897 	 */
1898 	if (ret == -E2BIG)
1899 		ret = -EINVAL;
1900 	return ret;
1901 }
1902 
1903 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
1904 {
1905 	u64 *p = __vm_id_reg(&kvm->arch, reg);
1906 
1907 	lockdep_assert_held(&kvm->arch.config_lock);
1908 
1909 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
1910 		return;
1911 
1912 	*p = val;
1913 }
1914 
1915 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1916 		       u64 *val)
1917 {
1918 	*val = 0;
1919 	return 0;
1920 }
1921 
1922 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1923 		      u64 val)
1924 {
1925 	return 0;
1926 }
1927 
1928 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1929 		       const struct sys_reg_desc *r)
1930 {
1931 	if (p->is_write)
1932 		return write_to_read_only(vcpu, p, r);
1933 
1934 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
1935 	return true;
1936 }
1937 
1938 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1939 			 const struct sys_reg_desc *r)
1940 {
1941 	if (p->is_write)
1942 		return write_to_read_only(vcpu, p, r);
1943 
1944 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1945 	return true;
1946 }
1947 
1948 /*
1949  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1950  * by the physical CPU which the vcpu currently resides in.
1951  */
1952 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1953 {
1954 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1955 	u64 clidr;
1956 	u8 loc;
1957 
1958 	if ((ctr_el0 & CTR_EL0_IDC)) {
1959 		/*
1960 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1961 		 * will not be set and a unified cache, which will be marked as
1962 		 * LoC, will be added.
1963 		 *
1964 		 * If not DIC, let the unified cache L2 so that an instruction
1965 		 * cache can be added as L1 later.
1966 		 */
1967 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1968 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1969 	} else {
1970 		/*
1971 		 * Data cache clean to the PoU is required so let L1 have a data
1972 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1973 		 * it can be marked as LoC too.
1974 		 */
1975 		loc = 1;
1976 		clidr = 1 << CLIDR_LOUU_SHIFT;
1977 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1978 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1979 	}
1980 
1981 	/*
1982 	 * Instruction cache invalidation to the PoU is required so let L1 have
1983 	 * an instruction cache. If L1 already has a data cache, it will be
1984 	 * CACHE_TYPE_SEPARATE.
1985 	 */
1986 	if (!(ctr_el0 & CTR_EL0_DIC))
1987 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1988 
1989 	clidr |= loc << CLIDR_LOC_SHIFT;
1990 
1991 	/*
1992 	 * Add tag cache unified to data cache. Allocation tags and data are
1993 	 * unified in a cache line so that it looks valid even if there is only
1994 	 * one cache line.
1995 	 */
1996 	if (kvm_has_mte(vcpu->kvm))
1997 		clidr |= 2ULL << CLIDR_TTYPE_SHIFT(loc);
1998 
1999 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
2000 
2001 	return __vcpu_sys_reg(vcpu, r->reg);
2002 }
2003 
2004 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2005 		      u64 val)
2006 {
2007 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2008 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2009 
2010 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2011 		return -EINVAL;
2012 
2013 	__vcpu_sys_reg(vcpu, rd->reg) = val;
2014 
2015 	return 0;
2016 }
2017 
2018 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2019 			  const struct sys_reg_desc *r)
2020 {
2021 	int reg = r->reg;
2022 
2023 	if (p->is_write)
2024 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2025 	else
2026 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2027 	return true;
2028 }
2029 
2030 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2031 			  const struct sys_reg_desc *r)
2032 {
2033 	u32 csselr;
2034 
2035 	if (p->is_write)
2036 		return write_to_read_only(vcpu, p, r);
2037 
2038 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2039 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2040 	if (csselr < CSSELR_MAX)
2041 		p->regval = get_ccsidr(vcpu, csselr);
2042 
2043 	return true;
2044 }
2045 
2046 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2047 				   const struct sys_reg_desc *rd)
2048 {
2049 	if (kvm_has_mte(vcpu->kvm))
2050 		return 0;
2051 
2052 	return REG_HIDDEN;
2053 }
2054 
2055 #define MTE_REG(name) {				\
2056 	SYS_DESC(SYS_##name),			\
2057 	.access = undef_access,			\
2058 	.reset = reset_unknown,			\
2059 	.reg = name,				\
2060 	.visibility = mte_visibility,		\
2061 }
2062 
2063 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2064 				   const struct sys_reg_desc *rd)
2065 {
2066 	if (vcpu_has_nv(vcpu))
2067 		return 0;
2068 
2069 	return REG_HIDDEN;
2070 }
2071 
2072 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2073 			  struct sys_reg_params *p,
2074 			  const struct sys_reg_desc *r)
2075 {
2076 	/*
2077 	 * We really shouldn't be here, and this is likely the result
2078 	 * of a misconfigured trap, as this register should target the
2079 	 * VNCR page, and nothing else.
2080 	 */
2081 	return bad_trap(vcpu, p, r,
2082 			"trap of VNCR-backed register");
2083 }
2084 
2085 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2086 			   struct sys_reg_params *p,
2087 			   const struct sys_reg_desc *r)
2088 {
2089 	/*
2090 	 * We really shouldn't be here, and this is likely the result
2091 	 * of a misconfigured trap, as this register should target the
2092 	 * corresponding EL1, and nothing else.
2093 	 */
2094 	return bad_trap(vcpu, p, r,
2095 			"trap of EL2 register redirected to EL1");
2096 }
2097 
2098 #define EL2_REG(name, acc, rst, v) {		\
2099 	SYS_DESC(SYS_##name),			\
2100 	.access = acc,				\
2101 	.reset = rst,				\
2102 	.reg = name,				\
2103 	.visibility = el2_visibility,		\
2104 	.val = v,				\
2105 }
2106 
2107 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2108 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2109 
2110 /*
2111  * Since reset() callback and field val are not used for idregs, they will be
2112  * used for specific purposes for idregs.
2113  * The reset() would return KVM sanitised register value. The value would be the
2114  * same as the host kernel sanitised value if there is no KVM sanitisation.
2115  * The val would be used as a mask indicating writable fields for the idreg.
2116  * Only bits with 1 are writable from userspace. This mask might not be
2117  * necessary in the future whenever all ID registers are enabled as writable
2118  * from userspace.
2119  */
2120 
2121 #define ID_DESC(name)				\
2122 	SYS_DESC(SYS_##name),			\
2123 	.access	= access_id_reg,		\
2124 	.get_user = get_id_reg			\
2125 
2126 /* sys_reg_desc initialiser for known cpufeature ID registers */
2127 #define ID_SANITISED(name) {			\
2128 	ID_DESC(name),				\
2129 	.set_user = set_id_reg,			\
2130 	.visibility = id_visibility,		\
2131 	.reset = kvm_read_sanitised_id_reg,	\
2132 	.val = 0,				\
2133 }
2134 
2135 /* sys_reg_desc initialiser for known cpufeature ID registers */
2136 #define AA32_ID_SANITISED(name) {		\
2137 	ID_DESC(name),				\
2138 	.set_user = set_id_reg,			\
2139 	.visibility = aa32_id_visibility,	\
2140 	.reset = kvm_read_sanitised_id_reg,	\
2141 	.val = 0,				\
2142 }
2143 
2144 /* sys_reg_desc initialiser for writable ID registers */
2145 #define ID_WRITABLE(name, mask) {		\
2146 	ID_DESC(name),				\
2147 	.set_user = set_id_reg,			\
2148 	.visibility = id_visibility,		\
2149 	.reset = kvm_read_sanitised_id_reg,	\
2150 	.val = mask,				\
2151 }
2152 
2153 /*
2154  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2155  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2156  * (1 <= crm < 8, 0 <= Op2 < 8).
2157  */
2158 #define ID_UNALLOCATED(crm, op2) {			\
2159 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2160 	.access = access_id_reg,			\
2161 	.get_user = get_id_reg,				\
2162 	.set_user = set_id_reg,				\
2163 	.visibility = raz_visibility,			\
2164 	.reset = kvm_read_sanitised_id_reg,		\
2165 	.val = 0,					\
2166 }
2167 
2168 /*
2169  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2170  * For now, these are exposed just like unallocated ID regs: they appear
2171  * RAZ for the guest.
2172  */
2173 #define ID_HIDDEN(name) {			\
2174 	ID_DESC(name),				\
2175 	.set_user = set_id_reg,			\
2176 	.visibility = raz_visibility,		\
2177 	.reset = kvm_read_sanitised_id_reg,	\
2178 	.val = 0,				\
2179 }
2180 
2181 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2182 			  struct sys_reg_params *p,
2183 			  const struct sys_reg_desc *r)
2184 {
2185 	if (p->is_write)
2186 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2187 	else
2188 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2189 
2190 	return true;
2191 }
2192 
2193 static bool access_elr(struct kvm_vcpu *vcpu,
2194 		       struct sys_reg_params *p,
2195 		       const struct sys_reg_desc *r)
2196 {
2197 	if (p->is_write)
2198 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2199 	else
2200 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2201 
2202 	return true;
2203 }
2204 
2205 static bool access_spsr(struct kvm_vcpu *vcpu,
2206 			struct sys_reg_params *p,
2207 			const struct sys_reg_desc *r)
2208 {
2209 	if (p->is_write)
2210 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2211 	else
2212 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2213 
2214 	return true;
2215 }
2216 
2217 static bool access_cntkctl_el12(struct kvm_vcpu *vcpu,
2218 				struct sys_reg_params *p,
2219 				const struct sys_reg_desc *r)
2220 {
2221 	if (p->is_write)
2222 		__vcpu_sys_reg(vcpu, CNTKCTL_EL1) = p->regval;
2223 	else
2224 		p->regval = __vcpu_sys_reg(vcpu, CNTKCTL_EL1);
2225 
2226 	return true;
2227 }
2228 
2229 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2230 {
2231 	u64 val = r->val;
2232 
2233 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2234 		val |= HCR_E2H;
2235 
2236 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2237 }
2238 
2239 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2240 				       const struct sys_reg_desc *rd)
2241 {
2242 	unsigned int r;
2243 
2244 	r = el2_visibility(vcpu, rd);
2245 	if (r)
2246 		return r;
2247 
2248 	return sve_visibility(vcpu, rd);
2249 }
2250 
2251 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2252 			   struct sys_reg_params *p,
2253 			   const struct sys_reg_desc *r)
2254 {
2255 	unsigned int vq;
2256 
2257 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2258 		kvm_inject_nested_sve_trap(vcpu);
2259 		return true;
2260 	}
2261 
2262 	if (!p->is_write) {
2263 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2264 		return true;
2265 	}
2266 
2267 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2268 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2269 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2270 	return true;
2271 }
2272 
2273 static unsigned int s1poe_visibility(const struct kvm_vcpu *vcpu,
2274 				     const struct sys_reg_desc *rd)
2275 {
2276 	if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
2277 		return 0;
2278 
2279 	return REG_HIDDEN;
2280 }
2281 
2282 /*
2283  * Architected system registers.
2284  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2285  *
2286  * Debug handling: We do trap most, if not all debug related system
2287  * registers. The implementation is good enough to ensure that a guest
2288  * can use these with minimal performance degradation. The drawback is
2289  * that we don't implement any of the external debug architecture.
2290  * This should be revisited if we ever encounter a more demanding
2291  * guest...
2292  */
2293 static const struct sys_reg_desc sys_reg_descs[] = {
2294 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2295 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2296 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2297 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2298 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2299 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2300 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2301 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2302 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2303 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2304 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2305 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2306 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2307 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2308 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2309 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2310 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2311 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2312 
2313 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2314 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2315 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2316 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2317 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2318 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2319 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2320 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2321 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2322 
2323 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2324 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2325 	// DBGDTR[TR]X_EL0 share the same encoding
2326 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2327 
2328 	{ SYS_DESC(SYS_DBGVCR32_EL2), undef_access, reset_val, DBGVCR32_EL2, 0 },
2329 
2330 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2331 
2332 	/*
2333 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2334 	 * entries in arm64_ftr_regs[].
2335 	 */
2336 
2337 	/* AArch64 mappings of the AArch32 ID registers */
2338 	/* CRm=1 */
2339 	AA32_ID_SANITISED(ID_PFR0_EL1),
2340 	AA32_ID_SANITISED(ID_PFR1_EL1),
2341 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2342 	  .access = access_id_reg,
2343 	  .get_user = get_id_reg,
2344 	  .set_user = set_id_dfr0_el1,
2345 	  .visibility = aa32_id_visibility,
2346 	  .reset = read_sanitised_id_dfr0_el1,
2347 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2348 		 ID_DFR0_EL1_CopDbg_MASK, },
2349 	ID_HIDDEN(ID_AFR0_EL1),
2350 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2351 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2352 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2353 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2354 
2355 	/* CRm=2 */
2356 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2357 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2358 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2359 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2360 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2361 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2362 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2363 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2364 
2365 	/* CRm=3 */
2366 	AA32_ID_SANITISED(MVFR0_EL1),
2367 	AA32_ID_SANITISED(MVFR1_EL1),
2368 	AA32_ID_SANITISED(MVFR2_EL1),
2369 	ID_UNALLOCATED(3,3),
2370 	AA32_ID_SANITISED(ID_PFR2_EL1),
2371 	ID_HIDDEN(ID_DFR1_EL1),
2372 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2373 	ID_UNALLOCATED(3,7),
2374 
2375 	/* AArch64 ID registers */
2376 	/* CRm=4 */
2377 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2378 	  .access = access_id_reg,
2379 	  .get_user = get_id_reg,
2380 	  .set_user = set_id_reg,
2381 	  .reset = read_sanitised_id_aa64pfr0_el1,
2382 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2383 		   ID_AA64PFR0_EL1_MPAM |
2384 		   ID_AA64PFR0_EL1_SVE |
2385 		   ID_AA64PFR0_EL1_RAS |
2386 		   ID_AA64PFR0_EL1_AdvSIMD |
2387 		   ID_AA64PFR0_EL1_FP), },
2388 	ID_WRITABLE(ID_AA64PFR1_EL1, ~(ID_AA64PFR1_EL1_PFAR |
2389 				       ID_AA64PFR1_EL1_DF2 |
2390 				       ID_AA64PFR1_EL1_MTEX |
2391 				       ID_AA64PFR1_EL1_THE |
2392 				       ID_AA64PFR1_EL1_GCS |
2393 				       ID_AA64PFR1_EL1_MTE_frac |
2394 				       ID_AA64PFR1_EL1_NMI |
2395 				       ID_AA64PFR1_EL1_RNDR_trap |
2396 				       ID_AA64PFR1_EL1_SME |
2397 				       ID_AA64PFR1_EL1_RES0 |
2398 				       ID_AA64PFR1_EL1_MPAM_frac |
2399 				       ID_AA64PFR1_EL1_RAS_frac |
2400 				       ID_AA64PFR1_EL1_MTE)),
2401 	ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2402 	ID_UNALLOCATED(4,3),
2403 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2404 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2405 	ID_UNALLOCATED(4,6),
2406 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2407 
2408 	/* CRm=5 */
2409 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2410 	  .access = access_id_reg,
2411 	  .get_user = get_id_reg,
2412 	  .set_user = set_id_aa64dfr0_el1,
2413 	  .reset = read_sanitised_id_aa64dfr0_el1,
2414 	/*
2415 	 * Prior to FEAT_Debugv8.9, the architecture defines context-aware
2416 	 * breakpoints (CTX_CMPs) as the highest numbered breakpoints (BRPs).
2417 	 * KVM does not trap + emulate the breakpoint registers, and as such
2418 	 * cannot support a layout that misaligns with the underlying hardware.
2419 	 * While it may be possible to describe a subset that aligns with
2420 	 * hardware, just prevent changes to BRPs and CTX_CMPs altogether for
2421 	 * simplicity.
2422 	 *
2423 	 * See DDI0487K.a, section D2.8.3 Breakpoint types and linking
2424 	 * of breakpoints for more details.
2425 	 */
2426 	  .val = ID_AA64DFR0_EL1_DoubleLock_MASK |
2427 		 ID_AA64DFR0_EL1_WRPs_MASK |
2428 		 ID_AA64DFR0_EL1_PMUVer_MASK |
2429 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2430 	ID_SANITISED(ID_AA64DFR1_EL1),
2431 	ID_UNALLOCATED(5,2),
2432 	ID_UNALLOCATED(5,3),
2433 	ID_HIDDEN(ID_AA64AFR0_EL1),
2434 	ID_HIDDEN(ID_AA64AFR1_EL1),
2435 	ID_UNALLOCATED(5,6),
2436 	ID_UNALLOCATED(5,7),
2437 
2438 	/* CRm=6 */
2439 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2440 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2441 					ID_AA64ISAR1_EL1_GPA |
2442 					ID_AA64ISAR1_EL1_API |
2443 					ID_AA64ISAR1_EL1_APA)),
2444 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2445 					ID_AA64ISAR2_EL1_APA3 |
2446 					ID_AA64ISAR2_EL1_GPA3)),
2447 	ID_UNALLOCATED(6,3),
2448 	ID_UNALLOCATED(6,4),
2449 	ID_UNALLOCATED(6,5),
2450 	ID_UNALLOCATED(6,6),
2451 	ID_UNALLOCATED(6,7),
2452 
2453 	/* CRm=7 */
2454 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2455 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2456 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2457 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2458 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2459 					ID_AA64MMFR1_EL1_HCX |
2460 					ID_AA64MMFR1_EL1_TWED |
2461 					ID_AA64MMFR1_EL1_XNX |
2462 					ID_AA64MMFR1_EL1_VH |
2463 					ID_AA64MMFR1_EL1_VMIDBits)),
2464 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2465 					ID_AA64MMFR2_EL1_EVT |
2466 					ID_AA64MMFR2_EL1_FWB |
2467 					ID_AA64MMFR2_EL1_IDS |
2468 					ID_AA64MMFR2_EL1_NV |
2469 					ID_AA64MMFR2_EL1_CCIDX)),
2470 	ID_WRITABLE(ID_AA64MMFR3_EL1, (ID_AA64MMFR3_EL1_TCRX	|
2471 				       ID_AA64MMFR3_EL1_S1PIE   |
2472 				       ID_AA64MMFR3_EL1_S1POE)),
2473 	ID_SANITISED(ID_AA64MMFR4_EL1),
2474 	ID_UNALLOCATED(7,5),
2475 	ID_UNALLOCATED(7,6),
2476 	ID_UNALLOCATED(7,7),
2477 
2478 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2479 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2480 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2481 
2482 	MTE_REG(RGSR_EL1),
2483 	MTE_REG(GCR_EL1),
2484 
2485 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2486 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2487 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2488 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2489 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2490 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2491 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2492 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2493 
2494 	PTRAUTH_KEY(APIA),
2495 	PTRAUTH_KEY(APIB),
2496 	PTRAUTH_KEY(APDA),
2497 	PTRAUTH_KEY(APDB),
2498 	PTRAUTH_KEY(APGA),
2499 
2500 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2501 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2502 
2503 	{ SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
2504 
2505 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2506 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2507 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2508 
2509 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2510 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2511 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2512 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2513 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2514 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2515 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2516 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2517 
2518 	MTE_REG(TFSR_EL1),
2519 	MTE_REG(TFSRE0_EL1),
2520 
2521 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2522 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2523 
2524 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2525 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2526 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2527 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2528 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2529 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2530 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2531 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2532 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2533 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2534 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2535 	/* PMBIDR_EL1 is not trapped */
2536 
2537 	{ PMU_SYS_REG(PMINTENSET_EL1),
2538 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2539 	  .get_user = get_pmreg, .set_user = set_pmreg },
2540 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2541 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2542 	  .get_user = get_pmreg, .set_user = set_pmreg },
2543 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2544 
2545 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2546 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2547 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2548 	{ SYS_DESC(SYS_POR_EL1), NULL, reset_unknown, POR_EL1,
2549 	  .visibility = s1poe_visibility },
2550 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2551 
2552 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2553 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2554 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2555 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2556 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2557 
2558 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2559 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2560 
2561 	{ SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
2562 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
2563 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
2564 	{ SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
2565 	{ SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
2566 	{ SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
2567 	{ SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
2568 	{ SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
2569 	{ SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
2570 	{ SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
2571 	{ SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
2572 	{ SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
2573 	{ SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
2574 	{ SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
2575 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2576 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2577 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2578 	{ SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
2579 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
2580 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
2581 	{ SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
2582 	{ SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
2583 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2584 	{ SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
2585 	{ SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
2586 
2587 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2588 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2589 
2590 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2591 
2592 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2593 
2594 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2595 
2596 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2597 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2598 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
2599 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2600 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2601 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2602 	ID_WRITABLE(CTR_EL0, CTR_EL0_DIC_MASK |
2603 			     CTR_EL0_IDC_MASK |
2604 			     CTR_EL0_DminLine_MASK |
2605 			     CTR_EL0_IminLine_MASK),
2606 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
2607 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
2608 
2609 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2610 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2611 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2612 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2613 	  .get_user = get_pmreg, .set_user = set_pmreg },
2614 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2615 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2616 	  .get_user = get_pmreg, .set_user = set_pmreg },
2617 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2618 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2619 	  .get_user = get_pmreg, .set_user = set_pmreg },
2620 	/*
2621 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2622 	 * previously (and pointlessly) advertised in the past...
2623 	 */
2624 	{ PMU_SYS_REG(PMSWINC_EL0),
2625 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2626 	  .access = access_pmswinc, .reset = NULL },
2627 	{ PMU_SYS_REG(PMSELR_EL0),
2628 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2629 	{ PMU_SYS_REG(PMCEID0_EL0),
2630 	  .access = access_pmceid, .reset = NULL },
2631 	{ PMU_SYS_REG(PMCEID1_EL0),
2632 	  .access = access_pmceid, .reset = NULL },
2633 	{ PMU_SYS_REG(PMCCNTR_EL0),
2634 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2635 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2636 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2637 	  .access = access_pmu_evtyper, .reset = NULL },
2638 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2639 	  .access = access_pmu_evcntr, .reset = NULL },
2640 	/*
2641 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2642 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2643 	 */
2644 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2645 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2646 	{ PMU_SYS_REG(PMOVSSET_EL0),
2647 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2648 	  .get_user = get_pmreg, .set_user = set_pmreg },
2649 
2650 	{ SYS_DESC(SYS_POR_EL0), NULL, reset_unknown, POR_EL0,
2651 	  .visibility = s1poe_visibility },
2652 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2653 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2654 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2655 
2656 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2657 
2658 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2659 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2660 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2661 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2662 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2663 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2664 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2665 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2666 	AMU_AMEVCNTR0_EL0(0),
2667 	AMU_AMEVCNTR0_EL0(1),
2668 	AMU_AMEVCNTR0_EL0(2),
2669 	AMU_AMEVCNTR0_EL0(3),
2670 	AMU_AMEVCNTR0_EL0(4),
2671 	AMU_AMEVCNTR0_EL0(5),
2672 	AMU_AMEVCNTR0_EL0(6),
2673 	AMU_AMEVCNTR0_EL0(7),
2674 	AMU_AMEVCNTR0_EL0(8),
2675 	AMU_AMEVCNTR0_EL0(9),
2676 	AMU_AMEVCNTR0_EL0(10),
2677 	AMU_AMEVCNTR0_EL0(11),
2678 	AMU_AMEVCNTR0_EL0(12),
2679 	AMU_AMEVCNTR0_EL0(13),
2680 	AMU_AMEVCNTR0_EL0(14),
2681 	AMU_AMEVCNTR0_EL0(15),
2682 	AMU_AMEVTYPER0_EL0(0),
2683 	AMU_AMEVTYPER0_EL0(1),
2684 	AMU_AMEVTYPER0_EL0(2),
2685 	AMU_AMEVTYPER0_EL0(3),
2686 	AMU_AMEVTYPER0_EL0(4),
2687 	AMU_AMEVTYPER0_EL0(5),
2688 	AMU_AMEVTYPER0_EL0(6),
2689 	AMU_AMEVTYPER0_EL0(7),
2690 	AMU_AMEVTYPER0_EL0(8),
2691 	AMU_AMEVTYPER0_EL0(9),
2692 	AMU_AMEVTYPER0_EL0(10),
2693 	AMU_AMEVTYPER0_EL0(11),
2694 	AMU_AMEVTYPER0_EL0(12),
2695 	AMU_AMEVTYPER0_EL0(13),
2696 	AMU_AMEVTYPER0_EL0(14),
2697 	AMU_AMEVTYPER0_EL0(15),
2698 	AMU_AMEVCNTR1_EL0(0),
2699 	AMU_AMEVCNTR1_EL0(1),
2700 	AMU_AMEVCNTR1_EL0(2),
2701 	AMU_AMEVCNTR1_EL0(3),
2702 	AMU_AMEVCNTR1_EL0(4),
2703 	AMU_AMEVCNTR1_EL0(5),
2704 	AMU_AMEVCNTR1_EL0(6),
2705 	AMU_AMEVCNTR1_EL0(7),
2706 	AMU_AMEVCNTR1_EL0(8),
2707 	AMU_AMEVCNTR1_EL0(9),
2708 	AMU_AMEVCNTR1_EL0(10),
2709 	AMU_AMEVCNTR1_EL0(11),
2710 	AMU_AMEVCNTR1_EL0(12),
2711 	AMU_AMEVCNTR1_EL0(13),
2712 	AMU_AMEVCNTR1_EL0(14),
2713 	AMU_AMEVCNTR1_EL0(15),
2714 	AMU_AMEVTYPER1_EL0(0),
2715 	AMU_AMEVTYPER1_EL0(1),
2716 	AMU_AMEVTYPER1_EL0(2),
2717 	AMU_AMEVTYPER1_EL0(3),
2718 	AMU_AMEVTYPER1_EL0(4),
2719 	AMU_AMEVTYPER1_EL0(5),
2720 	AMU_AMEVTYPER1_EL0(6),
2721 	AMU_AMEVTYPER1_EL0(7),
2722 	AMU_AMEVTYPER1_EL0(8),
2723 	AMU_AMEVTYPER1_EL0(9),
2724 	AMU_AMEVTYPER1_EL0(10),
2725 	AMU_AMEVTYPER1_EL0(11),
2726 	AMU_AMEVTYPER1_EL0(12),
2727 	AMU_AMEVTYPER1_EL0(13),
2728 	AMU_AMEVTYPER1_EL0(14),
2729 	AMU_AMEVTYPER1_EL0(15),
2730 
2731 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2732 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2733 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2734 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2735 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2736 
2737 	/* PMEVCNTRn_EL0 */
2738 	PMU_PMEVCNTR_EL0(0),
2739 	PMU_PMEVCNTR_EL0(1),
2740 	PMU_PMEVCNTR_EL0(2),
2741 	PMU_PMEVCNTR_EL0(3),
2742 	PMU_PMEVCNTR_EL0(4),
2743 	PMU_PMEVCNTR_EL0(5),
2744 	PMU_PMEVCNTR_EL0(6),
2745 	PMU_PMEVCNTR_EL0(7),
2746 	PMU_PMEVCNTR_EL0(8),
2747 	PMU_PMEVCNTR_EL0(9),
2748 	PMU_PMEVCNTR_EL0(10),
2749 	PMU_PMEVCNTR_EL0(11),
2750 	PMU_PMEVCNTR_EL0(12),
2751 	PMU_PMEVCNTR_EL0(13),
2752 	PMU_PMEVCNTR_EL0(14),
2753 	PMU_PMEVCNTR_EL0(15),
2754 	PMU_PMEVCNTR_EL0(16),
2755 	PMU_PMEVCNTR_EL0(17),
2756 	PMU_PMEVCNTR_EL0(18),
2757 	PMU_PMEVCNTR_EL0(19),
2758 	PMU_PMEVCNTR_EL0(20),
2759 	PMU_PMEVCNTR_EL0(21),
2760 	PMU_PMEVCNTR_EL0(22),
2761 	PMU_PMEVCNTR_EL0(23),
2762 	PMU_PMEVCNTR_EL0(24),
2763 	PMU_PMEVCNTR_EL0(25),
2764 	PMU_PMEVCNTR_EL0(26),
2765 	PMU_PMEVCNTR_EL0(27),
2766 	PMU_PMEVCNTR_EL0(28),
2767 	PMU_PMEVCNTR_EL0(29),
2768 	PMU_PMEVCNTR_EL0(30),
2769 	/* PMEVTYPERn_EL0 */
2770 	PMU_PMEVTYPER_EL0(0),
2771 	PMU_PMEVTYPER_EL0(1),
2772 	PMU_PMEVTYPER_EL0(2),
2773 	PMU_PMEVTYPER_EL0(3),
2774 	PMU_PMEVTYPER_EL0(4),
2775 	PMU_PMEVTYPER_EL0(5),
2776 	PMU_PMEVTYPER_EL0(6),
2777 	PMU_PMEVTYPER_EL0(7),
2778 	PMU_PMEVTYPER_EL0(8),
2779 	PMU_PMEVTYPER_EL0(9),
2780 	PMU_PMEVTYPER_EL0(10),
2781 	PMU_PMEVTYPER_EL0(11),
2782 	PMU_PMEVTYPER_EL0(12),
2783 	PMU_PMEVTYPER_EL0(13),
2784 	PMU_PMEVTYPER_EL0(14),
2785 	PMU_PMEVTYPER_EL0(15),
2786 	PMU_PMEVTYPER_EL0(16),
2787 	PMU_PMEVTYPER_EL0(17),
2788 	PMU_PMEVTYPER_EL0(18),
2789 	PMU_PMEVTYPER_EL0(19),
2790 	PMU_PMEVTYPER_EL0(20),
2791 	PMU_PMEVTYPER_EL0(21),
2792 	PMU_PMEVTYPER_EL0(22),
2793 	PMU_PMEVTYPER_EL0(23),
2794 	PMU_PMEVTYPER_EL0(24),
2795 	PMU_PMEVTYPER_EL0(25),
2796 	PMU_PMEVTYPER_EL0(26),
2797 	PMU_PMEVTYPER_EL0(27),
2798 	PMU_PMEVTYPER_EL0(28),
2799 	PMU_PMEVTYPER_EL0(29),
2800 	PMU_PMEVTYPER_EL0(30),
2801 	/*
2802 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2803 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2804 	 */
2805 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2806 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2807 
2808 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2809 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2810 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2811 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2812 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2813 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2814 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2815 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2816 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2817 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2818 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2819 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2820 
2821 	{ SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val,
2822 	  .visibility = sve_el2_visibility, .reg = ZCR_EL2 },
2823 
2824 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2825 
2826 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2827 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2828 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2829 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2830 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2831 
2832 	{ SYS_DESC(SYS_DACR32_EL2), undef_access, reset_unknown, DACR32_EL2 },
2833 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2834 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2835 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2836 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2837 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2838 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2839 
2840 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2841 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi },
2842 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi },
2843 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi },
2844 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi },
2845 
2846 	{ SYS_DESC(SYS_IFSR32_EL2), undef_access, reset_unknown, IFSR32_EL2 },
2847 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2848 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2849 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2850 	{ SYS_DESC(SYS_FPEXC32_EL2), undef_access, reset_val, FPEXC32_EL2, 0x700 },
2851 
2852 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2853 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2854 
2855 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2856 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2857 
2858 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2859 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2860 	{ SYS_DESC(SYS_RMR_EL2), undef_access },
2861 
2862 	EL2_REG_VNCR(ICH_HCR_EL2, reset_val, 0),
2863 
2864 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2865 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2866 
2867 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2868 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2869 
2870 	{ SYS_DESC(SYS_CNTKCTL_EL12), access_cntkctl_el12 },
2871 
2872 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2873 };
2874 
2875 static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2876 			    const struct sys_reg_desc *r)
2877 {
2878 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2879 
2880 	__kvm_at_s1e01(vcpu, op, p->regval);
2881 
2882 	return true;
2883 }
2884 
2885 static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2886 			   const struct sys_reg_desc *r)
2887 {
2888 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2889 
2890 	/* There is no FGT associated with AT S1E2A :-( */
2891 	if (op == OP_AT_S1E2A &&
2892 	    !kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
2893 		kvm_inject_undefined(vcpu);
2894 		return false;
2895 	}
2896 
2897 	__kvm_at_s1e2(vcpu, op, p->regval);
2898 
2899 	return true;
2900 }
2901 
2902 static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2903 			  const struct sys_reg_desc *r)
2904 {
2905 	u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2906 
2907 	__kvm_at_s12(vcpu, op, p->regval);
2908 
2909 	return true;
2910 }
2911 
2912 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
2913 {
2914 	struct kvm *kvm = vpcu->kvm;
2915 	u8 CRm = sys_reg_CRm(instr);
2916 
2917 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2918 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2919 		return false;
2920 
2921 	if (CRm == TLBI_CRm_nROS &&
2922 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2923 		return false;
2924 
2925 	return true;
2926 }
2927 
2928 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2929 			   const struct sys_reg_desc *r)
2930 {
2931 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2932 
2933 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
2934 		return undef_access(vcpu, p, r);
2935 
2936 	write_lock(&vcpu->kvm->mmu_lock);
2937 
2938 	/*
2939 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
2940 	 * corresponding VMIDs.
2941 	 */
2942 	kvm_nested_s2_unmap(vcpu->kvm, true);
2943 
2944 	write_unlock(&vcpu->kvm->mmu_lock);
2945 
2946 	return true;
2947 }
2948 
2949 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
2950 {
2951 	struct kvm *kvm = vpcu->kvm;
2952 	u8 CRm = sys_reg_CRm(instr);
2953 	u8 Op2 = sys_reg_Op2(instr);
2954 
2955 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2956 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2957 		return false;
2958 
2959 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
2960 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2961 		return false;
2962 
2963 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
2964 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2965 		return false;
2966 
2967 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
2968 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2969 		return false;
2970 
2971 	return true;
2972 }
2973 
2974 /* Only defined here as this is an internal "abstraction" */
2975 union tlbi_info {
2976 	struct {
2977 		u64	start;
2978 		u64	size;
2979 	} range;
2980 
2981 	struct {
2982 		u64	addr;
2983 	} ipa;
2984 
2985 	struct {
2986 		u64	addr;
2987 		u32	encoding;
2988 	} va;
2989 };
2990 
2991 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
2992 			       const union tlbi_info *info)
2993 {
2994 	/*
2995 	 * The unmap operation is allowed to drop the MMU lock and block, which
2996 	 * means that @mmu could be used for a different context than the one
2997 	 * currently being invalidated.
2998 	 *
2999 	 * This behavior is still safe, as:
3000 	 *
3001 	 *  1) The vCPU(s) that recycled the MMU are responsible for invalidating
3002 	 *     the entire MMU before reusing it, which still honors the intent
3003 	 *     of a TLBI.
3004 	 *
3005 	 *  2) Until the guest TLBI instruction is 'retired' (i.e. increment PC
3006 	 *     and ERET to the guest), other vCPUs are allowed to use stale
3007 	 *     translations.
3008 	 *
3009 	 *  3) Accidentally unmapping an unrelated MMU context is nonfatal, and
3010 	 *     at worst may cause more aborts for shadow stage-2 fills.
3011 	 *
3012 	 * Dropping the MMU lock also implies that shadow stage-2 fills could
3013 	 * happen behind the back of the TLBI. This is still safe, though, as
3014 	 * the L1 needs to put its stage-2 in a consistent state before doing
3015 	 * the TLBI.
3016 	 */
3017 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size, true);
3018 }
3019 
3020 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3021 				const struct sys_reg_desc *r)
3022 {
3023 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3024 	u64 limit, vttbr;
3025 
3026 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding))
3027 		return undef_access(vcpu, p, r);
3028 
3029 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3030 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
3031 
3032 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3033 				   &(union tlbi_info) {
3034 					   .range = {
3035 						   .start = 0,
3036 						   .size = limit,
3037 					   },
3038 				   },
3039 				   s2_mmu_unmap_range);
3040 
3041 	return true;
3042 }
3043 
3044 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3045 			      const struct sys_reg_desc *r)
3046 {
3047 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3048 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3049 	u64 base, range, tg, num, scale;
3050 	int shift;
3051 
3052 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3053 		return undef_access(vcpu, p, r);
3054 
3055 	/*
3056 	 * Because the shadow S2 structure doesn't necessarily reflect that
3057 	 * of the guest's S2 (different base granule size, for example), we
3058 	 * decide to ignore TTL and only use the described range.
3059 	 */
3060 	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
3061 	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
3062 	num	= FIELD_GET(GENMASK(43, 39), p->regval);
3063 	base	= p->regval & GENMASK(36, 0);
3064 
3065 	switch(tg) {
3066 	case 1:
3067 		shift = 12;
3068 		break;
3069 	case 2:
3070 		shift = 14;
3071 		break;
3072 	case 3:
3073 	default:		/* IMPDEF: handle tg==0 as 64k */
3074 		shift = 16;
3075 		break;
3076 	}
3077 
3078 	base <<= shift;
3079 	range = __TLBI_RANGE_PAGES(num, scale) << shift;
3080 
3081 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3082 				   &(union tlbi_info) {
3083 					   .range = {
3084 						   .start = base,
3085 						   .size = range,
3086 					   },
3087 				   },
3088 				   s2_mmu_unmap_range);
3089 
3090 	return true;
3091 }
3092 
3093 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3094 			     const union tlbi_info *info)
3095 {
3096 	unsigned long max_size;
3097 	u64 base_addr;
3098 
3099 	/*
3100 	 * We drop a number of things from the supplied value:
3101 	 *
3102 	 * - NS bit: we're non-secure only.
3103 	 *
3104 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3105 	 *
3106 	 * And of course, adjust the IPA to be on an actual address.
3107 	 */
3108 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3109 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3110 	base_addr &= ~(max_size - 1);
3111 
3112 	/*
3113 	 * See comment in s2_mmu_unmap_range() for why this is allowed to
3114 	 * reschedule.
3115 	 */
3116 	kvm_stage2_unmap_range(mmu, base_addr, max_size, true);
3117 }
3118 
3119 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3120 			     const struct sys_reg_desc *r)
3121 {
3122 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3123 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3124 
3125 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding))
3126 		return undef_access(vcpu, p, r);
3127 
3128 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3129 				   &(union tlbi_info) {
3130 					   .ipa = {
3131 						   .addr = p->regval,
3132 					   },
3133 				   },
3134 				   s2_mmu_unmap_ipa);
3135 
3136 	return true;
3137 }
3138 
3139 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3140 			     const union tlbi_info *info)
3141 {
3142 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3143 }
3144 
3145 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3146 			    const struct sys_reg_desc *r)
3147 {
3148 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3149 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3150 
3151 	/*
3152 	 * If we're here, this is because we've trapped on a EL1 TLBI
3153 	 * instruction that affects the EL1 translation regime while
3154 	 * we're running in a context that doesn't allow us to let the
3155 	 * HW do its thing (aka vEL2):
3156 	 *
3157 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3158 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3159 	 *
3160 	 * We don't expect these helpers to ever be called when running
3161 	 * in a vEL1 context.
3162 	 */
3163 
3164 	WARN_ON(!vcpu_is_el2(vcpu));
3165 
3166 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding))
3167 		return undef_access(vcpu, p, r);
3168 
3169 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3170 				   &(union tlbi_info) {
3171 					   .va = {
3172 						   .addr = p->regval,
3173 						   .encoding = sys_encoding,
3174 					   },
3175 				   },
3176 				   s2_mmu_tlbi_s1e1);
3177 
3178 	return true;
3179 }
3180 
3181 #define SYS_INSN(insn, access_fn)					\
3182 	{								\
3183 		SYS_DESC(OP_##insn),					\
3184 		.access = (access_fn),					\
3185 	}
3186 
3187 static struct sys_reg_desc sys_insn_descs[] = {
3188 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3189 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3190 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3191 
3192 	SYS_INSN(AT_S1E1R, handle_at_s1e01),
3193 	SYS_INSN(AT_S1E1W, handle_at_s1e01),
3194 	SYS_INSN(AT_S1E0R, handle_at_s1e01),
3195 	SYS_INSN(AT_S1E0W, handle_at_s1e01),
3196 	SYS_INSN(AT_S1E1RP, handle_at_s1e01),
3197 	SYS_INSN(AT_S1E1WP, handle_at_s1e01),
3198 
3199 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3200 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3201 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3202 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3203 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3204 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3205 
3206 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3207 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3208 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3209 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3210 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3211 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3212 
3213 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3214 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3215 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3216 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3217 
3218 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3219 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3220 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3221 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3222 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3223 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3224 
3225 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3226 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3227 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3228 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3229 
3230 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3231 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3232 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3233 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3234 
3235 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3236 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3237 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3238 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3239 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3240 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3241 
3242 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3243 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3244 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3245 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3246 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3247 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3248 
3249 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3250 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3251 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3252 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3253 
3254 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3255 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3256 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3257 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3258 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3259 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3260 
3261 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3262 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3263 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3264 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3265 
3266 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3267 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3268 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3269 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3270 
3271 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3272 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3273 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3274 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3275 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3276 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3277 
3278 	SYS_INSN(AT_S1E2R, handle_at_s1e2),
3279 	SYS_INSN(AT_S1E2W, handle_at_s1e2),
3280 	SYS_INSN(AT_S12E1R, handle_at_s12),
3281 	SYS_INSN(AT_S12E1W, handle_at_s12),
3282 	SYS_INSN(AT_S12E0R, handle_at_s12),
3283 	SYS_INSN(AT_S12E0W, handle_at_s12),
3284 	SYS_INSN(AT_S1E2A, handle_at_s1e2),
3285 
3286 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3287 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3288 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3289 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3290 
3291 	SYS_INSN(TLBI_ALLE2OS, undef_access),
3292 	SYS_INSN(TLBI_VAE2OS, undef_access),
3293 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3294 	SYS_INSN(TLBI_VALE2OS, undef_access),
3295 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3296 
3297 	SYS_INSN(TLBI_RVAE2IS, undef_access),
3298 	SYS_INSN(TLBI_RVALE2IS, undef_access),
3299 
3300 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3301 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3302 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3303 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3304 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3305 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3306 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3307 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3308 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3309 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3310 	SYS_INSN(TLBI_RVAE2OS, undef_access),
3311 	SYS_INSN(TLBI_RVALE2OS, undef_access),
3312 	SYS_INSN(TLBI_RVAE2, undef_access),
3313 	SYS_INSN(TLBI_RVALE2, undef_access),
3314 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3315 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3316 
3317 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3318 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3319 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3320 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3321 
3322 	SYS_INSN(TLBI_ALLE2OSNXS, undef_access),
3323 	SYS_INSN(TLBI_VAE2OSNXS, undef_access),
3324 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3325 	SYS_INSN(TLBI_VALE2OSNXS, undef_access),
3326 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3327 
3328 	SYS_INSN(TLBI_RVAE2ISNXS, undef_access),
3329 	SYS_INSN(TLBI_RVALE2ISNXS, undef_access),
3330 	SYS_INSN(TLBI_ALLE2ISNXS, undef_access),
3331 	SYS_INSN(TLBI_VAE2ISNXS, undef_access),
3332 
3333 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3334 	SYS_INSN(TLBI_VALE2ISNXS, undef_access),
3335 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3336 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3337 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3338 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3339 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3340 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3341 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3342 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3343 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3344 	SYS_INSN(TLBI_RVAE2OSNXS, undef_access),
3345 	SYS_INSN(TLBI_RVALE2OSNXS, undef_access),
3346 	SYS_INSN(TLBI_RVAE2NXS, undef_access),
3347 	SYS_INSN(TLBI_RVALE2NXS, undef_access),
3348 	SYS_INSN(TLBI_ALLE2NXS, undef_access),
3349 	SYS_INSN(TLBI_VAE2NXS, undef_access),
3350 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3351 	SYS_INSN(TLBI_VALE2NXS, undef_access),
3352 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3353 };
3354 
3355 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3356 			struct sys_reg_params *p,
3357 			const struct sys_reg_desc *r)
3358 {
3359 	if (p->is_write) {
3360 		return ignore_write(vcpu, p);
3361 	} else {
3362 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3363 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3364 
3365 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3366 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3367 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3368 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3369 			     (1 << 15) | (el3 << 14) | (el3 << 12));
3370 		return true;
3371 	}
3372 }
3373 
3374 /*
3375  * AArch32 debug register mappings
3376  *
3377  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3378  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3379  *
3380  * None of the other registers share their location, so treat them as
3381  * if they were 64bit.
3382  */
3383 #define DBG_BCR_BVR_WCR_WVR(n)						      \
3384 	/* DBGBVRn */							      \
3385 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
3386 	/* DBGBCRn */							      \
3387 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
3388 	/* DBGWVRn */							      \
3389 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
3390 	/* DBGWCRn */							      \
3391 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
3392 
3393 #define DBGBXVR(n)							      \
3394 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
3395 
3396 /*
3397  * Trapped cp14 registers. We generally ignore most of the external
3398  * debug, on the principle that they don't really make sense to a
3399  * guest. Revisit this one day, would this principle change.
3400  */
3401 static const struct sys_reg_desc cp14_regs[] = {
3402 	/* DBGDIDR */
3403 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3404 	/* DBGDTRRXext */
3405 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3406 
3407 	DBG_BCR_BVR_WCR_WVR(0),
3408 	/* DBGDSCRint */
3409 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3410 	DBG_BCR_BVR_WCR_WVR(1),
3411 	/* DBGDCCINT */
3412 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3413 	/* DBGDSCRext */
3414 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3415 	DBG_BCR_BVR_WCR_WVR(2),
3416 	/* DBGDTR[RT]Xint */
3417 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3418 	/* DBGDTR[RT]Xext */
3419 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3420 	DBG_BCR_BVR_WCR_WVR(3),
3421 	DBG_BCR_BVR_WCR_WVR(4),
3422 	DBG_BCR_BVR_WCR_WVR(5),
3423 	/* DBGWFAR */
3424 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3425 	/* DBGOSECCR */
3426 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3427 	DBG_BCR_BVR_WCR_WVR(6),
3428 	/* DBGVCR */
3429 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3430 	DBG_BCR_BVR_WCR_WVR(7),
3431 	DBG_BCR_BVR_WCR_WVR(8),
3432 	DBG_BCR_BVR_WCR_WVR(9),
3433 	DBG_BCR_BVR_WCR_WVR(10),
3434 	DBG_BCR_BVR_WCR_WVR(11),
3435 	DBG_BCR_BVR_WCR_WVR(12),
3436 	DBG_BCR_BVR_WCR_WVR(13),
3437 	DBG_BCR_BVR_WCR_WVR(14),
3438 	DBG_BCR_BVR_WCR_WVR(15),
3439 
3440 	/* DBGDRAR (32bit) */
3441 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3442 
3443 	DBGBXVR(0),
3444 	/* DBGOSLAR */
3445 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3446 	DBGBXVR(1),
3447 	/* DBGOSLSR */
3448 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3449 	DBGBXVR(2),
3450 	DBGBXVR(3),
3451 	/* DBGOSDLR */
3452 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3453 	DBGBXVR(4),
3454 	/* DBGPRCR */
3455 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3456 	DBGBXVR(5),
3457 	DBGBXVR(6),
3458 	DBGBXVR(7),
3459 	DBGBXVR(8),
3460 	DBGBXVR(9),
3461 	DBGBXVR(10),
3462 	DBGBXVR(11),
3463 	DBGBXVR(12),
3464 	DBGBXVR(13),
3465 	DBGBXVR(14),
3466 	DBGBXVR(15),
3467 
3468 	/* DBGDSAR (32bit) */
3469 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3470 
3471 	/* DBGDEVID2 */
3472 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3473 	/* DBGDEVID1 */
3474 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3475 	/* DBGDEVID */
3476 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3477 	/* DBGCLAIMSET */
3478 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3479 	/* DBGCLAIMCLR */
3480 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3481 	/* DBGAUTHSTATUS */
3482 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3483 };
3484 
3485 /* Trapped cp14 64bit registers */
3486 static const struct sys_reg_desc cp14_64_regs[] = {
3487 	/* DBGDRAR (64bit) */
3488 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3489 
3490 	/* DBGDSAR (64bit) */
3491 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3492 };
3493 
3494 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3495 	AA32(_map),							\
3496 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3497 	.visibility = pmu_visibility
3498 
3499 /* Macro to expand the PMEVCNTRn register */
3500 #define PMU_PMEVCNTR(n)							\
3501 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3502 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3503 	  .access = access_pmu_evcntr }
3504 
3505 /* Macro to expand the PMEVTYPERn register */
3506 #define PMU_PMEVTYPER(n)						\
3507 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3508 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3509 	  .access = access_pmu_evtyper }
3510 /*
3511  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
3512  * depending on the way they are accessed (as a 32bit or a 64bit
3513  * register).
3514  */
3515 static const struct sys_reg_desc cp15_regs[] = {
3516 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
3517 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
3518 	/* ACTLR */
3519 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
3520 	/* ACTLR2 */
3521 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
3522 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3523 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
3524 	/* TTBCR */
3525 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
3526 	/* TTBCR2 */
3527 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
3528 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
3529 	{ CP15_SYS_DESC(SYS_ICC_PMR_EL1), undef_access },
3530 	/* DFSR */
3531 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
3532 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
3533 	/* ADFSR */
3534 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
3535 	/* AIFSR */
3536 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
3537 	/* DFAR */
3538 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
3539 	/* IFAR */
3540 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
3541 
3542 	/*
3543 	 * DC{C,I,CI}SW operations:
3544 	 */
3545 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
3546 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
3547 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
3548 
3549 	/* PMU */
3550 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
3551 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
3552 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
3553 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
3554 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
3555 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
3556 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
3557 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
3558 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
3559 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
3560 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
3561 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
3562 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
3563 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
3564 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
3565 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
3566 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
3567 	/* PMMIR */
3568 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
3569 
3570 	/* PRRR/MAIR0 */
3571 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
3572 	/* NMRR/MAIR1 */
3573 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
3574 	/* AMAIR0 */
3575 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
3576 	/* AMAIR1 */
3577 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
3578 
3579 	{ CP15_SYS_DESC(SYS_ICC_IAR0_EL1), undef_access },
3580 	{ CP15_SYS_DESC(SYS_ICC_EOIR0_EL1), undef_access },
3581 	{ CP15_SYS_DESC(SYS_ICC_HPPIR0_EL1), undef_access },
3582 	{ CP15_SYS_DESC(SYS_ICC_BPR0_EL1), undef_access },
3583 	{ CP15_SYS_DESC(SYS_ICC_AP0R0_EL1), undef_access },
3584 	{ CP15_SYS_DESC(SYS_ICC_AP0R1_EL1), undef_access },
3585 	{ CP15_SYS_DESC(SYS_ICC_AP0R2_EL1), undef_access },
3586 	{ CP15_SYS_DESC(SYS_ICC_AP0R3_EL1), undef_access },
3587 	{ CP15_SYS_DESC(SYS_ICC_AP1R0_EL1), undef_access },
3588 	{ CP15_SYS_DESC(SYS_ICC_AP1R1_EL1), undef_access },
3589 	{ CP15_SYS_DESC(SYS_ICC_AP1R2_EL1), undef_access },
3590 	{ CP15_SYS_DESC(SYS_ICC_AP1R3_EL1), undef_access },
3591 	{ CP15_SYS_DESC(SYS_ICC_DIR_EL1), undef_access },
3592 	{ CP15_SYS_DESC(SYS_ICC_RPR_EL1), undef_access },
3593 	{ CP15_SYS_DESC(SYS_ICC_IAR1_EL1), undef_access },
3594 	{ CP15_SYS_DESC(SYS_ICC_EOIR1_EL1), undef_access },
3595 	{ CP15_SYS_DESC(SYS_ICC_HPPIR1_EL1), undef_access },
3596 	{ CP15_SYS_DESC(SYS_ICC_BPR1_EL1), undef_access },
3597 	{ CP15_SYS_DESC(SYS_ICC_CTLR_EL1), undef_access },
3598 	{ CP15_SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
3599 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN0_EL1), undef_access },
3600 	{ CP15_SYS_DESC(SYS_ICC_IGRPEN1_EL1), undef_access },
3601 
3602 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
3603 
3604 	/* Arch Tmers */
3605 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
3606 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
3607 
3608 	/* PMEVCNTRn */
3609 	PMU_PMEVCNTR(0),
3610 	PMU_PMEVCNTR(1),
3611 	PMU_PMEVCNTR(2),
3612 	PMU_PMEVCNTR(3),
3613 	PMU_PMEVCNTR(4),
3614 	PMU_PMEVCNTR(5),
3615 	PMU_PMEVCNTR(6),
3616 	PMU_PMEVCNTR(7),
3617 	PMU_PMEVCNTR(8),
3618 	PMU_PMEVCNTR(9),
3619 	PMU_PMEVCNTR(10),
3620 	PMU_PMEVCNTR(11),
3621 	PMU_PMEVCNTR(12),
3622 	PMU_PMEVCNTR(13),
3623 	PMU_PMEVCNTR(14),
3624 	PMU_PMEVCNTR(15),
3625 	PMU_PMEVCNTR(16),
3626 	PMU_PMEVCNTR(17),
3627 	PMU_PMEVCNTR(18),
3628 	PMU_PMEVCNTR(19),
3629 	PMU_PMEVCNTR(20),
3630 	PMU_PMEVCNTR(21),
3631 	PMU_PMEVCNTR(22),
3632 	PMU_PMEVCNTR(23),
3633 	PMU_PMEVCNTR(24),
3634 	PMU_PMEVCNTR(25),
3635 	PMU_PMEVCNTR(26),
3636 	PMU_PMEVCNTR(27),
3637 	PMU_PMEVCNTR(28),
3638 	PMU_PMEVCNTR(29),
3639 	PMU_PMEVCNTR(30),
3640 	/* PMEVTYPERn */
3641 	PMU_PMEVTYPER(0),
3642 	PMU_PMEVTYPER(1),
3643 	PMU_PMEVTYPER(2),
3644 	PMU_PMEVTYPER(3),
3645 	PMU_PMEVTYPER(4),
3646 	PMU_PMEVTYPER(5),
3647 	PMU_PMEVTYPER(6),
3648 	PMU_PMEVTYPER(7),
3649 	PMU_PMEVTYPER(8),
3650 	PMU_PMEVTYPER(9),
3651 	PMU_PMEVTYPER(10),
3652 	PMU_PMEVTYPER(11),
3653 	PMU_PMEVTYPER(12),
3654 	PMU_PMEVTYPER(13),
3655 	PMU_PMEVTYPER(14),
3656 	PMU_PMEVTYPER(15),
3657 	PMU_PMEVTYPER(16),
3658 	PMU_PMEVTYPER(17),
3659 	PMU_PMEVTYPER(18),
3660 	PMU_PMEVTYPER(19),
3661 	PMU_PMEVTYPER(20),
3662 	PMU_PMEVTYPER(21),
3663 	PMU_PMEVTYPER(22),
3664 	PMU_PMEVTYPER(23),
3665 	PMU_PMEVTYPER(24),
3666 	PMU_PMEVTYPER(25),
3667 	PMU_PMEVTYPER(26),
3668 	PMU_PMEVTYPER(27),
3669 	PMU_PMEVTYPER(28),
3670 	PMU_PMEVTYPER(29),
3671 	PMU_PMEVTYPER(30),
3672 	/* PMCCFILTR */
3673 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3674 
3675 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3676 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3677 
3678 	/* CCSIDR2 */
3679 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3680 
3681 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3682 };
3683 
3684 static const struct sys_reg_desc cp15_64_regs[] = {
3685 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3686 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3687 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3688 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3689 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3690 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3691 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3692 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3693 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3694 };
3695 
3696 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3697 			       bool is_32)
3698 {
3699 	unsigned int i;
3700 
3701 	for (i = 0; i < n; i++) {
3702 		if (!is_32 && table[i].reg && !table[i].reset) {
3703 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
3704 				&table[i], i, table[i].name);
3705 			return false;
3706 		}
3707 
3708 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3709 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
3710 				&table[i], i, table[i - 1].name, table[i].name);
3711 			return false;
3712 		}
3713 	}
3714 
3715 	return true;
3716 }
3717 
3718 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3719 {
3720 	kvm_inject_undefined(vcpu);
3721 	return 1;
3722 }
3723 
3724 static void perform_access(struct kvm_vcpu *vcpu,
3725 			   struct sys_reg_params *params,
3726 			   const struct sys_reg_desc *r)
3727 {
3728 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3729 
3730 	/* Check for regs disabled by runtime config */
3731 	if (sysreg_hidden(vcpu, r)) {
3732 		kvm_inject_undefined(vcpu);
3733 		return;
3734 	}
3735 
3736 	/*
3737 	 * Not having an accessor means that we have configured a trap
3738 	 * that we don't know how to handle. This certainly qualifies
3739 	 * as a gross bug that should be fixed right away.
3740 	 */
3741 	BUG_ON(!r->access);
3742 
3743 	/* Skip instruction if instructed so */
3744 	if (likely(r->access(vcpu, params, r)))
3745 		kvm_incr_pc(vcpu);
3746 }
3747 
3748 /*
3749  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3750  *                call the corresponding trap handler.
3751  *
3752  * @params: pointer to the descriptor of the access
3753  * @table: array of trap descriptors
3754  * @num: size of the trap descriptor array
3755  *
3756  * Return true if the access has been handled, false if not.
3757  */
3758 static bool emulate_cp(struct kvm_vcpu *vcpu,
3759 		       struct sys_reg_params *params,
3760 		       const struct sys_reg_desc *table,
3761 		       size_t num)
3762 {
3763 	const struct sys_reg_desc *r;
3764 
3765 	if (!table)
3766 		return false;	/* Not handled */
3767 
3768 	r = find_reg(params, table, num);
3769 
3770 	if (r) {
3771 		perform_access(vcpu, params, r);
3772 		return true;
3773 	}
3774 
3775 	/* Not handled */
3776 	return false;
3777 }
3778 
3779 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3780 				struct sys_reg_params *params)
3781 {
3782 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3783 	int cp = -1;
3784 
3785 	switch (esr_ec) {
3786 	case ESR_ELx_EC_CP15_32:
3787 	case ESR_ELx_EC_CP15_64:
3788 		cp = 15;
3789 		break;
3790 	case ESR_ELx_EC_CP14_MR:
3791 	case ESR_ELx_EC_CP14_64:
3792 		cp = 14;
3793 		break;
3794 	default:
3795 		WARN_ON(1);
3796 	}
3797 
3798 	print_sys_reg_msg(params,
3799 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3800 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3801 	kvm_inject_undefined(vcpu);
3802 }
3803 
3804 /**
3805  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3806  * @vcpu: The VCPU pointer
3807  * @global: &struct sys_reg_desc
3808  * @nr_global: size of the @global array
3809  */
3810 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3811 			    const struct sys_reg_desc *global,
3812 			    size_t nr_global)
3813 {
3814 	struct sys_reg_params params;
3815 	u64 esr = kvm_vcpu_get_esr(vcpu);
3816 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3817 	int Rt2 = (esr >> 10) & 0x1f;
3818 
3819 	params.CRm = (esr >> 1) & 0xf;
3820 	params.is_write = ((esr & 1) == 0);
3821 
3822 	params.Op0 = 0;
3823 	params.Op1 = (esr >> 16) & 0xf;
3824 	params.Op2 = 0;
3825 	params.CRn = 0;
3826 
3827 	/*
3828 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3829 	 * backends between AArch32 and AArch64, we get away with it.
3830 	 */
3831 	if (params.is_write) {
3832 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3833 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3834 	}
3835 
3836 	/*
3837 	 * If the table contains a handler, handle the
3838 	 * potential register operation in the case of a read and return
3839 	 * with success.
3840 	 */
3841 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3842 		/* Split up the value between registers for the read side */
3843 		if (!params.is_write) {
3844 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3845 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3846 		}
3847 
3848 		return 1;
3849 	}
3850 
3851 	unhandled_cp_access(vcpu, &params);
3852 	return 1;
3853 }
3854 
3855 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3856 
3857 /*
3858  * The CP10 ID registers are architecturally mapped to AArch64 feature
3859  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3860  * from AArch32.
3861  */
3862 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3863 {
3864 	u8 reg_id = (esr >> 10) & 0xf;
3865 	bool valid;
3866 
3867 	params->is_write = ((esr & 1) == 0);
3868 	params->Op0 = 3;
3869 	params->Op1 = 0;
3870 	params->CRn = 0;
3871 	params->CRm = 3;
3872 
3873 	/* CP10 ID registers are read-only */
3874 	valid = !params->is_write;
3875 
3876 	switch (reg_id) {
3877 	/* MVFR0 */
3878 	case 0b0111:
3879 		params->Op2 = 0;
3880 		break;
3881 	/* MVFR1 */
3882 	case 0b0110:
3883 		params->Op2 = 1;
3884 		break;
3885 	/* MVFR2 */
3886 	case 0b0101:
3887 		params->Op2 = 2;
3888 		break;
3889 	default:
3890 		valid = false;
3891 	}
3892 
3893 	if (valid)
3894 		return true;
3895 
3896 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3897 		      params->is_write ? "write" : "read", reg_id);
3898 	return false;
3899 }
3900 
3901 /**
3902  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3903  *			  VFP Register' from AArch32.
3904  * @vcpu: The vCPU pointer
3905  *
3906  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3907  * Work out the correct AArch64 system register encoding and reroute to the
3908  * AArch64 system register emulation.
3909  */
3910 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3911 {
3912 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3913 	u64 esr = kvm_vcpu_get_esr(vcpu);
3914 	struct sys_reg_params params;
3915 
3916 	/* UNDEF on any unhandled register access */
3917 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3918 		kvm_inject_undefined(vcpu);
3919 		return 1;
3920 	}
3921 
3922 	if (emulate_sys_reg(vcpu, &params))
3923 		vcpu_set_reg(vcpu, Rt, params.regval);
3924 
3925 	return 1;
3926 }
3927 
3928 /**
3929  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3930  *			       CRn=0, which corresponds to the AArch32 feature
3931  *			       registers.
3932  * @vcpu: the vCPU pointer
3933  * @params: the system register access parameters.
3934  *
3935  * Our cp15 system register tables do not enumerate the AArch32 feature
3936  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3937  * register encoding can be trivially remapped into the AArch64 for the feature
3938  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3939  *
3940  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3941  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3942  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3943  * treat undefined registers in this range as RAZ.
3944  */
3945 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3946 				   struct sys_reg_params *params)
3947 {
3948 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3949 
3950 	/* Treat impossible writes to RO registers as UNDEFINED */
3951 	if (params->is_write) {
3952 		unhandled_cp_access(vcpu, params);
3953 		return 1;
3954 	}
3955 
3956 	params->Op0 = 3;
3957 
3958 	/*
3959 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3960 	 * Avoid conflicting with future expansion of AArch64 feature registers
3961 	 * and simply treat them as RAZ here.
3962 	 */
3963 	if (params->CRm > 3)
3964 		params->regval = 0;
3965 	else if (!emulate_sys_reg(vcpu, params))
3966 		return 1;
3967 
3968 	vcpu_set_reg(vcpu, Rt, params->regval);
3969 	return 1;
3970 }
3971 
3972 /**
3973  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3974  * @vcpu: The VCPU pointer
3975  * @params: &struct sys_reg_params
3976  * @global: &struct sys_reg_desc
3977  * @nr_global: size of the @global array
3978  */
3979 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3980 			    struct sys_reg_params *params,
3981 			    const struct sys_reg_desc *global,
3982 			    size_t nr_global)
3983 {
3984 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3985 
3986 	params->regval = vcpu_get_reg(vcpu, Rt);
3987 
3988 	if (emulate_cp(vcpu, params, global, nr_global)) {
3989 		if (!params->is_write)
3990 			vcpu_set_reg(vcpu, Rt, params->regval);
3991 		return 1;
3992 	}
3993 
3994 	unhandled_cp_access(vcpu, params);
3995 	return 1;
3996 }
3997 
3998 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3999 {
4000 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
4001 }
4002 
4003 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
4004 {
4005 	struct sys_reg_params params;
4006 
4007 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4008 
4009 	/*
4010 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
4011 	 * system register table. Registers in the ID range where CRm=0 are
4012 	 * excluded from this scheme as they do not trivially map into AArch64
4013 	 * system register encodings.
4014 	 */
4015 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
4016 		return kvm_emulate_cp15_id_reg(vcpu, &params);
4017 
4018 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
4019 }
4020 
4021 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
4022 {
4023 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
4024 }
4025 
4026 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
4027 {
4028 	struct sys_reg_params params;
4029 
4030 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
4031 
4032 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
4033 }
4034 
4035 /**
4036  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
4037  * @vcpu: The VCPU pointer
4038  * @params: Decoded system register parameters
4039  *
4040  * Return: true if the system register access was successful, false otherwise.
4041  */
4042 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
4043 			    struct sys_reg_params *params)
4044 {
4045 	const struct sys_reg_desc *r;
4046 
4047 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4048 	if (likely(r)) {
4049 		perform_access(vcpu, params, r);
4050 		return true;
4051 	}
4052 
4053 	print_sys_reg_msg(params,
4054 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
4055 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
4056 	kvm_inject_undefined(vcpu);
4057 
4058 	return false;
4059 }
4060 
4061 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
4062 {
4063 	unsigned long i, idreg_idx = 0;
4064 
4065 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4066 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4067 
4068 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
4069 			continue;
4070 
4071 		if (idreg_idx == pos)
4072 			return r;
4073 
4074 		idreg_idx++;
4075 	}
4076 
4077 	return NULL;
4078 }
4079 
4080 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
4081 {
4082 	struct kvm *kvm = s->private;
4083 	u8 *iter;
4084 
4085 	mutex_lock(&kvm->arch.config_lock);
4086 
4087 	iter = &kvm->arch.idreg_debugfs_iter;
4088 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
4089 	    *iter == (u8)~0) {
4090 		*iter = *pos;
4091 		if (!idregs_debug_find(kvm, *iter))
4092 			iter = NULL;
4093 	} else {
4094 		iter = ERR_PTR(-EBUSY);
4095 	}
4096 
4097 	mutex_unlock(&kvm->arch.config_lock);
4098 
4099 	return iter;
4100 }
4101 
4102 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
4103 {
4104 	struct kvm *kvm = s->private;
4105 
4106 	(*pos)++;
4107 
4108 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
4109 		kvm->arch.idreg_debugfs_iter++;
4110 
4111 		return &kvm->arch.idreg_debugfs_iter;
4112 	}
4113 
4114 	return NULL;
4115 }
4116 
4117 static void idregs_debug_stop(struct seq_file *s, void *v)
4118 {
4119 	struct kvm *kvm = s->private;
4120 
4121 	if (IS_ERR(v))
4122 		return;
4123 
4124 	mutex_lock(&kvm->arch.config_lock);
4125 
4126 	kvm->arch.idreg_debugfs_iter = ~0;
4127 
4128 	mutex_unlock(&kvm->arch.config_lock);
4129 }
4130 
4131 static int idregs_debug_show(struct seq_file *s, void *v)
4132 {
4133 	const struct sys_reg_desc *desc;
4134 	struct kvm *kvm = s->private;
4135 
4136 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4137 
4138 	if (!desc->name)
4139 		return 0;
4140 
4141 	seq_printf(s, "%20s:\t%016llx\n",
4142 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4143 
4144 	return 0;
4145 }
4146 
4147 static const struct seq_operations idregs_debug_sops = {
4148 	.start	= idregs_debug_start,
4149 	.next	= idregs_debug_next,
4150 	.stop	= idregs_debug_stop,
4151 	.show	= idregs_debug_show,
4152 };
4153 
4154 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4155 
4156 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4157 {
4158 	kvm->arch.idreg_debugfs_iter = ~0;
4159 
4160 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4161 			    &idregs_debug_fops);
4162 }
4163 
4164 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4165 {
4166 	u32 id = reg_to_encoding(reg);
4167 	struct kvm *kvm = vcpu->kvm;
4168 
4169 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4170 		return;
4171 
4172 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4173 }
4174 
4175 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4176 				  const struct sys_reg_desc *reg)
4177 {
4178 	if (kvm_vcpu_initialized(vcpu))
4179 		return;
4180 
4181 	reg->reset(vcpu, reg);
4182 }
4183 
4184 /**
4185  * kvm_reset_sys_regs - sets system registers to reset value
4186  * @vcpu: The VCPU pointer
4187  *
4188  * This function finds the right table above and sets the registers on the
4189  * virtual CPU struct to their architecturally defined reset values.
4190  */
4191 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4192 {
4193 	struct kvm *kvm = vcpu->kvm;
4194 	unsigned long i;
4195 
4196 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4197 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4198 
4199 		if (!r->reset)
4200 			continue;
4201 
4202 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4203 			reset_vm_ftr_id_reg(vcpu, r);
4204 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4205 			reset_vcpu_ftr_id_reg(vcpu, r);
4206 		else
4207 			r->reset(vcpu, r);
4208 	}
4209 
4210 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4211 }
4212 
4213 /**
4214  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4215  *			 trap on a guest execution
4216  * @vcpu: The VCPU pointer
4217  */
4218 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4219 {
4220 	const struct sys_reg_desc *desc = NULL;
4221 	struct sys_reg_params params;
4222 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4223 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4224 	int sr_idx;
4225 
4226 	trace_kvm_handle_sys_reg(esr);
4227 
4228 	if (triage_sysreg_trap(vcpu, &sr_idx))
4229 		return 1;
4230 
4231 	params = esr_sys64_to_params(esr);
4232 	params.regval = vcpu_get_reg(vcpu, Rt);
4233 
4234 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4235 	if (params.Op0 == 2 || params.Op0 == 3)
4236 		desc = &sys_reg_descs[sr_idx];
4237 	else
4238 		desc = &sys_insn_descs[sr_idx];
4239 
4240 	perform_access(vcpu, &params, desc);
4241 
4242 	/* Read from system register? */
4243 	if (!params.is_write &&
4244 	    (params.Op0 == 2 || params.Op0 == 3))
4245 		vcpu_set_reg(vcpu, Rt, params.regval);
4246 
4247 	return 1;
4248 }
4249 
4250 /******************************************************************************
4251  * Userspace API
4252  *****************************************************************************/
4253 
4254 static bool index_to_params(u64 id, struct sys_reg_params *params)
4255 {
4256 	switch (id & KVM_REG_SIZE_MASK) {
4257 	case KVM_REG_SIZE_U64:
4258 		/* Any unused index bits means it's not valid. */
4259 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4260 			      | KVM_REG_ARM_COPROC_MASK
4261 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4262 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4263 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4264 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4265 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4266 			return false;
4267 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4268 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4269 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4270 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4271 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4272 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4273 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4274 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4275 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4276 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4277 		return true;
4278 	default:
4279 		return false;
4280 	}
4281 }
4282 
4283 const struct sys_reg_desc *get_reg_by_id(u64 id,
4284 					 const struct sys_reg_desc table[],
4285 					 unsigned int num)
4286 {
4287 	struct sys_reg_params params;
4288 
4289 	if (!index_to_params(id, &params))
4290 		return NULL;
4291 
4292 	return find_reg(&params, table, num);
4293 }
4294 
4295 /* Decode an index value, and find the sys_reg_desc entry. */
4296 static const struct sys_reg_desc *
4297 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4298 		   const struct sys_reg_desc table[], unsigned int num)
4299 
4300 {
4301 	const struct sys_reg_desc *r;
4302 
4303 	/* We only do sys_reg for now. */
4304 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4305 		return NULL;
4306 
4307 	r = get_reg_by_id(id, table, num);
4308 
4309 	/* Not saved in the sys_reg array and not otherwise accessible? */
4310 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4311 		r = NULL;
4312 
4313 	return r;
4314 }
4315 
4316 /*
4317  * These are the invariant sys_reg registers: we let the guest see the
4318  * host versions of these, so they're part of the guest state.
4319  *
4320  * A future CPU may provide a mechanism to present different values to
4321  * the guest, or a future kvm may trap them.
4322  */
4323 
4324 #define FUNCTION_INVARIANT(reg)						\
4325 	static u64 reset_##reg(struct kvm_vcpu *v,			\
4326 			       const struct sys_reg_desc *r)		\
4327 	{								\
4328 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
4329 		return ((struct sys_reg_desc *)r)->val;			\
4330 	}
4331 
4332 FUNCTION_INVARIANT(midr_el1)
4333 FUNCTION_INVARIANT(revidr_el1)
4334 FUNCTION_INVARIANT(aidr_el1)
4335 
4336 /* ->val is filled in by kvm_sys_reg_table_init() */
4337 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
4338 	{ SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 },
4339 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 },
4340 	{ SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 },
4341 };
4342 
4343 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
4344 {
4345 	const struct sys_reg_desc *r;
4346 
4347 	r = get_reg_by_id(id, invariant_sys_regs,
4348 			  ARRAY_SIZE(invariant_sys_regs));
4349 	if (!r)
4350 		return -ENOENT;
4351 
4352 	return put_user(r->val, uaddr);
4353 }
4354 
4355 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
4356 {
4357 	const struct sys_reg_desc *r;
4358 	u64 val;
4359 
4360 	r = get_reg_by_id(id, invariant_sys_regs,
4361 			  ARRAY_SIZE(invariant_sys_regs));
4362 	if (!r)
4363 		return -ENOENT;
4364 
4365 	if (get_user(val, uaddr))
4366 		return -EFAULT;
4367 
4368 	/* This is what we mean by invariant: you can't change it. */
4369 	if (r->val != val)
4370 		return -EINVAL;
4371 
4372 	return 0;
4373 }
4374 
4375 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4376 {
4377 	u32 val;
4378 	u32 __user *uval = uaddr;
4379 
4380 	/* Fail if we have unknown bits set. */
4381 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4382 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4383 		return -ENOENT;
4384 
4385 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4386 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4387 		if (KVM_REG_SIZE(id) != 4)
4388 			return -ENOENT;
4389 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4390 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4391 		if (val >= CSSELR_MAX)
4392 			return -ENOENT;
4393 
4394 		return put_user(get_ccsidr(vcpu, val), uval);
4395 	default:
4396 		return -ENOENT;
4397 	}
4398 }
4399 
4400 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4401 {
4402 	u32 val, newval;
4403 	u32 __user *uval = uaddr;
4404 
4405 	/* Fail if we have unknown bits set. */
4406 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4407 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4408 		return -ENOENT;
4409 
4410 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4411 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4412 		if (KVM_REG_SIZE(id) != 4)
4413 			return -ENOENT;
4414 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4415 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4416 		if (val >= CSSELR_MAX)
4417 			return -ENOENT;
4418 
4419 		if (get_user(newval, uval))
4420 			return -EFAULT;
4421 
4422 		return set_ccsidr(vcpu, val, newval);
4423 	default:
4424 		return -ENOENT;
4425 	}
4426 }
4427 
4428 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4429 			 const struct sys_reg_desc table[], unsigned int num)
4430 {
4431 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4432 	const struct sys_reg_desc *r;
4433 	u64 val;
4434 	int ret;
4435 
4436 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4437 	if (!r || sysreg_hidden(vcpu, r))
4438 		return -ENOENT;
4439 
4440 	if (r->get_user) {
4441 		ret = (r->get_user)(vcpu, r, &val);
4442 	} else {
4443 		val = __vcpu_sys_reg(vcpu, r->reg);
4444 		ret = 0;
4445 	}
4446 
4447 	if (!ret)
4448 		ret = put_user(val, uaddr);
4449 
4450 	return ret;
4451 }
4452 
4453 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4454 {
4455 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4456 	int err;
4457 
4458 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4459 		return demux_c15_get(vcpu, reg->id, uaddr);
4460 
4461 	err = get_invariant_sys_reg(reg->id, uaddr);
4462 	if (err != -ENOENT)
4463 		return err;
4464 
4465 	return kvm_sys_reg_get_user(vcpu, reg,
4466 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4467 }
4468 
4469 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4470 			 const struct sys_reg_desc table[], unsigned int num)
4471 {
4472 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4473 	const struct sys_reg_desc *r;
4474 	u64 val;
4475 	int ret;
4476 
4477 	if (get_user(val, uaddr))
4478 		return -EFAULT;
4479 
4480 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4481 	if (!r || sysreg_hidden(vcpu, r))
4482 		return -ENOENT;
4483 
4484 	if (sysreg_user_write_ignore(vcpu, r))
4485 		return 0;
4486 
4487 	if (r->set_user) {
4488 		ret = (r->set_user)(vcpu, r, val);
4489 	} else {
4490 		__vcpu_sys_reg(vcpu, r->reg) = val;
4491 		ret = 0;
4492 	}
4493 
4494 	return ret;
4495 }
4496 
4497 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4498 {
4499 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4500 	int err;
4501 
4502 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4503 		return demux_c15_set(vcpu, reg->id, uaddr);
4504 
4505 	err = set_invariant_sys_reg(reg->id, uaddr);
4506 	if (err != -ENOENT)
4507 		return err;
4508 
4509 	return kvm_sys_reg_set_user(vcpu, reg,
4510 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4511 }
4512 
4513 static unsigned int num_demux_regs(void)
4514 {
4515 	return CSSELR_MAX;
4516 }
4517 
4518 static int write_demux_regids(u64 __user *uindices)
4519 {
4520 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4521 	unsigned int i;
4522 
4523 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4524 	for (i = 0; i < CSSELR_MAX; i++) {
4525 		if (put_user(val | i, uindices))
4526 			return -EFAULT;
4527 		uindices++;
4528 	}
4529 	return 0;
4530 }
4531 
4532 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4533 {
4534 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4535 		KVM_REG_ARM64_SYSREG |
4536 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4537 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4538 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4539 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4540 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4541 }
4542 
4543 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4544 {
4545 	if (!*uind)
4546 		return true;
4547 
4548 	if (put_user(sys_reg_to_index(reg), *uind))
4549 		return false;
4550 
4551 	(*uind)++;
4552 	return true;
4553 }
4554 
4555 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
4556 			    const struct sys_reg_desc *rd,
4557 			    u64 __user **uind,
4558 			    unsigned int *total)
4559 {
4560 	/*
4561 	 * Ignore registers we trap but don't save,
4562 	 * and for which no custom user accessor is provided.
4563 	 */
4564 	if (!(rd->reg || rd->get_user))
4565 		return 0;
4566 
4567 	if (sysreg_hidden(vcpu, rd))
4568 		return 0;
4569 
4570 	if (!copy_reg_to_user(rd, uind))
4571 		return -EFAULT;
4572 
4573 	(*total)++;
4574 	return 0;
4575 }
4576 
4577 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
4578 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
4579 {
4580 	const struct sys_reg_desc *i2, *end2;
4581 	unsigned int total = 0;
4582 	int err;
4583 
4584 	i2 = sys_reg_descs;
4585 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
4586 
4587 	while (i2 != end2) {
4588 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
4589 		if (err)
4590 			return err;
4591 	}
4592 	return total;
4593 }
4594 
4595 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
4596 {
4597 	return ARRAY_SIZE(invariant_sys_regs)
4598 		+ num_demux_regs()
4599 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
4600 }
4601 
4602 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
4603 {
4604 	unsigned int i;
4605 	int err;
4606 
4607 	/* Then give them all the invariant registers' indices. */
4608 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
4609 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
4610 			return -EFAULT;
4611 		uindices++;
4612 	}
4613 
4614 	err = walk_sys_regs(vcpu, uindices);
4615 	if (err < 0)
4616 		return err;
4617 	uindices += err;
4618 
4619 	return write_demux_regids(uindices);
4620 }
4621 
4622 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
4623 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
4624 		sys_reg_Op1(r),					\
4625 		sys_reg_CRn(r),					\
4626 		sys_reg_CRm(r),					\
4627 		sys_reg_Op2(r))
4628 
4629 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4630 {
4631 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4632 	u64 __user *masks = (u64 __user *)range->addr;
4633 
4634 	/* Only feature id range is supported, reserved[13] must be zero. */
4635 	if (range->range ||
4636 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4637 		return -EINVAL;
4638 
4639 	/* Wipe the whole thing first */
4640 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4641 		return -EFAULT;
4642 
4643 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4644 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4645 		u32 encoding = reg_to_encoding(reg);
4646 		u64 val;
4647 
4648 		if (!is_feature_id_reg(encoding) || !reg->set_user)
4649 			continue;
4650 
4651 		if (!reg->val ||
4652 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
4653 			continue;
4654 		}
4655 		val = reg->val;
4656 
4657 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4658 			return -EFAULT;
4659 	}
4660 
4661 	return 0;
4662 }
4663 
4664 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
4665 {
4666 	struct kvm *kvm = vcpu->kvm;
4667 
4668 	if (has_vhe() || has_hvhe())
4669 		vcpu->arch.hcr_el2 |= HCR_E2H;
4670 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
4671 		/* route synchronous external abort exceptions to EL2 */
4672 		vcpu->arch.hcr_el2 |= HCR_TEA;
4673 		/* trap error record accesses */
4674 		vcpu->arch.hcr_el2 |= HCR_TERR;
4675 	}
4676 
4677 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
4678 		vcpu->arch.hcr_el2 |= HCR_FWB;
4679 
4680 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
4681 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
4682 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
4683 		vcpu->arch.hcr_el2 |= HCR_TID4;
4684 	else
4685 		vcpu->arch.hcr_el2 |= HCR_TID2;
4686 
4687 	if (vcpu_el1_is_32bit(vcpu))
4688 		vcpu->arch.hcr_el2 &= ~HCR_RW;
4689 
4690 	if (kvm_has_mte(vcpu->kvm))
4691 		vcpu->arch.hcr_el2 |= HCR_ATA;
4692 
4693 	/*
4694 	 * In the absence of FGT, we cannot independently trap TLBI
4695 	 * Range instructions. This isn't great, but trapping all
4696 	 * TLBIs would be far worse. Live with it...
4697 	 */
4698 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4699 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4700 }
4701 
4702 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
4703 {
4704 	struct kvm *kvm = vcpu->kvm;
4705 
4706 	mutex_lock(&kvm->arch.config_lock);
4707 	vcpu_set_hcr(vcpu);
4708 	vcpu_set_ich_hcr(vcpu);
4709 
4710 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4711 		/*
4712 		 * In general, all HCRX_EL2 bits are gated by a feature.
4713 		 * The only reason we can set SMPME without checking any
4714 		 * feature is that its effects are not directly observable
4715 		 * from the guest.
4716 		 */
4717 		vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME;
4718 
4719 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4720 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4721 
4722 		if (kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
4723 			vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En;
4724 
4725 		if (kvm_has_fpmr(kvm))
4726 			vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM;
4727 	}
4728 
4729 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4730 		goto out;
4731 
4732 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4733 				       HFGxTR_EL2_nMAIR2_EL1		|
4734 				       HFGxTR_EL2_nS2POR_EL1		|
4735 				       HFGxTR_EL2_nACCDATA_EL1		|
4736 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4737 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4738 
4739 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4740 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4741 						HFGITR_EL2_TLBIRVALE1OS	|
4742 						HFGITR_EL2_TLBIRVAAE1OS	|
4743 						HFGITR_EL2_TLBIRVAE1OS	|
4744 						HFGITR_EL2_TLBIVAALE1OS	|
4745 						HFGITR_EL2_TLBIVALE1OS	|
4746 						HFGITR_EL2_TLBIVAAE1OS	|
4747 						HFGITR_EL2_TLBIASIDE1OS	|
4748 						HFGITR_EL2_TLBIVAE1OS	|
4749 						HFGITR_EL2_TLBIVMALLE1OS);
4750 
4751 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4752 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4753 						HFGITR_EL2_TLBIRVALE1	|
4754 						HFGITR_EL2_TLBIRVAAE1	|
4755 						HFGITR_EL2_TLBIRVAE1	|
4756 						HFGITR_EL2_TLBIRVAALE1IS|
4757 						HFGITR_EL2_TLBIRVALE1IS	|
4758 						HFGITR_EL2_TLBIRVAAE1IS	|
4759 						HFGITR_EL2_TLBIRVAE1IS	|
4760 						HFGITR_EL2_TLBIRVAALE1OS|
4761 						HFGITR_EL2_TLBIRVALE1OS	|
4762 						HFGITR_EL2_TLBIRVAAE1OS	|
4763 						HFGITR_EL2_TLBIRVAE1OS);
4764 
4765 	if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
4766 		kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
4767 
4768 	if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
4769 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
4770 						HFGITR_EL2_ATS1E1WP);
4771 
4772 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4773 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4774 						HFGxTR_EL2_nPIR_EL1);
4775 
4776 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP))
4777 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPOR_EL1 |
4778 						HFGxTR_EL2_nPOR_EL0);
4779 
4780 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4781 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4782 						  HAFGRTR_EL2_RES1);
4783 
4784 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4785 out:
4786 	mutex_unlock(&kvm->arch.config_lock);
4787 }
4788 
4789 /*
4790  * Perform last adjustments to the ID registers that are implied by the
4791  * configuration outside of the ID regs themselves, as well as any
4792  * initialisation that directly depend on these ID registers (such as
4793  * RES0/RES1 behaviours). This is not the place to configure traps though.
4794  *
4795  * Because this can be called once per CPU, changes must be idempotent.
4796  */
4797 int kvm_finalize_sys_regs(struct kvm_vcpu *vcpu)
4798 {
4799 	struct kvm *kvm = vcpu->kvm;
4800 
4801 	guard(mutex)(&kvm->arch.config_lock);
4802 
4803 	if (!(static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) &&
4804 	      irqchip_in_kernel(kvm) &&
4805 	      kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3)) {
4806 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_AA64PFR0_EL1)] &= ~ID_AA64PFR0_EL1_GIC_MASK;
4807 		kvm->arch.id_regs[IDREG_IDX(SYS_ID_PFR1_EL1)] &= ~ID_PFR1_EL1_GIC_MASK;
4808 	}
4809 
4810 	if (vcpu_has_nv(vcpu)) {
4811 		int ret = kvm_init_nv_sysregs(kvm);
4812 		if (ret)
4813 			return ret;
4814 	}
4815 
4816 	return 0;
4817 }
4818 
4819 int __init kvm_sys_reg_table_init(void)
4820 {
4821 	bool valid = true;
4822 	unsigned int i;
4823 	int ret = 0;
4824 
4825 	/* Make sure tables are unique and in order. */
4826 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4827 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4828 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4829 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4830 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4831 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4832 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4833 
4834 	if (!valid)
4835 		return -EINVAL;
4836 
4837 	/* We abuse the reset function to overwrite the table itself. */
4838 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4839 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4840 
4841 	ret = populate_nv_trap_config();
4842 
4843 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4844 		ret = populate_sysreg_config(sys_reg_descs + i, i);
4845 
4846 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4847 		ret = populate_sysreg_config(sys_insn_descs + i, i);
4848 
4849 	return ret;
4850 }
4851