xref: /linux/arch/arm64/kvm/sys_regs.c (revision d2a4a07190f42e4f82805daf58e708400b703f1c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/esr.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/perf_event.h>
31 #include <asm/sysreg.h>
32 
33 #include <trace/events/kvm.h>
34 
35 #include "sys_regs.h"
36 
37 #include "trace.h"
38 
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44 
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 		      u64 val);
48 
49 static bool bad_trap(struct kvm_vcpu *vcpu,
50 		     struct sys_reg_params *params,
51 		     const struct sys_reg_desc *r,
52 		     const char *msg)
53 {
54 	WARN_ONCE(1, "Unexpected %s\n", msg);
55 	print_sys_reg_instr(params);
56 	kvm_inject_undefined(vcpu);
57 	return false;
58 }
59 
60 static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 				 struct sys_reg_params *params,
62 				 const struct sys_reg_desc *r)
63 {
64 	return bad_trap(vcpu, params, r,
65 			"sys_reg read to write-only register");
66 }
67 
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69 			       struct sys_reg_params *params,
70 			       const struct sys_reg_desc *r)
71 {
72 	return bad_trap(vcpu, params, r,
73 			"sys_reg write to read-only register");
74 }
75 
76 #define PURE_EL2_SYSREG(el2)						\
77 	case el2: {							\
78 		*el1r = el2;						\
79 		return true;						\
80 	}
81 
82 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
83 	case el2: {							\
84 		*xlate = fn;						\
85 		*el1r = el1;						\
86 		return true;						\
87 	}
88 
89 static bool get_el2_to_el1_mapping(unsigned int reg,
90 				   unsigned int *el1r, u64 (**xlate)(u64))
91 {
92 	switch (reg) {
93 		PURE_EL2_SYSREG(  VPIDR_EL2	);
94 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
95 		PURE_EL2_SYSREG(  ACTLR_EL2	);
96 		PURE_EL2_SYSREG(  HCR_EL2	);
97 		PURE_EL2_SYSREG(  MDCR_EL2	);
98 		PURE_EL2_SYSREG(  HSTR_EL2	);
99 		PURE_EL2_SYSREG(  HACR_EL2	);
100 		PURE_EL2_SYSREG(  VTTBR_EL2	);
101 		PURE_EL2_SYSREG(  VTCR_EL2	);
102 		PURE_EL2_SYSREG(  RVBAR_EL2	);
103 		PURE_EL2_SYSREG(  TPIDR_EL2	);
104 		PURE_EL2_SYSREG(  HPFAR_EL2	);
105 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
106 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
107 				  translate_sctlr_el2_to_sctlr_el1	     );
108 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
109 				  translate_cptr_el2_to_cpacr_el1	     );
110 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
111 				  translate_ttbr0_el2_to_ttbr0_el1	     );
112 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
113 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
114 				  translate_tcr_el2_to_tcr_el1		     );
115 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
116 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
117 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
118 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
119 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
120 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
121 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
122 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
123 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
124 	default:
125 		return false;
126 	}
127 }
128 
129 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
130 {
131 	u64 val = 0x8badf00d8badf00d;
132 	u64 (*xlate)(u64) = NULL;
133 	unsigned int el1r;
134 
135 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
136 		goto memory_read;
137 
138 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
139 		if (!is_hyp_ctxt(vcpu))
140 			goto memory_read;
141 
142 		/*
143 		 * If this register does not have an EL1 counterpart,
144 		 * then read the stored EL2 version.
145 		 */
146 		if (reg == el1r)
147 			goto memory_read;
148 
149 		/*
150 		 * If we have a non-VHE guest and that the sysreg
151 		 * requires translation to be used at EL1, use the
152 		 * in-memory copy instead.
153 		 */
154 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
155 			goto memory_read;
156 
157 		/* Get the current version of the EL1 counterpart. */
158 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
159 		return val;
160 	}
161 
162 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
163 	if (unlikely(is_hyp_ctxt(vcpu)))
164 		goto memory_read;
165 
166 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
167 		return val;
168 
169 memory_read:
170 	return __vcpu_sys_reg(vcpu, reg);
171 }
172 
173 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
174 {
175 	u64 (*xlate)(u64) = NULL;
176 	unsigned int el1r;
177 
178 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
179 		goto memory_write;
180 
181 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
182 		if (!is_hyp_ctxt(vcpu))
183 			goto memory_write;
184 
185 		/*
186 		 * Always store a copy of the write to memory to avoid having
187 		 * to reverse-translate virtual EL2 system registers for a
188 		 * non-VHE guest hypervisor.
189 		 */
190 		__vcpu_sys_reg(vcpu, reg) = val;
191 
192 		/* No EL1 counterpart? We're done here.? */
193 		if (reg == el1r)
194 			return;
195 
196 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
197 			val = xlate(val);
198 
199 		/* Redirect this to the EL1 version of the register. */
200 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
201 		return;
202 	}
203 
204 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
205 	if (unlikely(is_hyp_ctxt(vcpu)))
206 		goto memory_write;
207 
208 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
209 		return;
210 
211 memory_write:
212 	 __vcpu_sys_reg(vcpu, reg) = val;
213 }
214 
215 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
216 #define CSSELR_MAX 14
217 
218 /*
219  * Returns the minimum line size for the selected cache, expressed as
220  * Log2(bytes).
221  */
222 static u8 get_min_cache_line_size(bool icache)
223 {
224 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
225 	u8 field;
226 
227 	if (icache)
228 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
229 	else
230 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
231 
232 	/*
233 	 * Cache line size is represented as Log2(words) in CTR_EL0.
234 	 * Log2(bytes) can be derived with the following:
235 	 *
236 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
237 	 * 		   = Log2(bytes) - 2 + 2
238 	 * 		   = Log2(bytes)
239 	 */
240 	return field + 2;
241 }
242 
243 /* Which cache CCSIDR represents depends on CSSELR value. */
244 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
245 {
246 	u8 line_size;
247 
248 	if (vcpu->arch.ccsidr)
249 		return vcpu->arch.ccsidr[csselr];
250 
251 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
252 
253 	/*
254 	 * Fabricate a CCSIDR value as the overriding value does not exist.
255 	 * The real CCSIDR value will not be used as it can vary by the
256 	 * physical CPU which the vcpu currently resides in.
257 	 *
258 	 * The line size is determined with get_min_cache_line_size(), which
259 	 * should be valid for all CPUs even if they have different cache
260 	 * configuration.
261 	 *
262 	 * The associativity bits are cleared, meaning the geometry of all data
263 	 * and unified caches (which are guaranteed to be PIPT and thus
264 	 * non-aliasing) are 1 set and 1 way.
265 	 * Guests should not be doing cache operations by set/way at all, and
266 	 * for this reason, we trap them and attempt to infer the intent, so
267 	 * that we can flush the entire guest's address space at the appropriate
268 	 * time. The exposed geometry minimizes the number of the traps.
269 	 * [If guests should attempt to infer aliasing properties from the
270 	 * geometry (which is not permitted by the architecture), they would
271 	 * only do so for virtually indexed caches.]
272 	 *
273 	 * We don't check if the cache level exists as it is allowed to return
274 	 * an UNKNOWN value if not.
275 	 */
276 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
277 }
278 
279 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
280 {
281 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
282 	u32 *ccsidr = vcpu->arch.ccsidr;
283 	u32 i;
284 
285 	if ((val & CCSIDR_EL1_RES0) ||
286 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
287 		return -EINVAL;
288 
289 	if (!ccsidr) {
290 		if (val == get_ccsidr(vcpu, csselr))
291 			return 0;
292 
293 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
294 		if (!ccsidr)
295 			return -ENOMEM;
296 
297 		for (i = 0; i < CSSELR_MAX; i++)
298 			ccsidr[i] = get_ccsidr(vcpu, i);
299 
300 		vcpu->arch.ccsidr = ccsidr;
301 	}
302 
303 	ccsidr[csselr] = val;
304 
305 	return 0;
306 }
307 
308 static bool access_rw(struct kvm_vcpu *vcpu,
309 		      struct sys_reg_params *p,
310 		      const struct sys_reg_desc *r)
311 {
312 	if (p->is_write)
313 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
314 	else
315 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
316 
317 	return true;
318 }
319 
320 /*
321  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
322  */
323 static bool access_dcsw(struct kvm_vcpu *vcpu,
324 			struct sys_reg_params *p,
325 			const struct sys_reg_desc *r)
326 {
327 	if (!p->is_write)
328 		return read_from_write_only(vcpu, p, r);
329 
330 	/*
331 	 * Only track S/W ops if we don't have FWB. It still indicates
332 	 * that the guest is a bit broken (S/W operations should only
333 	 * be done by firmware, knowing that there is only a single
334 	 * CPU left in the system, and certainly not from non-secure
335 	 * software).
336 	 */
337 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
338 		kvm_set_way_flush(vcpu);
339 
340 	return true;
341 }
342 
343 static bool access_dcgsw(struct kvm_vcpu *vcpu,
344 			 struct sys_reg_params *p,
345 			 const struct sys_reg_desc *r)
346 {
347 	if (!kvm_has_mte(vcpu->kvm)) {
348 		kvm_inject_undefined(vcpu);
349 		return false;
350 	}
351 
352 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
353 	return access_dcsw(vcpu, p, r);
354 }
355 
356 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
357 {
358 	switch (r->aarch32_map) {
359 	case AA32_LO:
360 		*mask = GENMASK_ULL(31, 0);
361 		*shift = 0;
362 		break;
363 	case AA32_HI:
364 		*mask = GENMASK_ULL(63, 32);
365 		*shift = 32;
366 		break;
367 	default:
368 		*mask = GENMASK_ULL(63, 0);
369 		*shift = 0;
370 		break;
371 	}
372 }
373 
374 /*
375  * Generic accessor for VM registers. Only called as long as HCR_TVM
376  * is set. If the guest enables the MMU, we stop trapping the VM
377  * sys_regs and leave it in complete control of the caches.
378  */
379 static bool access_vm_reg(struct kvm_vcpu *vcpu,
380 			  struct sys_reg_params *p,
381 			  const struct sys_reg_desc *r)
382 {
383 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
384 	u64 val, mask, shift;
385 
386 	BUG_ON(!p->is_write);
387 
388 	get_access_mask(r, &mask, &shift);
389 
390 	if (~mask) {
391 		val = vcpu_read_sys_reg(vcpu, r->reg);
392 		val &= ~mask;
393 	} else {
394 		val = 0;
395 	}
396 
397 	val |= (p->regval & (mask >> shift)) << shift;
398 	vcpu_write_sys_reg(vcpu, val, r->reg);
399 
400 	kvm_toggle_cache(vcpu, was_enabled);
401 	return true;
402 }
403 
404 static bool access_actlr(struct kvm_vcpu *vcpu,
405 			 struct sys_reg_params *p,
406 			 const struct sys_reg_desc *r)
407 {
408 	u64 mask, shift;
409 
410 	if (p->is_write)
411 		return ignore_write(vcpu, p);
412 
413 	get_access_mask(r, &mask, &shift);
414 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
415 
416 	return true;
417 }
418 
419 /*
420  * Trap handler for the GICv3 SGI generation system register.
421  * Forward the request to the VGIC emulation.
422  * The cp15_64 code makes sure this automatically works
423  * for both AArch64 and AArch32 accesses.
424  */
425 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
426 			   struct sys_reg_params *p,
427 			   const struct sys_reg_desc *r)
428 {
429 	bool g1;
430 
431 	if (!p->is_write)
432 		return read_from_write_only(vcpu, p, r);
433 
434 	/*
435 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
436 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
437 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
438 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
439 	 * group.
440 	 */
441 	if (p->Op0 == 0) {		/* AArch32 */
442 		switch (p->Op1) {
443 		default:		/* Keep GCC quiet */
444 		case 0:			/* ICC_SGI1R */
445 			g1 = true;
446 			break;
447 		case 1:			/* ICC_ASGI1R */
448 		case 2:			/* ICC_SGI0R */
449 			g1 = false;
450 			break;
451 		}
452 	} else {			/* AArch64 */
453 		switch (p->Op2) {
454 		default:		/* Keep GCC quiet */
455 		case 5:			/* ICC_SGI1R_EL1 */
456 			g1 = true;
457 			break;
458 		case 6:			/* ICC_ASGI1R_EL1 */
459 		case 7:			/* ICC_SGI0R_EL1 */
460 			g1 = false;
461 			break;
462 		}
463 	}
464 
465 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
466 
467 	return true;
468 }
469 
470 static bool access_gic_sre(struct kvm_vcpu *vcpu,
471 			   struct sys_reg_params *p,
472 			   const struct sys_reg_desc *r)
473 {
474 	if (p->is_write)
475 		return ignore_write(vcpu, p);
476 
477 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
478 	return true;
479 }
480 
481 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
482 			struct sys_reg_params *p,
483 			const struct sys_reg_desc *r)
484 {
485 	if (p->is_write)
486 		return ignore_write(vcpu, p);
487 	else
488 		return read_zero(vcpu, p);
489 }
490 
491 static bool trap_undef(struct kvm_vcpu *vcpu,
492 		       struct sys_reg_params *p,
493 		       const struct sys_reg_desc *r)
494 {
495 	kvm_inject_undefined(vcpu);
496 	return false;
497 }
498 
499 /*
500  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
501  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
502  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
503  * treat it separately.
504  */
505 static bool trap_loregion(struct kvm_vcpu *vcpu,
506 			  struct sys_reg_params *p,
507 			  const struct sys_reg_desc *r)
508 {
509 	u32 sr = reg_to_encoding(r);
510 
511 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
512 		kvm_inject_undefined(vcpu);
513 		return false;
514 	}
515 
516 	if (p->is_write && sr == SYS_LORID_EL1)
517 		return write_to_read_only(vcpu, p, r);
518 
519 	return trap_raz_wi(vcpu, p, r);
520 }
521 
522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523 			   struct sys_reg_params *p,
524 			   const struct sys_reg_desc *r)
525 {
526 	u64 oslsr;
527 
528 	if (!p->is_write)
529 		return read_from_write_only(vcpu, p, r);
530 
531 	/* Forward the OSLK bit to OSLSR */
532 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533 	if (p->regval & OSLAR_EL1_OSLK)
534 		oslsr |= OSLSR_EL1_OSLK;
535 
536 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537 	return true;
538 }
539 
540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541 			   struct sys_reg_params *p,
542 			   const struct sys_reg_desc *r)
543 {
544 	if (p->is_write)
545 		return write_to_read_only(vcpu, p, r);
546 
547 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
548 	return true;
549 }
550 
551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 			 u64 val)
553 {
554 	/*
555 	 * The only modifiable bit is the OSLK bit. Refuse the write if
556 	 * userspace attempts to change any other bit in the register.
557 	 */
558 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559 		return -EINVAL;
560 
561 	__vcpu_sys_reg(vcpu, rd->reg) = val;
562 	return 0;
563 }
564 
565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566 				   struct sys_reg_params *p,
567 				   const struct sys_reg_desc *r)
568 {
569 	if (p->is_write) {
570 		return ignore_write(vcpu, p);
571 	} else {
572 		p->regval = read_sysreg(dbgauthstatus_el1);
573 		return true;
574 	}
575 }
576 
577 /*
578  * We want to avoid world-switching all the DBG registers all the
579  * time:
580  *
581  * - If we've touched any debug register, it is likely that we're
582  *   going to touch more of them. It then makes sense to disable the
583  *   traps and start doing the save/restore dance
584  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585  *   then mandatory to save/restore the registers, as the guest
586  *   depends on them.
587  *
588  * For this, we use a DIRTY bit, indicating the guest has modified the
589  * debug registers, used as follow:
590  *
591  * On guest entry:
592  * - If the dirty bit is set (because we're coming back from trapping),
593  *   disable the traps, save host registers, restore guest registers.
594  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595  *   set the dirty bit, disable the traps, save host registers,
596  *   restore guest registers.
597  * - Otherwise, enable the traps
598  *
599  * On guest exit:
600  * - If the dirty bit is set, save guest registers, restore host
601  *   registers and clear the dirty bit. This ensure that the host can
602  *   now use the debug registers.
603  */
604 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605 			    struct sys_reg_params *p,
606 			    const struct sys_reg_desc *r)
607 {
608 	access_rw(vcpu, p, r);
609 	if (p->is_write)
610 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
611 
612 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613 
614 	return true;
615 }
616 
617 /*
618  * reg_to_dbg/dbg_to_reg
619  *
620  * A 32 bit write to a debug register leave top bits alone
621  * A 32 bit read from a debug register only returns the bottom bits
622  *
623  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624  * switches between host and guest values in future.
625  */
626 static void reg_to_dbg(struct kvm_vcpu *vcpu,
627 		       struct sys_reg_params *p,
628 		       const struct sys_reg_desc *rd,
629 		       u64 *dbg_reg)
630 {
631 	u64 mask, shift, val;
632 
633 	get_access_mask(rd, &mask, &shift);
634 
635 	val = *dbg_reg;
636 	val &= ~mask;
637 	val |= (p->regval & (mask >> shift)) << shift;
638 	*dbg_reg = val;
639 
640 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
641 }
642 
643 static void dbg_to_reg(struct kvm_vcpu *vcpu,
644 		       struct sys_reg_params *p,
645 		       const struct sys_reg_desc *rd,
646 		       u64 *dbg_reg)
647 {
648 	u64 mask, shift;
649 
650 	get_access_mask(rd, &mask, &shift);
651 	p->regval = (*dbg_reg & mask) >> shift;
652 }
653 
654 static bool trap_bvr(struct kvm_vcpu *vcpu,
655 		     struct sys_reg_params *p,
656 		     const struct sys_reg_desc *rd)
657 {
658 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659 
660 	if (p->is_write)
661 		reg_to_dbg(vcpu, p, rd, dbg_reg);
662 	else
663 		dbg_to_reg(vcpu, p, rd, dbg_reg);
664 
665 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666 
667 	return true;
668 }
669 
670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671 		   u64 val)
672 {
673 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674 	return 0;
675 }
676 
677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678 		   u64 *val)
679 {
680 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681 	return 0;
682 }
683 
684 static u64 reset_bvr(struct kvm_vcpu *vcpu,
685 		      const struct sys_reg_desc *rd)
686 {
687 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688 	return rd->val;
689 }
690 
691 static bool trap_bcr(struct kvm_vcpu *vcpu,
692 		     struct sys_reg_params *p,
693 		     const struct sys_reg_desc *rd)
694 {
695 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696 
697 	if (p->is_write)
698 		reg_to_dbg(vcpu, p, rd, dbg_reg);
699 	else
700 		dbg_to_reg(vcpu, p, rd, dbg_reg);
701 
702 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703 
704 	return true;
705 }
706 
707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708 		   u64 val)
709 {
710 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711 	return 0;
712 }
713 
714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 		   u64 *val)
716 {
717 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718 	return 0;
719 }
720 
721 static u64 reset_bcr(struct kvm_vcpu *vcpu,
722 		      const struct sys_reg_desc *rd)
723 {
724 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725 	return rd->val;
726 }
727 
728 static bool trap_wvr(struct kvm_vcpu *vcpu,
729 		     struct sys_reg_params *p,
730 		     const struct sys_reg_desc *rd)
731 {
732 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733 
734 	if (p->is_write)
735 		reg_to_dbg(vcpu, p, rd, dbg_reg);
736 	else
737 		dbg_to_reg(vcpu, p, rd, dbg_reg);
738 
739 	trace_trap_reg(__func__, rd->CRm, p->is_write,
740 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741 
742 	return true;
743 }
744 
745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746 		   u64 val)
747 {
748 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749 	return 0;
750 }
751 
752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753 		   u64 *val)
754 {
755 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756 	return 0;
757 }
758 
759 static u64 reset_wvr(struct kvm_vcpu *vcpu,
760 		      const struct sys_reg_desc *rd)
761 {
762 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763 	return rd->val;
764 }
765 
766 static bool trap_wcr(struct kvm_vcpu *vcpu,
767 		     struct sys_reg_params *p,
768 		     const struct sys_reg_desc *rd)
769 {
770 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771 
772 	if (p->is_write)
773 		reg_to_dbg(vcpu, p, rd, dbg_reg);
774 	else
775 		dbg_to_reg(vcpu, p, rd, dbg_reg);
776 
777 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778 
779 	return true;
780 }
781 
782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783 		   u64 val)
784 {
785 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786 	return 0;
787 }
788 
789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790 		   u64 *val)
791 {
792 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793 	return 0;
794 }
795 
796 static u64 reset_wcr(struct kvm_vcpu *vcpu,
797 		      const struct sys_reg_desc *rd)
798 {
799 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800 	return rd->val;
801 }
802 
803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804 {
805 	u64 amair = read_sysreg(amair_el1);
806 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807 	return amair;
808 }
809 
810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812 	u64 actlr = read_sysreg(actlr_el1);
813 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814 	return actlr;
815 }
816 
817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819 	u64 mpidr;
820 
821 	/*
822 	 * Map the vcpu_id into the first three affinity level fields of
823 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
824 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825 	 * of the GICv3 to be able to address each CPU directly when
826 	 * sending IPIs.
827 	 */
828 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831 	mpidr |= (1ULL << 31);
832 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833 
834 	return mpidr;
835 }
836 
837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838 				   const struct sys_reg_desc *r)
839 {
840 	if (kvm_vcpu_has_pmu(vcpu))
841 		return 0;
842 
843 	return REG_HIDDEN;
844 }
845 
846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847 {
848 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849 	u8 n = vcpu->kvm->arch.pmcr_n;
850 
851 	if (n)
852 		mask |= GENMASK(n - 1, 0);
853 
854 	reset_unknown(vcpu, r);
855 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
856 
857 	return __vcpu_sys_reg(vcpu, r->reg);
858 }
859 
860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861 {
862 	reset_unknown(vcpu, r);
863 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864 
865 	return __vcpu_sys_reg(vcpu, r->reg);
866 }
867 
868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869 {
870 	/* This thing will UNDEF, who cares about the reset value? */
871 	if (!kvm_vcpu_has_pmu(vcpu))
872 		return 0;
873 
874 	reset_unknown(vcpu, r);
875 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876 
877 	return __vcpu_sys_reg(vcpu, r->reg);
878 }
879 
880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881 {
882 	reset_unknown(vcpu, r);
883 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884 
885 	return __vcpu_sys_reg(vcpu, r->reg);
886 }
887 
888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890 	u64 pmcr = 0;
891 
892 	if (!kvm_supports_32bit_el0())
893 		pmcr |= ARMV8_PMU_PMCR_LC;
894 
895 	/*
896 	 * The value of PMCR.N field is included when the
897 	 * vCPU register is read via kvm_vcpu_read_pmcr().
898 	 */
899 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
900 
901 	return __vcpu_sys_reg(vcpu, r->reg);
902 }
903 
904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905 {
906 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908 
909 	if (!enabled)
910 		kvm_inject_undefined(vcpu);
911 
912 	return !enabled;
913 }
914 
915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916 {
917 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918 }
919 
920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921 {
922 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923 }
924 
925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926 {
927 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928 }
929 
930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931 {
932 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933 }
934 
935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936 			const struct sys_reg_desc *r)
937 {
938 	u64 val;
939 
940 	if (pmu_access_el0_disabled(vcpu))
941 		return false;
942 
943 	if (p->is_write) {
944 		/*
945 		 * Only update writeable bits of PMCR (continuing into
946 		 * kvm_pmu_handle_pmcr() as well)
947 		 */
948 		val = kvm_vcpu_read_pmcr(vcpu);
949 		val &= ~ARMV8_PMU_PMCR_MASK;
950 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
951 		if (!kvm_supports_32bit_el0())
952 			val |= ARMV8_PMU_PMCR_LC;
953 		kvm_pmu_handle_pmcr(vcpu, val);
954 	} else {
955 		/* PMCR.P & PMCR.C are RAZ */
956 		val = kvm_vcpu_read_pmcr(vcpu)
957 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958 		p->regval = val;
959 	}
960 
961 	return true;
962 }
963 
964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965 			  const struct sys_reg_desc *r)
966 {
967 	if (pmu_access_event_counter_el0_disabled(vcpu))
968 		return false;
969 
970 	if (p->is_write)
971 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972 	else
973 		/* return PMSELR.SEL field */
974 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975 			    & ARMV8_PMU_COUNTER_MASK;
976 
977 	return true;
978 }
979 
980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981 			  const struct sys_reg_desc *r)
982 {
983 	u64 pmceid, mask, shift;
984 
985 	BUG_ON(p->is_write);
986 
987 	if (pmu_access_el0_disabled(vcpu))
988 		return false;
989 
990 	get_access_mask(r, &mask, &shift);
991 
992 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993 	pmceid &= mask;
994 	pmceid >>= shift;
995 
996 	p->regval = pmceid;
997 
998 	return true;
999 }
1000 
1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002 {
1003 	u64 pmcr, val;
1004 
1005 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1006 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008 		kvm_inject_undefined(vcpu);
1009 		return false;
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016 			  u64 *val)
1017 {
1018 	u64 idx;
1019 
1020 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021 		/* PMCCNTR_EL0 */
1022 		idx = ARMV8_PMU_CYCLE_IDX;
1023 	else
1024 		/* PMEVCNTRn_EL0 */
1025 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026 
1027 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1028 	return 0;
1029 }
1030 
1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032 			      struct sys_reg_params *p,
1033 			      const struct sys_reg_desc *r)
1034 {
1035 	u64 idx = ~0UL;
1036 
1037 	if (r->CRn == 9 && r->CRm == 13) {
1038 		if (r->Op2 == 2) {
1039 			/* PMXEVCNTR_EL0 */
1040 			if (pmu_access_event_counter_el0_disabled(vcpu))
1041 				return false;
1042 
1043 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044 			      & ARMV8_PMU_COUNTER_MASK;
1045 		} else if (r->Op2 == 0) {
1046 			/* PMCCNTR_EL0 */
1047 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048 				return false;
1049 
1050 			idx = ARMV8_PMU_CYCLE_IDX;
1051 		}
1052 	} else if (r->CRn == 0 && r->CRm == 9) {
1053 		/* PMCCNTR */
1054 		if (pmu_access_event_counter_el0_disabled(vcpu))
1055 			return false;
1056 
1057 		idx = ARMV8_PMU_CYCLE_IDX;
1058 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059 		/* PMEVCNTRn_EL0 */
1060 		if (pmu_access_event_counter_el0_disabled(vcpu))
1061 			return false;
1062 
1063 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064 	}
1065 
1066 	/* Catch any decoding mistake */
1067 	WARN_ON(idx == ~0UL);
1068 
1069 	if (!pmu_counter_idx_valid(vcpu, idx))
1070 		return false;
1071 
1072 	if (p->is_write) {
1073 		if (pmu_access_el0_disabled(vcpu))
1074 			return false;
1075 
1076 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077 	} else {
1078 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079 	}
1080 
1081 	return true;
1082 }
1083 
1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085 			       const struct sys_reg_desc *r)
1086 {
1087 	u64 idx, reg;
1088 
1089 	if (pmu_access_el0_disabled(vcpu))
1090 		return false;
1091 
1092 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093 		/* PMXEVTYPER_EL0 */
1094 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095 		reg = PMEVTYPER0_EL0 + idx;
1096 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098 		if (idx == ARMV8_PMU_CYCLE_IDX)
1099 			reg = PMCCFILTR_EL0;
1100 		else
1101 			/* PMEVTYPERn_EL0 */
1102 			reg = PMEVTYPER0_EL0 + idx;
1103 	} else {
1104 		BUG();
1105 	}
1106 
1107 	if (!pmu_counter_idx_valid(vcpu, idx))
1108 		return false;
1109 
1110 	if (p->is_write) {
1111 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112 		kvm_vcpu_pmu_restore_guest(vcpu);
1113 	} else {
1114 		p->regval = __vcpu_sys_reg(vcpu, reg);
1115 	}
1116 
1117 	return true;
1118 }
1119 
1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121 {
1122 	bool set;
1123 
1124 	val &= kvm_pmu_valid_counter_mask(vcpu);
1125 
1126 	switch (r->reg) {
1127 	case PMOVSSET_EL0:
1128 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1129 		set = r->CRm & 2;
1130 		break;
1131 	default:
1132 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1133 		set = r->Op2 & 1;
1134 		break;
1135 	}
1136 
1137 	if (set)
1138 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1139 	else
1140 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141 
1142 	return 0;
1143 }
1144 
1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146 {
1147 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148 
1149 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150 	return 0;
1151 }
1152 
1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154 			   const struct sys_reg_desc *r)
1155 {
1156 	u64 val, mask;
1157 
1158 	if (pmu_access_el0_disabled(vcpu))
1159 		return false;
1160 
1161 	mask = kvm_pmu_valid_counter_mask(vcpu);
1162 	if (p->is_write) {
1163 		val = p->regval & mask;
1164 		if (r->Op2 & 0x1) {
1165 			/* accessing PMCNTENSET_EL0 */
1166 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167 			kvm_pmu_enable_counter_mask(vcpu, val);
1168 			kvm_vcpu_pmu_restore_guest(vcpu);
1169 		} else {
1170 			/* accessing PMCNTENCLR_EL0 */
1171 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172 			kvm_pmu_disable_counter_mask(vcpu, val);
1173 		}
1174 	} else {
1175 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176 	}
1177 
1178 	return true;
1179 }
1180 
1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 			   const struct sys_reg_desc *r)
1183 {
1184 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185 
1186 	if (check_pmu_access_disabled(vcpu, 0))
1187 		return false;
1188 
1189 	if (p->is_write) {
1190 		u64 val = p->regval & mask;
1191 
1192 		if (r->Op2 & 0x1)
1193 			/* accessing PMINTENSET_EL1 */
1194 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195 		else
1196 			/* accessing PMINTENCLR_EL1 */
1197 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198 	} else {
1199 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200 	}
1201 
1202 	return true;
1203 }
1204 
1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206 			 const struct sys_reg_desc *r)
1207 {
1208 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209 
1210 	if (pmu_access_el0_disabled(vcpu))
1211 		return false;
1212 
1213 	if (p->is_write) {
1214 		if (r->CRm & 0x2)
1215 			/* accessing PMOVSSET_EL0 */
1216 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217 		else
1218 			/* accessing PMOVSCLR_EL0 */
1219 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220 	} else {
1221 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222 	}
1223 
1224 	return true;
1225 }
1226 
1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228 			   const struct sys_reg_desc *r)
1229 {
1230 	u64 mask;
1231 
1232 	if (!p->is_write)
1233 		return read_from_write_only(vcpu, p, r);
1234 
1235 	if (pmu_write_swinc_el0_disabled(vcpu))
1236 		return false;
1237 
1238 	mask = kvm_pmu_valid_counter_mask(vcpu);
1239 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1240 	return true;
1241 }
1242 
1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244 			     const struct sys_reg_desc *r)
1245 {
1246 	if (p->is_write) {
1247 		if (!vcpu_mode_priv(vcpu)) {
1248 			kvm_inject_undefined(vcpu);
1249 			return false;
1250 		}
1251 
1252 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253 			       p->regval & ARMV8_PMU_USERENR_MASK;
1254 	} else {
1255 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256 			    & ARMV8_PMU_USERENR_MASK;
1257 	}
1258 
1259 	return true;
1260 }
1261 
1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263 		    u64 *val)
1264 {
1265 	*val = kvm_vcpu_read_pmcr(vcpu);
1266 	return 0;
1267 }
1268 
1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270 		    u64 val)
1271 {
1272 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273 	struct kvm *kvm = vcpu->kvm;
1274 
1275 	mutex_lock(&kvm->arch.config_lock);
1276 
1277 	/*
1278 	 * The vCPU can't have more counters than the PMU hardware
1279 	 * implements. Ignore this error to maintain compatibility
1280 	 * with the existing KVM behavior.
1281 	 */
1282 	if (!kvm_vm_has_ran_once(kvm) &&
1283 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284 		kvm->arch.pmcr_n = new_n;
1285 
1286 	mutex_unlock(&kvm->arch.config_lock);
1287 
1288 	/*
1289 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1290 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1291 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1294 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1295 	 * if necessary).
1296 	 */
1297 	val &= ARMV8_PMU_PMCR_MASK;
1298 
1299 	/* The LC bit is RES1 when AArch32 is not supported */
1300 	if (!kvm_supports_32bit_el0())
1301 		val |= ARMV8_PMU_PMCR_LC;
1302 
1303 	__vcpu_sys_reg(vcpu, r->reg) = val;
1304 	return 0;
1305 }
1306 
1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1309 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1310 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1311 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1312 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1313 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1314 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1315 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1316 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317 
1318 #define PMU_SYS_REG(name)						\
1319 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1320 	.visibility = pmu_visibility
1321 
1322 /* Macro to expand the PMEVCNTRn_EL0 register */
1323 #define PMU_PMEVCNTR_EL0(n)						\
1324 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1325 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1326 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327 
1328 /* Macro to expand the PMEVTYPERn_EL0 register */
1329 #define PMU_PMEVTYPER_EL0(n)						\
1330 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1331 	  .reset = reset_pmevtyper,					\
1332 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333 
1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335 			 const struct sys_reg_desc *r)
1336 {
1337 	kvm_inject_undefined(vcpu);
1338 
1339 	return false;
1340 }
1341 
1342 /* Macro to expand the AMU counter and type registers*/
1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347 
1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349 			const struct sys_reg_desc *rd)
1350 {
1351 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352 }
1353 
1354 /*
1355  * If we land here on a PtrAuth access, that is because we didn't
1356  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357  * way this happens is when the guest does not have PtrAuth support
1358  * enabled.
1359  */
1360 #define __PTRAUTH_KEY(k)						\
1361 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1362 	.visibility = ptrauth_visibility}
1363 
1364 #define PTRAUTH_KEY(k)							\
1365 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1366 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1367 
1368 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369 			      struct sys_reg_params *p,
1370 			      const struct sys_reg_desc *r)
1371 {
1372 	enum kvm_arch_timers tmr;
1373 	enum kvm_arch_timer_regs treg;
1374 	u64 reg = reg_to_encoding(r);
1375 
1376 	switch (reg) {
1377 	case SYS_CNTP_TVAL_EL0:
1378 	case SYS_AARCH32_CNTP_TVAL:
1379 		tmr = TIMER_PTIMER;
1380 		treg = TIMER_REG_TVAL;
1381 		break;
1382 	case SYS_CNTP_CTL_EL0:
1383 	case SYS_AARCH32_CNTP_CTL:
1384 		tmr = TIMER_PTIMER;
1385 		treg = TIMER_REG_CTL;
1386 		break;
1387 	case SYS_CNTP_CVAL_EL0:
1388 	case SYS_AARCH32_CNTP_CVAL:
1389 		tmr = TIMER_PTIMER;
1390 		treg = TIMER_REG_CVAL;
1391 		break;
1392 	case SYS_CNTPCT_EL0:
1393 	case SYS_CNTPCTSS_EL0:
1394 	case SYS_AARCH32_CNTPCT:
1395 		tmr = TIMER_PTIMER;
1396 		treg = TIMER_REG_CNT;
1397 		break;
1398 	default:
1399 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400 		kvm_inject_undefined(vcpu);
1401 		return false;
1402 	}
1403 
1404 	if (p->is_write)
1405 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406 	else
1407 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408 
1409 	return true;
1410 }
1411 
1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413 				    s64 new, s64 cur)
1414 {
1415 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1416 
1417 	/* Some features have different safe value type in KVM than host features */
1418 	switch (id) {
1419 	case SYS_ID_AA64DFR0_EL1:
1420 		switch (kvm_ftr.shift) {
1421 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422 			kvm_ftr.type = FTR_LOWER_SAFE;
1423 			break;
1424 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425 			kvm_ftr.type = FTR_LOWER_SAFE;
1426 			break;
1427 		}
1428 		break;
1429 	case SYS_ID_DFR0_EL1:
1430 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431 			kvm_ftr.type = FTR_LOWER_SAFE;
1432 		break;
1433 	}
1434 
1435 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436 }
1437 
1438 /*
1439  * arm64_check_features() - Check if a feature register value constitutes
1440  * a subset of features indicated by the idreg's KVM sanitised limit.
1441  *
1442  * This function will check if each feature field of @val is the "safe" value
1443  * against idreg's KVM sanitised limit return from reset() callback.
1444  * If a field value in @val is the same as the one in limit, it is always
1445  * considered the safe value regardless For register fields that are not in
1446  * writable, only the value in limit is considered the safe value.
1447  *
1448  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449  */
1450 static int arm64_check_features(struct kvm_vcpu *vcpu,
1451 				const struct sys_reg_desc *rd,
1452 				u64 val)
1453 {
1454 	const struct arm64_ftr_reg *ftr_reg;
1455 	const struct arm64_ftr_bits *ftrp = NULL;
1456 	u32 id = reg_to_encoding(rd);
1457 	u64 writable_mask = rd->val;
1458 	u64 limit = rd->reset(vcpu, rd);
1459 	u64 mask = 0;
1460 
1461 	/*
1462 	 * Hidden and unallocated ID registers may not have a corresponding
1463 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464 	 * only safe value is 0.
1465 	 */
1466 	if (sysreg_visible_as_raz(vcpu, rd))
1467 		return val ? -E2BIG : 0;
1468 
1469 	ftr_reg = get_arm64_ftr_reg(id);
1470 	if (!ftr_reg)
1471 		return -EINVAL;
1472 
1473 	ftrp = ftr_reg->ftr_bits;
1474 
1475 	for (; ftrp && ftrp->width; ftrp++) {
1476 		s64 f_val, f_lim, safe_val;
1477 		u64 ftr_mask;
1478 
1479 		ftr_mask = arm64_ftr_mask(ftrp);
1480 		if ((ftr_mask & writable_mask) != ftr_mask)
1481 			continue;
1482 
1483 		f_val = arm64_ftr_value(ftrp, val);
1484 		f_lim = arm64_ftr_value(ftrp, limit);
1485 		mask |= ftr_mask;
1486 
1487 		if (f_val == f_lim)
1488 			safe_val = f_val;
1489 		else
1490 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491 
1492 		if (safe_val != f_val)
1493 			return -E2BIG;
1494 	}
1495 
1496 	/* For fields that are not writable, values in limit are the safe values. */
1497 	if ((val & ~mask) != (limit & ~mask))
1498 		return -E2BIG;
1499 
1500 	return 0;
1501 }
1502 
1503 static u8 pmuver_to_perfmon(u8 pmuver)
1504 {
1505 	switch (pmuver) {
1506 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1507 		return ID_DFR0_EL1_PerfMon_PMUv3;
1508 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1510 	default:
1511 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1512 		return pmuver;
1513 	}
1514 }
1515 
1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518 				       const struct sys_reg_desc *r)
1519 {
1520 	u32 id = reg_to_encoding(r);
1521 	u64 val;
1522 
1523 	if (sysreg_visible_as_raz(vcpu, r))
1524 		return 0;
1525 
1526 	val = read_sanitised_ftr_reg(id);
1527 
1528 	switch (id) {
1529 	case SYS_ID_AA64PFR1_EL1:
1530 		if (!kvm_has_mte(vcpu->kvm))
1531 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532 
1533 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534 		break;
1535 	case SYS_ID_AA64ISAR1_EL1:
1536 		if (!vcpu_has_ptrauth(vcpu))
1537 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541 		break;
1542 	case SYS_ID_AA64ISAR2_EL1:
1543 		if (!vcpu_has_ptrauth(vcpu))
1544 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548 		break;
1549 	case SYS_ID_AA64MMFR2_EL1:
1550 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551 		break;
1552 	case SYS_ID_MMFR4_EL1:
1553 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554 		break;
1555 	}
1556 
1557 	return val;
1558 }
1559 
1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561 				     const struct sys_reg_desc *r)
1562 {
1563 	return __kvm_read_sanitised_id_reg(vcpu, r);
1564 }
1565 
1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567 {
1568 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1569 }
1570 
1571 static bool is_feature_id_reg(u32 encoding)
1572 {
1573 	return (sys_reg_Op0(encoding) == 3 &&
1574 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1575 		sys_reg_CRn(encoding) == 0 &&
1576 		sys_reg_CRm(encoding) <= 7);
1577 }
1578 
1579 /*
1580  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1581  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1582  * registers KVM maintains on a per-VM basis.
1583  */
1584 static inline bool is_vm_ftr_id_reg(u32 id)
1585 {
1586 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1587 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1588 		sys_reg_CRm(id) < 8);
1589 }
1590 
1591 static inline bool is_vcpu_ftr_id_reg(u32 id)
1592 {
1593 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1594 }
1595 
1596 static inline bool is_aa32_id_reg(u32 id)
1597 {
1598 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1599 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1600 		sys_reg_CRm(id) <= 3);
1601 }
1602 
1603 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1604 				  const struct sys_reg_desc *r)
1605 {
1606 	u32 id = reg_to_encoding(r);
1607 
1608 	switch (id) {
1609 	case SYS_ID_AA64ZFR0_EL1:
1610 		if (!vcpu_has_sve(vcpu))
1611 			return REG_RAZ;
1612 		break;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1619 				       const struct sys_reg_desc *r)
1620 {
1621 	/*
1622 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1623 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1624 	 * systems.
1625 	 */
1626 	if (!kvm_supports_32bit_el0())
1627 		return REG_RAZ | REG_USER_WI;
1628 
1629 	return id_visibility(vcpu, r);
1630 }
1631 
1632 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1633 				   const struct sys_reg_desc *r)
1634 {
1635 	return REG_RAZ;
1636 }
1637 
1638 /* cpufeature ID register access trap handlers */
1639 
1640 static bool access_id_reg(struct kvm_vcpu *vcpu,
1641 			  struct sys_reg_params *p,
1642 			  const struct sys_reg_desc *r)
1643 {
1644 	if (p->is_write)
1645 		return write_to_read_only(vcpu, p, r);
1646 
1647 	p->regval = read_id_reg(vcpu, r);
1648 
1649 	return true;
1650 }
1651 
1652 /* Visibility overrides for SVE-specific control registers */
1653 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1654 				   const struct sys_reg_desc *rd)
1655 {
1656 	if (vcpu_has_sve(vcpu))
1657 		return 0;
1658 
1659 	return REG_HIDDEN;
1660 }
1661 
1662 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1663 					  const struct sys_reg_desc *rd)
1664 {
1665 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1666 
1667 	if (!vcpu_has_sve(vcpu))
1668 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1669 
1670 	/*
1671 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1672 	 * Although this is a per-CPU feature, we make it global because
1673 	 * asymmetric systems are just a nuisance.
1674 	 *
1675 	 * Userspace can override this as long as it doesn't promise
1676 	 * the impossible.
1677 	 */
1678 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1679 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1680 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1681 	}
1682 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1683 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1684 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1685 	}
1686 
1687 	if (kvm_vgic_global_state.type == VGIC_V3) {
1688 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1689 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1690 	}
1691 
1692 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1693 
1694 	return val;
1695 }
1696 
1697 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1698 ({									       \
1699 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1700 	(val) &= ~reg##_##field##_MASK;					       \
1701 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1702 			    min(__f_val,				       \
1703 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1704 	(val);								       \
1705 })
1706 
1707 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1708 					  const struct sys_reg_desc *rd)
1709 {
1710 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1711 
1712 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1713 
1714 	/*
1715 	 * Only initialize the PMU version if the vCPU was configured with one.
1716 	 */
1717 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1718 	if (kvm_vcpu_has_pmu(vcpu))
1719 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1720 				      kvm_arm_pmu_get_pmuver_limit());
1721 
1722 	/* Hide SPE from guests */
1723 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1724 
1725 	return val;
1726 }
1727 
1728 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1729 			       const struct sys_reg_desc *rd,
1730 			       u64 val)
1731 {
1732 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1733 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1734 
1735 	/*
1736 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1737 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1738 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1739 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1740 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1741 	 *
1742 	 * At minimum, we're on the hook to allow values that were given to
1743 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1744 	 * with a more sensible NI. The value of an ID register changing under
1745 	 * the nose of the guest is unfortunate, but is certainly no more
1746 	 * surprising than an ill-guided PMU driver poking at impdef system
1747 	 * registers that end in an UNDEF...
1748 	 */
1749 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1750 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1751 
1752 	/*
1753 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1754 	 * nonzero minimum safe value.
1755 	 */
1756 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1757 		return -EINVAL;
1758 
1759 	return set_id_reg(vcpu, rd, val);
1760 }
1761 
1762 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1763 				      const struct sys_reg_desc *rd)
1764 {
1765 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1766 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1767 
1768 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1769 	if (kvm_vcpu_has_pmu(vcpu))
1770 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1771 
1772 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1773 
1774 	return val;
1775 }
1776 
1777 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1778 			   const struct sys_reg_desc *rd,
1779 			   u64 val)
1780 {
1781 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1782 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1783 
1784 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1785 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1786 		perfmon = 0;
1787 	}
1788 
1789 	/*
1790 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1791 	 * it doesn't promise more than what the HW gives us on the
1792 	 * AArch64 side (as everything is emulated with that), and
1793 	 * that this is a PMUv3.
1794 	 */
1795 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1796 		return -EINVAL;
1797 
1798 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1799 		return -EINVAL;
1800 
1801 	return set_id_reg(vcpu, rd, val);
1802 }
1803 
1804 /*
1805  * cpufeature ID register user accessors
1806  *
1807  * For now, these registers are immutable for userspace, so no values
1808  * are stored, and for set_id_reg() we don't allow the effective value
1809  * to be changed.
1810  */
1811 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1812 		      u64 *val)
1813 {
1814 	/*
1815 	 * Avoid locking if the VM has already started, as the ID registers are
1816 	 * guaranteed to be invariant at that point.
1817 	 */
1818 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1819 		*val = read_id_reg(vcpu, rd);
1820 		return 0;
1821 	}
1822 
1823 	mutex_lock(&vcpu->kvm->arch.config_lock);
1824 	*val = read_id_reg(vcpu, rd);
1825 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1826 
1827 	return 0;
1828 }
1829 
1830 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1831 		      u64 val)
1832 {
1833 	u32 id = reg_to_encoding(rd);
1834 	int ret;
1835 
1836 	mutex_lock(&vcpu->kvm->arch.config_lock);
1837 
1838 	/*
1839 	 * Once the VM has started the ID registers are immutable. Reject any
1840 	 * write that does not match the final register value.
1841 	 */
1842 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1843 		if (val != read_id_reg(vcpu, rd))
1844 			ret = -EBUSY;
1845 		else
1846 			ret = 0;
1847 
1848 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1849 		return ret;
1850 	}
1851 
1852 	ret = arm64_check_features(vcpu, rd, val);
1853 	if (!ret)
1854 		IDREG(vcpu->kvm, id) = val;
1855 
1856 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1857 
1858 	/*
1859 	 * arm64_check_features() returns -E2BIG to indicate the register's
1860 	 * feature set is a superset of the maximally-allowed register value.
1861 	 * While it would be nice to precisely describe this to userspace, the
1862 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1863 	 * writes return -EINVAL.
1864 	 */
1865 	if (ret == -E2BIG)
1866 		ret = -EINVAL;
1867 	return ret;
1868 }
1869 
1870 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1871 		       u64 *val)
1872 {
1873 	*val = 0;
1874 	return 0;
1875 }
1876 
1877 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1878 		      u64 val)
1879 {
1880 	return 0;
1881 }
1882 
1883 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1884 		       const struct sys_reg_desc *r)
1885 {
1886 	if (p->is_write)
1887 		return write_to_read_only(vcpu, p, r);
1888 
1889 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1890 	return true;
1891 }
1892 
1893 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1894 			 const struct sys_reg_desc *r)
1895 {
1896 	if (p->is_write)
1897 		return write_to_read_only(vcpu, p, r);
1898 
1899 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1900 	return true;
1901 }
1902 
1903 /*
1904  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1905  * by the physical CPU which the vcpu currently resides in.
1906  */
1907 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1908 {
1909 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1910 	u64 clidr;
1911 	u8 loc;
1912 
1913 	if ((ctr_el0 & CTR_EL0_IDC)) {
1914 		/*
1915 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1916 		 * will not be set and a unified cache, which will be marked as
1917 		 * LoC, will be added.
1918 		 *
1919 		 * If not DIC, let the unified cache L2 so that an instruction
1920 		 * cache can be added as L1 later.
1921 		 */
1922 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1923 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1924 	} else {
1925 		/*
1926 		 * Data cache clean to the PoU is required so let L1 have a data
1927 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1928 		 * it can be marked as LoC too.
1929 		 */
1930 		loc = 1;
1931 		clidr = 1 << CLIDR_LOUU_SHIFT;
1932 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1933 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1934 	}
1935 
1936 	/*
1937 	 * Instruction cache invalidation to the PoU is required so let L1 have
1938 	 * an instruction cache. If L1 already has a data cache, it will be
1939 	 * CACHE_TYPE_SEPARATE.
1940 	 */
1941 	if (!(ctr_el0 & CTR_EL0_DIC))
1942 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1943 
1944 	clidr |= loc << CLIDR_LOC_SHIFT;
1945 
1946 	/*
1947 	 * Add tag cache unified to data cache. Allocation tags and data are
1948 	 * unified in a cache line so that it looks valid even if there is only
1949 	 * one cache line.
1950 	 */
1951 	if (kvm_has_mte(vcpu->kvm))
1952 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1953 
1954 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1955 
1956 	return __vcpu_sys_reg(vcpu, r->reg);
1957 }
1958 
1959 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1960 		      u64 val)
1961 {
1962 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1963 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1964 
1965 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1966 		return -EINVAL;
1967 
1968 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1969 
1970 	return 0;
1971 }
1972 
1973 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1974 			  const struct sys_reg_desc *r)
1975 {
1976 	int reg = r->reg;
1977 
1978 	if (p->is_write)
1979 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1980 	else
1981 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1982 	return true;
1983 }
1984 
1985 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1986 			  const struct sys_reg_desc *r)
1987 {
1988 	u32 csselr;
1989 
1990 	if (p->is_write)
1991 		return write_to_read_only(vcpu, p, r);
1992 
1993 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1994 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1995 	if (csselr < CSSELR_MAX)
1996 		p->regval = get_ccsidr(vcpu, csselr);
1997 
1998 	return true;
1999 }
2000 
2001 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2002 				   const struct sys_reg_desc *rd)
2003 {
2004 	if (kvm_has_mte(vcpu->kvm))
2005 		return 0;
2006 
2007 	return REG_HIDDEN;
2008 }
2009 
2010 #define MTE_REG(name) {				\
2011 	SYS_DESC(SYS_##name),			\
2012 	.access = undef_access,			\
2013 	.reset = reset_unknown,			\
2014 	.reg = name,				\
2015 	.visibility = mte_visibility,		\
2016 }
2017 
2018 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2019 				   const struct sys_reg_desc *rd)
2020 {
2021 	if (vcpu_has_nv(vcpu))
2022 		return 0;
2023 
2024 	return REG_HIDDEN;
2025 }
2026 
2027 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2028 			  struct sys_reg_params *p,
2029 			  const struct sys_reg_desc *r)
2030 {
2031 	/*
2032 	 * We really shouldn't be here, and this is likely the result
2033 	 * of a misconfigured trap, as this register should target the
2034 	 * VNCR page, and nothing else.
2035 	 */
2036 	return bad_trap(vcpu, p, r,
2037 			"trap of VNCR-backed register");
2038 }
2039 
2040 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2041 			   struct sys_reg_params *p,
2042 			   const struct sys_reg_desc *r)
2043 {
2044 	/*
2045 	 * We really shouldn't be here, and this is likely the result
2046 	 * of a misconfigured trap, as this register should target the
2047 	 * corresponding EL1, and nothing else.
2048 	 */
2049 	return bad_trap(vcpu, p, r,
2050 			"trap of EL2 register redirected to EL1");
2051 }
2052 
2053 #define EL2_REG(name, acc, rst, v) {		\
2054 	SYS_DESC(SYS_##name),			\
2055 	.access = acc,				\
2056 	.reset = rst,				\
2057 	.reg = name,				\
2058 	.visibility = el2_visibility,		\
2059 	.val = v,				\
2060 }
2061 
2062 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2063 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2064 
2065 /*
2066  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2067  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2068  * handling traps. Given that, they are always hidden from userspace.
2069  */
2070 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2071 					   const struct sys_reg_desc *rd)
2072 {
2073 	return REG_HIDDEN_USER;
2074 }
2075 
2076 #define EL12_REG(name, acc, rst, v) {		\
2077 	SYS_DESC(SYS_##name##_EL12),		\
2078 	.access = acc,				\
2079 	.reset = rst,				\
2080 	.reg = name##_EL1,			\
2081 	.val = v,				\
2082 	.visibility = hidden_user_visibility,	\
2083 }
2084 
2085 /*
2086  * Since reset() callback and field val are not used for idregs, they will be
2087  * used for specific purposes for idregs.
2088  * The reset() would return KVM sanitised register value. The value would be the
2089  * same as the host kernel sanitised value if there is no KVM sanitisation.
2090  * The val would be used as a mask indicating writable fields for the idreg.
2091  * Only bits with 1 are writable from userspace. This mask might not be
2092  * necessary in the future whenever all ID registers are enabled as writable
2093  * from userspace.
2094  */
2095 
2096 #define ID_DESC(name)				\
2097 	SYS_DESC(SYS_##name),			\
2098 	.access	= access_id_reg,		\
2099 	.get_user = get_id_reg			\
2100 
2101 /* sys_reg_desc initialiser for known cpufeature ID registers */
2102 #define ID_SANITISED(name) {			\
2103 	ID_DESC(name),				\
2104 	.set_user = set_id_reg,			\
2105 	.visibility = id_visibility,		\
2106 	.reset = kvm_read_sanitised_id_reg,	\
2107 	.val = 0,				\
2108 }
2109 
2110 /* sys_reg_desc initialiser for known cpufeature ID registers */
2111 #define AA32_ID_SANITISED(name) {		\
2112 	ID_DESC(name),				\
2113 	.set_user = set_id_reg,			\
2114 	.visibility = aa32_id_visibility,	\
2115 	.reset = kvm_read_sanitised_id_reg,	\
2116 	.val = 0,				\
2117 }
2118 
2119 /* sys_reg_desc initialiser for writable ID registers */
2120 #define ID_WRITABLE(name, mask) {		\
2121 	ID_DESC(name),				\
2122 	.set_user = set_id_reg,			\
2123 	.visibility = id_visibility,		\
2124 	.reset = kvm_read_sanitised_id_reg,	\
2125 	.val = mask,				\
2126 }
2127 
2128 /*
2129  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2130  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2131  * (1 <= crm < 8, 0 <= Op2 < 8).
2132  */
2133 #define ID_UNALLOCATED(crm, op2) {			\
2134 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2135 	.access = access_id_reg,			\
2136 	.get_user = get_id_reg,				\
2137 	.set_user = set_id_reg,				\
2138 	.visibility = raz_visibility,			\
2139 	.reset = kvm_read_sanitised_id_reg,		\
2140 	.val = 0,					\
2141 }
2142 
2143 /*
2144  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2145  * For now, these are exposed just like unallocated ID regs: they appear
2146  * RAZ for the guest.
2147  */
2148 #define ID_HIDDEN(name) {			\
2149 	ID_DESC(name),				\
2150 	.set_user = set_id_reg,			\
2151 	.visibility = raz_visibility,		\
2152 	.reset = kvm_read_sanitised_id_reg,	\
2153 	.val = 0,				\
2154 }
2155 
2156 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2157 			  struct sys_reg_params *p,
2158 			  const struct sys_reg_desc *r)
2159 {
2160 	if (p->is_write)
2161 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2162 	else
2163 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2164 
2165 	return true;
2166 }
2167 
2168 static bool access_elr(struct kvm_vcpu *vcpu,
2169 		       struct sys_reg_params *p,
2170 		       const struct sys_reg_desc *r)
2171 {
2172 	if (p->is_write)
2173 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2174 	else
2175 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2176 
2177 	return true;
2178 }
2179 
2180 static bool access_spsr(struct kvm_vcpu *vcpu,
2181 			struct sys_reg_params *p,
2182 			const struct sys_reg_desc *r)
2183 {
2184 	if (p->is_write)
2185 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2186 	else
2187 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2188 
2189 	return true;
2190 }
2191 
2192 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2193 {
2194 	u64 val = r->val;
2195 
2196 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2197 		val |= HCR_E2H;
2198 
2199 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2200 }
2201 
2202 /*
2203  * Architected system registers.
2204  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2205  *
2206  * Debug handling: We do trap most, if not all debug related system
2207  * registers. The implementation is good enough to ensure that a guest
2208  * can use these with minimal performance degradation. The drawback is
2209  * that we don't implement any of the external debug architecture.
2210  * This should be revisited if we ever encounter a more demanding
2211  * guest...
2212  */
2213 static const struct sys_reg_desc sys_reg_descs[] = {
2214 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2215 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2216 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2217 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2218 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2219 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2220 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2221 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2222 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2223 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2224 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2225 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2226 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2227 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2228 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2229 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2230 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2231 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2232 
2233 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2234 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2235 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2236 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2237 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2238 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2239 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2240 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2241 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2242 
2243 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2244 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2245 	// DBGDTR[TR]X_EL0 share the same encoding
2246 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2247 
2248 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2249 
2250 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2251 
2252 	/*
2253 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2254 	 * entries in arm64_ftr_regs[].
2255 	 */
2256 
2257 	/* AArch64 mappings of the AArch32 ID registers */
2258 	/* CRm=1 */
2259 	AA32_ID_SANITISED(ID_PFR0_EL1),
2260 	AA32_ID_SANITISED(ID_PFR1_EL1),
2261 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2262 	  .access = access_id_reg,
2263 	  .get_user = get_id_reg,
2264 	  .set_user = set_id_dfr0_el1,
2265 	  .visibility = aa32_id_visibility,
2266 	  .reset = read_sanitised_id_dfr0_el1,
2267 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2268 		 ID_DFR0_EL1_CopDbg_MASK, },
2269 	ID_HIDDEN(ID_AFR0_EL1),
2270 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2271 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2272 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2273 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2274 
2275 	/* CRm=2 */
2276 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2277 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2278 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2279 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2280 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2281 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2282 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2283 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2284 
2285 	/* CRm=3 */
2286 	AA32_ID_SANITISED(MVFR0_EL1),
2287 	AA32_ID_SANITISED(MVFR1_EL1),
2288 	AA32_ID_SANITISED(MVFR2_EL1),
2289 	ID_UNALLOCATED(3,3),
2290 	AA32_ID_SANITISED(ID_PFR2_EL1),
2291 	ID_HIDDEN(ID_DFR1_EL1),
2292 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2293 	ID_UNALLOCATED(3,7),
2294 
2295 	/* AArch64 ID registers */
2296 	/* CRm=4 */
2297 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2298 	  .access = access_id_reg,
2299 	  .get_user = get_id_reg,
2300 	  .set_user = set_id_reg,
2301 	  .reset = read_sanitised_id_aa64pfr0_el1,
2302 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2303 		   ID_AA64PFR0_EL1_MPAM |
2304 		   ID_AA64PFR0_EL1_SVE |
2305 		   ID_AA64PFR0_EL1_RAS |
2306 		   ID_AA64PFR0_EL1_GIC |
2307 		   ID_AA64PFR0_EL1_AdvSIMD |
2308 		   ID_AA64PFR0_EL1_FP), },
2309 	ID_SANITISED(ID_AA64PFR1_EL1),
2310 	ID_UNALLOCATED(4,2),
2311 	ID_UNALLOCATED(4,3),
2312 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2313 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2314 	ID_UNALLOCATED(4,6),
2315 	ID_UNALLOCATED(4,7),
2316 
2317 	/* CRm=5 */
2318 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2319 	  .access = access_id_reg,
2320 	  .get_user = get_id_reg,
2321 	  .set_user = set_id_aa64dfr0_el1,
2322 	  .reset = read_sanitised_id_aa64dfr0_el1,
2323 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2324 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2325 	ID_SANITISED(ID_AA64DFR1_EL1),
2326 	ID_UNALLOCATED(5,2),
2327 	ID_UNALLOCATED(5,3),
2328 	ID_HIDDEN(ID_AA64AFR0_EL1),
2329 	ID_HIDDEN(ID_AA64AFR1_EL1),
2330 	ID_UNALLOCATED(5,6),
2331 	ID_UNALLOCATED(5,7),
2332 
2333 	/* CRm=6 */
2334 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2335 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2336 					ID_AA64ISAR1_EL1_GPA |
2337 					ID_AA64ISAR1_EL1_API |
2338 					ID_AA64ISAR1_EL1_APA)),
2339 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2340 					ID_AA64ISAR2_EL1_APA3 |
2341 					ID_AA64ISAR2_EL1_GPA3)),
2342 	ID_UNALLOCATED(6,3),
2343 	ID_UNALLOCATED(6,4),
2344 	ID_UNALLOCATED(6,5),
2345 	ID_UNALLOCATED(6,6),
2346 	ID_UNALLOCATED(6,7),
2347 
2348 	/* CRm=7 */
2349 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2350 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2351 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2352 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2353 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2354 					ID_AA64MMFR1_EL1_HCX |
2355 					ID_AA64MMFR1_EL1_TWED |
2356 					ID_AA64MMFR1_EL1_XNX |
2357 					ID_AA64MMFR1_EL1_VH |
2358 					ID_AA64MMFR1_EL1_VMIDBits)),
2359 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2360 					ID_AA64MMFR2_EL1_EVT |
2361 					ID_AA64MMFR2_EL1_FWB |
2362 					ID_AA64MMFR2_EL1_IDS |
2363 					ID_AA64MMFR2_EL1_NV |
2364 					ID_AA64MMFR2_EL1_CCIDX)),
2365 	ID_SANITISED(ID_AA64MMFR3_EL1),
2366 	ID_SANITISED(ID_AA64MMFR4_EL1),
2367 	ID_UNALLOCATED(7,5),
2368 	ID_UNALLOCATED(7,6),
2369 	ID_UNALLOCATED(7,7),
2370 
2371 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2372 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2373 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2374 
2375 	MTE_REG(RGSR_EL1),
2376 	MTE_REG(GCR_EL1),
2377 
2378 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2379 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2380 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2381 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2382 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2383 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2384 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2385 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2386 
2387 	PTRAUTH_KEY(APIA),
2388 	PTRAUTH_KEY(APIB),
2389 	PTRAUTH_KEY(APDA),
2390 	PTRAUTH_KEY(APDB),
2391 	PTRAUTH_KEY(APGA),
2392 
2393 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2394 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2395 
2396 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2397 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2398 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2399 
2400 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2401 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2402 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2403 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2404 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2405 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2406 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2407 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2408 
2409 	MTE_REG(TFSR_EL1),
2410 	MTE_REG(TFSRE0_EL1),
2411 
2412 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2413 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2414 
2415 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2416 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2417 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2418 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2419 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2420 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2421 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2422 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2423 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2424 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2425 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2426 	/* PMBIDR_EL1 is not trapped */
2427 
2428 	{ PMU_SYS_REG(PMINTENSET_EL1),
2429 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2430 	  .get_user = get_pmreg, .set_user = set_pmreg },
2431 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2432 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2433 	  .get_user = get_pmreg, .set_user = set_pmreg },
2434 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2435 
2436 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2437 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2438 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2439 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2440 
2441 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2442 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2443 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2444 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2445 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2446 
2447 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2448 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2449 
2450 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2451 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2452 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2453 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2454 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2455 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2456 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2457 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2458 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2459 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2460 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2461 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2462 
2463 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2464 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2465 
2466 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2467 
2468 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2469 
2470 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2471 
2472 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2473 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2474 	  .set_user = set_clidr },
2475 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2476 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2477 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2478 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2479 	{ SYS_DESC(SYS_SVCR), undef_access },
2480 
2481 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2482 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2483 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2484 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2485 	  .get_user = get_pmreg, .set_user = set_pmreg },
2486 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2487 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2488 	  .get_user = get_pmreg, .set_user = set_pmreg },
2489 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2490 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2491 	  .get_user = get_pmreg, .set_user = set_pmreg },
2492 	/*
2493 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2494 	 * previously (and pointlessly) advertised in the past...
2495 	 */
2496 	{ PMU_SYS_REG(PMSWINC_EL0),
2497 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2498 	  .access = access_pmswinc, .reset = NULL },
2499 	{ PMU_SYS_REG(PMSELR_EL0),
2500 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2501 	{ PMU_SYS_REG(PMCEID0_EL0),
2502 	  .access = access_pmceid, .reset = NULL },
2503 	{ PMU_SYS_REG(PMCEID1_EL0),
2504 	  .access = access_pmceid, .reset = NULL },
2505 	{ PMU_SYS_REG(PMCCNTR_EL0),
2506 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2507 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2508 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2509 	  .access = access_pmu_evtyper, .reset = NULL },
2510 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2511 	  .access = access_pmu_evcntr, .reset = NULL },
2512 	/*
2513 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2514 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2515 	 */
2516 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2517 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2518 	{ PMU_SYS_REG(PMOVSSET_EL0),
2519 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2520 	  .get_user = get_pmreg, .set_user = set_pmreg },
2521 
2522 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2523 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2524 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2525 
2526 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2527 
2528 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2529 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2530 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2531 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2532 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2533 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2534 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2535 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2536 	AMU_AMEVCNTR0_EL0(0),
2537 	AMU_AMEVCNTR0_EL0(1),
2538 	AMU_AMEVCNTR0_EL0(2),
2539 	AMU_AMEVCNTR0_EL0(3),
2540 	AMU_AMEVCNTR0_EL0(4),
2541 	AMU_AMEVCNTR0_EL0(5),
2542 	AMU_AMEVCNTR0_EL0(6),
2543 	AMU_AMEVCNTR0_EL0(7),
2544 	AMU_AMEVCNTR0_EL0(8),
2545 	AMU_AMEVCNTR0_EL0(9),
2546 	AMU_AMEVCNTR0_EL0(10),
2547 	AMU_AMEVCNTR0_EL0(11),
2548 	AMU_AMEVCNTR0_EL0(12),
2549 	AMU_AMEVCNTR0_EL0(13),
2550 	AMU_AMEVCNTR0_EL0(14),
2551 	AMU_AMEVCNTR0_EL0(15),
2552 	AMU_AMEVTYPER0_EL0(0),
2553 	AMU_AMEVTYPER0_EL0(1),
2554 	AMU_AMEVTYPER0_EL0(2),
2555 	AMU_AMEVTYPER0_EL0(3),
2556 	AMU_AMEVTYPER0_EL0(4),
2557 	AMU_AMEVTYPER0_EL0(5),
2558 	AMU_AMEVTYPER0_EL0(6),
2559 	AMU_AMEVTYPER0_EL0(7),
2560 	AMU_AMEVTYPER0_EL0(8),
2561 	AMU_AMEVTYPER0_EL0(9),
2562 	AMU_AMEVTYPER0_EL0(10),
2563 	AMU_AMEVTYPER0_EL0(11),
2564 	AMU_AMEVTYPER0_EL0(12),
2565 	AMU_AMEVTYPER0_EL0(13),
2566 	AMU_AMEVTYPER0_EL0(14),
2567 	AMU_AMEVTYPER0_EL0(15),
2568 	AMU_AMEVCNTR1_EL0(0),
2569 	AMU_AMEVCNTR1_EL0(1),
2570 	AMU_AMEVCNTR1_EL0(2),
2571 	AMU_AMEVCNTR1_EL0(3),
2572 	AMU_AMEVCNTR1_EL0(4),
2573 	AMU_AMEVCNTR1_EL0(5),
2574 	AMU_AMEVCNTR1_EL0(6),
2575 	AMU_AMEVCNTR1_EL0(7),
2576 	AMU_AMEVCNTR1_EL0(8),
2577 	AMU_AMEVCNTR1_EL0(9),
2578 	AMU_AMEVCNTR1_EL0(10),
2579 	AMU_AMEVCNTR1_EL0(11),
2580 	AMU_AMEVCNTR1_EL0(12),
2581 	AMU_AMEVCNTR1_EL0(13),
2582 	AMU_AMEVCNTR1_EL0(14),
2583 	AMU_AMEVCNTR1_EL0(15),
2584 	AMU_AMEVTYPER1_EL0(0),
2585 	AMU_AMEVTYPER1_EL0(1),
2586 	AMU_AMEVTYPER1_EL0(2),
2587 	AMU_AMEVTYPER1_EL0(3),
2588 	AMU_AMEVTYPER1_EL0(4),
2589 	AMU_AMEVTYPER1_EL0(5),
2590 	AMU_AMEVTYPER1_EL0(6),
2591 	AMU_AMEVTYPER1_EL0(7),
2592 	AMU_AMEVTYPER1_EL0(8),
2593 	AMU_AMEVTYPER1_EL0(9),
2594 	AMU_AMEVTYPER1_EL0(10),
2595 	AMU_AMEVTYPER1_EL0(11),
2596 	AMU_AMEVTYPER1_EL0(12),
2597 	AMU_AMEVTYPER1_EL0(13),
2598 	AMU_AMEVTYPER1_EL0(14),
2599 	AMU_AMEVTYPER1_EL0(15),
2600 
2601 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2602 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2603 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2604 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2605 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2606 
2607 	/* PMEVCNTRn_EL0 */
2608 	PMU_PMEVCNTR_EL0(0),
2609 	PMU_PMEVCNTR_EL0(1),
2610 	PMU_PMEVCNTR_EL0(2),
2611 	PMU_PMEVCNTR_EL0(3),
2612 	PMU_PMEVCNTR_EL0(4),
2613 	PMU_PMEVCNTR_EL0(5),
2614 	PMU_PMEVCNTR_EL0(6),
2615 	PMU_PMEVCNTR_EL0(7),
2616 	PMU_PMEVCNTR_EL0(8),
2617 	PMU_PMEVCNTR_EL0(9),
2618 	PMU_PMEVCNTR_EL0(10),
2619 	PMU_PMEVCNTR_EL0(11),
2620 	PMU_PMEVCNTR_EL0(12),
2621 	PMU_PMEVCNTR_EL0(13),
2622 	PMU_PMEVCNTR_EL0(14),
2623 	PMU_PMEVCNTR_EL0(15),
2624 	PMU_PMEVCNTR_EL0(16),
2625 	PMU_PMEVCNTR_EL0(17),
2626 	PMU_PMEVCNTR_EL0(18),
2627 	PMU_PMEVCNTR_EL0(19),
2628 	PMU_PMEVCNTR_EL0(20),
2629 	PMU_PMEVCNTR_EL0(21),
2630 	PMU_PMEVCNTR_EL0(22),
2631 	PMU_PMEVCNTR_EL0(23),
2632 	PMU_PMEVCNTR_EL0(24),
2633 	PMU_PMEVCNTR_EL0(25),
2634 	PMU_PMEVCNTR_EL0(26),
2635 	PMU_PMEVCNTR_EL0(27),
2636 	PMU_PMEVCNTR_EL0(28),
2637 	PMU_PMEVCNTR_EL0(29),
2638 	PMU_PMEVCNTR_EL0(30),
2639 	/* PMEVTYPERn_EL0 */
2640 	PMU_PMEVTYPER_EL0(0),
2641 	PMU_PMEVTYPER_EL0(1),
2642 	PMU_PMEVTYPER_EL0(2),
2643 	PMU_PMEVTYPER_EL0(3),
2644 	PMU_PMEVTYPER_EL0(4),
2645 	PMU_PMEVTYPER_EL0(5),
2646 	PMU_PMEVTYPER_EL0(6),
2647 	PMU_PMEVTYPER_EL0(7),
2648 	PMU_PMEVTYPER_EL0(8),
2649 	PMU_PMEVTYPER_EL0(9),
2650 	PMU_PMEVTYPER_EL0(10),
2651 	PMU_PMEVTYPER_EL0(11),
2652 	PMU_PMEVTYPER_EL0(12),
2653 	PMU_PMEVTYPER_EL0(13),
2654 	PMU_PMEVTYPER_EL0(14),
2655 	PMU_PMEVTYPER_EL0(15),
2656 	PMU_PMEVTYPER_EL0(16),
2657 	PMU_PMEVTYPER_EL0(17),
2658 	PMU_PMEVTYPER_EL0(18),
2659 	PMU_PMEVTYPER_EL0(19),
2660 	PMU_PMEVTYPER_EL0(20),
2661 	PMU_PMEVTYPER_EL0(21),
2662 	PMU_PMEVTYPER_EL0(22),
2663 	PMU_PMEVTYPER_EL0(23),
2664 	PMU_PMEVTYPER_EL0(24),
2665 	PMU_PMEVTYPER_EL0(25),
2666 	PMU_PMEVTYPER_EL0(26),
2667 	PMU_PMEVTYPER_EL0(27),
2668 	PMU_PMEVTYPER_EL0(28),
2669 	PMU_PMEVTYPER_EL0(29),
2670 	PMU_PMEVTYPER_EL0(30),
2671 	/*
2672 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2673 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2674 	 */
2675 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2676 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2677 
2678 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2679 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2680 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2681 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2682 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2683 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2684 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2685 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2686 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2687 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2688 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2689 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2690 
2691 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2692 
2693 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2694 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2695 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2696 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2697 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2698 
2699 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2700 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2701 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2702 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2703 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2704 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2705 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2706 
2707 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2708 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2709 	  .visibility = hidden_user_visibility },
2710 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2711 	  .visibility = hidden_user_visibility },
2712 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2713 	  .visibility = hidden_user_visibility },
2714 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2715 	  .visibility = hidden_user_visibility },
2716 
2717 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2718 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2719 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2720 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2721 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2722 
2723 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2724 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2725 
2726 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2727 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2728 
2729 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2730 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2731 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2732 
2733 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2734 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2735 
2736 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2737 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2738 
2739 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2740 
2741 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2742 };
2743 
2744 static struct sys_reg_desc sys_insn_descs[] = {
2745 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2746 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2747 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2748 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2749 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2750 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2751 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2752 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2753 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2754 };
2755 
2756 static const struct sys_reg_desc *first_idreg;
2757 
2758 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2759 			struct sys_reg_params *p,
2760 			const struct sys_reg_desc *r)
2761 {
2762 	if (p->is_write) {
2763 		return ignore_write(vcpu, p);
2764 	} else {
2765 		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2766 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
2767 
2768 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2769 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2770 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2771 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2772 			     (1 << 15) | (el3 << 14) | (el3 << 12));
2773 		return true;
2774 	}
2775 }
2776 
2777 /*
2778  * AArch32 debug register mappings
2779  *
2780  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2781  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2782  *
2783  * None of the other registers share their location, so treat them as
2784  * if they were 64bit.
2785  */
2786 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2787 	/* DBGBVRn */							      \
2788 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2789 	/* DBGBCRn */							      \
2790 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2791 	/* DBGWVRn */							      \
2792 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2793 	/* DBGWCRn */							      \
2794 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2795 
2796 #define DBGBXVR(n)							      \
2797 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2798 
2799 /*
2800  * Trapped cp14 registers. We generally ignore most of the external
2801  * debug, on the principle that they don't really make sense to a
2802  * guest. Revisit this one day, would this principle change.
2803  */
2804 static const struct sys_reg_desc cp14_regs[] = {
2805 	/* DBGDIDR */
2806 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2807 	/* DBGDTRRXext */
2808 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2809 
2810 	DBG_BCR_BVR_WCR_WVR(0),
2811 	/* DBGDSCRint */
2812 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2813 	DBG_BCR_BVR_WCR_WVR(1),
2814 	/* DBGDCCINT */
2815 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2816 	/* DBGDSCRext */
2817 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2818 	DBG_BCR_BVR_WCR_WVR(2),
2819 	/* DBGDTR[RT]Xint */
2820 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2821 	/* DBGDTR[RT]Xext */
2822 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2823 	DBG_BCR_BVR_WCR_WVR(3),
2824 	DBG_BCR_BVR_WCR_WVR(4),
2825 	DBG_BCR_BVR_WCR_WVR(5),
2826 	/* DBGWFAR */
2827 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2828 	/* DBGOSECCR */
2829 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2830 	DBG_BCR_BVR_WCR_WVR(6),
2831 	/* DBGVCR */
2832 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2833 	DBG_BCR_BVR_WCR_WVR(7),
2834 	DBG_BCR_BVR_WCR_WVR(8),
2835 	DBG_BCR_BVR_WCR_WVR(9),
2836 	DBG_BCR_BVR_WCR_WVR(10),
2837 	DBG_BCR_BVR_WCR_WVR(11),
2838 	DBG_BCR_BVR_WCR_WVR(12),
2839 	DBG_BCR_BVR_WCR_WVR(13),
2840 	DBG_BCR_BVR_WCR_WVR(14),
2841 	DBG_BCR_BVR_WCR_WVR(15),
2842 
2843 	/* DBGDRAR (32bit) */
2844 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2845 
2846 	DBGBXVR(0),
2847 	/* DBGOSLAR */
2848 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2849 	DBGBXVR(1),
2850 	/* DBGOSLSR */
2851 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2852 	DBGBXVR(2),
2853 	DBGBXVR(3),
2854 	/* DBGOSDLR */
2855 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2856 	DBGBXVR(4),
2857 	/* DBGPRCR */
2858 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2859 	DBGBXVR(5),
2860 	DBGBXVR(6),
2861 	DBGBXVR(7),
2862 	DBGBXVR(8),
2863 	DBGBXVR(9),
2864 	DBGBXVR(10),
2865 	DBGBXVR(11),
2866 	DBGBXVR(12),
2867 	DBGBXVR(13),
2868 	DBGBXVR(14),
2869 	DBGBXVR(15),
2870 
2871 	/* DBGDSAR (32bit) */
2872 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2873 
2874 	/* DBGDEVID2 */
2875 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2876 	/* DBGDEVID1 */
2877 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2878 	/* DBGDEVID */
2879 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2880 	/* DBGCLAIMSET */
2881 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2882 	/* DBGCLAIMCLR */
2883 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2884 	/* DBGAUTHSTATUS */
2885 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2886 };
2887 
2888 /* Trapped cp14 64bit registers */
2889 static const struct sys_reg_desc cp14_64_regs[] = {
2890 	/* DBGDRAR (64bit) */
2891 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2892 
2893 	/* DBGDSAR (64bit) */
2894 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2895 };
2896 
2897 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2898 	AA32(_map),							\
2899 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2900 	.visibility = pmu_visibility
2901 
2902 /* Macro to expand the PMEVCNTRn register */
2903 #define PMU_PMEVCNTR(n)							\
2904 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2905 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2906 	  .access = access_pmu_evcntr }
2907 
2908 /* Macro to expand the PMEVTYPERn register */
2909 #define PMU_PMEVTYPER(n)						\
2910 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2911 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2912 	  .access = access_pmu_evtyper }
2913 /*
2914  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2915  * depending on the way they are accessed (as a 32bit or a 64bit
2916  * register).
2917  */
2918 static const struct sys_reg_desc cp15_regs[] = {
2919 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2920 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2921 	/* ACTLR */
2922 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2923 	/* ACTLR2 */
2924 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2925 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2926 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2927 	/* TTBCR */
2928 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2929 	/* TTBCR2 */
2930 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2931 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2932 	/* DFSR */
2933 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2934 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2935 	/* ADFSR */
2936 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2937 	/* AIFSR */
2938 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2939 	/* DFAR */
2940 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2941 	/* IFAR */
2942 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2943 
2944 	/*
2945 	 * DC{C,I,CI}SW operations:
2946 	 */
2947 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2948 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2949 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2950 
2951 	/* PMU */
2952 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2953 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2954 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2955 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2956 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2957 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2958 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2959 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2960 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2961 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2962 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2963 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2964 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2965 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2966 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2967 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2968 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2969 	/* PMMIR */
2970 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2971 
2972 	/* PRRR/MAIR0 */
2973 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2974 	/* NMRR/MAIR1 */
2975 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2976 	/* AMAIR0 */
2977 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2978 	/* AMAIR1 */
2979 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2980 
2981 	/* ICC_SRE */
2982 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2983 
2984 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2985 
2986 	/* Arch Tmers */
2987 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2988 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2989 
2990 	/* PMEVCNTRn */
2991 	PMU_PMEVCNTR(0),
2992 	PMU_PMEVCNTR(1),
2993 	PMU_PMEVCNTR(2),
2994 	PMU_PMEVCNTR(3),
2995 	PMU_PMEVCNTR(4),
2996 	PMU_PMEVCNTR(5),
2997 	PMU_PMEVCNTR(6),
2998 	PMU_PMEVCNTR(7),
2999 	PMU_PMEVCNTR(8),
3000 	PMU_PMEVCNTR(9),
3001 	PMU_PMEVCNTR(10),
3002 	PMU_PMEVCNTR(11),
3003 	PMU_PMEVCNTR(12),
3004 	PMU_PMEVCNTR(13),
3005 	PMU_PMEVCNTR(14),
3006 	PMU_PMEVCNTR(15),
3007 	PMU_PMEVCNTR(16),
3008 	PMU_PMEVCNTR(17),
3009 	PMU_PMEVCNTR(18),
3010 	PMU_PMEVCNTR(19),
3011 	PMU_PMEVCNTR(20),
3012 	PMU_PMEVCNTR(21),
3013 	PMU_PMEVCNTR(22),
3014 	PMU_PMEVCNTR(23),
3015 	PMU_PMEVCNTR(24),
3016 	PMU_PMEVCNTR(25),
3017 	PMU_PMEVCNTR(26),
3018 	PMU_PMEVCNTR(27),
3019 	PMU_PMEVCNTR(28),
3020 	PMU_PMEVCNTR(29),
3021 	PMU_PMEVCNTR(30),
3022 	/* PMEVTYPERn */
3023 	PMU_PMEVTYPER(0),
3024 	PMU_PMEVTYPER(1),
3025 	PMU_PMEVTYPER(2),
3026 	PMU_PMEVTYPER(3),
3027 	PMU_PMEVTYPER(4),
3028 	PMU_PMEVTYPER(5),
3029 	PMU_PMEVTYPER(6),
3030 	PMU_PMEVTYPER(7),
3031 	PMU_PMEVTYPER(8),
3032 	PMU_PMEVTYPER(9),
3033 	PMU_PMEVTYPER(10),
3034 	PMU_PMEVTYPER(11),
3035 	PMU_PMEVTYPER(12),
3036 	PMU_PMEVTYPER(13),
3037 	PMU_PMEVTYPER(14),
3038 	PMU_PMEVTYPER(15),
3039 	PMU_PMEVTYPER(16),
3040 	PMU_PMEVTYPER(17),
3041 	PMU_PMEVTYPER(18),
3042 	PMU_PMEVTYPER(19),
3043 	PMU_PMEVTYPER(20),
3044 	PMU_PMEVTYPER(21),
3045 	PMU_PMEVTYPER(22),
3046 	PMU_PMEVTYPER(23),
3047 	PMU_PMEVTYPER(24),
3048 	PMU_PMEVTYPER(25),
3049 	PMU_PMEVTYPER(26),
3050 	PMU_PMEVTYPER(27),
3051 	PMU_PMEVTYPER(28),
3052 	PMU_PMEVTYPER(29),
3053 	PMU_PMEVTYPER(30),
3054 	/* PMCCFILTR */
3055 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3056 
3057 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3058 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3059 
3060 	/* CCSIDR2 */
3061 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3062 
3063 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3064 };
3065 
3066 static const struct sys_reg_desc cp15_64_regs[] = {
3067 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3068 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3069 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3070 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3071 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3072 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3073 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3074 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3075 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3076 };
3077 
3078 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3079 			       bool is_32)
3080 {
3081 	unsigned int i;
3082 
3083 	for (i = 0; i < n; i++) {
3084 		if (!is_32 && table[i].reg && !table[i].reset) {
3085 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
3086 				&table[i], i, table[i].name);
3087 			return false;
3088 		}
3089 
3090 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3091 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
3092 				&table[i], i, table[i - 1].name, table[i].name);
3093 			return false;
3094 		}
3095 	}
3096 
3097 	return true;
3098 }
3099 
3100 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3101 {
3102 	kvm_inject_undefined(vcpu);
3103 	return 1;
3104 }
3105 
3106 static void perform_access(struct kvm_vcpu *vcpu,
3107 			   struct sys_reg_params *params,
3108 			   const struct sys_reg_desc *r)
3109 {
3110 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3111 
3112 	/* Check for regs disabled by runtime config */
3113 	if (sysreg_hidden(vcpu, r)) {
3114 		kvm_inject_undefined(vcpu);
3115 		return;
3116 	}
3117 
3118 	/*
3119 	 * Not having an accessor means that we have configured a trap
3120 	 * that we don't know how to handle. This certainly qualifies
3121 	 * as a gross bug that should be fixed right away.
3122 	 */
3123 	BUG_ON(!r->access);
3124 
3125 	/* Skip instruction if instructed so */
3126 	if (likely(r->access(vcpu, params, r)))
3127 		kvm_incr_pc(vcpu);
3128 }
3129 
3130 /*
3131  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3132  *                call the corresponding trap handler.
3133  *
3134  * @params: pointer to the descriptor of the access
3135  * @table: array of trap descriptors
3136  * @num: size of the trap descriptor array
3137  *
3138  * Return true if the access has been handled, false if not.
3139  */
3140 static bool emulate_cp(struct kvm_vcpu *vcpu,
3141 		       struct sys_reg_params *params,
3142 		       const struct sys_reg_desc *table,
3143 		       size_t num)
3144 {
3145 	const struct sys_reg_desc *r;
3146 
3147 	if (!table)
3148 		return false;	/* Not handled */
3149 
3150 	r = find_reg(params, table, num);
3151 
3152 	if (r) {
3153 		perform_access(vcpu, params, r);
3154 		return true;
3155 	}
3156 
3157 	/* Not handled */
3158 	return false;
3159 }
3160 
3161 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3162 				struct sys_reg_params *params)
3163 {
3164 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3165 	int cp = -1;
3166 
3167 	switch (esr_ec) {
3168 	case ESR_ELx_EC_CP15_32:
3169 	case ESR_ELx_EC_CP15_64:
3170 		cp = 15;
3171 		break;
3172 	case ESR_ELx_EC_CP14_MR:
3173 	case ESR_ELx_EC_CP14_64:
3174 		cp = 14;
3175 		break;
3176 	default:
3177 		WARN_ON(1);
3178 	}
3179 
3180 	print_sys_reg_msg(params,
3181 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3182 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3183 	kvm_inject_undefined(vcpu);
3184 }
3185 
3186 /**
3187  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3188  * @vcpu: The VCPU pointer
3189  * @global: &struct sys_reg_desc
3190  * @nr_global: size of the @global array
3191  */
3192 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3193 			    const struct sys_reg_desc *global,
3194 			    size_t nr_global)
3195 {
3196 	struct sys_reg_params params;
3197 	u64 esr = kvm_vcpu_get_esr(vcpu);
3198 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3199 	int Rt2 = (esr >> 10) & 0x1f;
3200 
3201 	params.CRm = (esr >> 1) & 0xf;
3202 	params.is_write = ((esr & 1) == 0);
3203 
3204 	params.Op0 = 0;
3205 	params.Op1 = (esr >> 16) & 0xf;
3206 	params.Op2 = 0;
3207 	params.CRn = 0;
3208 
3209 	/*
3210 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3211 	 * backends between AArch32 and AArch64, we get away with it.
3212 	 */
3213 	if (params.is_write) {
3214 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3215 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3216 	}
3217 
3218 	/*
3219 	 * If the table contains a handler, handle the
3220 	 * potential register operation in the case of a read and return
3221 	 * with success.
3222 	 */
3223 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3224 		/* Split up the value between registers for the read side */
3225 		if (!params.is_write) {
3226 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3227 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3228 		}
3229 
3230 		return 1;
3231 	}
3232 
3233 	unhandled_cp_access(vcpu, &params);
3234 	return 1;
3235 }
3236 
3237 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3238 
3239 /*
3240  * The CP10 ID registers are architecturally mapped to AArch64 feature
3241  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3242  * from AArch32.
3243  */
3244 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3245 {
3246 	u8 reg_id = (esr >> 10) & 0xf;
3247 	bool valid;
3248 
3249 	params->is_write = ((esr & 1) == 0);
3250 	params->Op0 = 3;
3251 	params->Op1 = 0;
3252 	params->CRn = 0;
3253 	params->CRm = 3;
3254 
3255 	/* CP10 ID registers are read-only */
3256 	valid = !params->is_write;
3257 
3258 	switch (reg_id) {
3259 	/* MVFR0 */
3260 	case 0b0111:
3261 		params->Op2 = 0;
3262 		break;
3263 	/* MVFR1 */
3264 	case 0b0110:
3265 		params->Op2 = 1;
3266 		break;
3267 	/* MVFR2 */
3268 	case 0b0101:
3269 		params->Op2 = 2;
3270 		break;
3271 	default:
3272 		valid = false;
3273 	}
3274 
3275 	if (valid)
3276 		return true;
3277 
3278 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3279 		      params->is_write ? "write" : "read", reg_id);
3280 	return false;
3281 }
3282 
3283 /**
3284  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3285  *			  VFP Register' from AArch32.
3286  * @vcpu: The vCPU pointer
3287  *
3288  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3289  * Work out the correct AArch64 system register encoding and reroute to the
3290  * AArch64 system register emulation.
3291  */
3292 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3293 {
3294 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3295 	u64 esr = kvm_vcpu_get_esr(vcpu);
3296 	struct sys_reg_params params;
3297 
3298 	/* UNDEF on any unhandled register access */
3299 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3300 		kvm_inject_undefined(vcpu);
3301 		return 1;
3302 	}
3303 
3304 	if (emulate_sys_reg(vcpu, &params))
3305 		vcpu_set_reg(vcpu, Rt, params.regval);
3306 
3307 	return 1;
3308 }
3309 
3310 /**
3311  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3312  *			       CRn=0, which corresponds to the AArch32 feature
3313  *			       registers.
3314  * @vcpu: the vCPU pointer
3315  * @params: the system register access parameters.
3316  *
3317  * Our cp15 system register tables do not enumerate the AArch32 feature
3318  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3319  * register encoding can be trivially remapped into the AArch64 for the feature
3320  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3321  *
3322  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3323  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3324  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3325  * treat undefined registers in this range as RAZ.
3326  */
3327 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3328 				   struct sys_reg_params *params)
3329 {
3330 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3331 
3332 	/* Treat impossible writes to RO registers as UNDEFINED */
3333 	if (params->is_write) {
3334 		unhandled_cp_access(vcpu, params);
3335 		return 1;
3336 	}
3337 
3338 	params->Op0 = 3;
3339 
3340 	/*
3341 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3342 	 * Avoid conflicting with future expansion of AArch64 feature registers
3343 	 * and simply treat them as RAZ here.
3344 	 */
3345 	if (params->CRm > 3)
3346 		params->regval = 0;
3347 	else if (!emulate_sys_reg(vcpu, params))
3348 		return 1;
3349 
3350 	vcpu_set_reg(vcpu, Rt, params->regval);
3351 	return 1;
3352 }
3353 
3354 /**
3355  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3356  * @vcpu: The VCPU pointer
3357  * @params: &struct sys_reg_params
3358  * @global: &struct sys_reg_desc
3359  * @nr_global: size of the @global array
3360  */
3361 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3362 			    struct sys_reg_params *params,
3363 			    const struct sys_reg_desc *global,
3364 			    size_t nr_global)
3365 {
3366 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3367 
3368 	params->regval = vcpu_get_reg(vcpu, Rt);
3369 
3370 	if (emulate_cp(vcpu, params, global, nr_global)) {
3371 		if (!params->is_write)
3372 			vcpu_set_reg(vcpu, Rt, params->regval);
3373 		return 1;
3374 	}
3375 
3376 	unhandled_cp_access(vcpu, params);
3377 	return 1;
3378 }
3379 
3380 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3381 {
3382 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3383 }
3384 
3385 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3386 {
3387 	struct sys_reg_params params;
3388 
3389 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3390 
3391 	/*
3392 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3393 	 * system register table. Registers in the ID range where CRm=0 are
3394 	 * excluded from this scheme as they do not trivially map into AArch64
3395 	 * system register encodings.
3396 	 */
3397 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3398 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3399 
3400 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3401 }
3402 
3403 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3404 {
3405 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3406 }
3407 
3408 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3409 {
3410 	struct sys_reg_params params;
3411 
3412 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3413 
3414 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3415 }
3416 
3417 /**
3418  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3419  * @vcpu: The VCPU pointer
3420  * @params: Decoded system register parameters
3421  *
3422  * Return: true if the system register access was successful, false otherwise.
3423  */
3424 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3425 			    struct sys_reg_params *params)
3426 {
3427 	const struct sys_reg_desc *r;
3428 
3429 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3430 	if (likely(r)) {
3431 		perform_access(vcpu, params, r);
3432 		return true;
3433 	}
3434 
3435 	print_sys_reg_msg(params,
3436 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3437 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3438 	kvm_inject_undefined(vcpu);
3439 
3440 	return false;
3441 }
3442 
3443 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3444 {
3445 	struct kvm *kvm = s->private;
3446 	u8 *iter;
3447 
3448 	mutex_lock(&kvm->arch.config_lock);
3449 
3450 	iter = &kvm->arch.idreg_debugfs_iter;
3451 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3452 	    *iter == (u8)~0) {
3453 		*iter = *pos;
3454 		if (*iter >= KVM_ARM_ID_REG_NUM)
3455 			iter = NULL;
3456 	} else {
3457 		iter = ERR_PTR(-EBUSY);
3458 	}
3459 
3460 	mutex_unlock(&kvm->arch.config_lock);
3461 
3462 	return iter;
3463 }
3464 
3465 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3466 {
3467 	struct kvm *kvm = s->private;
3468 
3469 	(*pos)++;
3470 
3471 	if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) {
3472 		kvm->arch.idreg_debugfs_iter++;
3473 
3474 		return &kvm->arch.idreg_debugfs_iter;
3475 	}
3476 
3477 	return NULL;
3478 }
3479 
3480 static void idregs_debug_stop(struct seq_file *s, void *v)
3481 {
3482 	struct kvm *kvm = s->private;
3483 
3484 	if (IS_ERR(v))
3485 		return;
3486 
3487 	mutex_lock(&kvm->arch.config_lock);
3488 
3489 	kvm->arch.idreg_debugfs_iter = ~0;
3490 
3491 	mutex_unlock(&kvm->arch.config_lock);
3492 }
3493 
3494 static int idregs_debug_show(struct seq_file *s, void *v)
3495 {
3496 	struct kvm *kvm = s->private;
3497 	const struct sys_reg_desc *desc;
3498 
3499 	desc = first_idreg + kvm->arch.idreg_debugfs_iter;
3500 
3501 	if (!desc->name)
3502 		return 0;
3503 
3504 	seq_printf(s, "%20s:\t%016llx\n",
3505 		   desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter)));
3506 
3507 	return 0;
3508 }
3509 
3510 static const struct seq_operations idregs_debug_sops = {
3511 	.start	= idregs_debug_start,
3512 	.next	= idregs_debug_next,
3513 	.stop	= idregs_debug_stop,
3514 	.show	= idregs_debug_show,
3515 };
3516 
3517 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3518 
3519 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3520 {
3521 	kvm->arch.idreg_debugfs_iter = ~0;
3522 
3523 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
3524 			    &idregs_debug_fops);
3525 }
3526 
3527 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
3528 {
3529 	u32 id = reg_to_encoding(reg);
3530 	struct kvm *kvm = vcpu->kvm;
3531 
3532 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3533 		return;
3534 
3535 	lockdep_assert_held(&kvm->arch.config_lock);
3536 	IDREG(kvm, id) = reg->reset(vcpu, reg);
3537 }
3538 
3539 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
3540 				  const struct sys_reg_desc *reg)
3541 {
3542 	if (kvm_vcpu_initialized(vcpu))
3543 		return;
3544 
3545 	reg->reset(vcpu, reg);
3546 }
3547 
3548 /**
3549  * kvm_reset_sys_regs - sets system registers to reset value
3550  * @vcpu: The VCPU pointer
3551  *
3552  * This function finds the right table above and sets the registers on the
3553  * virtual CPU struct to their architecturally defined reset values.
3554  */
3555 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3556 {
3557 	struct kvm *kvm = vcpu->kvm;
3558 	unsigned long i;
3559 
3560 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3561 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3562 
3563 		if (!r->reset)
3564 			continue;
3565 
3566 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
3567 			reset_vm_ftr_id_reg(vcpu, r);
3568 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
3569 			reset_vcpu_ftr_id_reg(vcpu, r);
3570 		else
3571 			r->reset(vcpu, r);
3572 	}
3573 
3574 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3575 }
3576 
3577 /**
3578  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
3579  *			 trap on a guest execution
3580  * @vcpu: The VCPU pointer
3581  */
3582 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3583 {
3584 	const struct sys_reg_desc *desc = NULL;
3585 	struct sys_reg_params params;
3586 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3587 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3588 	int sr_idx;
3589 
3590 	trace_kvm_handle_sys_reg(esr);
3591 
3592 	if (triage_sysreg_trap(vcpu, &sr_idx))
3593 		return 1;
3594 
3595 	params = esr_sys64_to_params(esr);
3596 	params.regval = vcpu_get_reg(vcpu, Rt);
3597 
3598 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
3599 	if (params.Op0 == 2 || params.Op0 == 3)
3600 		desc = &sys_reg_descs[sr_idx];
3601 	else
3602 		desc = &sys_insn_descs[sr_idx];
3603 
3604 	perform_access(vcpu, &params, desc);
3605 
3606 	/* Read from system register? */
3607 	if (!params.is_write &&
3608 	    (params.Op0 == 2 || params.Op0 == 3))
3609 		vcpu_set_reg(vcpu, Rt, params.regval);
3610 
3611 	return 1;
3612 }
3613 
3614 /******************************************************************************
3615  * Userspace API
3616  *****************************************************************************/
3617 
3618 static bool index_to_params(u64 id, struct sys_reg_params *params)
3619 {
3620 	switch (id & KVM_REG_SIZE_MASK) {
3621 	case KVM_REG_SIZE_U64:
3622 		/* Any unused index bits means it's not valid. */
3623 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3624 			      | KVM_REG_ARM_COPROC_MASK
3625 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3626 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3627 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3628 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3629 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3630 			return false;
3631 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3632 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3633 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3634 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3635 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3636 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3637 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3638 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3639 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3640 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3641 		return true;
3642 	default:
3643 		return false;
3644 	}
3645 }
3646 
3647 const struct sys_reg_desc *get_reg_by_id(u64 id,
3648 					 const struct sys_reg_desc table[],
3649 					 unsigned int num)
3650 {
3651 	struct sys_reg_params params;
3652 
3653 	if (!index_to_params(id, &params))
3654 		return NULL;
3655 
3656 	return find_reg(&params, table, num);
3657 }
3658 
3659 /* Decode an index value, and find the sys_reg_desc entry. */
3660 static const struct sys_reg_desc *
3661 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3662 		   const struct sys_reg_desc table[], unsigned int num)
3663 
3664 {
3665 	const struct sys_reg_desc *r;
3666 
3667 	/* We only do sys_reg for now. */
3668 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3669 		return NULL;
3670 
3671 	r = get_reg_by_id(id, table, num);
3672 
3673 	/* Not saved in the sys_reg array and not otherwise accessible? */
3674 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3675 		r = NULL;
3676 
3677 	return r;
3678 }
3679 
3680 /*
3681  * These are the invariant sys_reg registers: we let the guest see the
3682  * host versions of these, so they're part of the guest state.
3683  *
3684  * A future CPU may provide a mechanism to present different values to
3685  * the guest, or a future kvm may trap them.
3686  */
3687 
3688 #define FUNCTION_INVARIANT(reg)						\
3689 	static u64 get_##reg(struct kvm_vcpu *v,			\
3690 			      const struct sys_reg_desc *r)		\
3691 	{								\
3692 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3693 		return ((struct sys_reg_desc *)r)->val;			\
3694 	}
3695 
3696 FUNCTION_INVARIANT(midr_el1)
3697 FUNCTION_INVARIANT(revidr_el1)
3698 FUNCTION_INVARIANT(aidr_el1)
3699 
3700 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3701 {
3702 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3703 	return ((struct sys_reg_desc *)r)->val;
3704 }
3705 
3706 /* ->val is filled in by kvm_sys_reg_table_init() */
3707 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3708 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3709 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3710 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3711 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3712 };
3713 
3714 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3715 {
3716 	const struct sys_reg_desc *r;
3717 
3718 	r = get_reg_by_id(id, invariant_sys_regs,
3719 			  ARRAY_SIZE(invariant_sys_regs));
3720 	if (!r)
3721 		return -ENOENT;
3722 
3723 	return put_user(r->val, uaddr);
3724 }
3725 
3726 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3727 {
3728 	const struct sys_reg_desc *r;
3729 	u64 val;
3730 
3731 	r = get_reg_by_id(id, invariant_sys_regs,
3732 			  ARRAY_SIZE(invariant_sys_regs));
3733 	if (!r)
3734 		return -ENOENT;
3735 
3736 	if (get_user(val, uaddr))
3737 		return -EFAULT;
3738 
3739 	/* This is what we mean by invariant: you can't change it. */
3740 	if (r->val != val)
3741 		return -EINVAL;
3742 
3743 	return 0;
3744 }
3745 
3746 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3747 {
3748 	u32 val;
3749 	u32 __user *uval = uaddr;
3750 
3751 	/* Fail if we have unknown bits set. */
3752 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3753 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3754 		return -ENOENT;
3755 
3756 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3757 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3758 		if (KVM_REG_SIZE(id) != 4)
3759 			return -ENOENT;
3760 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3761 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3762 		if (val >= CSSELR_MAX)
3763 			return -ENOENT;
3764 
3765 		return put_user(get_ccsidr(vcpu, val), uval);
3766 	default:
3767 		return -ENOENT;
3768 	}
3769 }
3770 
3771 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3772 {
3773 	u32 val, newval;
3774 	u32 __user *uval = uaddr;
3775 
3776 	/* Fail if we have unknown bits set. */
3777 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3778 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3779 		return -ENOENT;
3780 
3781 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3782 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3783 		if (KVM_REG_SIZE(id) != 4)
3784 			return -ENOENT;
3785 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3786 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3787 		if (val >= CSSELR_MAX)
3788 			return -ENOENT;
3789 
3790 		if (get_user(newval, uval))
3791 			return -EFAULT;
3792 
3793 		return set_ccsidr(vcpu, val, newval);
3794 	default:
3795 		return -ENOENT;
3796 	}
3797 }
3798 
3799 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3800 			 const struct sys_reg_desc table[], unsigned int num)
3801 {
3802 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3803 	const struct sys_reg_desc *r;
3804 	u64 val;
3805 	int ret;
3806 
3807 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3808 	if (!r || sysreg_hidden_user(vcpu, r))
3809 		return -ENOENT;
3810 
3811 	if (r->get_user) {
3812 		ret = (r->get_user)(vcpu, r, &val);
3813 	} else {
3814 		val = __vcpu_sys_reg(vcpu, r->reg);
3815 		ret = 0;
3816 	}
3817 
3818 	if (!ret)
3819 		ret = put_user(val, uaddr);
3820 
3821 	return ret;
3822 }
3823 
3824 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3825 {
3826 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3827 	int err;
3828 
3829 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3830 		return demux_c15_get(vcpu, reg->id, uaddr);
3831 
3832 	err = get_invariant_sys_reg(reg->id, uaddr);
3833 	if (err != -ENOENT)
3834 		return err;
3835 
3836 	return kvm_sys_reg_get_user(vcpu, reg,
3837 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3838 }
3839 
3840 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3841 			 const struct sys_reg_desc table[], unsigned int num)
3842 {
3843 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3844 	const struct sys_reg_desc *r;
3845 	u64 val;
3846 	int ret;
3847 
3848 	if (get_user(val, uaddr))
3849 		return -EFAULT;
3850 
3851 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3852 	if (!r || sysreg_hidden_user(vcpu, r))
3853 		return -ENOENT;
3854 
3855 	if (sysreg_user_write_ignore(vcpu, r))
3856 		return 0;
3857 
3858 	if (r->set_user) {
3859 		ret = (r->set_user)(vcpu, r, val);
3860 	} else {
3861 		__vcpu_sys_reg(vcpu, r->reg) = val;
3862 		ret = 0;
3863 	}
3864 
3865 	return ret;
3866 }
3867 
3868 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3869 {
3870 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3871 	int err;
3872 
3873 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3874 		return demux_c15_set(vcpu, reg->id, uaddr);
3875 
3876 	err = set_invariant_sys_reg(reg->id, uaddr);
3877 	if (err != -ENOENT)
3878 		return err;
3879 
3880 	return kvm_sys_reg_set_user(vcpu, reg,
3881 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3882 }
3883 
3884 static unsigned int num_demux_regs(void)
3885 {
3886 	return CSSELR_MAX;
3887 }
3888 
3889 static int write_demux_regids(u64 __user *uindices)
3890 {
3891 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3892 	unsigned int i;
3893 
3894 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3895 	for (i = 0; i < CSSELR_MAX; i++) {
3896 		if (put_user(val | i, uindices))
3897 			return -EFAULT;
3898 		uindices++;
3899 	}
3900 	return 0;
3901 }
3902 
3903 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3904 {
3905 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3906 		KVM_REG_ARM64_SYSREG |
3907 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3908 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3909 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3910 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3911 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3912 }
3913 
3914 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3915 {
3916 	if (!*uind)
3917 		return true;
3918 
3919 	if (put_user(sys_reg_to_index(reg), *uind))
3920 		return false;
3921 
3922 	(*uind)++;
3923 	return true;
3924 }
3925 
3926 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3927 			    const struct sys_reg_desc *rd,
3928 			    u64 __user **uind,
3929 			    unsigned int *total)
3930 {
3931 	/*
3932 	 * Ignore registers we trap but don't save,
3933 	 * and for which no custom user accessor is provided.
3934 	 */
3935 	if (!(rd->reg || rd->get_user))
3936 		return 0;
3937 
3938 	if (sysreg_hidden_user(vcpu, rd))
3939 		return 0;
3940 
3941 	if (!copy_reg_to_user(rd, uind))
3942 		return -EFAULT;
3943 
3944 	(*total)++;
3945 	return 0;
3946 }
3947 
3948 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3949 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3950 {
3951 	const struct sys_reg_desc *i2, *end2;
3952 	unsigned int total = 0;
3953 	int err;
3954 
3955 	i2 = sys_reg_descs;
3956 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3957 
3958 	while (i2 != end2) {
3959 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3960 		if (err)
3961 			return err;
3962 	}
3963 	return total;
3964 }
3965 
3966 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3967 {
3968 	return ARRAY_SIZE(invariant_sys_regs)
3969 		+ num_demux_regs()
3970 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3971 }
3972 
3973 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3974 {
3975 	unsigned int i;
3976 	int err;
3977 
3978 	/* Then give them all the invariant registers' indices. */
3979 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3980 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3981 			return -EFAULT;
3982 		uindices++;
3983 	}
3984 
3985 	err = walk_sys_regs(vcpu, uindices);
3986 	if (err < 0)
3987 		return err;
3988 	uindices += err;
3989 
3990 	return write_demux_regids(uindices);
3991 }
3992 
3993 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
3994 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
3995 		sys_reg_Op1(r),					\
3996 		sys_reg_CRn(r),					\
3997 		sys_reg_CRm(r),					\
3998 		sys_reg_Op2(r))
3999 
4000 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4001 {
4002 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4003 	u64 __user *masks = (u64 __user *)range->addr;
4004 
4005 	/* Only feature id range is supported, reserved[13] must be zero. */
4006 	if (range->range ||
4007 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4008 		return -EINVAL;
4009 
4010 	/* Wipe the whole thing first */
4011 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4012 		return -EFAULT;
4013 
4014 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4015 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4016 		u32 encoding = reg_to_encoding(reg);
4017 		u64 val;
4018 
4019 		if (!is_feature_id_reg(encoding) || !reg->set_user)
4020 			continue;
4021 
4022 		/*
4023 		 * For ID registers, we return the writable mask. Other feature
4024 		 * registers return a full 64bit mask. That's not necessary
4025 		 * compliant with a given revision of the architecture, but the
4026 		 * RES0/RES1 definitions allow us to do that.
4027 		 */
4028 		if (is_vm_ftr_id_reg(encoding)) {
4029 			if (!reg->val ||
4030 			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
4031 				continue;
4032 			val = reg->val;
4033 		} else {
4034 			val = ~0UL;
4035 		}
4036 
4037 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4038 			return -EFAULT;
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 void kvm_init_sysreg(struct kvm_vcpu *vcpu)
4045 {
4046 	struct kvm *kvm = vcpu->kvm;
4047 
4048 	mutex_lock(&kvm->arch.config_lock);
4049 
4050 	/*
4051 	 * In the absence of FGT, we cannot independently trap TLBI
4052 	 * Range instructions. This isn't great, but trapping all
4053 	 * TLBIs would be far worse. Live with it...
4054 	 */
4055 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4056 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4057 
4058 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4059 		vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS;
4060 
4061 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4062 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4063 	}
4064 
4065 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4066 		goto out;
4067 
4068 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4069 				       HFGxTR_EL2_nMAIR2_EL1		|
4070 				       HFGxTR_EL2_nS2POR_EL1		|
4071 				       HFGxTR_EL2_nPOR_EL1		|
4072 				       HFGxTR_EL2_nPOR_EL0		|
4073 				       HFGxTR_EL2_nACCDATA_EL1		|
4074 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4075 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4076 
4077 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4078 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4079 						HFGITR_EL2_TLBIRVALE1OS	|
4080 						HFGITR_EL2_TLBIRVAAE1OS	|
4081 						HFGITR_EL2_TLBIRVAE1OS	|
4082 						HFGITR_EL2_TLBIVAALE1OS	|
4083 						HFGITR_EL2_TLBIVALE1OS	|
4084 						HFGITR_EL2_TLBIVAAE1OS	|
4085 						HFGITR_EL2_TLBIASIDE1OS	|
4086 						HFGITR_EL2_TLBIVAE1OS	|
4087 						HFGITR_EL2_TLBIVMALLE1OS);
4088 
4089 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4090 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4091 						HFGITR_EL2_TLBIRVALE1	|
4092 						HFGITR_EL2_TLBIRVAAE1	|
4093 						HFGITR_EL2_TLBIRVAE1	|
4094 						HFGITR_EL2_TLBIRVAALE1IS|
4095 						HFGITR_EL2_TLBIRVALE1IS	|
4096 						HFGITR_EL2_TLBIRVAAE1IS	|
4097 						HFGITR_EL2_TLBIRVAE1IS	|
4098 						HFGITR_EL2_TLBIRVAALE1OS|
4099 						HFGITR_EL2_TLBIRVALE1OS	|
4100 						HFGITR_EL2_TLBIRVAAE1OS	|
4101 						HFGITR_EL2_TLBIRVAE1OS);
4102 
4103 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4104 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4105 						HFGxTR_EL2_nPIR_EL1);
4106 
4107 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4108 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4109 						  HAFGRTR_EL2_RES1);
4110 
4111 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4112 out:
4113 	mutex_unlock(&kvm->arch.config_lock);
4114 }
4115 
4116 int __init kvm_sys_reg_table_init(void)
4117 {
4118 	struct sys_reg_params params;
4119 	bool valid = true;
4120 	unsigned int i;
4121 	int ret = 0;
4122 
4123 	/* Make sure tables are unique and in order. */
4124 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4125 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4126 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4127 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4128 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4129 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4130 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4131 
4132 	if (!valid)
4133 		return -EINVAL;
4134 
4135 	/* We abuse the reset function to overwrite the table itself. */
4136 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4137 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4138 
4139 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
4140 	params = encoding_to_params(SYS_ID_PFR0_EL1);
4141 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4142 	if (!first_idreg)
4143 		return -EINVAL;
4144 
4145 	ret = populate_nv_trap_config();
4146 
4147 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4148 		ret = populate_sysreg_config(sys_reg_descs + i, i);
4149 
4150 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4151 		ret = populate_sysreg_config(sys_insn_descs + i, i);
4152 
4153 	return ret;
4154 }
4155