xref: /linux/arch/arm64/kvm/sys_regs.c (revision d261f9ebcf424535fe04e720a1cfa023be409f52)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/esr.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/perf_event.h>
31 #include <asm/sysreg.h>
32 
33 #include <trace/events/kvm.h>
34 
35 #include "sys_regs.h"
36 
37 #include "trace.h"
38 
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44 
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 		      u64 val);
48 
49 static bool bad_trap(struct kvm_vcpu *vcpu,
50 		     struct sys_reg_params *params,
51 		     const struct sys_reg_desc *r,
52 		     const char *msg)
53 {
54 	WARN_ONCE(1, "Unexpected %s\n", msg);
55 	print_sys_reg_instr(params);
56 	kvm_inject_undefined(vcpu);
57 	return false;
58 }
59 
60 static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 				 struct sys_reg_params *params,
62 				 const struct sys_reg_desc *r)
63 {
64 	return bad_trap(vcpu, params, r,
65 			"sys_reg read to write-only register");
66 }
67 
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69 			       struct sys_reg_params *params,
70 			       const struct sys_reg_desc *r)
71 {
72 	return bad_trap(vcpu, params, r,
73 			"sys_reg write to read-only register");
74 }
75 
76 #define PURE_EL2_SYSREG(el2)						\
77 	case el2: {							\
78 		*el1r = el2;						\
79 		return true;						\
80 	}
81 
82 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
83 	case el2: {							\
84 		*xlate = fn;						\
85 		*el1r = el1;						\
86 		return true;						\
87 	}
88 
89 static bool get_el2_to_el1_mapping(unsigned int reg,
90 				   unsigned int *el1r, u64 (**xlate)(u64))
91 {
92 	switch (reg) {
93 		PURE_EL2_SYSREG(  VPIDR_EL2	);
94 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
95 		PURE_EL2_SYSREG(  ACTLR_EL2	);
96 		PURE_EL2_SYSREG(  HCR_EL2	);
97 		PURE_EL2_SYSREG(  MDCR_EL2	);
98 		PURE_EL2_SYSREG(  HSTR_EL2	);
99 		PURE_EL2_SYSREG(  HACR_EL2	);
100 		PURE_EL2_SYSREG(  VTTBR_EL2	);
101 		PURE_EL2_SYSREG(  VTCR_EL2	);
102 		PURE_EL2_SYSREG(  RVBAR_EL2	);
103 		PURE_EL2_SYSREG(  TPIDR_EL2	);
104 		PURE_EL2_SYSREG(  HPFAR_EL2	);
105 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
106 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
107 				  translate_sctlr_el2_to_sctlr_el1	     );
108 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
109 				  translate_cptr_el2_to_cpacr_el1	     );
110 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
111 				  translate_ttbr0_el2_to_ttbr0_el1	     );
112 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
113 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
114 				  translate_tcr_el2_to_tcr_el1		     );
115 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
116 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
117 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
118 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
119 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
120 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
121 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
122 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
123 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
124 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
125 	default:
126 		return false;
127 	}
128 }
129 
130 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
131 {
132 	u64 val = 0x8badf00d8badf00d;
133 	u64 (*xlate)(u64) = NULL;
134 	unsigned int el1r;
135 
136 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
137 		goto memory_read;
138 
139 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
140 		if (!is_hyp_ctxt(vcpu))
141 			goto memory_read;
142 
143 		/*
144 		 * If this register does not have an EL1 counterpart,
145 		 * then read the stored EL2 version.
146 		 */
147 		if (reg == el1r)
148 			goto memory_read;
149 
150 		/*
151 		 * If we have a non-VHE guest and that the sysreg
152 		 * requires translation to be used at EL1, use the
153 		 * in-memory copy instead.
154 		 */
155 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
156 			goto memory_read;
157 
158 		/* Get the current version of the EL1 counterpart. */
159 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
160 		return val;
161 	}
162 
163 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
164 	if (unlikely(is_hyp_ctxt(vcpu)))
165 		goto memory_read;
166 
167 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
168 		return val;
169 
170 memory_read:
171 	return __vcpu_sys_reg(vcpu, reg);
172 }
173 
174 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
175 {
176 	u64 (*xlate)(u64) = NULL;
177 	unsigned int el1r;
178 
179 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
180 		goto memory_write;
181 
182 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
183 		if (!is_hyp_ctxt(vcpu))
184 			goto memory_write;
185 
186 		/*
187 		 * Always store a copy of the write to memory to avoid having
188 		 * to reverse-translate virtual EL2 system registers for a
189 		 * non-VHE guest hypervisor.
190 		 */
191 		__vcpu_sys_reg(vcpu, reg) = val;
192 
193 		/* No EL1 counterpart? We're done here.? */
194 		if (reg == el1r)
195 			return;
196 
197 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
198 			val = xlate(val);
199 
200 		/* Redirect this to the EL1 version of the register. */
201 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
202 		return;
203 	}
204 
205 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
206 	if (unlikely(is_hyp_ctxt(vcpu)))
207 		goto memory_write;
208 
209 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
210 		return;
211 
212 memory_write:
213 	 __vcpu_sys_reg(vcpu, reg) = val;
214 }
215 
216 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
217 #define CSSELR_MAX 14
218 
219 /*
220  * Returns the minimum line size for the selected cache, expressed as
221  * Log2(bytes).
222  */
223 static u8 get_min_cache_line_size(bool icache)
224 {
225 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
226 	u8 field;
227 
228 	if (icache)
229 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
230 	else
231 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
232 
233 	/*
234 	 * Cache line size is represented as Log2(words) in CTR_EL0.
235 	 * Log2(bytes) can be derived with the following:
236 	 *
237 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
238 	 * 		   = Log2(bytes) - 2 + 2
239 	 * 		   = Log2(bytes)
240 	 */
241 	return field + 2;
242 }
243 
244 /* Which cache CCSIDR represents depends on CSSELR value. */
245 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
246 {
247 	u8 line_size;
248 
249 	if (vcpu->arch.ccsidr)
250 		return vcpu->arch.ccsidr[csselr];
251 
252 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
253 
254 	/*
255 	 * Fabricate a CCSIDR value as the overriding value does not exist.
256 	 * The real CCSIDR value will not be used as it can vary by the
257 	 * physical CPU which the vcpu currently resides in.
258 	 *
259 	 * The line size is determined with get_min_cache_line_size(), which
260 	 * should be valid for all CPUs even if they have different cache
261 	 * configuration.
262 	 *
263 	 * The associativity bits are cleared, meaning the geometry of all data
264 	 * and unified caches (which are guaranteed to be PIPT and thus
265 	 * non-aliasing) are 1 set and 1 way.
266 	 * Guests should not be doing cache operations by set/way at all, and
267 	 * for this reason, we trap them and attempt to infer the intent, so
268 	 * that we can flush the entire guest's address space at the appropriate
269 	 * time. The exposed geometry minimizes the number of the traps.
270 	 * [If guests should attempt to infer aliasing properties from the
271 	 * geometry (which is not permitted by the architecture), they would
272 	 * only do so for virtually indexed caches.]
273 	 *
274 	 * We don't check if the cache level exists as it is allowed to return
275 	 * an UNKNOWN value if not.
276 	 */
277 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
278 }
279 
280 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
281 {
282 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
283 	u32 *ccsidr = vcpu->arch.ccsidr;
284 	u32 i;
285 
286 	if ((val & CCSIDR_EL1_RES0) ||
287 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
288 		return -EINVAL;
289 
290 	if (!ccsidr) {
291 		if (val == get_ccsidr(vcpu, csselr))
292 			return 0;
293 
294 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
295 		if (!ccsidr)
296 			return -ENOMEM;
297 
298 		for (i = 0; i < CSSELR_MAX; i++)
299 			ccsidr[i] = get_ccsidr(vcpu, i);
300 
301 		vcpu->arch.ccsidr = ccsidr;
302 	}
303 
304 	ccsidr[csselr] = val;
305 
306 	return 0;
307 }
308 
309 static bool access_rw(struct kvm_vcpu *vcpu,
310 		      struct sys_reg_params *p,
311 		      const struct sys_reg_desc *r)
312 {
313 	if (p->is_write)
314 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
315 	else
316 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
317 
318 	return true;
319 }
320 
321 /*
322  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
323  */
324 static bool access_dcsw(struct kvm_vcpu *vcpu,
325 			struct sys_reg_params *p,
326 			const struct sys_reg_desc *r)
327 {
328 	if (!p->is_write)
329 		return read_from_write_only(vcpu, p, r);
330 
331 	/*
332 	 * Only track S/W ops if we don't have FWB. It still indicates
333 	 * that the guest is a bit broken (S/W operations should only
334 	 * be done by firmware, knowing that there is only a single
335 	 * CPU left in the system, and certainly not from non-secure
336 	 * software).
337 	 */
338 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
339 		kvm_set_way_flush(vcpu);
340 
341 	return true;
342 }
343 
344 static bool access_dcgsw(struct kvm_vcpu *vcpu,
345 			 struct sys_reg_params *p,
346 			 const struct sys_reg_desc *r)
347 {
348 	if (!kvm_has_mte(vcpu->kvm)) {
349 		kvm_inject_undefined(vcpu);
350 		return false;
351 	}
352 
353 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
354 	return access_dcsw(vcpu, p, r);
355 }
356 
357 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
358 {
359 	switch (r->aarch32_map) {
360 	case AA32_LO:
361 		*mask = GENMASK_ULL(31, 0);
362 		*shift = 0;
363 		break;
364 	case AA32_HI:
365 		*mask = GENMASK_ULL(63, 32);
366 		*shift = 32;
367 		break;
368 	default:
369 		*mask = GENMASK_ULL(63, 0);
370 		*shift = 0;
371 		break;
372 	}
373 }
374 
375 /*
376  * Generic accessor for VM registers. Only called as long as HCR_TVM
377  * is set. If the guest enables the MMU, we stop trapping the VM
378  * sys_regs and leave it in complete control of the caches.
379  */
380 static bool access_vm_reg(struct kvm_vcpu *vcpu,
381 			  struct sys_reg_params *p,
382 			  const struct sys_reg_desc *r)
383 {
384 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
385 	u64 val, mask, shift;
386 
387 	if (reg_to_encoding(r) == SYS_TCR2_EL1 &&
388 	    !kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) {
389 		kvm_inject_undefined(vcpu);
390 		return false;
391 	}
392 
393 	BUG_ON(!p->is_write);
394 
395 	get_access_mask(r, &mask, &shift);
396 
397 	if (~mask) {
398 		val = vcpu_read_sys_reg(vcpu, r->reg);
399 		val &= ~mask;
400 	} else {
401 		val = 0;
402 	}
403 
404 	val |= (p->regval & (mask >> shift)) << shift;
405 	vcpu_write_sys_reg(vcpu, val, r->reg);
406 
407 	kvm_toggle_cache(vcpu, was_enabled);
408 	return true;
409 }
410 
411 static bool access_actlr(struct kvm_vcpu *vcpu,
412 			 struct sys_reg_params *p,
413 			 const struct sys_reg_desc *r)
414 {
415 	u64 mask, shift;
416 
417 	if (p->is_write)
418 		return ignore_write(vcpu, p);
419 
420 	get_access_mask(r, &mask, &shift);
421 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
422 
423 	return true;
424 }
425 
426 /*
427  * Trap handler for the GICv3 SGI generation system register.
428  * Forward the request to the VGIC emulation.
429  * The cp15_64 code makes sure this automatically works
430  * for both AArch64 and AArch32 accesses.
431  */
432 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
433 			   struct sys_reg_params *p,
434 			   const struct sys_reg_desc *r)
435 {
436 	bool g1;
437 
438 	if (!p->is_write)
439 		return read_from_write_only(vcpu, p, r);
440 
441 	/*
442 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
443 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
444 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
445 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
446 	 * group.
447 	 */
448 	if (p->Op0 == 0) {		/* AArch32 */
449 		switch (p->Op1) {
450 		default:		/* Keep GCC quiet */
451 		case 0:			/* ICC_SGI1R */
452 			g1 = true;
453 			break;
454 		case 1:			/* ICC_ASGI1R */
455 		case 2:			/* ICC_SGI0R */
456 			g1 = false;
457 			break;
458 		}
459 	} else {			/* AArch64 */
460 		switch (p->Op2) {
461 		default:		/* Keep GCC quiet */
462 		case 5:			/* ICC_SGI1R_EL1 */
463 			g1 = true;
464 			break;
465 		case 6:			/* ICC_ASGI1R_EL1 */
466 		case 7:			/* ICC_SGI0R_EL1 */
467 			g1 = false;
468 			break;
469 		}
470 	}
471 
472 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
473 
474 	return true;
475 }
476 
477 static bool access_gic_sre(struct kvm_vcpu *vcpu,
478 			   struct sys_reg_params *p,
479 			   const struct sys_reg_desc *r)
480 {
481 	if (p->is_write)
482 		return ignore_write(vcpu, p);
483 
484 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
485 	return true;
486 }
487 
488 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
489 			struct sys_reg_params *p,
490 			const struct sys_reg_desc *r)
491 {
492 	if (p->is_write)
493 		return ignore_write(vcpu, p);
494 	else
495 		return read_zero(vcpu, p);
496 }
497 
498 static bool trap_undef(struct kvm_vcpu *vcpu,
499 		       struct sys_reg_params *p,
500 		       const struct sys_reg_desc *r)
501 {
502 	kvm_inject_undefined(vcpu);
503 	return false;
504 }
505 
506 /*
507  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
508  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
509  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
510  * treat it separately.
511  */
512 static bool trap_loregion(struct kvm_vcpu *vcpu,
513 			  struct sys_reg_params *p,
514 			  const struct sys_reg_desc *r)
515 {
516 	u32 sr = reg_to_encoding(r);
517 
518 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
519 		kvm_inject_undefined(vcpu);
520 		return false;
521 	}
522 
523 	if (p->is_write && sr == SYS_LORID_EL1)
524 		return write_to_read_only(vcpu, p, r);
525 
526 	return trap_raz_wi(vcpu, p, r);
527 }
528 
529 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
530 			   struct sys_reg_params *p,
531 			   const struct sys_reg_desc *r)
532 {
533 	u64 oslsr;
534 
535 	if (!p->is_write)
536 		return read_from_write_only(vcpu, p, r);
537 
538 	/* Forward the OSLK bit to OSLSR */
539 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
540 	if (p->regval & OSLAR_EL1_OSLK)
541 		oslsr |= OSLSR_EL1_OSLK;
542 
543 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
544 	return true;
545 }
546 
547 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
548 			   struct sys_reg_params *p,
549 			   const struct sys_reg_desc *r)
550 {
551 	if (p->is_write)
552 		return write_to_read_only(vcpu, p, r);
553 
554 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
555 	return true;
556 }
557 
558 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
559 			 u64 val)
560 {
561 	/*
562 	 * The only modifiable bit is the OSLK bit. Refuse the write if
563 	 * userspace attempts to change any other bit in the register.
564 	 */
565 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
566 		return -EINVAL;
567 
568 	__vcpu_sys_reg(vcpu, rd->reg) = val;
569 	return 0;
570 }
571 
572 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
573 				   struct sys_reg_params *p,
574 				   const struct sys_reg_desc *r)
575 {
576 	if (p->is_write) {
577 		return ignore_write(vcpu, p);
578 	} else {
579 		p->regval = read_sysreg(dbgauthstatus_el1);
580 		return true;
581 	}
582 }
583 
584 /*
585  * We want to avoid world-switching all the DBG registers all the
586  * time:
587  *
588  * - If we've touched any debug register, it is likely that we're
589  *   going to touch more of them. It then makes sense to disable the
590  *   traps and start doing the save/restore dance
591  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
592  *   then mandatory to save/restore the registers, as the guest
593  *   depends on them.
594  *
595  * For this, we use a DIRTY bit, indicating the guest has modified the
596  * debug registers, used as follow:
597  *
598  * On guest entry:
599  * - If the dirty bit is set (because we're coming back from trapping),
600  *   disable the traps, save host registers, restore guest registers.
601  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
602  *   set the dirty bit, disable the traps, save host registers,
603  *   restore guest registers.
604  * - Otherwise, enable the traps
605  *
606  * On guest exit:
607  * - If the dirty bit is set, save guest registers, restore host
608  *   registers and clear the dirty bit. This ensure that the host can
609  *   now use the debug registers.
610  */
611 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
612 			    struct sys_reg_params *p,
613 			    const struct sys_reg_desc *r)
614 {
615 	access_rw(vcpu, p, r);
616 	if (p->is_write)
617 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
618 
619 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
620 
621 	return true;
622 }
623 
624 /*
625  * reg_to_dbg/dbg_to_reg
626  *
627  * A 32 bit write to a debug register leave top bits alone
628  * A 32 bit read from a debug register only returns the bottom bits
629  *
630  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
631  * switches between host and guest values in future.
632  */
633 static void reg_to_dbg(struct kvm_vcpu *vcpu,
634 		       struct sys_reg_params *p,
635 		       const struct sys_reg_desc *rd,
636 		       u64 *dbg_reg)
637 {
638 	u64 mask, shift, val;
639 
640 	get_access_mask(rd, &mask, &shift);
641 
642 	val = *dbg_reg;
643 	val &= ~mask;
644 	val |= (p->regval & (mask >> shift)) << shift;
645 	*dbg_reg = val;
646 
647 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
648 }
649 
650 static void dbg_to_reg(struct kvm_vcpu *vcpu,
651 		       struct sys_reg_params *p,
652 		       const struct sys_reg_desc *rd,
653 		       u64 *dbg_reg)
654 {
655 	u64 mask, shift;
656 
657 	get_access_mask(rd, &mask, &shift);
658 	p->regval = (*dbg_reg & mask) >> shift;
659 }
660 
661 static bool trap_bvr(struct kvm_vcpu *vcpu,
662 		     struct sys_reg_params *p,
663 		     const struct sys_reg_desc *rd)
664 {
665 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
666 
667 	if (p->is_write)
668 		reg_to_dbg(vcpu, p, rd, dbg_reg);
669 	else
670 		dbg_to_reg(vcpu, p, rd, dbg_reg);
671 
672 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
673 
674 	return true;
675 }
676 
677 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678 		   u64 val)
679 {
680 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
681 	return 0;
682 }
683 
684 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
685 		   u64 *val)
686 {
687 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
688 	return 0;
689 }
690 
691 static u64 reset_bvr(struct kvm_vcpu *vcpu,
692 		      const struct sys_reg_desc *rd)
693 {
694 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
695 	return rd->val;
696 }
697 
698 static bool trap_bcr(struct kvm_vcpu *vcpu,
699 		     struct sys_reg_params *p,
700 		     const struct sys_reg_desc *rd)
701 {
702 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
703 
704 	if (p->is_write)
705 		reg_to_dbg(vcpu, p, rd, dbg_reg);
706 	else
707 		dbg_to_reg(vcpu, p, rd, dbg_reg);
708 
709 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
710 
711 	return true;
712 }
713 
714 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 		   u64 val)
716 {
717 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
718 	return 0;
719 }
720 
721 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
722 		   u64 *val)
723 {
724 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
725 	return 0;
726 }
727 
728 static u64 reset_bcr(struct kvm_vcpu *vcpu,
729 		      const struct sys_reg_desc *rd)
730 {
731 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
732 	return rd->val;
733 }
734 
735 static bool trap_wvr(struct kvm_vcpu *vcpu,
736 		     struct sys_reg_params *p,
737 		     const struct sys_reg_desc *rd)
738 {
739 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
740 
741 	if (p->is_write)
742 		reg_to_dbg(vcpu, p, rd, dbg_reg);
743 	else
744 		dbg_to_reg(vcpu, p, rd, dbg_reg);
745 
746 	trace_trap_reg(__func__, rd->CRm, p->is_write,
747 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
748 
749 	return true;
750 }
751 
752 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753 		   u64 val)
754 {
755 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
756 	return 0;
757 }
758 
759 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
760 		   u64 *val)
761 {
762 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
763 	return 0;
764 }
765 
766 static u64 reset_wvr(struct kvm_vcpu *vcpu,
767 		      const struct sys_reg_desc *rd)
768 {
769 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
770 	return rd->val;
771 }
772 
773 static bool trap_wcr(struct kvm_vcpu *vcpu,
774 		     struct sys_reg_params *p,
775 		     const struct sys_reg_desc *rd)
776 {
777 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
778 
779 	if (p->is_write)
780 		reg_to_dbg(vcpu, p, rd, dbg_reg);
781 	else
782 		dbg_to_reg(vcpu, p, rd, dbg_reg);
783 
784 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
785 
786 	return true;
787 }
788 
789 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790 		   u64 val)
791 {
792 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
793 	return 0;
794 }
795 
796 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
797 		   u64 *val)
798 {
799 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
800 	return 0;
801 }
802 
803 static u64 reset_wcr(struct kvm_vcpu *vcpu,
804 		      const struct sys_reg_desc *rd)
805 {
806 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
807 	return rd->val;
808 }
809 
810 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812 	u64 amair = read_sysreg(amair_el1);
813 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
814 	return amair;
815 }
816 
817 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819 	u64 actlr = read_sysreg(actlr_el1);
820 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
821 	return actlr;
822 }
823 
824 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
825 {
826 	u64 mpidr;
827 
828 	/*
829 	 * Map the vcpu_id into the first three affinity level fields of
830 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
831 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
832 	 * of the GICv3 to be able to address each CPU directly when
833 	 * sending IPIs.
834 	 */
835 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
836 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
837 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
838 	mpidr |= (1ULL << 31);
839 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
840 
841 	return mpidr;
842 }
843 
844 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
845 				   const struct sys_reg_desc *r)
846 {
847 	if (kvm_vcpu_has_pmu(vcpu))
848 		return 0;
849 
850 	return REG_HIDDEN;
851 }
852 
853 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
854 {
855 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
856 	u8 n = vcpu->kvm->arch.pmcr_n;
857 
858 	if (n)
859 		mask |= GENMASK(n - 1, 0);
860 
861 	reset_unknown(vcpu, r);
862 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
863 
864 	return __vcpu_sys_reg(vcpu, r->reg);
865 }
866 
867 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
868 {
869 	reset_unknown(vcpu, r);
870 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
871 
872 	return __vcpu_sys_reg(vcpu, r->reg);
873 }
874 
875 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
876 {
877 	/* This thing will UNDEF, who cares about the reset value? */
878 	if (!kvm_vcpu_has_pmu(vcpu))
879 		return 0;
880 
881 	reset_unknown(vcpu, r);
882 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
883 
884 	return __vcpu_sys_reg(vcpu, r->reg);
885 }
886 
887 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
888 {
889 	reset_unknown(vcpu, r);
890 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
891 
892 	return __vcpu_sys_reg(vcpu, r->reg);
893 }
894 
895 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
896 {
897 	u64 pmcr = 0;
898 
899 	if (!kvm_supports_32bit_el0())
900 		pmcr |= ARMV8_PMU_PMCR_LC;
901 
902 	/*
903 	 * The value of PMCR.N field is included when the
904 	 * vCPU register is read via kvm_vcpu_read_pmcr().
905 	 */
906 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
907 
908 	return __vcpu_sys_reg(vcpu, r->reg);
909 }
910 
911 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
912 {
913 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
914 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
915 
916 	if (!enabled)
917 		kvm_inject_undefined(vcpu);
918 
919 	return !enabled;
920 }
921 
922 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
923 {
924 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
925 }
926 
927 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
928 {
929 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
930 }
931 
932 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
933 {
934 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
935 }
936 
937 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
938 {
939 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
940 }
941 
942 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
943 			const struct sys_reg_desc *r)
944 {
945 	u64 val;
946 
947 	if (pmu_access_el0_disabled(vcpu))
948 		return false;
949 
950 	if (p->is_write) {
951 		/*
952 		 * Only update writeable bits of PMCR (continuing into
953 		 * kvm_pmu_handle_pmcr() as well)
954 		 */
955 		val = kvm_vcpu_read_pmcr(vcpu);
956 		val &= ~ARMV8_PMU_PMCR_MASK;
957 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
958 		if (!kvm_supports_32bit_el0())
959 			val |= ARMV8_PMU_PMCR_LC;
960 		kvm_pmu_handle_pmcr(vcpu, val);
961 	} else {
962 		/* PMCR.P & PMCR.C are RAZ */
963 		val = kvm_vcpu_read_pmcr(vcpu)
964 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
965 		p->regval = val;
966 	}
967 
968 	return true;
969 }
970 
971 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
972 			  const struct sys_reg_desc *r)
973 {
974 	if (pmu_access_event_counter_el0_disabled(vcpu))
975 		return false;
976 
977 	if (p->is_write)
978 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
979 	else
980 		/* return PMSELR.SEL field */
981 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
982 			    & ARMV8_PMU_COUNTER_MASK;
983 
984 	return true;
985 }
986 
987 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
988 			  const struct sys_reg_desc *r)
989 {
990 	u64 pmceid, mask, shift;
991 
992 	BUG_ON(p->is_write);
993 
994 	if (pmu_access_el0_disabled(vcpu))
995 		return false;
996 
997 	get_access_mask(r, &mask, &shift);
998 
999 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
1000 	pmceid &= mask;
1001 	pmceid >>= shift;
1002 
1003 	p->regval = pmceid;
1004 
1005 	return true;
1006 }
1007 
1008 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1009 {
1010 	u64 pmcr, val;
1011 
1012 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1013 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1014 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1015 		kvm_inject_undefined(vcpu);
1016 		return false;
1017 	}
1018 
1019 	return true;
1020 }
1021 
1022 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1023 			  u64 *val)
1024 {
1025 	u64 idx;
1026 
1027 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1028 		/* PMCCNTR_EL0 */
1029 		idx = ARMV8_PMU_CYCLE_IDX;
1030 	else
1031 		/* PMEVCNTRn_EL0 */
1032 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1033 
1034 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1035 	return 0;
1036 }
1037 
1038 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1039 			      struct sys_reg_params *p,
1040 			      const struct sys_reg_desc *r)
1041 {
1042 	u64 idx = ~0UL;
1043 
1044 	if (r->CRn == 9 && r->CRm == 13) {
1045 		if (r->Op2 == 2) {
1046 			/* PMXEVCNTR_EL0 */
1047 			if (pmu_access_event_counter_el0_disabled(vcpu))
1048 				return false;
1049 
1050 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1051 			      & ARMV8_PMU_COUNTER_MASK;
1052 		} else if (r->Op2 == 0) {
1053 			/* PMCCNTR_EL0 */
1054 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1055 				return false;
1056 
1057 			idx = ARMV8_PMU_CYCLE_IDX;
1058 		}
1059 	} else if (r->CRn == 0 && r->CRm == 9) {
1060 		/* PMCCNTR */
1061 		if (pmu_access_event_counter_el0_disabled(vcpu))
1062 			return false;
1063 
1064 		idx = ARMV8_PMU_CYCLE_IDX;
1065 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1066 		/* PMEVCNTRn_EL0 */
1067 		if (pmu_access_event_counter_el0_disabled(vcpu))
1068 			return false;
1069 
1070 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1071 	}
1072 
1073 	/* Catch any decoding mistake */
1074 	WARN_ON(idx == ~0UL);
1075 
1076 	if (!pmu_counter_idx_valid(vcpu, idx))
1077 		return false;
1078 
1079 	if (p->is_write) {
1080 		if (pmu_access_el0_disabled(vcpu))
1081 			return false;
1082 
1083 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1084 	} else {
1085 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1086 	}
1087 
1088 	return true;
1089 }
1090 
1091 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1092 			       const struct sys_reg_desc *r)
1093 {
1094 	u64 idx, reg;
1095 
1096 	if (pmu_access_el0_disabled(vcpu))
1097 		return false;
1098 
1099 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1100 		/* PMXEVTYPER_EL0 */
1101 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1102 		reg = PMEVTYPER0_EL0 + idx;
1103 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1104 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1105 		if (idx == ARMV8_PMU_CYCLE_IDX)
1106 			reg = PMCCFILTR_EL0;
1107 		else
1108 			/* PMEVTYPERn_EL0 */
1109 			reg = PMEVTYPER0_EL0 + idx;
1110 	} else {
1111 		BUG();
1112 	}
1113 
1114 	if (!pmu_counter_idx_valid(vcpu, idx))
1115 		return false;
1116 
1117 	if (p->is_write) {
1118 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1119 		kvm_vcpu_pmu_restore_guest(vcpu);
1120 	} else {
1121 		p->regval = __vcpu_sys_reg(vcpu, reg);
1122 	}
1123 
1124 	return true;
1125 }
1126 
1127 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1128 {
1129 	bool set;
1130 
1131 	val &= kvm_pmu_valid_counter_mask(vcpu);
1132 
1133 	switch (r->reg) {
1134 	case PMOVSSET_EL0:
1135 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1136 		set = r->CRm & 2;
1137 		break;
1138 	default:
1139 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1140 		set = r->Op2 & 1;
1141 		break;
1142 	}
1143 
1144 	if (set)
1145 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1146 	else
1147 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1148 
1149 	return 0;
1150 }
1151 
1152 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1153 {
1154 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1155 
1156 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1157 	return 0;
1158 }
1159 
1160 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1161 			   const struct sys_reg_desc *r)
1162 {
1163 	u64 val, mask;
1164 
1165 	if (pmu_access_el0_disabled(vcpu))
1166 		return false;
1167 
1168 	mask = kvm_pmu_valid_counter_mask(vcpu);
1169 	if (p->is_write) {
1170 		val = p->regval & mask;
1171 		if (r->Op2 & 0x1) {
1172 			/* accessing PMCNTENSET_EL0 */
1173 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1174 			kvm_pmu_enable_counter_mask(vcpu, val);
1175 			kvm_vcpu_pmu_restore_guest(vcpu);
1176 		} else {
1177 			/* accessing PMCNTENCLR_EL0 */
1178 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1179 			kvm_pmu_disable_counter_mask(vcpu, val);
1180 		}
1181 	} else {
1182 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1183 	}
1184 
1185 	return true;
1186 }
1187 
1188 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1189 			   const struct sys_reg_desc *r)
1190 {
1191 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1192 
1193 	if (check_pmu_access_disabled(vcpu, 0))
1194 		return false;
1195 
1196 	if (p->is_write) {
1197 		u64 val = p->regval & mask;
1198 
1199 		if (r->Op2 & 0x1)
1200 			/* accessing PMINTENSET_EL1 */
1201 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1202 		else
1203 			/* accessing PMINTENCLR_EL1 */
1204 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1205 	} else {
1206 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1207 	}
1208 
1209 	return true;
1210 }
1211 
1212 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1213 			 const struct sys_reg_desc *r)
1214 {
1215 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1216 
1217 	if (pmu_access_el0_disabled(vcpu))
1218 		return false;
1219 
1220 	if (p->is_write) {
1221 		if (r->CRm & 0x2)
1222 			/* accessing PMOVSSET_EL0 */
1223 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1224 		else
1225 			/* accessing PMOVSCLR_EL0 */
1226 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1227 	} else {
1228 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1229 	}
1230 
1231 	return true;
1232 }
1233 
1234 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1235 			   const struct sys_reg_desc *r)
1236 {
1237 	u64 mask;
1238 
1239 	if (!p->is_write)
1240 		return read_from_write_only(vcpu, p, r);
1241 
1242 	if (pmu_write_swinc_el0_disabled(vcpu))
1243 		return false;
1244 
1245 	mask = kvm_pmu_valid_counter_mask(vcpu);
1246 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1247 	return true;
1248 }
1249 
1250 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1251 			     const struct sys_reg_desc *r)
1252 {
1253 	if (p->is_write) {
1254 		if (!vcpu_mode_priv(vcpu)) {
1255 			kvm_inject_undefined(vcpu);
1256 			return false;
1257 		}
1258 
1259 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1260 			       p->regval & ARMV8_PMU_USERENR_MASK;
1261 	} else {
1262 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1263 			    & ARMV8_PMU_USERENR_MASK;
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270 		    u64 *val)
1271 {
1272 	*val = kvm_vcpu_read_pmcr(vcpu);
1273 	return 0;
1274 }
1275 
1276 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1277 		    u64 val)
1278 {
1279 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1280 	struct kvm *kvm = vcpu->kvm;
1281 
1282 	mutex_lock(&kvm->arch.config_lock);
1283 
1284 	/*
1285 	 * The vCPU can't have more counters than the PMU hardware
1286 	 * implements. Ignore this error to maintain compatibility
1287 	 * with the existing KVM behavior.
1288 	 */
1289 	if (!kvm_vm_has_ran_once(kvm) &&
1290 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1291 		kvm->arch.pmcr_n = new_n;
1292 
1293 	mutex_unlock(&kvm->arch.config_lock);
1294 
1295 	/*
1296 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1297 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1298 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1299 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1300 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1301 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1302 	 * if necessary).
1303 	 */
1304 	val &= ARMV8_PMU_PMCR_MASK;
1305 
1306 	/* The LC bit is RES1 when AArch32 is not supported */
1307 	if (!kvm_supports_32bit_el0())
1308 		val |= ARMV8_PMU_PMCR_LC;
1309 
1310 	__vcpu_sys_reg(vcpu, r->reg) = val;
1311 	return 0;
1312 }
1313 
1314 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1315 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1316 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1317 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1318 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1319 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1320 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1321 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1322 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1323 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1324 
1325 #define PMU_SYS_REG(name)						\
1326 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1327 	.visibility = pmu_visibility
1328 
1329 /* Macro to expand the PMEVCNTRn_EL0 register */
1330 #define PMU_PMEVCNTR_EL0(n)						\
1331 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1332 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1333 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1334 
1335 /* Macro to expand the PMEVTYPERn_EL0 register */
1336 #define PMU_PMEVTYPER_EL0(n)						\
1337 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1338 	  .reset = reset_pmevtyper,					\
1339 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1340 
1341 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1342 			 const struct sys_reg_desc *r)
1343 {
1344 	kvm_inject_undefined(vcpu);
1345 
1346 	return false;
1347 }
1348 
1349 /* Macro to expand the AMU counter and type registers*/
1350 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1351 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1352 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1353 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1354 
1355 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1356 			const struct sys_reg_desc *rd)
1357 {
1358 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1359 }
1360 
1361 /*
1362  * If we land here on a PtrAuth access, that is because we didn't
1363  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1364  * way this happens is when the guest does not have PtrAuth support
1365  * enabled.
1366  */
1367 #define __PTRAUTH_KEY(k)						\
1368 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1369 	.visibility = ptrauth_visibility}
1370 
1371 #define PTRAUTH_KEY(k)							\
1372 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1373 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1374 
1375 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1376 			      struct sys_reg_params *p,
1377 			      const struct sys_reg_desc *r)
1378 {
1379 	enum kvm_arch_timers tmr;
1380 	enum kvm_arch_timer_regs treg;
1381 	u64 reg = reg_to_encoding(r);
1382 
1383 	switch (reg) {
1384 	case SYS_CNTP_TVAL_EL0:
1385 	case SYS_AARCH32_CNTP_TVAL:
1386 		tmr = TIMER_PTIMER;
1387 		treg = TIMER_REG_TVAL;
1388 		break;
1389 	case SYS_CNTP_CTL_EL0:
1390 	case SYS_AARCH32_CNTP_CTL:
1391 		tmr = TIMER_PTIMER;
1392 		treg = TIMER_REG_CTL;
1393 		break;
1394 	case SYS_CNTP_CVAL_EL0:
1395 	case SYS_AARCH32_CNTP_CVAL:
1396 		tmr = TIMER_PTIMER;
1397 		treg = TIMER_REG_CVAL;
1398 		break;
1399 	case SYS_CNTPCT_EL0:
1400 	case SYS_CNTPCTSS_EL0:
1401 	case SYS_AARCH32_CNTPCT:
1402 		tmr = TIMER_PTIMER;
1403 		treg = TIMER_REG_CNT;
1404 		break;
1405 	default:
1406 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1407 		kvm_inject_undefined(vcpu);
1408 		return false;
1409 	}
1410 
1411 	if (p->is_write)
1412 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1413 	else
1414 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1415 
1416 	return true;
1417 }
1418 
1419 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1420 				    s64 new, s64 cur)
1421 {
1422 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1423 
1424 	/* Some features have different safe value type in KVM than host features */
1425 	switch (id) {
1426 	case SYS_ID_AA64DFR0_EL1:
1427 		switch (kvm_ftr.shift) {
1428 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1429 			kvm_ftr.type = FTR_LOWER_SAFE;
1430 			break;
1431 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1432 			kvm_ftr.type = FTR_LOWER_SAFE;
1433 			break;
1434 		}
1435 		break;
1436 	case SYS_ID_DFR0_EL1:
1437 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1438 			kvm_ftr.type = FTR_LOWER_SAFE;
1439 		break;
1440 	}
1441 
1442 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1443 }
1444 
1445 /*
1446  * arm64_check_features() - Check if a feature register value constitutes
1447  * a subset of features indicated by the idreg's KVM sanitised limit.
1448  *
1449  * This function will check if each feature field of @val is the "safe" value
1450  * against idreg's KVM sanitised limit return from reset() callback.
1451  * If a field value in @val is the same as the one in limit, it is always
1452  * considered the safe value regardless For register fields that are not in
1453  * writable, only the value in limit is considered the safe value.
1454  *
1455  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1456  */
1457 static int arm64_check_features(struct kvm_vcpu *vcpu,
1458 				const struct sys_reg_desc *rd,
1459 				u64 val)
1460 {
1461 	const struct arm64_ftr_reg *ftr_reg;
1462 	const struct arm64_ftr_bits *ftrp = NULL;
1463 	u32 id = reg_to_encoding(rd);
1464 	u64 writable_mask = rd->val;
1465 	u64 limit = rd->reset(vcpu, rd);
1466 	u64 mask = 0;
1467 
1468 	/*
1469 	 * Hidden and unallocated ID registers may not have a corresponding
1470 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1471 	 * only safe value is 0.
1472 	 */
1473 	if (sysreg_visible_as_raz(vcpu, rd))
1474 		return val ? -E2BIG : 0;
1475 
1476 	ftr_reg = get_arm64_ftr_reg(id);
1477 	if (!ftr_reg)
1478 		return -EINVAL;
1479 
1480 	ftrp = ftr_reg->ftr_bits;
1481 
1482 	for (; ftrp && ftrp->width; ftrp++) {
1483 		s64 f_val, f_lim, safe_val;
1484 		u64 ftr_mask;
1485 
1486 		ftr_mask = arm64_ftr_mask(ftrp);
1487 		if ((ftr_mask & writable_mask) != ftr_mask)
1488 			continue;
1489 
1490 		f_val = arm64_ftr_value(ftrp, val);
1491 		f_lim = arm64_ftr_value(ftrp, limit);
1492 		mask |= ftr_mask;
1493 
1494 		if (f_val == f_lim)
1495 			safe_val = f_val;
1496 		else
1497 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1498 
1499 		if (safe_val != f_val)
1500 			return -E2BIG;
1501 	}
1502 
1503 	/* For fields that are not writable, values in limit are the safe values. */
1504 	if ((val & ~mask) != (limit & ~mask))
1505 		return -E2BIG;
1506 
1507 	return 0;
1508 }
1509 
1510 static u8 pmuver_to_perfmon(u8 pmuver)
1511 {
1512 	switch (pmuver) {
1513 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1514 		return ID_DFR0_EL1_PerfMon_PMUv3;
1515 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1516 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1517 	default:
1518 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1519 		return pmuver;
1520 	}
1521 }
1522 
1523 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1524 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1525 				       const struct sys_reg_desc *r)
1526 {
1527 	u32 id = reg_to_encoding(r);
1528 	u64 val;
1529 
1530 	if (sysreg_visible_as_raz(vcpu, r))
1531 		return 0;
1532 
1533 	val = read_sanitised_ftr_reg(id);
1534 
1535 	switch (id) {
1536 	case SYS_ID_AA64PFR1_EL1:
1537 		if (!kvm_has_mte(vcpu->kvm))
1538 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1539 
1540 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1541 		break;
1542 	case SYS_ID_AA64ISAR1_EL1:
1543 		if (!vcpu_has_ptrauth(vcpu))
1544 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1545 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1546 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1547 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1548 		break;
1549 	case SYS_ID_AA64ISAR2_EL1:
1550 		if (!vcpu_has_ptrauth(vcpu))
1551 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1552 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1553 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1554 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1555 		break;
1556 	case SYS_ID_AA64MMFR2_EL1:
1557 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1558 		break;
1559 	case SYS_ID_MMFR4_EL1:
1560 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1561 		break;
1562 	}
1563 
1564 	return val;
1565 }
1566 
1567 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1568 				     const struct sys_reg_desc *r)
1569 {
1570 	return __kvm_read_sanitised_id_reg(vcpu, r);
1571 }
1572 
1573 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1574 {
1575 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1576 }
1577 
1578 static bool is_feature_id_reg(u32 encoding)
1579 {
1580 	return (sys_reg_Op0(encoding) == 3 &&
1581 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1582 		sys_reg_CRn(encoding) == 0 &&
1583 		sys_reg_CRm(encoding) <= 7);
1584 }
1585 
1586 /*
1587  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1588  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1589  * registers KVM maintains on a per-VM basis.
1590  */
1591 static inline bool is_vm_ftr_id_reg(u32 id)
1592 {
1593 	if (id == SYS_CTR_EL0)
1594 		return true;
1595 
1596 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1597 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1598 		sys_reg_CRm(id) < 8);
1599 }
1600 
1601 static inline bool is_vcpu_ftr_id_reg(u32 id)
1602 {
1603 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1604 }
1605 
1606 static inline bool is_aa32_id_reg(u32 id)
1607 {
1608 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1609 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1610 		sys_reg_CRm(id) <= 3);
1611 }
1612 
1613 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1614 				  const struct sys_reg_desc *r)
1615 {
1616 	u32 id = reg_to_encoding(r);
1617 
1618 	switch (id) {
1619 	case SYS_ID_AA64ZFR0_EL1:
1620 		if (!vcpu_has_sve(vcpu))
1621 			return REG_RAZ;
1622 		break;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1629 				       const struct sys_reg_desc *r)
1630 {
1631 	/*
1632 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1633 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1634 	 * systems.
1635 	 */
1636 	if (!kvm_supports_32bit_el0())
1637 		return REG_RAZ | REG_USER_WI;
1638 
1639 	return id_visibility(vcpu, r);
1640 }
1641 
1642 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1643 				   const struct sys_reg_desc *r)
1644 {
1645 	return REG_RAZ;
1646 }
1647 
1648 /* cpufeature ID register access trap handlers */
1649 
1650 static bool access_id_reg(struct kvm_vcpu *vcpu,
1651 			  struct sys_reg_params *p,
1652 			  const struct sys_reg_desc *r)
1653 {
1654 	if (p->is_write)
1655 		return write_to_read_only(vcpu, p, r);
1656 
1657 	p->regval = read_id_reg(vcpu, r);
1658 
1659 	return true;
1660 }
1661 
1662 /* Visibility overrides for SVE-specific control registers */
1663 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1664 				   const struct sys_reg_desc *rd)
1665 {
1666 	if (vcpu_has_sve(vcpu))
1667 		return 0;
1668 
1669 	return REG_HIDDEN;
1670 }
1671 
1672 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1673 					  const struct sys_reg_desc *rd)
1674 {
1675 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1676 
1677 	if (!vcpu_has_sve(vcpu))
1678 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1679 
1680 	/*
1681 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1682 	 * Although this is a per-CPU feature, we make it global because
1683 	 * asymmetric systems are just a nuisance.
1684 	 *
1685 	 * Userspace can override this as long as it doesn't promise
1686 	 * the impossible.
1687 	 */
1688 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1689 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1690 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1691 	}
1692 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1693 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1694 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1695 	}
1696 
1697 	if (kvm_vgic_global_state.type == VGIC_V3) {
1698 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1699 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1700 	}
1701 
1702 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1703 
1704 	return val;
1705 }
1706 
1707 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1708 ({									       \
1709 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1710 	(val) &= ~reg##_##field##_MASK;					       \
1711 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1712 			    min(__f_val,				       \
1713 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1714 	(val);								       \
1715 })
1716 
1717 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1718 					  const struct sys_reg_desc *rd)
1719 {
1720 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1721 
1722 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1723 
1724 	/*
1725 	 * Only initialize the PMU version if the vCPU was configured with one.
1726 	 */
1727 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1728 	if (kvm_vcpu_has_pmu(vcpu))
1729 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1730 				      kvm_arm_pmu_get_pmuver_limit());
1731 
1732 	/* Hide SPE from guests */
1733 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1734 
1735 	return val;
1736 }
1737 
1738 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1739 			       const struct sys_reg_desc *rd,
1740 			       u64 val)
1741 {
1742 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1743 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1744 
1745 	/*
1746 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1747 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1748 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1749 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1750 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1751 	 *
1752 	 * At minimum, we're on the hook to allow values that were given to
1753 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1754 	 * with a more sensible NI. The value of an ID register changing under
1755 	 * the nose of the guest is unfortunate, but is certainly no more
1756 	 * surprising than an ill-guided PMU driver poking at impdef system
1757 	 * registers that end in an UNDEF...
1758 	 */
1759 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1760 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1761 
1762 	/*
1763 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1764 	 * nonzero minimum safe value.
1765 	 */
1766 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1767 		return -EINVAL;
1768 
1769 	return set_id_reg(vcpu, rd, val);
1770 }
1771 
1772 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1773 				      const struct sys_reg_desc *rd)
1774 {
1775 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1776 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1777 
1778 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1779 	if (kvm_vcpu_has_pmu(vcpu))
1780 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1781 
1782 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1783 
1784 	return val;
1785 }
1786 
1787 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1788 			   const struct sys_reg_desc *rd,
1789 			   u64 val)
1790 {
1791 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1792 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1793 
1794 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1795 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1796 		perfmon = 0;
1797 	}
1798 
1799 	/*
1800 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1801 	 * it doesn't promise more than what the HW gives us on the
1802 	 * AArch64 side (as everything is emulated with that), and
1803 	 * that this is a PMUv3.
1804 	 */
1805 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1806 		return -EINVAL;
1807 
1808 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1809 		return -EINVAL;
1810 
1811 	return set_id_reg(vcpu, rd, val);
1812 }
1813 
1814 /*
1815  * cpufeature ID register user accessors
1816  *
1817  * For now, these registers are immutable for userspace, so no values
1818  * are stored, and for set_id_reg() we don't allow the effective value
1819  * to be changed.
1820  */
1821 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1822 		      u64 *val)
1823 {
1824 	/*
1825 	 * Avoid locking if the VM has already started, as the ID registers are
1826 	 * guaranteed to be invariant at that point.
1827 	 */
1828 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1829 		*val = read_id_reg(vcpu, rd);
1830 		return 0;
1831 	}
1832 
1833 	mutex_lock(&vcpu->kvm->arch.config_lock);
1834 	*val = read_id_reg(vcpu, rd);
1835 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1836 
1837 	return 0;
1838 }
1839 
1840 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1841 		      u64 val)
1842 {
1843 	u32 id = reg_to_encoding(rd);
1844 	int ret;
1845 
1846 	mutex_lock(&vcpu->kvm->arch.config_lock);
1847 
1848 	/*
1849 	 * Once the VM has started the ID registers are immutable. Reject any
1850 	 * write that does not match the final register value.
1851 	 */
1852 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1853 		if (val != read_id_reg(vcpu, rd))
1854 			ret = -EBUSY;
1855 		else
1856 			ret = 0;
1857 
1858 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1859 		return ret;
1860 	}
1861 
1862 	ret = arm64_check_features(vcpu, rd, val);
1863 	if (!ret)
1864 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
1865 
1866 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1867 
1868 	/*
1869 	 * arm64_check_features() returns -E2BIG to indicate the register's
1870 	 * feature set is a superset of the maximally-allowed register value.
1871 	 * While it would be nice to precisely describe this to userspace, the
1872 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1873 	 * writes return -EINVAL.
1874 	 */
1875 	if (ret == -E2BIG)
1876 		ret = -EINVAL;
1877 	return ret;
1878 }
1879 
1880 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
1881 {
1882 	u64 *p = __vm_id_reg(&kvm->arch, reg);
1883 
1884 	lockdep_assert_held(&kvm->arch.config_lock);
1885 
1886 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
1887 		return;
1888 
1889 	*p = val;
1890 }
1891 
1892 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1893 		       u64 *val)
1894 {
1895 	*val = 0;
1896 	return 0;
1897 }
1898 
1899 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1900 		      u64 val)
1901 {
1902 	return 0;
1903 }
1904 
1905 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1906 		       const struct sys_reg_desc *r)
1907 {
1908 	if (p->is_write)
1909 		return write_to_read_only(vcpu, p, r);
1910 
1911 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
1912 	return true;
1913 }
1914 
1915 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1916 			 const struct sys_reg_desc *r)
1917 {
1918 	if (p->is_write)
1919 		return write_to_read_only(vcpu, p, r);
1920 
1921 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1922 	return true;
1923 }
1924 
1925 /*
1926  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1927  * by the physical CPU which the vcpu currently resides in.
1928  */
1929 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1930 {
1931 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1932 	u64 clidr;
1933 	u8 loc;
1934 
1935 	if ((ctr_el0 & CTR_EL0_IDC)) {
1936 		/*
1937 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1938 		 * will not be set and a unified cache, which will be marked as
1939 		 * LoC, will be added.
1940 		 *
1941 		 * If not DIC, let the unified cache L2 so that an instruction
1942 		 * cache can be added as L1 later.
1943 		 */
1944 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1945 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1946 	} else {
1947 		/*
1948 		 * Data cache clean to the PoU is required so let L1 have a data
1949 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1950 		 * it can be marked as LoC too.
1951 		 */
1952 		loc = 1;
1953 		clidr = 1 << CLIDR_LOUU_SHIFT;
1954 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1955 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1956 	}
1957 
1958 	/*
1959 	 * Instruction cache invalidation to the PoU is required so let L1 have
1960 	 * an instruction cache. If L1 already has a data cache, it will be
1961 	 * CACHE_TYPE_SEPARATE.
1962 	 */
1963 	if (!(ctr_el0 & CTR_EL0_DIC))
1964 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1965 
1966 	clidr |= loc << CLIDR_LOC_SHIFT;
1967 
1968 	/*
1969 	 * Add tag cache unified to data cache. Allocation tags and data are
1970 	 * unified in a cache line so that it looks valid even if there is only
1971 	 * one cache line.
1972 	 */
1973 	if (kvm_has_mte(vcpu->kvm))
1974 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1975 
1976 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1977 
1978 	return __vcpu_sys_reg(vcpu, r->reg);
1979 }
1980 
1981 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1982 		      u64 val)
1983 {
1984 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1985 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1986 
1987 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1988 		return -EINVAL;
1989 
1990 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1991 
1992 	return 0;
1993 }
1994 
1995 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1996 			  const struct sys_reg_desc *r)
1997 {
1998 	int reg = r->reg;
1999 
2000 	if (p->is_write)
2001 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2002 	else
2003 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2004 	return true;
2005 }
2006 
2007 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2008 			  const struct sys_reg_desc *r)
2009 {
2010 	u32 csselr;
2011 
2012 	if (p->is_write)
2013 		return write_to_read_only(vcpu, p, r);
2014 
2015 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2016 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2017 	if (csselr < CSSELR_MAX)
2018 		p->regval = get_ccsidr(vcpu, csselr);
2019 
2020 	return true;
2021 }
2022 
2023 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2024 				   const struct sys_reg_desc *rd)
2025 {
2026 	if (kvm_has_mte(vcpu->kvm))
2027 		return 0;
2028 
2029 	return REG_HIDDEN;
2030 }
2031 
2032 #define MTE_REG(name) {				\
2033 	SYS_DESC(SYS_##name),			\
2034 	.access = undef_access,			\
2035 	.reset = reset_unknown,			\
2036 	.reg = name,				\
2037 	.visibility = mte_visibility,		\
2038 }
2039 
2040 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2041 				   const struct sys_reg_desc *rd)
2042 {
2043 	if (vcpu_has_nv(vcpu))
2044 		return 0;
2045 
2046 	return REG_HIDDEN;
2047 }
2048 
2049 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2050 			  struct sys_reg_params *p,
2051 			  const struct sys_reg_desc *r)
2052 {
2053 	/*
2054 	 * We really shouldn't be here, and this is likely the result
2055 	 * of a misconfigured trap, as this register should target the
2056 	 * VNCR page, and nothing else.
2057 	 */
2058 	return bad_trap(vcpu, p, r,
2059 			"trap of VNCR-backed register");
2060 }
2061 
2062 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2063 			   struct sys_reg_params *p,
2064 			   const struct sys_reg_desc *r)
2065 {
2066 	/*
2067 	 * We really shouldn't be here, and this is likely the result
2068 	 * of a misconfigured trap, as this register should target the
2069 	 * corresponding EL1, and nothing else.
2070 	 */
2071 	return bad_trap(vcpu, p, r,
2072 			"trap of EL2 register redirected to EL1");
2073 }
2074 
2075 #define EL2_REG(name, acc, rst, v) {		\
2076 	SYS_DESC(SYS_##name),			\
2077 	.access = acc,				\
2078 	.reset = rst,				\
2079 	.reg = name,				\
2080 	.visibility = el2_visibility,		\
2081 	.val = v,				\
2082 }
2083 
2084 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2085 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2086 
2087 /*
2088  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2089  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2090  * handling traps. Given that, they are always hidden from userspace.
2091  */
2092 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2093 					   const struct sys_reg_desc *rd)
2094 {
2095 	return REG_HIDDEN_USER;
2096 }
2097 
2098 #define EL12_REG(name, acc, rst, v) {		\
2099 	SYS_DESC(SYS_##name##_EL12),		\
2100 	.access = acc,				\
2101 	.reset = rst,				\
2102 	.reg = name##_EL1,			\
2103 	.val = v,				\
2104 	.visibility = hidden_user_visibility,	\
2105 }
2106 
2107 /*
2108  * Since reset() callback and field val are not used for idregs, they will be
2109  * used for specific purposes for idregs.
2110  * The reset() would return KVM sanitised register value. The value would be the
2111  * same as the host kernel sanitised value if there is no KVM sanitisation.
2112  * The val would be used as a mask indicating writable fields for the idreg.
2113  * Only bits with 1 are writable from userspace. This mask might not be
2114  * necessary in the future whenever all ID registers are enabled as writable
2115  * from userspace.
2116  */
2117 
2118 #define ID_DESC(name)				\
2119 	SYS_DESC(SYS_##name),			\
2120 	.access	= access_id_reg,		\
2121 	.get_user = get_id_reg			\
2122 
2123 /* sys_reg_desc initialiser for known cpufeature ID registers */
2124 #define ID_SANITISED(name) {			\
2125 	ID_DESC(name),				\
2126 	.set_user = set_id_reg,			\
2127 	.visibility = id_visibility,		\
2128 	.reset = kvm_read_sanitised_id_reg,	\
2129 	.val = 0,				\
2130 }
2131 
2132 /* sys_reg_desc initialiser for known cpufeature ID registers */
2133 #define AA32_ID_SANITISED(name) {		\
2134 	ID_DESC(name),				\
2135 	.set_user = set_id_reg,			\
2136 	.visibility = aa32_id_visibility,	\
2137 	.reset = kvm_read_sanitised_id_reg,	\
2138 	.val = 0,				\
2139 }
2140 
2141 /* sys_reg_desc initialiser for writable ID registers */
2142 #define ID_WRITABLE(name, mask) {		\
2143 	ID_DESC(name),				\
2144 	.set_user = set_id_reg,			\
2145 	.visibility = id_visibility,		\
2146 	.reset = kvm_read_sanitised_id_reg,	\
2147 	.val = mask,				\
2148 }
2149 
2150 /*
2151  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2152  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2153  * (1 <= crm < 8, 0 <= Op2 < 8).
2154  */
2155 #define ID_UNALLOCATED(crm, op2) {			\
2156 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2157 	.access = access_id_reg,			\
2158 	.get_user = get_id_reg,				\
2159 	.set_user = set_id_reg,				\
2160 	.visibility = raz_visibility,			\
2161 	.reset = kvm_read_sanitised_id_reg,		\
2162 	.val = 0,					\
2163 }
2164 
2165 /*
2166  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2167  * For now, these are exposed just like unallocated ID regs: they appear
2168  * RAZ for the guest.
2169  */
2170 #define ID_HIDDEN(name) {			\
2171 	ID_DESC(name),				\
2172 	.set_user = set_id_reg,			\
2173 	.visibility = raz_visibility,		\
2174 	.reset = kvm_read_sanitised_id_reg,	\
2175 	.val = 0,				\
2176 }
2177 
2178 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2179 			  struct sys_reg_params *p,
2180 			  const struct sys_reg_desc *r)
2181 {
2182 	if (p->is_write)
2183 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2184 	else
2185 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2186 
2187 	return true;
2188 }
2189 
2190 static bool access_elr(struct kvm_vcpu *vcpu,
2191 		       struct sys_reg_params *p,
2192 		       const struct sys_reg_desc *r)
2193 {
2194 	if (p->is_write)
2195 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2196 	else
2197 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2198 
2199 	return true;
2200 }
2201 
2202 static bool access_spsr(struct kvm_vcpu *vcpu,
2203 			struct sys_reg_params *p,
2204 			const struct sys_reg_desc *r)
2205 {
2206 	if (p->is_write)
2207 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2208 	else
2209 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2210 
2211 	return true;
2212 }
2213 
2214 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2215 {
2216 	u64 val = r->val;
2217 
2218 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2219 		val |= HCR_E2H;
2220 
2221 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2222 }
2223 
2224 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2225 				       const struct sys_reg_desc *rd)
2226 {
2227 	unsigned int r;
2228 
2229 	r = el2_visibility(vcpu, rd);
2230 	if (r)
2231 		return r;
2232 
2233 	return sve_visibility(vcpu, rd);
2234 }
2235 
2236 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2237 			   struct sys_reg_params *p,
2238 			   const struct sys_reg_desc *r)
2239 {
2240 	unsigned int vq;
2241 
2242 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2243 		kvm_inject_nested_sve_trap(vcpu);
2244 		return true;
2245 	}
2246 
2247 	if (!p->is_write) {
2248 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2249 		return true;
2250 	}
2251 
2252 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2253 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2254 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2255 	return true;
2256 }
2257 
2258 /*
2259  * Architected system registers.
2260  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2261  *
2262  * Debug handling: We do trap most, if not all debug related system
2263  * registers. The implementation is good enough to ensure that a guest
2264  * can use these with minimal performance degradation. The drawback is
2265  * that we don't implement any of the external debug architecture.
2266  * This should be revisited if we ever encounter a more demanding
2267  * guest...
2268  */
2269 static const struct sys_reg_desc sys_reg_descs[] = {
2270 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2271 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2272 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2273 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2274 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2275 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2276 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2277 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2278 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2279 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2280 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2281 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2282 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2283 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2284 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2285 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2286 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2287 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2288 
2289 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2290 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2291 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2292 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2293 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2294 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2295 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2296 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2297 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2298 
2299 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2300 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2301 	// DBGDTR[TR]X_EL0 share the same encoding
2302 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2303 
2304 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2305 
2306 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2307 
2308 	/*
2309 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2310 	 * entries in arm64_ftr_regs[].
2311 	 */
2312 
2313 	/* AArch64 mappings of the AArch32 ID registers */
2314 	/* CRm=1 */
2315 	AA32_ID_SANITISED(ID_PFR0_EL1),
2316 	AA32_ID_SANITISED(ID_PFR1_EL1),
2317 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2318 	  .access = access_id_reg,
2319 	  .get_user = get_id_reg,
2320 	  .set_user = set_id_dfr0_el1,
2321 	  .visibility = aa32_id_visibility,
2322 	  .reset = read_sanitised_id_dfr0_el1,
2323 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2324 		 ID_DFR0_EL1_CopDbg_MASK, },
2325 	ID_HIDDEN(ID_AFR0_EL1),
2326 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2327 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2328 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2329 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2330 
2331 	/* CRm=2 */
2332 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2333 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2334 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2335 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2336 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2337 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2338 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2339 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2340 
2341 	/* CRm=3 */
2342 	AA32_ID_SANITISED(MVFR0_EL1),
2343 	AA32_ID_SANITISED(MVFR1_EL1),
2344 	AA32_ID_SANITISED(MVFR2_EL1),
2345 	ID_UNALLOCATED(3,3),
2346 	AA32_ID_SANITISED(ID_PFR2_EL1),
2347 	ID_HIDDEN(ID_DFR1_EL1),
2348 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2349 	ID_UNALLOCATED(3,7),
2350 
2351 	/* AArch64 ID registers */
2352 	/* CRm=4 */
2353 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2354 	  .access = access_id_reg,
2355 	  .get_user = get_id_reg,
2356 	  .set_user = set_id_reg,
2357 	  .reset = read_sanitised_id_aa64pfr0_el1,
2358 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2359 		   ID_AA64PFR0_EL1_MPAM |
2360 		   ID_AA64PFR0_EL1_SVE |
2361 		   ID_AA64PFR0_EL1_RAS |
2362 		   ID_AA64PFR0_EL1_GIC |
2363 		   ID_AA64PFR0_EL1_AdvSIMD |
2364 		   ID_AA64PFR0_EL1_FP), },
2365 	ID_SANITISED(ID_AA64PFR1_EL1),
2366 	ID_UNALLOCATED(4,2),
2367 	ID_UNALLOCATED(4,3),
2368 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2369 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2370 	ID_UNALLOCATED(4,6),
2371 	ID_UNALLOCATED(4,7),
2372 
2373 	/* CRm=5 */
2374 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2375 	  .access = access_id_reg,
2376 	  .get_user = get_id_reg,
2377 	  .set_user = set_id_aa64dfr0_el1,
2378 	  .reset = read_sanitised_id_aa64dfr0_el1,
2379 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2380 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2381 	ID_SANITISED(ID_AA64DFR1_EL1),
2382 	ID_UNALLOCATED(5,2),
2383 	ID_UNALLOCATED(5,3),
2384 	ID_HIDDEN(ID_AA64AFR0_EL1),
2385 	ID_HIDDEN(ID_AA64AFR1_EL1),
2386 	ID_UNALLOCATED(5,6),
2387 	ID_UNALLOCATED(5,7),
2388 
2389 	/* CRm=6 */
2390 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2391 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2392 					ID_AA64ISAR1_EL1_GPA |
2393 					ID_AA64ISAR1_EL1_API |
2394 					ID_AA64ISAR1_EL1_APA)),
2395 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2396 					ID_AA64ISAR2_EL1_APA3 |
2397 					ID_AA64ISAR2_EL1_GPA3)),
2398 	ID_UNALLOCATED(6,3),
2399 	ID_UNALLOCATED(6,4),
2400 	ID_UNALLOCATED(6,5),
2401 	ID_UNALLOCATED(6,6),
2402 	ID_UNALLOCATED(6,7),
2403 
2404 	/* CRm=7 */
2405 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2406 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2407 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2408 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2409 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2410 					ID_AA64MMFR1_EL1_HCX |
2411 					ID_AA64MMFR1_EL1_TWED |
2412 					ID_AA64MMFR1_EL1_XNX |
2413 					ID_AA64MMFR1_EL1_VH |
2414 					ID_AA64MMFR1_EL1_VMIDBits)),
2415 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2416 					ID_AA64MMFR2_EL1_EVT |
2417 					ID_AA64MMFR2_EL1_FWB |
2418 					ID_AA64MMFR2_EL1_IDS |
2419 					ID_AA64MMFR2_EL1_NV |
2420 					ID_AA64MMFR2_EL1_CCIDX)),
2421 	ID_SANITISED(ID_AA64MMFR3_EL1),
2422 	ID_SANITISED(ID_AA64MMFR4_EL1),
2423 	ID_UNALLOCATED(7,5),
2424 	ID_UNALLOCATED(7,6),
2425 	ID_UNALLOCATED(7,7),
2426 
2427 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2428 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2429 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2430 
2431 	MTE_REG(RGSR_EL1),
2432 	MTE_REG(GCR_EL1),
2433 
2434 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2435 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2436 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2437 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2438 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2439 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2440 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2441 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2442 
2443 	PTRAUTH_KEY(APIA),
2444 	PTRAUTH_KEY(APIB),
2445 	PTRAUTH_KEY(APDA),
2446 	PTRAUTH_KEY(APDB),
2447 	PTRAUTH_KEY(APGA),
2448 
2449 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2450 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2451 
2452 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2453 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2454 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2455 
2456 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2457 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2458 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2459 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2460 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2461 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2462 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2463 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2464 
2465 	MTE_REG(TFSR_EL1),
2466 	MTE_REG(TFSRE0_EL1),
2467 
2468 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2469 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2470 
2471 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2472 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2473 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2474 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2475 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2476 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2477 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2478 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2479 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2480 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2481 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2482 	/* PMBIDR_EL1 is not trapped */
2483 
2484 	{ PMU_SYS_REG(PMINTENSET_EL1),
2485 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2486 	  .get_user = get_pmreg, .set_user = set_pmreg },
2487 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2488 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2489 	  .get_user = get_pmreg, .set_user = set_pmreg },
2490 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2491 
2492 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2493 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2494 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2495 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2496 
2497 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2498 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2499 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2500 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2501 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2502 
2503 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2504 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2505 
2506 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2507 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2508 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2509 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2510 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2511 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2512 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2513 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2514 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2515 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2516 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2517 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2518 
2519 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2520 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2521 
2522 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2523 
2524 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2525 
2526 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2527 
2528 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2529 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2530 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
2531 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2532 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2533 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2534 	ID_WRITABLE(CTR_EL0, CTR_EL0_DIC_MASK |
2535 			     CTR_EL0_IDC_MASK |
2536 			     CTR_EL0_DminLine_MASK |
2537 			     CTR_EL0_IminLine_MASK),
2538 	{ SYS_DESC(SYS_SVCR), undef_access },
2539 
2540 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2541 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2542 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2543 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2544 	  .get_user = get_pmreg, .set_user = set_pmreg },
2545 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2546 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2547 	  .get_user = get_pmreg, .set_user = set_pmreg },
2548 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2549 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2550 	  .get_user = get_pmreg, .set_user = set_pmreg },
2551 	/*
2552 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2553 	 * previously (and pointlessly) advertised in the past...
2554 	 */
2555 	{ PMU_SYS_REG(PMSWINC_EL0),
2556 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2557 	  .access = access_pmswinc, .reset = NULL },
2558 	{ PMU_SYS_REG(PMSELR_EL0),
2559 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2560 	{ PMU_SYS_REG(PMCEID0_EL0),
2561 	  .access = access_pmceid, .reset = NULL },
2562 	{ PMU_SYS_REG(PMCEID1_EL0),
2563 	  .access = access_pmceid, .reset = NULL },
2564 	{ PMU_SYS_REG(PMCCNTR_EL0),
2565 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2566 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2567 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2568 	  .access = access_pmu_evtyper, .reset = NULL },
2569 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2570 	  .access = access_pmu_evcntr, .reset = NULL },
2571 	/*
2572 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2573 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2574 	 */
2575 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2576 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2577 	{ PMU_SYS_REG(PMOVSSET_EL0),
2578 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2579 	  .get_user = get_pmreg, .set_user = set_pmreg },
2580 
2581 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2582 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2583 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2584 
2585 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2586 
2587 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2588 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2589 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2590 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2591 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2592 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2593 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2594 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2595 	AMU_AMEVCNTR0_EL0(0),
2596 	AMU_AMEVCNTR0_EL0(1),
2597 	AMU_AMEVCNTR0_EL0(2),
2598 	AMU_AMEVCNTR0_EL0(3),
2599 	AMU_AMEVCNTR0_EL0(4),
2600 	AMU_AMEVCNTR0_EL0(5),
2601 	AMU_AMEVCNTR0_EL0(6),
2602 	AMU_AMEVCNTR0_EL0(7),
2603 	AMU_AMEVCNTR0_EL0(8),
2604 	AMU_AMEVCNTR0_EL0(9),
2605 	AMU_AMEVCNTR0_EL0(10),
2606 	AMU_AMEVCNTR0_EL0(11),
2607 	AMU_AMEVCNTR0_EL0(12),
2608 	AMU_AMEVCNTR0_EL0(13),
2609 	AMU_AMEVCNTR0_EL0(14),
2610 	AMU_AMEVCNTR0_EL0(15),
2611 	AMU_AMEVTYPER0_EL0(0),
2612 	AMU_AMEVTYPER0_EL0(1),
2613 	AMU_AMEVTYPER0_EL0(2),
2614 	AMU_AMEVTYPER0_EL0(3),
2615 	AMU_AMEVTYPER0_EL0(4),
2616 	AMU_AMEVTYPER0_EL0(5),
2617 	AMU_AMEVTYPER0_EL0(6),
2618 	AMU_AMEVTYPER0_EL0(7),
2619 	AMU_AMEVTYPER0_EL0(8),
2620 	AMU_AMEVTYPER0_EL0(9),
2621 	AMU_AMEVTYPER0_EL0(10),
2622 	AMU_AMEVTYPER0_EL0(11),
2623 	AMU_AMEVTYPER0_EL0(12),
2624 	AMU_AMEVTYPER0_EL0(13),
2625 	AMU_AMEVTYPER0_EL0(14),
2626 	AMU_AMEVTYPER0_EL0(15),
2627 	AMU_AMEVCNTR1_EL0(0),
2628 	AMU_AMEVCNTR1_EL0(1),
2629 	AMU_AMEVCNTR1_EL0(2),
2630 	AMU_AMEVCNTR1_EL0(3),
2631 	AMU_AMEVCNTR1_EL0(4),
2632 	AMU_AMEVCNTR1_EL0(5),
2633 	AMU_AMEVCNTR1_EL0(6),
2634 	AMU_AMEVCNTR1_EL0(7),
2635 	AMU_AMEVCNTR1_EL0(8),
2636 	AMU_AMEVCNTR1_EL0(9),
2637 	AMU_AMEVCNTR1_EL0(10),
2638 	AMU_AMEVCNTR1_EL0(11),
2639 	AMU_AMEVCNTR1_EL0(12),
2640 	AMU_AMEVCNTR1_EL0(13),
2641 	AMU_AMEVCNTR1_EL0(14),
2642 	AMU_AMEVCNTR1_EL0(15),
2643 	AMU_AMEVTYPER1_EL0(0),
2644 	AMU_AMEVTYPER1_EL0(1),
2645 	AMU_AMEVTYPER1_EL0(2),
2646 	AMU_AMEVTYPER1_EL0(3),
2647 	AMU_AMEVTYPER1_EL0(4),
2648 	AMU_AMEVTYPER1_EL0(5),
2649 	AMU_AMEVTYPER1_EL0(6),
2650 	AMU_AMEVTYPER1_EL0(7),
2651 	AMU_AMEVTYPER1_EL0(8),
2652 	AMU_AMEVTYPER1_EL0(9),
2653 	AMU_AMEVTYPER1_EL0(10),
2654 	AMU_AMEVTYPER1_EL0(11),
2655 	AMU_AMEVTYPER1_EL0(12),
2656 	AMU_AMEVTYPER1_EL0(13),
2657 	AMU_AMEVTYPER1_EL0(14),
2658 	AMU_AMEVTYPER1_EL0(15),
2659 
2660 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2661 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2662 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2663 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2664 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2665 
2666 	/* PMEVCNTRn_EL0 */
2667 	PMU_PMEVCNTR_EL0(0),
2668 	PMU_PMEVCNTR_EL0(1),
2669 	PMU_PMEVCNTR_EL0(2),
2670 	PMU_PMEVCNTR_EL0(3),
2671 	PMU_PMEVCNTR_EL0(4),
2672 	PMU_PMEVCNTR_EL0(5),
2673 	PMU_PMEVCNTR_EL0(6),
2674 	PMU_PMEVCNTR_EL0(7),
2675 	PMU_PMEVCNTR_EL0(8),
2676 	PMU_PMEVCNTR_EL0(9),
2677 	PMU_PMEVCNTR_EL0(10),
2678 	PMU_PMEVCNTR_EL0(11),
2679 	PMU_PMEVCNTR_EL0(12),
2680 	PMU_PMEVCNTR_EL0(13),
2681 	PMU_PMEVCNTR_EL0(14),
2682 	PMU_PMEVCNTR_EL0(15),
2683 	PMU_PMEVCNTR_EL0(16),
2684 	PMU_PMEVCNTR_EL0(17),
2685 	PMU_PMEVCNTR_EL0(18),
2686 	PMU_PMEVCNTR_EL0(19),
2687 	PMU_PMEVCNTR_EL0(20),
2688 	PMU_PMEVCNTR_EL0(21),
2689 	PMU_PMEVCNTR_EL0(22),
2690 	PMU_PMEVCNTR_EL0(23),
2691 	PMU_PMEVCNTR_EL0(24),
2692 	PMU_PMEVCNTR_EL0(25),
2693 	PMU_PMEVCNTR_EL0(26),
2694 	PMU_PMEVCNTR_EL0(27),
2695 	PMU_PMEVCNTR_EL0(28),
2696 	PMU_PMEVCNTR_EL0(29),
2697 	PMU_PMEVCNTR_EL0(30),
2698 	/* PMEVTYPERn_EL0 */
2699 	PMU_PMEVTYPER_EL0(0),
2700 	PMU_PMEVTYPER_EL0(1),
2701 	PMU_PMEVTYPER_EL0(2),
2702 	PMU_PMEVTYPER_EL0(3),
2703 	PMU_PMEVTYPER_EL0(4),
2704 	PMU_PMEVTYPER_EL0(5),
2705 	PMU_PMEVTYPER_EL0(6),
2706 	PMU_PMEVTYPER_EL0(7),
2707 	PMU_PMEVTYPER_EL0(8),
2708 	PMU_PMEVTYPER_EL0(9),
2709 	PMU_PMEVTYPER_EL0(10),
2710 	PMU_PMEVTYPER_EL0(11),
2711 	PMU_PMEVTYPER_EL0(12),
2712 	PMU_PMEVTYPER_EL0(13),
2713 	PMU_PMEVTYPER_EL0(14),
2714 	PMU_PMEVTYPER_EL0(15),
2715 	PMU_PMEVTYPER_EL0(16),
2716 	PMU_PMEVTYPER_EL0(17),
2717 	PMU_PMEVTYPER_EL0(18),
2718 	PMU_PMEVTYPER_EL0(19),
2719 	PMU_PMEVTYPER_EL0(20),
2720 	PMU_PMEVTYPER_EL0(21),
2721 	PMU_PMEVTYPER_EL0(22),
2722 	PMU_PMEVTYPER_EL0(23),
2723 	PMU_PMEVTYPER_EL0(24),
2724 	PMU_PMEVTYPER_EL0(25),
2725 	PMU_PMEVTYPER_EL0(26),
2726 	PMU_PMEVTYPER_EL0(27),
2727 	PMU_PMEVTYPER_EL0(28),
2728 	PMU_PMEVTYPER_EL0(29),
2729 	PMU_PMEVTYPER_EL0(30),
2730 	/*
2731 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2732 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2733 	 */
2734 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2735 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2736 
2737 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2738 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2739 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2740 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2741 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2742 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2743 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2744 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2745 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2746 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2747 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2748 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2749 
2750 	{ SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val,
2751 	  .visibility = sve_el2_visibility, .reg = ZCR_EL2 },
2752 
2753 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2754 
2755 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2756 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2757 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2758 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2759 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2760 
2761 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2762 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2763 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2764 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2765 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2766 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2767 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2768 
2769 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2770 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2771 	  .visibility = hidden_user_visibility },
2772 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2773 	  .visibility = hidden_user_visibility },
2774 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2775 	  .visibility = hidden_user_visibility },
2776 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2777 	  .visibility = hidden_user_visibility },
2778 
2779 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2780 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2781 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2782 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2783 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2784 
2785 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2786 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2787 
2788 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2789 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2790 
2791 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2792 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2793 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2794 
2795 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2796 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2797 
2798 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2799 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2800 
2801 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2802 
2803 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2804 };
2805 
2806 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
2807 {
2808 	struct kvm *kvm = vpcu->kvm;
2809 	u8 CRm = sys_reg_CRm(instr);
2810 
2811 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2812 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2813 		return false;
2814 
2815 	if (CRm == TLBI_CRm_nROS &&
2816 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2817 		return false;
2818 
2819 	return true;
2820 }
2821 
2822 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2823 			   const struct sys_reg_desc *r)
2824 {
2825 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2826 
2827 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
2828 		kvm_inject_undefined(vcpu);
2829 		return false;
2830 	}
2831 
2832 	write_lock(&vcpu->kvm->mmu_lock);
2833 
2834 	/*
2835 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
2836 	 * corresponding VMIDs.
2837 	 */
2838 	kvm_nested_s2_unmap(vcpu->kvm);
2839 
2840 	write_unlock(&vcpu->kvm->mmu_lock);
2841 
2842 	return true;
2843 }
2844 
2845 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
2846 {
2847 	struct kvm *kvm = vpcu->kvm;
2848 	u8 CRm = sys_reg_CRm(instr);
2849 	u8 Op2 = sys_reg_Op2(instr);
2850 
2851 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2852 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2853 		return false;
2854 
2855 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
2856 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2857 		return false;
2858 
2859 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
2860 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2861 		return false;
2862 
2863 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
2864 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2865 		return false;
2866 
2867 	return true;
2868 }
2869 
2870 /* Only defined here as this is an internal "abstraction" */
2871 union tlbi_info {
2872 	struct {
2873 		u64	start;
2874 		u64	size;
2875 	} range;
2876 
2877 	struct {
2878 		u64	addr;
2879 	} ipa;
2880 
2881 	struct {
2882 		u64	addr;
2883 		u32	encoding;
2884 	} va;
2885 };
2886 
2887 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
2888 			       const union tlbi_info *info)
2889 {
2890 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size);
2891 }
2892 
2893 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2894 				const struct sys_reg_desc *r)
2895 {
2896 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2897 	u64 limit, vttbr;
2898 
2899 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
2900 		kvm_inject_undefined(vcpu);
2901 		return false;
2902 	}
2903 
2904 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
2905 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
2906 
2907 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
2908 				   &(union tlbi_info) {
2909 					   .range = {
2910 						   .start = 0,
2911 						   .size = limit,
2912 					   },
2913 				   },
2914 				   s2_mmu_unmap_range);
2915 
2916 	return true;
2917 }
2918 
2919 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2920 			      const struct sys_reg_desc *r)
2921 {
2922 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2923 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
2924 	u64 base, range, tg, num, scale;
2925 	int shift;
2926 
2927 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
2928 		kvm_inject_undefined(vcpu);
2929 		return false;
2930 	}
2931 
2932 	/*
2933 	 * Because the shadow S2 structure doesn't necessarily reflect that
2934 	 * of the guest's S2 (different base granule size, for example), we
2935 	 * decide to ignore TTL and only use the described range.
2936 	 */
2937 	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
2938 	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
2939 	num	= FIELD_GET(GENMASK(43, 39), p->regval);
2940 	base	= p->regval & GENMASK(36, 0);
2941 
2942 	switch(tg) {
2943 	case 1:
2944 		shift = 12;
2945 		break;
2946 	case 2:
2947 		shift = 14;
2948 		break;
2949 	case 3:
2950 	default:		/* IMPDEF: handle tg==0 as 64k */
2951 		shift = 16;
2952 		break;
2953 	}
2954 
2955 	base <<= shift;
2956 	range = __TLBI_RANGE_PAGES(num, scale) << shift;
2957 
2958 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
2959 				   &(union tlbi_info) {
2960 					   .range = {
2961 						   .start = base,
2962 						   .size = range,
2963 					   },
2964 				   },
2965 				   s2_mmu_unmap_range);
2966 
2967 	return true;
2968 }
2969 
2970 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
2971 			     const union tlbi_info *info)
2972 {
2973 	unsigned long max_size;
2974 	u64 base_addr;
2975 
2976 	/*
2977 	 * We drop a number of things from the supplied value:
2978 	 *
2979 	 * - NS bit: we're non-secure only.
2980 	 *
2981 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
2982 	 *
2983 	 * And of course, adjust the IPA to be on an actual address.
2984 	 */
2985 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
2986 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
2987 	base_addr &= ~(max_size - 1);
2988 
2989 	kvm_stage2_unmap_range(mmu, base_addr, max_size);
2990 }
2991 
2992 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2993 			     const struct sys_reg_desc *r)
2994 {
2995 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2996 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
2997 
2998 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
2999 		kvm_inject_undefined(vcpu);
3000 		return false;
3001 	}
3002 
3003 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3004 				   &(union tlbi_info) {
3005 					   .ipa = {
3006 						   .addr = p->regval,
3007 					   },
3008 				   },
3009 				   s2_mmu_unmap_ipa);
3010 
3011 	return true;
3012 }
3013 
3014 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3015 			     const union tlbi_info *info)
3016 {
3017 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3018 }
3019 
3020 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3021 			    const struct sys_reg_desc *r)
3022 {
3023 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3024 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3025 
3026 	/*
3027 	 * If we're here, this is because we've trapped on a EL1 TLBI
3028 	 * instruction that affects the EL1 translation regime while
3029 	 * we're running in a context that doesn't allow us to let the
3030 	 * HW do its thing (aka vEL2):
3031 	 *
3032 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3033 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3034 	 *
3035 	 * We don't expect these helpers to ever be called when running
3036 	 * in a vEL1 context.
3037 	 */
3038 
3039 	WARN_ON(!vcpu_is_el2(vcpu));
3040 
3041 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) {
3042 		kvm_inject_undefined(vcpu);
3043 		return false;
3044 	}
3045 
3046 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3047 				   &(union tlbi_info) {
3048 					   .va = {
3049 						   .addr = p->regval,
3050 						   .encoding = sys_encoding,
3051 					   },
3052 				   },
3053 				   s2_mmu_tlbi_s1e1);
3054 
3055 	return true;
3056 }
3057 
3058 #define SYS_INSN(insn, access_fn)					\
3059 	{								\
3060 		SYS_DESC(OP_##insn),					\
3061 		.access = (access_fn),					\
3062 	}
3063 
3064 static struct sys_reg_desc sys_insn_descs[] = {
3065 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3066 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3067 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3068 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3069 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3070 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3071 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3072 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3073 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3074 
3075 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3076 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3077 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3078 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3079 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3080 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3081 
3082 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3083 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3084 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3085 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3086 
3087 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3088 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3089 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3090 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3091 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3092 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3093 
3094 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3095 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3096 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3097 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3098 
3099 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3100 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3101 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3102 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3103 
3104 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3105 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3106 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3107 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3108 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3109 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3110 
3111 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3112 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3113 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3114 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3115 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3116 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3117 
3118 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3119 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3120 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3121 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3122 
3123 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3124 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3125 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3126 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3127 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3128 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3129 
3130 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3131 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3132 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3133 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3134 
3135 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3136 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3137 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3138 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3139 
3140 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3141 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3142 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3143 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3144 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3145 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3146 
3147 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3148 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3149 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3150 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3151 
3152 	SYS_INSN(TLBI_ALLE2OS, trap_undef),
3153 	SYS_INSN(TLBI_VAE2OS, trap_undef),
3154 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3155 	SYS_INSN(TLBI_VALE2OS, trap_undef),
3156 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3157 
3158 	SYS_INSN(TLBI_RVAE2IS, trap_undef),
3159 	SYS_INSN(TLBI_RVALE2IS, trap_undef),
3160 
3161 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3162 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3163 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3164 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3165 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3166 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3167 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3168 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3169 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3170 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3171 	SYS_INSN(TLBI_RVAE2OS, trap_undef),
3172 	SYS_INSN(TLBI_RVALE2OS, trap_undef),
3173 	SYS_INSN(TLBI_RVAE2, trap_undef),
3174 	SYS_INSN(TLBI_RVALE2, trap_undef),
3175 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3176 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3177 
3178 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3179 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3180 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3181 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3182 
3183 	SYS_INSN(TLBI_ALLE2OSNXS, trap_undef),
3184 	SYS_INSN(TLBI_VAE2OSNXS, trap_undef),
3185 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3186 	SYS_INSN(TLBI_VALE2OSNXS, trap_undef),
3187 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3188 
3189 	SYS_INSN(TLBI_RVAE2ISNXS, trap_undef),
3190 	SYS_INSN(TLBI_RVALE2ISNXS, trap_undef),
3191 	SYS_INSN(TLBI_ALLE2ISNXS, trap_undef),
3192 	SYS_INSN(TLBI_VAE2ISNXS, trap_undef),
3193 
3194 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3195 	SYS_INSN(TLBI_VALE2ISNXS, trap_undef),
3196 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3197 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3198 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3199 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3200 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3201 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3202 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3203 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3204 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3205 	SYS_INSN(TLBI_RVAE2OSNXS, trap_undef),
3206 	SYS_INSN(TLBI_RVALE2OSNXS, trap_undef),
3207 	SYS_INSN(TLBI_RVAE2NXS, trap_undef),
3208 	SYS_INSN(TLBI_RVALE2NXS, trap_undef),
3209 	SYS_INSN(TLBI_ALLE2NXS, trap_undef),
3210 	SYS_INSN(TLBI_VAE2NXS, trap_undef),
3211 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3212 	SYS_INSN(TLBI_VALE2NXS, trap_undef),
3213 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3214 };
3215 
3216 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3217 			struct sys_reg_params *p,
3218 			const struct sys_reg_desc *r)
3219 {
3220 	if (p->is_write) {
3221 		return ignore_write(vcpu, p);
3222 	} else {
3223 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3224 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3225 
3226 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3227 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3228 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3229 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3230 			     (1 << 15) | (el3 << 14) | (el3 << 12));
3231 		return true;
3232 	}
3233 }
3234 
3235 /*
3236  * AArch32 debug register mappings
3237  *
3238  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3239  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3240  *
3241  * None of the other registers share their location, so treat them as
3242  * if they were 64bit.
3243  */
3244 #define DBG_BCR_BVR_WCR_WVR(n)						      \
3245 	/* DBGBVRn */							      \
3246 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
3247 	/* DBGBCRn */							      \
3248 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
3249 	/* DBGWVRn */							      \
3250 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
3251 	/* DBGWCRn */							      \
3252 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
3253 
3254 #define DBGBXVR(n)							      \
3255 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
3256 
3257 /*
3258  * Trapped cp14 registers. We generally ignore most of the external
3259  * debug, on the principle that they don't really make sense to a
3260  * guest. Revisit this one day, would this principle change.
3261  */
3262 static const struct sys_reg_desc cp14_regs[] = {
3263 	/* DBGDIDR */
3264 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3265 	/* DBGDTRRXext */
3266 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3267 
3268 	DBG_BCR_BVR_WCR_WVR(0),
3269 	/* DBGDSCRint */
3270 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3271 	DBG_BCR_BVR_WCR_WVR(1),
3272 	/* DBGDCCINT */
3273 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3274 	/* DBGDSCRext */
3275 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3276 	DBG_BCR_BVR_WCR_WVR(2),
3277 	/* DBGDTR[RT]Xint */
3278 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3279 	/* DBGDTR[RT]Xext */
3280 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3281 	DBG_BCR_BVR_WCR_WVR(3),
3282 	DBG_BCR_BVR_WCR_WVR(4),
3283 	DBG_BCR_BVR_WCR_WVR(5),
3284 	/* DBGWFAR */
3285 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3286 	/* DBGOSECCR */
3287 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3288 	DBG_BCR_BVR_WCR_WVR(6),
3289 	/* DBGVCR */
3290 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3291 	DBG_BCR_BVR_WCR_WVR(7),
3292 	DBG_BCR_BVR_WCR_WVR(8),
3293 	DBG_BCR_BVR_WCR_WVR(9),
3294 	DBG_BCR_BVR_WCR_WVR(10),
3295 	DBG_BCR_BVR_WCR_WVR(11),
3296 	DBG_BCR_BVR_WCR_WVR(12),
3297 	DBG_BCR_BVR_WCR_WVR(13),
3298 	DBG_BCR_BVR_WCR_WVR(14),
3299 	DBG_BCR_BVR_WCR_WVR(15),
3300 
3301 	/* DBGDRAR (32bit) */
3302 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3303 
3304 	DBGBXVR(0),
3305 	/* DBGOSLAR */
3306 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3307 	DBGBXVR(1),
3308 	/* DBGOSLSR */
3309 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3310 	DBGBXVR(2),
3311 	DBGBXVR(3),
3312 	/* DBGOSDLR */
3313 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3314 	DBGBXVR(4),
3315 	/* DBGPRCR */
3316 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3317 	DBGBXVR(5),
3318 	DBGBXVR(6),
3319 	DBGBXVR(7),
3320 	DBGBXVR(8),
3321 	DBGBXVR(9),
3322 	DBGBXVR(10),
3323 	DBGBXVR(11),
3324 	DBGBXVR(12),
3325 	DBGBXVR(13),
3326 	DBGBXVR(14),
3327 	DBGBXVR(15),
3328 
3329 	/* DBGDSAR (32bit) */
3330 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3331 
3332 	/* DBGDEVID2 */
3333 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3334 	/* DBGDEVID1 */
3335 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3336 	/* DBGDEVID */
3337 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3338 	/* DBGCLAIMSET */
3339 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3340 	/* DBGCLAIMCLR */
3341 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3342 	/* DBGAUTHSTATUS */
3343 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3344 };
3345 
3346 /* Trapped cp14 64bit registers */
3347 static const struct sys_reg_desc cp14_64_regs[] = {
3348 	/* DBGDRAR (64bit) */
3349 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3350 
3351 	/* DBGDSAR (64bit) */
3352 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3353 };
3354 
3355 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3356 	AA32(_map),							\
3357 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3358 	.visibility = pmu_visibility
3359 
3360 /* Macro to expand the PMEVCNTRn register */
3361 #define PMU_PMEVCNTR(n)							\
3362 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3363 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3364 	  .access = access_pmu_evcntr }
3365 
3366 /* Macro to expand the PMEVTYPERn register */
3367 #define PMU_PMEVTYPER(n)						\
3368 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3369 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3370 	  .access = access_pmu_evtyper }
3371 /*
3372  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
3373  * depending on the way they are accessed (as a 32bit or a 64bit
3374  * register).
3375  */
3376 static const struct sys_reg_desc cp15_regs[] = {
3377 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
3378 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
3379 	/* ACTLR */
3380 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
3381 	/* ACTLR2 */
3382 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
3383 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3384 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
3385 	/* TTBCR */
3386 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
3387 	/* TTBCR2 */
3388 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
3389 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
3390 	/* DFSR */
3391 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
3392 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
3393 	/* ADFSR */
3394 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
3395 	/* AIFSR */
3396 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
3397 	/* DFAR */
3398 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
3399 	/* IFAR */
3400 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
3401 
3402 	/*
3403 	 * DC{C,I,CI}SW operations:
3404 	 */
3405 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
3406 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
3407 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
3408 
3409 	/* PMU */
3410 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
3411 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
3412 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
3413 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
3414 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
3415 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
3416 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
3417 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
3418 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
3419 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
3420 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
3421 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
3422 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
3423 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
3424 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
3425 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
3426 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
3427 	/* PMMIR */
3428 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
3429 
3430 	/* PRRR/MAIR0 */
3431 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
3432 	/* NMRR/MAIR1 */
3433 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
3434 	/* AMAIR0 */
3435 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
3436 	/* AMAIR1 */
3437 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
3438 
3439 	/* ICC_SRE */
3440 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
3441 
3442 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
3443 
3444 	/* Arch Tmers */
3445 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
3446 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
3447 
3448 	/* PMEVCNTRn */
3449 	PMU_PMEVCNTR(0),
3450 	PMU_PMEVCNTR(1),
3451 	PMU_PMEVCNTR(2),
3452 	PMU_PMEVCNTR(3),
3453 	PMU_PMEVCNTR(4),
3454 	PMU_PMEVCNTR(5),
3455 	PMU_PMEVCNTR(6),
3456 	PMU_PMEVCNTR(7),
3457 	PMU_PMEVCNTR(8),
3458 	PMU_PMEVCNTR(9),
3459 	PMU_PMEVCNTR(10),
3460 	PMU_PMEVCNTR(11),
3461 	PMU_PMEVCNTR(12),
3462 	PMU_PMEVCNTR(13),
3463 	PMU_PMEVCNTR(14),
3464 	PMU_PMEVCNTR(15),
3465 	PMU_PMEVCNTR(16),
3466 	PMU_PMEVCNTR(17),
3467 	PMU_PMEVCNTR(18),
3468 	PMU_PMEVCNTR(19),
3469 	PMU_PMEVCNTR(20),
3470 	PMU_PMEVCNTR(21),
3471 	PMU_PMEVCNTR(22),
3472 	PMU_PMEVCNTR(23),
3473 	PMU_PMEVCNTR(24),
3474 	PMU_PMEVCNTR(25),
3475 	PMU_PMEVCNTR(26),
3476 	PMU_PMEVCNTR(27),
3477 	PMU_PMEVCNTR(28),
3478 	PMU_PMEVCNTR(29),
3479 	PMU_PMEVCNTR(30),
3480 	/* PMEVTYPERn */
3481 	PMU_PMEVTYPER(0),
3482 	PMU_PMEVTYPER(1),
3483 	PMU_PMEVTYPER(2),
3484 	PMU_PMEVTYPER(3),
3485 	PMU_PMEVTYPER(4),
3486 	PMU_PMEVTYPER(5),
3487 	PMU_PMEVTYPER(6),
3488 	PMU_PMEVTYPER(7),
3489 	PMU_PMEVTYPER(8),
3490 	PMU_PMEVTYPER(9),
3491 	PMU_PMEVTYPER(10),
3492 	PMU_PMEVTYPER(11),
3493 	PMU_PMEVTYPER(12),
3494 	PMU_PMEVTYPER(13),
3495 	PMU_PMEVTYPER(14),
3496 	PMU_PMEVTYPER(15),
3497 	PMU_PMEVTYPER(16),
3498 	PMU_PMEVTYPER(17),
3499 	PMU_PMEVTYPER(18),
3500 	PMU_PMEVTYPER(19),
3501 	PMU_PMEVTYPER(20),
3502 	PMU_PMEVTYPER(21),
3503 	PMU_PMEVTYPER(22),
3504 	PMU_PMEVTYPER(23),
3505 	PMU_PMEVTYPER(24),
3506 	PMU_PMEVTYPER(25),
3507 	PMU_PMEVTYPER(26),
3508 	PMU_PMEVTYPER(27),
3509 	PMU_PMEVTYPER(28),
3510 	PMU_PMEVTYPER(29),
3511 	PMU_PMEVTYPER(30),
3512 	/* PMCCFILTR */
3513 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3514 
3515 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3516 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3517 
3518 	/* CCSIDR2 */
3519 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3520 
3521 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3522 };
3523 
3524 static const struct sys_reg_desc cp15_64_regs[] = {
3525 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3526 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3527 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3528 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3529 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3530 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3531 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3532 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3533 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3534 };
3535 
3536 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3537 			       bool is_32)
3538 {
3539 	unsigned int i;
3540 
3541 	for (i = 0; i < n; i++) {
3542 		if (!is_32 && table[i].reg && !table[i].reset) {
3543 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
3544 				&table[i], i, table[i].name);
3545 			return false;
3546 		}
3547 
3548 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3549 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
3550 				&table[i], i, table[i - 1].name, table[i].name);
3551 			return false;
3552 		}
3553 	}
3554 
3555 	return true;
3556 }
3557 
3558 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3559 {
3560 	kvm_inject_undefined(vcpu);
3561 	return 1;
3562 }
3563 
3564 static void perform_access(struct kvm_vcpu *vcpu,
3565 			   struct sys_reg_params *params,
3566 			   const struct sys_reg_desc *r)
3567 {
3568 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3569 
3570 	/* Check for regs disabled by runtime config */
3571 	if (sysreg_hidden(vcpu, r)) {
3572 		kvm_inject_undefined(vcpu);
3573 		return;
3574 	}
3575 
3576 	/*
3577 	 * Not having an accessor means that we have configured a trap
3578 	 * that we don't know how to handle. This certainly qualifies
3579 	 * as a gross bug that should be fixed right away.
3580 	 */
3581 	BUG_ON(!r->access);
3582 
3583 	/* Skip instruction if instructed so */
3584 	if (likely(r->access(vcpu, params, r)))
3585 		kvm_incr_pc(vcpu);
3586 }
3587 
3588 /*
3589  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3590  *                call the corresponding trap handler.
3591  *
3592  * @params: pointer to the descriptor of the access
3593  * @table: array of trap descriptors
3594  * @num: size of the trap descriptor array
3595  *
3596  * Return true if the access has been handled, false if not.
3597  */
3598 static bool emulate_cp(struct kvm_vcpu *vcpu,
3599 		       struct sys_reg_params *params,
3600 		       const struct sys_reg_desc *table,
3601 		       size_t num)
3602 {
3603 	const struct sys_reg_desc *r;
3604 
3605 	if (!table)
3606 		return false;	/* Not handled */
3607 
3608 	r = find_reg(params, table, num);
3609 
3610 	if (r) {
3611 		perform_access(vcpu, params, r);
3612 		return true;
3613 	}
3614 
3615 	/* Not handled */
3616 	return false;
3617 }
3618 
3619 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3620 				struct sys_reg_params *params)
3621 {
3622 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3623 	int cp = -1;
3624 
3625 	switch (esr_ec) {
3626 	case ESR_ELx_EC_CP15_32:
3627 	case ESR_ELx_EC_CP15_64:
3628 		cp = 15;
3629 		break;
3630 	case ESR_ELx_EC_CP14_MR:
3631 	case ESR_ELx_EC_CP14_64:
3632 		cp = 14;
3633 		break;
3634 	default:
3635 		WARN_ON(1);
3636 	}
3637 
3638 	print_sys_reg_msg(params,
3639 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3640 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3641 	kvm_inject_undefined(vcpu);
3642 }
3643 
3644 /**
3645  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3646  * @vcpu: The VCPU pointer
3647  * @global: &struct sys_reg_desc
3648  * @nr_global: size of the @global array
3649  */
3650 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3651 			    const struct sys_reg_desc *global,
3652 			    size_t nr_global)
3653 {
3654 	struct sys_reg_params params;
3655 	u64 esr = kvm_vcpu_get_esr(vcpu);
3656 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3657 	int Rt2 = (esr >> 10) & 0x1f;
3658 
3659 	params.CRm = (esr >> 1) & 0xf;
3660 	params.is_write = ((esr & 1) == 0);
3661 
3662 	params.Op0 = 0;
3663 	params.Op1 = (esr >> 16) & 0xf;
3664 	params.Op2 = 0;
3665 	params.CRn = 0;
3666 
3667 	/*
3668 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3669 	 * backends between AArch32 and AArch64, we get away with it.
3670 	 */
3671 	if (params.is_write) {
3672 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3673 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3674 	}
3675 
3676 	/*
3677 	 * If the table contains a handler, handle the
3678 	 * potential register operation in the case of a read and return
3679 	 * with success.
3680 	 */
3681 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3682 		/* Split up the value between registers for the read side */
3683 		if (!params.is_write) {
3684 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3685 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3686 		}
3687 
3688 		return 1;
3689 	}
3690 
3691 	unhandled_cp_access(vcpu, &params);
3692 	return 1;
3693 }
3694 
3695 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3696 
3697 /*
3698  * The CP10 ID registers are architecturally mapped to AArch64 feature
3699  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3700  * from AArch32.
3701  */
3702 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3703 {
3704 	u8 reg_id = (esr >> 10) & 0xf;
3705 	bool valid;
3706 
3707 	params->is_write = ((esr & 1) == 0);
3708 	params->Op0 = 3;
3709 	params->Op1 = 0;
3710 	params->CRn = 0;
3711 	params->CRm = 3;
3712 
3713 	/* CP10 ID registers are read-only */
3714 	valid = !params->is_write;
3715 
3716 	switch (reg_id) {
3717 	/* MVFR0 */
3718 	case 0b0111:
3719 		params->Op2 = 0;
3720 		break;
3721 	/* MVFR1 */
3722 	case 0b0110:
3723 		params->Op2 = 1;
3724 		break;
3725 	/* MVFR2 */
3726 	case 0b0101:
3727 		params->Op2 = 2;
3728 		break;
3729 	default:
3730 		valid = false;
3731 	}
3732 
3733 	if (valid)
3734 		return true;
3735 
3736 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3737 		      params->is_write ? "write" : "read", reg_id);
3738 	return false;
3739 }
3740 
3741 /**
3742  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3743  *			  VFP Register' from AArch32.
3744  * @vcpu: The vCPU pointer
3745  *
3746  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3747  * Work out the correct AArch64 system register encoding and reroute to the
3748  * AArch64 system register emulation.
3749  */
3750 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3751 {
3752 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3753 	u64 esr = kvm_vcpu_get_esr(vcpu);
3754 	struct sys_reg_params params;
3755 
3756 	/* UNDEF on any unhandled register access */
3757 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3758 		kvm_inject_undefined(vcpu);
3759 		return 1;
3760 	}
3761 
3762 	if (emulate_sys_reg(vcpu, &params))
3763 		vcpu_set_reg(vcpu, Rt, params.regval);
3764 
3765 	return 1;
3766 }
3767 
3768 /**
3769  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3770  *			       CRn=0, which corresponds to the AArch32 feature
3771  *			       registers.
3772  * @vcpu: the vCPU pointer
3773  * @params: the system register access parameters.
3774  *
3775  * Our cp15 system register tables do not enumerate the AArch32 feature
3776  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3777  * register encoding can be trivially remapped into the AArch64 for the feature
3778  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3779  *
3780  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3781  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3782  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3783  * treat undefined registers in this range as RAZ.
3784  */
3785 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3786 				   struct sys_reg_params *params)
3787 {
3788 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3789 
3790 	/* Treat impossible writes to RO registers as UNDEFINED */
3791 	if (params->is_write) {
3792 		unhandled_cp_access(vcpu, params);
3793 		return 1;
3794 	}
3795 
3796 	params->Op0 = 3;
3797 
3798 	/*
3799 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3800 	 * Avoid conflicting with future expansion of AArch64 feature registers
3801 	 * and simply treat them as RAZ here.
3802 	 */
3803 	if (params->CRm > 3)
3804 		params->regval = 0;
3805 	else if (!emulate_sys_reg(vcpu, params))
3806 		return 1;
3807 
3808 	vcpu_set_reg(vcpu, Rt, params->regval);
3809 	return 1;
3810 }
3811 
3812 /**
3813  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3814  * @vcpu: The VCPU pointer
3815  * @params: &struct sys_reg_params
3816  * @global: &struct sys_reg_desc
3817  * @nr_global: size of the @global array
3818  */
3819 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3820 			    struct sys_reg_params *params,
3821 			    const struct sys_reg_desc *global,
3822 			    size_t nr_global)
3823 {
3824 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3825 
3826 	params->regval = vcpu_get_reg(vcpu, Rt);
3827 
3828 	if (emulate_cp(vcpu, params, global, nr_global)) {
3829 		if (!params->is_write)
3830 			vcpu_set_reg(vcpu, Rt, params->regval);
3831 		return 1;
3832 	}
3833 
3834 	unhandled_cp_access(vcpu, params);
3835 	return 1;
3836 }
3837 
3838 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3839 {
3840 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3841 }
3842 
3843 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3844 {
3845 	struct sys_reg_params params;
3846 
3847 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3848 
3849 	/*
3850 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3851 	 * system register table. Registers in the ID range where CRm=0 are
3852 	 * excluded from this scheme as they do not trivially map into AArch64
3853 	 * system register encodings.
3854 	 */
3855 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3856 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3857 
3858 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3859 }
3860 
3861 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3862 {
3863 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3864 }
3865 
3866 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3867 {
3868 	struct sys_reg_params params;
3869 
3870 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3871 
3872 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3873 }
3874 
3875 /**
3876  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3877  * @vcpu: The VCPU pointer
3878  * @params: Decoded system register parameters
3879  *
3880  * Return: true if the system register access was successful, false otherwise.
3881  */
3882 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3883 			    struct sys_reg_params *params)
3884 {
3885 	const struct sys_reg_desc *r;
3886 
3887 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3888 	if (likely(r)) {
3889 		perform_access(vcpu, params, r);
3890 		return true;
3891 	}
3892 
3893 	print_sys_reg_msg(params,
3894 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3895 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3896 	kvm_inject_undefined(vcpu);
3897 
3898 	return false;
3899 }
3900 
3901 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
3902 {
3903 	unsigned long i, idreg_idx = 0;
3904 
3905 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3906 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3907 
3908 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
3909 			continue;
3910 
3911 		if (idreg_idx == pos)
3912 			return r;
3913 
3914 		idreg_idx++;
3915 	}
3916 
3917 	return NULL;
3918 }
3919 
3920 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3921 {
3922 	struct kvm *kvm = s->private;
3923 	u8 *iter;
3924 
3925 	mutex_lock(&kvm->arch.config_lock);
3926 
3927 	iter = &kvm->arch.idreg_debugfs_iter;
3928 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3929 	    *iter == (u8)~0) {
3930 		*iter = *pos;
3931 		if (!idregs_debug_find(kvm, *iter))
3932 			iter = NULL;
3933 	} else {
3934 		iter = ERR_PTR(-EBUSY);
3935 	}
3936 
3937 	mutex_unlock(&kvm->arch.config_lock);
3938 
3939 	return iter;
3940 }
3941 
3942 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3943 {
3944 	struct kvm *kvm = s->private;
3945 
3946 	(*pos)++;
3947 
3948 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
3949 		kvm->arch.idreg_debugfs_iter++;
3950 
3951 		return &kvm->arch.idreg_debugfs_iter;
3952 	}
3953 
3954 	return NULL;
3955 }
3956 
3957 static void idregs_debug_stop(struct seq_file *s, void *v)
3958 {
3959 	struct kvm *kvm = s->private;
3960 
3961 	if (IS_ERR(v))
3962 		return;
3963 
3964 	mutex_lock(&kvm->arch.config_lock);
3965 
3966 	kvm->arch.idreg_debugfs_iter = ~0;
3967 
3968 	mutex_unlock(&kvm->arch.config_lock);
3969 }
3970 
3971 static int idregs_debug_show(struct seq_file *s, void *v)
3972 {
3973 	const struct sys_reg_desc *desc;
3974 	struct kvm *kvm = s->private;
3975 
3976 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
3977 
3978 	if (!desc->name)
3979 		return 0;
3980 
3981 	seq_printf(s, "%20s:\t%016llx\n",
3982 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
3983 
3984 	return 0;
3985 }
3986 
3987 static const struct seq_operations idregs_debug_sops = {
3988 	.start	= idregs_debug_start,
3989 	.next	= idregs_debug_next,
3990 	.stop	= idregs_debug_stop,
3991 	.show	= idregs_debug_show,
3992 };
3993 
3994 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3995 
3996 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3997 {
3998 	kvm->arch.idreg_debugfs_iter = ~0;
3999 
4000 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4001 			    &idregs_debug_fops);
4002 }
4003 
4004 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4005 {
4006 	u32 id = reg_to_encoding(reg);
4007 	struct kvm *kvm = vcpu->kvm;
4008 
4009 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4010 		return;
4011 
4012 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4013 }
4014 
4015 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4016 				  const struct sys_reg_desc *reg)
4017 {
4018 	if (kvm_vcpu_initialized(vcpu))
4019 		return;
4020 
4021 	reg->reset(vcpu, reg);
4022 }
4023 
4024 /**
4025  * kvm_reset_sys_regs - sets system registers to reset value
4026  * @vcpu: The VCPU pointer
4027  *
4028  * This function finds the right table above and sets the registers on the
4029  * virtual CPU struct to their architecturally defined reset values.
4030  */
4031 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4032 {
4033 	struct kvm *kvm = vcpu->kvm;
4034 	unsigned long i;
4035 
4036 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4037 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4038 
4039 		if (!r->reset)
4040 			continue;
4041 
4042 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4043 			reset_vm_ftr_id_reg(vcpu, r);
4044 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4045 			reset_vcpu_ftr_id_reg(vcpu, r);
4046 		else
4047 			r->reset(vcpu, r);
4048 	}
4049 
4050 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4051 }
4052 
4053 /**
4054  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4055  *			 trap on a guest execution
4056  * @vcpu: The VCPU pointer
4057  */
4058 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4059 {
4060 	const struct sys_reg_desc *desc = NULL;
4061 	struct sys_reg_params params;
4062 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4063 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4064 	int sr_idx;
4065 
4066 	trace_kvm_handle_sys_reg(esr);
4067 
4068 	if (triage_sysreg_trap(vcpu, &sr_idx))
4069 		return 1;
4070 
4071 	params = esr_sys64_to_params(esr);
4072 	params.regval = vcpu_get_reg(vcpu, Rt);
4073 
4074 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4075 	if (params.Op0 == 2 || params.Op0 == 3)
4076 		desc = &sys_reg_descs[sr_idx];
4077 	else
4078 		desc = &sys_insn_descs[sr_idx];
4079 
4080 	perform_access(vcpu, &params, desc);
4081 
4082 	/* Read from system register? */
4083 	if (!params.is_write &&
4084 	    (params.Op0 == 2 || params.Op0 == 3))
4085 		vcpu_set_reg(vcpu, Rt, params.regval);
4086 
4087 	return 1;
4088 }
4089 
4090 /******************************************************************************
4091  * Userspace API
4092  *****************************************************************************/
4093 
4094 static bool index_to_params(u64 id, struct sys_reg_params *params)
4095 {
4096 	switch (id & KVM_REG_SIZE_MASK) {
4097 	case KVM_REG_SIZE_U64:
4098 		/* Any unused index bits means it's not valid. */
4099 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4100 			      | KVM_REG_ARM_COPROC_MASK
4101 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4102 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4103 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4104 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4105 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4106 			return false;
4107 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4108 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4109 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4110 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4111 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4112 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4113 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4114 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4115 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4116 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4117 		return true;
4118 	default:
4119 		return false;
4120 	}
4121 }
4122 
4123 const struct sys_reg_desc *get_reg_by_id(u64 id,
4124 					 const struct sys_reg_desc table[],
4125 					 unsigned int num)
4126 {
4127 	struct sys_reg_params params;
4128 
4129 	if (!index_to_params(id, &params))
4130 		return NULL;
4131 
4132 	return find_reg(&params, table, num);
4133 }
4134 
4135 /* Decode an index value, and find the sys_reg_desc entry. */
4136 static const struct sys_reg_desc *
4137 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4138 		   const struct sys_reg_desc table[], unsigned int num)
4139 
4140 {
4141 	const struct sys_reg_desc *r;
4142 
4143 	/* We only do sys_reg for now. */
4144 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4145 		return NULL;
4146 
4147 	r = get_reg_by_id(id, table, num);
4148 
4149 	/* Not saved in the sys_reg array and not otherwise accessible? */
4150 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4151 		r = NULL;
4152 
4153 	return r;
4154 }
4155 
4156 /*
4157  * These are the invariant sys_reg registers: we let the guest see the
4158  * host versions of these, so they're part of the guest state.
4159  *
4160  * A future CPU may provide a mechanism to present different values to
4161  * the guest, or a future kvm may trap them.
4162  */
4163 
4164 #define FUNCTION_INVARIANT(reg)						\
4165 	static u64 reset_##reg(struct kvm_vcpu *v,			\
4166 			       const struct sys_reg_desc *r)		\
4167 	{								\
4168 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
4169 		return ((struct sys_reg_desc *)r)->val;			\
4170 	}
4171 
4172 FUNCTION_INVARIANT(midr_el1)
4173 FUNCTION_INVARIANT(revidr_el1)
4174 FUNCTION_INVARIANT(aidr_el1)
4175 
4176 /* ->val is filled in by kvm_sys_reg_table_init() */
4177 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
4178 	{ SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 },
4179 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 },
4180 	{ SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 },
4181 };
4182 
4183 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
4184 {
4185 	const struct sys_reg_desc *r;
4186 
4187 	r = get_reg_by_id(id, invariant_sys_regs,
4188 			  ARRAY_SIZE(invariant_sys_regs));
4189 	if (!r)
4190 		return -ENOENT;
4191 
4192 	return put_user(r->val, uaddr);
4193 }
4194 
4195 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
4196 {
4197 	const struct sys_reg_desc *r;
4198 	u64 val;
4199 
4200 	r = get_reg_by_id(id, invariant_sys_regs,
4201 			  ARRAY_SIZE(invariant_sys_regs));
4202 	if (!r)
4203 		return -ENOENT;
4204 
4205 	if (get_user(val, uaddr))
4206 		return -EFAULT;
4207 
4208 	/* This is what we mean by invariant: you can't change it. */
4209 	if (r->val != val)
4210 		return -EINVAL;
4211 
4212 	return 0;
4213 }
4214 
4215 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4216 {
4217 	u32 val;
4218 	u32 __user *uval = uaddr;
4219 
4220 	/* Fail if we have unknown bits set. */
4221 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4222 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4223 		return -ENOENT;
4224 
4225 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4226 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4227 		if (KVM_REG_SIZE(id) != 4)
4228 			return -ENOENT;
4229 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4230 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4231 		if (val >= CSSELR_MAX)
4232 			return -ENOENT;
4233 
4234 		return put_user(get_ccsidr(vcpu, val), uval);
4235 	default:
4236 		return -ENOENT;
4237 	}
4238 }
4239 
4240 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4241 {
4242 	u32 val, newval;
4243 	u32 __user *uval = uaddr;
4244 
4245 	/* Fail if we have unknown bits set. */
4246 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4247 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4248 		return -ENOENT;
4249 
4250 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4251 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4252 		if (KVM_REG_SIZE(id) != 4)
4253 			return -ENOENT;
4254 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4255 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4256 		if (val >= CSSELR_MAX)
4257 			return -ENOENT;
4258 
4259 		if (get_user(newval, uval))
4260 			return -EFAULT;
4261 
4262 		return set_ccsidr(vcpu, val, newval);
4263 	default:
4264 		return -ENOENT;
4265 	}
4266 }
4267 
4268 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4269 			 const struct sys_reg_desc table[], unsigned int num)
4270 {
4271 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4272 	const struct sys_reg_desc *r;
4273 	u64 val;
4274 	int ret;
4275 
4276 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4277 	if (!r || sysreg_hidden_user(vcpu, r))
4278 		return -ENOENT;
4279 
4280 	if (r->get_user) {
4281 		ret = (r->get_user)(vcpu, r, &val);
4282 	} else {
4283 		val = __vcpu_sys_reg(vcpu, r->reg);
4284 		ret = 0;
4285 	}
4286 
4287 	if (!ret)
4288 		ret = put_user(val, uaddr);
4289 
4290 	return ret;
4291 }
4292 
4293 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4294 {
4295 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4296 	int err;
4297 
4298 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4299 		return demux_c15_get(vcpu, reg->id, uaddr);
4300 
4301 	err = get_invariant_sys_reg(reg->id, uaddr);
4302 	if (err != -ENOENT)
4303 		return err;
4304 
4305 	return kvm_sys_reg_get_user(vcpu, reg,
4306 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4307 }
4308 
4309 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4310 			 const struct sys_reg_desc table[], unsigned int num)
4311 {
4312 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4313 	const struct sys_reg_desc *r;
4314 	u64 val;
4315 	int ret;
4316 
4317 	if (get_user(val, uaddr))
4318 		return -EFAULT;
4319 
4320 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4321 	if (!r || sysreg_hidden_user(vcpu, r))
4322 		return -ENOENT;
4323 
4324 	if (sysreg_user_write_ignore(vcpu, r))
4325 		return 0;
4326 
4327 	if (r->set_user) {
4328 		ret = (r->set_user)(vcpu, r, val);
4329 	} else {
4330 		__vcpu_sys_reg(vcpu, r->reg) = val;
4331 		ret = 0;
4332 	}
4333 
4334 	return ret;
4335 }
4336 
4337 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4338 {
4339 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4340 	int err;
4341 
4342 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4343 		return demux_c15_set(vcpu, reg->id, uaddr);
4344 
4345 	err = set_invariant_sys_reg(reg->id, uaddr);
4346 	if (err != -ENOENT)
4347 		return err;
4348 
4349 	return kvm_sys_reg_set_user(vcpu, reg,
4350 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4351 }
4352 
4353 static unsigned int num_demux_regs(void)
4354 {
4355 	return CSSELR_MAX;
4356 }
4357 
4358 static int write_demux_regids(u64 __user *uindices)
4359 {
4360 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4361 	unsigned int i;
4362 
4363 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4364 	for (i = 0; i < CSSELR_MAX; i++) {
4365 		if (put_user(val | i, uindices))
4366 			return -EFAULT;
4367 		uindices++;
4368 	}
4369 	return 0;
4370 }
4371 
4372 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4373 {
4374 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4375 		KVM_REG_ARM64_SYSREG |
4376 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4377 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4378 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4379 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4380 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4381 }
4382 
4383 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4384 {
4385 	if (!*uind)
4386 		return true;
4387 
4388 	if (put_user(sys_reg_to_index(reg), *uind))
4389 		return false;
4390 
4391 	(*uind)++;
4392 	return true;
4393 }
4394 
4395 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
4396 			    const struct sys_reg_desc *rd,
4397 			    u64 __user **uind,
4398 			    unsigned int *total)
4399 {
4400 	/*
4401 	 * Ignore registers we trap but don't save,
4402 	 * and for which no custom user accessor is provided.
4403 	 */
4404 	if (!(rd->reg || rd->get_user))
4405 		return 0;
4406 
4407 	if (sysreg_hidden_user(vcpu, rd))
4408 		return 0;
4409 
4410 	if (!copy_reg_to_user(rd, uind))
4411 		return -EFAULT;
4412 
4413 	(*total)++;
4414 	return 0;
4415 }
4416 
4417 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
4418 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
4419 {
4420 	const struct sys_reg_desc *i2, *end2;
4421 	unsigned int total = 0;
4422 	int err;
4423 
4424 	i2 = sys_reg_descs;
4425 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
4426 
4427 	while (i2 != end2) {
4428 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
4429 		if (err)
4430 			return err;
4431 	}
4432 	return total;
4433 }
4434 
4435 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
4436 {
4437 	return ARRAY_SIZE(invariant_sys_regs)
4438 		+ num_demux_regs()
4439 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
4440 }
4441 
4442 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
4443 {
4444 	unsigned int i;
4445 	int err;
4446 
4447 	/* Then give them all the invariant registers' indices. */
4448 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
4449 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
4450 			return -EFAULT;
4451 		uindices++;
4452 	}
4453 
4454 	err = walk_sys_regs(vcpu, uindices);
4455 	if (err < 0)
4456 		return err;
4457 	uindices += err;
4458 
4459 	return write_demux_regids(uindices);
4460 }
4461 
4462 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
4463 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
4464 		sys_reg_Op1(r),					\
4465 		sys_reg_CRn(r),					\
4466 		sys_reg_CRm(r),					\
4467 		sys_reg_Op2(r))
4468 
4469 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4470 {
4471 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4472 	u64 __user *masks = (u64 __user *)range->addr;
4473 
4474 	/* Only feature id range is supported, reserved[13] must be zero. */
4475 	if (range->range ||
4476 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4477 		return -EINVAL;
4478 
4479 	/* Wipe the whole thing first */
4480 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4481 		return -EFAULT;
4482 
4483 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4484 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4485 		u32 encoding = reg_to_encoding(reg);
4486 		u64 val;
4487 
4488 		if (!is_feature_id_reg(encoding) || !reg->set_user)
4489 			continue;
4490 
4491 		if (!reg->val ||
4492 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
4493 			continue;
4494 		}
4495 		val = reg->val;
4496 
4497 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4498 			return -EFAULT;
4499 	}
4500 
4501 	return 0;
4502 }
4503 
4504 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
4505 {
4506 	struct kvm *kvm = vcpu->kvm;
4507 
4508 	if (has_vhe() || has_hvhe())
4509 		vcpu->arch.hcr_el2 |= HCR_E2H;
4510 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
4511 		/* route synchronous external abort exceptions to EL2 */
4512 		vcpu->arch.hcr_el2 |= HCR_TEA;
4513 		/* trap error record accesses */
4514 		vcpu->arch.hcr_el2 |= HCR_TERR;
4515 	}
4516 
4517 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
4518 		vcpu->arch.hcr_el2 |= HCR_FWB;
4519 
4520 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
4521 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
4522 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
4523 		vcpu->arch.hcr_el2 |= HCR_TID4;
4524 	else
4525 		vcpu->arch.hcr_el2 |= HCR_TID2;
4526 
4527 	if (vcpu_el1_is_32bit(vcpu))
4528 		vcpu->arch.hcr_el2 &= ~HCR_RW;
4529 
4530 	if (kvm_has_mte(vcpu->kvm))
4531 		vcpu->arch.hcr_el2 |= HCR_ATA;
4532 
4533 	/*
4534 	 * In the absence of FGT, we cannot independently trap TLBI
4535 	 * Range instructions. This isn't great, but trapping all
4536 	 * TLBIs would be far worse. Live with it...
4537 	 */
4538 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4539 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4540 }
4541 
4542 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
4543 {
4544 	struct kvm *kvm = vcpu->kvm;
4545 
4546 	mutex_lock(&kvm->arch.config_lock);
4547 	vcpu_set_hcr(vcpu);
4548 
4549 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4550 		/*
4551 		 * In general, all HCRX_EL2 bits are gated by a feature.
4552 		 * The only reason we can set SMPME without checking any
4553 		 * feature is that its effects are not directly observable
4554 		 * from the guest.
4555 		 */
4556 		vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME;
4557 
4558 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4559 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4560 
4561 		if (kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
4562 			vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En;
4563 	}
4564 
4565 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4566 		goto out;
4567 
4568 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4569 				       HFGxTR_EL2_nMAIR2_EL1		|
4570 				       HFGxTR_EL2_nS2POR_EL1		|
4571 				       HFGxTR_EL2_nPOR_EL1		|
4572 				       HFGxTR_EL2_nPOR_EL0		|
4573 				       HFGxTR_EL2_nACCDATA_EL1		|
4574 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4575 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4576 
4577 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4578 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4579 						HFGITR_EL2_TLBIRVALE1OS	|
4580 						HFGITR_EL2_TLBIRVAAE1OS	|
4581 						HFGITR_EL2_TLBIRVAE1OS	|
4582 						HFGITR_EL2_TLBIVAALE1OS	|
4583 						HFGITR_EL2_TLBIVALE1OS	|
4584 						HFGITR_EL2_TLBIVAAE1OS	|
4585 						HFGITR_EL2_TLBIASIDE1OS	|
4586 						HFGITR_EL2_TLBIVAE1OS	|
4587 						HFGITR_EL2_TLBIVMALLE1OS);
4588 
4589 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4590 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4591 						HFGITR_EL2_TLBIRVALE1	|
4592 						HFGITR_EL2_TLBIRVAAE1	|
4593 						HFGITR_EL2_TLBIRVAE1	|
4594 						HFGITR_EL2_TLBIRVAALE1IS|
4595 						HFGITR_EL2_TLBIRVALE1IS	|
4596 						HFGITR_EL2_TLBIRVAAE1IS	|
4597 						HFGITR_EL2_TLBIRVAE1IS	|
4598 						HFGITR_EL2_TLBIRVAALE1OS|
4599 						HFGITR_EL2_TLBIRVALE1OS	|
4600 						HFGITR_EL2_TLBIRVAAE1OS	|
4601 						HFGITR_EL2_TLBIRVAE1OS);
4602 
4603 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4604 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4605 						HFGxTR_EL2_nPIR_EL1);
4606 
4607 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4608 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4609 						  HAFGRTR_EL2_RES1);
4610 
4611 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4612 out:
4613 	mutex_unlock(&kvm->arch.config_lock);
4614 }
4615 
4616 int __init kvm_sys_reg_table_init(void)
4617 {
4618 	bool valid = true;
4619 	unsigned int i;
4620 	int ret = 0;
4621 
4622 	/* Make sure tables are unique and in order. */
4623 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4624 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4625 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4626 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4627 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4628 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4629 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4630 
4631 	if (!valid)
4632 		return -EINVAL;
4633 
4634 	/* We abuse the reset function to overwrite the table itself. */
4635 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4636 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4637 
4638 	ret = populate_nv_trap_config();
4639 
4640 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4641 		ret = populate_sysreg_config(sys_reg_descs + i, i);
4642 
4643 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4644 		ret = populate_sysreg_config(sys_insn_descs + i, i);
4645 
4646 	return ret;
4647 }
4648