xref: /linux/arch/arm64/kvm/sys_regs.c (revision b45e0c30bc58fb6fcaa42f1d1d813cefb8ab4117)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bsearch.h>
13 #include <linux/kvm_host.h>
14 #include <linux/mm.h>
15 #include <linux/printk.h>
16 #include <linux/uaccess.h>
17 
18 #include <asm/cacheflush.h>
19 #include <asm/cputype.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/esr.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_coproc.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/perf_event.h>
29 #include <asm/sysreg.h>
30 
31 #include <trace/events/kvm.h>
32 
33 #include "sys_regs.h"
34 
35 #include "trace.h"
36 
37 /*
38  * All of this file is extremly similar to the ARM coproc.c, but the
39  * types are different. My gut feeling is that it should be pretty
40  * easy to merge, but that would be an ABI breakage -- again. VFP
41  * would also need to be abstracted.
42  *
43  * For AArch32, we only take care of what is being trapped. Anything
44  * that has to do with init and userspace access has to go via the
45  * 64bit interface.
46  */
47 
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 				 struct sys_reg_params *params,
50 				 const struct sys_reg_desc *r)
51 {
52 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 	print_sys_reg_instr(params);
54 	kvm_inject_undefined(vcpu);
55 	return false;
56 }
57 
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 			       struct sys_reg_params *params,
60 			       const struct sys_reg_desc *r)
61 {
62 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 	print_sys_reg_instr(params);
64 	kvm_inject_undefined(vcpu);
65 	return false;
66 }
67 
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70 	if (!vcpu->arch.sysregs_loaded_on_cpu)
71 		goto immediate_read;
72 
73 	/*
74 	 * System registers listed in the switch are not saved on every
75 	 * exit from the guest but are only saved on vcpu_put.
76 	 *
77 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
78 	 * should never be listed below, because the guest cannot modify its
79 	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
80 	 * thread when emulating cross-VCPU communication.
81 	 */
82 	switch (reg) {
83 	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
84 	case SCTLR_EL1:		return read_sysreg_s(SYS_SCTLR_EL12);
85 	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
86 	case CPACR_EL1:		return read_sysreg_s(SYS_CPACR_EL12);
87 	case TTBR0_EL1:		return read_sysreg_s(SYS_TTBR0_EL12);
88 	case TTBR1_EL1:		return read_sysreg_s(SYS_TTBR1_EL12);
89 	case TCR_EL1:		return read_sysreg_s(SYS_TCR_EL12);
90 	case ESR_EL1:		return read_sysreg_s(SYS_ESR_EL12);
91 	case AFSR0_EL1:		return read_sysreg_s(SYS_AFSR0_EL12);
92 	case AFSR1_EL1:		return read_sysreg_s(SYS_AFSR1_EL12);
93 	case FAR_EL1:		return read_sysreg_s(SYS_FAR_EL12);
94 	case MAIR_EL1:		return read_sysreg_s(SYS_MAIR_EL12);
95 	case VBAR_EL1:		return read_sysreg_s(SYS_VBAR_EL12);
96 	case CONTEXTIDR_EL1:	return read_sysreg_s(SYS_CONTEXTIDR_EL12);
97 	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
98 	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
99 	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
100 	case AMAIR_EL1:		return read_sysreg_s(SYS_AMAIR_EL12);
101 	case CNTKCTL_EL1:	return read_sysreg_s(SYS_CNTKCTL_EL12);
102 	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
103 	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
104 	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
105 	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
106 	}
107 
108 immediate_read:
109 	return __vcpu_sys_reg(vcpu, reg);
110 }
111 
112 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
113 {
114 	if (!vcpu->arch.sysregs_loaded_on_cpu)
115 		goto immediate_write;
116 
117 	/*
118 	 * System registers listed in the switch are not restored on every
119 	 * entry to the guest but are only restored on vcpu_load.
120 	 *
121 	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
122 	 * should never be listed below, because the the MPIDR should only be
123 	 * set once, before running the VCPU, and never changed later.
124 	 */
125 	switch (reg) {
126 	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
127 	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	return;
128 	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
129 	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	return;
130 	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	return;
131 	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	return;
132 	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	return;
133 	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	return;
134 	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	return;
135 	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	return;
136 	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	return;
137 	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	return;
138 	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	return;
139 	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
140 	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
141 	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
142 	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
143 	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	return;
144 	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	return;
145 	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
146 	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
147 	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
148 	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
149 	}
150 
151 immediate_write:
152 	 __vcpu_sys_reg(vcpu, reg) = val;
153 }
154 
155 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
156 static u32 cache_levels;
157 
158 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
159 #define CSSELR_MAX 12
160 
161 /* Which cache CCSIDR represents depends on CSSELR value. */
162 static u32 get_ccsidr(u32 csselr)
163 {
164 	u32 ccsidr;
165 
166 	/* Make sure noone else changes CSSELR during this! */
167 	local_irq_disable();
168 	write_sysreg(csselr, csselr_el1);
169 	isb();
170 	ccsidr = read_sysreg(ccsidr_el1);
171 	local_irq_enable();
172 
173 	return ccsidr;
174 }
175 
176 /*
177  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
178  */
179 static bool access_dcsw(struct kvm_vcpu *vcpu,
180 			struct sys_reg_params *p,
181 			const struct sys_reg_desc *r)
182 {
183 	if (!p->is_write)
184 		return read_from_write_only(vcpu, p, r);
185 
186 	/*
187 	 * Only track S/W ops if we don't have FWB. It still indicates
188 	 * that the guest is a bit broken (S/W operations should only
189 	 * be done by firmware, knowing that there is only a single
190 	 * CPU left in the system, and certainly not from non-secure
191 	 * software).
192 	 */
193 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
194 		kvm_set_way_flush(vcpu);
195 
196 	return true;
197 }
198 
199 /*
200  * Generic accessor for VM registers. Only called as long as HCR_TVM
201  * is set. If the guest enables the MMU, we stop trapping the VM
202  * sys_regs and leave it in complete control of the caches.
203  */
204 static bool access_vm_reg(struct kvm_vcpu *vcpu,
205 			  struct sys_reg_params *p,
206 			  const struct sys_reg_desc *r)
207 {
208 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
209 	u64 val;
210 	int reg = r->reg;
211 
212 	BUG_ON(!p->is_write);
213 
214 	/* See the 32bit mapping in kvm_host.h */
215 	if (p->is_aarch32)
216 		reg = r->reg / 2;
217 
218 	if (!p->is_aarch32 || !p->is_32bit) {
219 		val = p->regval;
220 	} else {
221 		val = vcpu_read_sys_reg(vcpu, reg);
222 		if (r->reg % 2)
223 			val = (p->regval << 32) | (u64)lower_32_bits(val);
224 		else
225 			val = ((u64)upper_32_bits(val) << 32) |
226 				lower_32_bits(p->regval);
227 	}
228 	vcpu_write_sys_reg(vcpu, val, reg);
229 
230 	kvm_toggle_cache(vcpu, was_enabled);
231 	return true;
232 }
233 
234 /*
235  * Trap handler for the GICv3 SGI generation system register.
236  * Forward the request to the VGIC emulation.
237  * The cp15_64 code makes sure this automatically works
238  * for both AArch64 and AArch32 accesses.
239  */
240 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
241 			   struct sys_reg_params *p,
242 			   const struct sys_reg_desc *r)
243 {
244 	bool g1;
245 
246 	if (!p->is_write)
247 		return read_from_write_only(vcpu, p, r);
248 
249 	/*
250 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
251 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
252 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
253 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
254 	 * group.
255 	 */
256 	if (p->is_aarch32) {
257 		switch (p->Op1) {
258 		default:		/* Keep GCC quiet */
259 		case 0:			/* ICC_SGI1R */
260 			g1 = true;
261 			break;
262 		case 1:			/* ICC_ASGI1R */
263 		case 2:			/* ICC_SGI0R */
264 			g1 = false;
265 			break;
266 		}
267 	} else {
268 		switch (p->Op2) {
269 		default:		/* Keep GCC quiet */
270 		case 5:			/* ICC_SGI1R_EL1 */
271 			g1 = true;
272 			break;
273 		case 6:			/* ICC_ASGI1R_EL1 */
274 		case 7:			/* ICC_SGI0R_EL1 */
275 			g1 = false;
276 			break;
277 		}
278 	}
279 
280 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
281 
282 	return true;
283 }
284 
285 static bool access_gic_sre(struct kvm_vcpu *vcpu,
286 			   struct sys_reg_params *p,
287 			   const struct sys_reg_desc *r)
288 {
289 	if (p->is_write)
290 		return ignore_write(vcpu, p);
291 
292 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
293 	return true;
294 }
295 
296 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
297 			struct sys_reg_params *p,
298 			const struct sys_reg_desc *r)
299 {
300 	if (p->is_write)
301 		return ignore_write(vcpu, p);
302 	else
303 		return read_zero(vcpu, p);
304 }
305 
306 /*
307  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
308  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
309  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
310  * treat it separately.
311  */
312 static bool trap_loregion(struct kvm_vcpu *vcpu,
313 			  struct sys_reg_params *p,
314 			  const struct sys_reg_desc *r)
315 {
316 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
317 	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
318 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
319 
320 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
321 		kvm_inject_undefined(vcpu);
322 		return false;
323 	}
324 
325 	if (p->is_write && sr == SYS_LORID_EL1)
326 		return write_to_read_only(vcpu, p, r);
327 
328 	return trap_raz_wi(vcpu, p, r);
329 }
330 
331 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
332 			   struct sys_reg_params *p,
333 			   const struct sys_reg_desc *r)
334 {
335 	if (p->is_write) {
336 		return ignore_write(vcpu, p);
337 	} else {
338 		p->regval = (1 << 3);
339 		return true;
340 	}
341 }
342 
343 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
344 				   struct sys_reg_params *p,
345 				   const struct sys_reg_desc *r)
346 {
347 	if (p->is_write) {
348 		return ignore_write(vcpu, p);
349 	} else {
350 		p->regval = read_sysreg(dbgauthstatus_el1);
351 		return true;
352 	}
353 }
354 
355 /*
356  * We want to avoid world-switching all the DBG registers all the
357  * time:
358  *
359  * - If we've touched any debug register, it is likely that we're
360  *   going to touch more of them. It then makes sense to disable the
361  *   traps and start doing the save/restore dance
362  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
363  *   then mandatory to save/restore the registers, as the guest
364  *   depends on them.
365  *
366  * For this, we use a DIRTY bit, indicating the guest has modified the
367  * debug registers, used as follow:
368  *
369  * On guest entry:
370  * - If the dirty bit is set (because we're coming back from trapping),
371  *   disable the traps, save host registers, restore guest registers.
372  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
373  *   set the dirty bit, disable the traps, save host registers,
374  *   restore guest registers.
375  * - Otherwise, enable the traps
376  *
377  * On guest exit:
378  * - If the dirty bit is set, save guest registers, restore host
379  *   registers and clear the dirty bit. This ensure that the host can
380  *   now use the debug registers.
381  */
382 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
383 			    struct sys_reg_params *p,
384 			    const struct sys_reg_desc *r)
385 {
386 	if (p->is_write) {
387 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
388 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
389 	} else {
390 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
391 	}
392 
393 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
394 
395 	return true;
396 }
397 
398 /*
399  * reg_to_dbg/dbg_to_reg
400  *
401  * A 32 bit write to a debug register leave top bits alone
402  * A 32 bit read from a debug register only returns the bottom bits
403  *
404  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
405  * hyp.S code switches between host and guest values in future.
406  */
407 static void reg_to_dbg(struct kvm_vcpu *vcpu,
408 		       struct sys_reg_params *p,
409 		       u64 *dbg_reg)
410 {
411 	u64 val = p->regval;
412 
413 	if (p->is_32bit) {
414 		val &= 0xffffffffUL;
415 		val |= ((*dbg_reg >> 32) << 32);
416 	}
417 
418 	*dbg_reg = val;
419 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
420 }
421 
422 static void dbg_to_reg(struct kvm_vcpu *vcpu,
423 		       struct sys_reg_params *p,
424 		       u64 *dbg_reg)
425 {
426 	p->regval = *dbg_reg;
427 	if (p->is_32bit)
428 		p->regval &= 0xffffffffUL;
429 }
430 
431 static bool trap_bvr(struct kvm_vcpu *vcpu,
432 		     struct sys_reg_params *p,
433 		     const struct sys_reg_desc *rd)
434 {
435 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
436 
437 	if (p->is_write)
438 		reg_to_dbg(vcpu, p, dbg_reg);
439 	else
440 		dbg_to_reg(vcpu, p, dbg_reg);
441 
442 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
443 
444 	return true;
445 }
446 
447 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
448 		const struct kvm_one_reg *reg, void __user *uaddr)
449 {
450 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
451 
452 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
453 		return -EFAULT;
454 	return 0;
455 }
456 
457 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
458 	const struct kvm_one_reg *reg, void __user *uaddr)
459 {
460 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
461 
462 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
463 		return -EFAULT;
464 	return 0;
465 }
466 
467 static void reset_bvr(struct kvm_vcpu *vcpu,
468 		      const struct sys_reg_desc *rd)
469 {
470 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
471 }
472 
473 static bool trap_bcr(struct kvm_vcpu *vcpu,
474 		     struct sys_reg_params *p,
475 		     const struct sys_reg_desc *rd)
476 {
477 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
478 
479 	if (p->is_write)
480 		reg_to_dbg(vcpu, p, dbg_reg);
481 	else
482 		dbg_to_reg(vcpu, p, dbg_reg);
483 
484 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
485 
486 	return true;
487 }
488 
489 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
490 		const struct kvm_one_reg *reg, void __user *uaddr)
491 {
492 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
493 
494 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
495 		return -EFAULT;
496 
497 	return 0;
498 }
499 
500 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501 	const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504 
505 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
506 		return -EFAULT;
507 	return 0;
508 }
509 
510 static void reset_bcr(struct kvm_vcpu *vcpu,
511 		      const struct sys_reg_desc *rd)
512 {
513 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
514 }
515 
516 static bool trap_wvr(struct kvm_vcpu *vcpu,
517 		     struct sys_reg_params *p,
518 		     const struct sys_reg_desc *rd)
519 {
520 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
521 
522 	if (p->is_write)
523 		reg_to_dbg(vcpu, p, dbg_reg);
524 	else
525 		dbg_to_reg(vcpu, p, dbg_reg);
526 
527 	trace_trap_reg(__func__, rd->reg, p->is_write,
528 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
529 
530 	return true;
531 }
532 
533 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
534 		const struct kvm_one_reg *reg, void __user *uaddr)
535 {
536 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
537 
538 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
539 		return -EFAULT;
540 	return 0;
541 }
542 
543 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
544 	const struct kvm_one_reg *reg, void __user *uaddr)
545 {
546 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
547 
548 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
549 		return -EFAULT;
550 	return 0;
551 }
552 
553 static void reset_wvr(struct kvm_vcpu *vcpu,
554 		      const struct sys_reg_desc *rd)
555 {
556 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
557 }
558 
559 static bool trap_wcr(struct kvm_vcpu *vcpu,
560 		     struct sys_reg_params *p,
561 		     const struct sys_reg_desc *rd)
562 {
563 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
564 
565 	if (p->is_write)
566 		reg_to_dbg(vcpu, p, dbg_reg);
567 	else
568 		dbg_to_reg(vcpu, p, dbg_reg);
569 
570 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
571 
572 	return true;
573 }
574 
575 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
576 		const struct kvm_one_reg *reg, void __user *uaddr)
577 {
578 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
579 
580 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
581 		return -EFAULT;
582 	return 0;
583 }
584 
585 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
586 	const struct kvm_one_reg *reg, void __user *uaddr)
587 {
588 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
589 
590 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
591 		return -EFAULT;
592 	return 0;
593 }
594 
595 static void reset_wcr(struct kvm_vcpu *vcpu,
596 		      const struct sys_reg_desc *rd)
597 {
598 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
599 }
600 
601 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
602 {
603 	u64 amair = read_sysreg(amair_el1);
604 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
605 }
606 
607 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 mpidr;
610 
611 	/*
612 	 * Map the vcpu_id into the first three affinity level fields of
613 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
614 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
615 	 * of the GICv3 to be able to address each CPU directly when
616 	 * sending IPIs.
617 	 */
618 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
619 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
620 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
621 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
622 }
623 
624 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
625 {
626 	u64 pmcr, val;
627 
628 	pmcr = read_sysreg(pmcr_el0);
629 	/*
630 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
631 	 * except PMCR.E resetting to zero.
632 	 */
633 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
634 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
635 	__vcpu_sys_reg(vcpu, r->reg) = val;
636 }
637 
638 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
639 {
640 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
641 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
642 
643 	if (!enabled)
644 		kvm_inject_undefined(vcpu);
645 
646 	return !enabled;
647 }
648 
649 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
650 {
651 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
652 }
653 
654 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
655 {
656 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
657 }
658 
659 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
660 {
661 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
662 }
663 
664 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
665 {
666 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
667 }
668 
669 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
670 			const struct sys_reg_desc *r)
671 {
672 	u64 val;
673 
674 	if (!kvm_arm_pmu_v3_ready(vcpu))
675 		return trap_raz_wi(vcpu, p, r);
676 
677 	if (pmu_access_el0_disabled(vcpu))
678 		return false;
679 
680 	if (p->is_write) {
681 		/* Only update writeable bits of PMCR */
682 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
683 		val &= ~ARMV8_PMU_PMCR_MASK;
684 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
685 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
686 		kvm_pmu_handle_pmcr(vcpu, val);
687 		kvm_vcpu_pmu_restore_guest(vcpu);
688 	} else {
689 		/* PMCR.P & PMCR.C are RAZ */
690 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
691 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
692 		p->regval = val;
693 	}
694 
695 	return true;
696 }
697 
698 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
699 			  const struct sys_reg_desc *r)
700 {
701 	if (!kvm_arm_pmu_v3_ready(vcpu))
702 		return trap_raz_wi(vcpu, p, r);
703 
704 	if (pmu_access_event_counter_el0_disabled(vcpu))
705 		return false;
706 
707 	if (p->is_write)
708 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
709 	else
710 		/* return PMSELR.SEL field */
711 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
712 			    & ARMV8_PMU_COUNTER_MASK;
713 
714 	return true;
715 }
716 
717 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718 			  const struct sys_reg_desc *r)
719 {
720 	u64 pmceid;
721 
722 	if (!kvm_arm_pmu_v3_ready(vcpu))
723 		return trap_raz_wi(vcpu, p, r);
724 
725 	BUG_ON(p->is_write);
726 
727 	if (pmu_access_el0_disabled(vcpu))
728 		return false;
729 
730 	if (!(p->Op2 & 1))
731 		pmceid = read_sysreg(pmceid0_el0);
732 	else
733 		pmceid = read_sysreg(pmceid1_el0);
734 
735 	p->regval = pmceid;
736 
737 	return true;
738 }
739 
740 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
741 {
742 	u64 pmcr, val;
743 
744 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
745 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
746 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
747 		kvm_inject_undefined(vcpu);
748 		return false;
749 	}
750 
751 	return true;
752 }
753 
754 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
755 			      struct sys_reg_params *p,
756 			      const struct sys_reg_desc *r)
757 {
758 	u64 idx;
759 
760 	if (!kvm_arm_pmu_v3_ready(vcpu))
761 		return trap_raz_wi(vcpu, p, r);
762 
763 	if (r->CRn == 9 && r->CRm == 13) {
764 		if (r->Op2 == 2) {
765 			/* PMXEVCNTR_EL0 */
766 			if (pmu_access_event_counter_el0_disabled(vcpu))
767 				return false;
768 
769 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770 			      & ARMV8_PMU_COUNTER_MASK;
771 		} else if (r->Op2 == 0) {
772 			/* PMCCNTR_EL0 */
773 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
774 				return false;
775 
776 			idx = ARMV8_PMU_CYCLE_IDX;
777 		} else {
778 			return false;
779 		}
780 	} else if (r->CRn == 0 && r->CRm == 9) {
781 		/* PMCCNTR */
782 		if (pmu_access_event_counter_el0_disabled(vcpu))
783 			return false;
784 
785 		idx = ARMV8_PMU_CYCLE_IDX;
786 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
787 		/* PMEVCNTRn_EL0 */
788 		if (pmu_access_event_counter_el0_disabled(vcpu))
789 			return false;
790 
791 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
792 	} else {
793 		return false;
794 	}
795 
796 	if (!pmu_counter_idx_valid(vcpu, idx))
797 		return false;
798 
799 	if (p->is_write) {
800 		if (pmu_access_el0_disabled(vcpu))
801 			return false;
802 
803 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
804 	} else {
805 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
806 	}
807 
808 	return true;
809 }
810 
811 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
812 			       const struct sys_reg_desc *r)
813 {
814 	u64 idx, reg;
815 
816 	if (!kvm_arm_pmu_v3_ready(vcpu))
817 		return trap_raz_wi(vcpu, p, r);
818 
819 	if (pmu_access_el0_disabled(vcpu))
820 		return false;
821 
822 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
823 		/* PMXEVTYPER_EL0 */
824 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
825 		reg = PMEVTYPER0_EL0 + idx;
826 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
827 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
828 		if (idx == ARMV8_PMU_CYCLE_IDX)
829 			reg = PMCCFILTR_EL0;
830 		else
831 			/* PMEVTYPERn_EL0 */
832 			reg = PMEVTYPER0_EL0 + idx;
833 	} else {
834 		BUG();
835 	}
836 
837 	if (!pmu_counter_idx_valid(vcpu, idx))
838 		return false;
839 
840 	if (p->is_write) {
841 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
842 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
843 		kvm_vcpu_pmu_restore_guest(vcpu);
844 	} else {
845 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
846 	}
847 
848 	return true;
849 }
850 
851 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
852 			   const struct sys_reg_desc *r)
853 {
854 	u64 val, mask;
855 
856 	if (!kvm_arm_pmu_v3_ready(vcpu))
857 		return trap_raz_wi(vcpu, p, r);
858 
859 	if (pmu_access_el0_disabled(vcpu))
860 		return false;
861 
862 	mask = kvm_pmu_valid_counter_mask(vcpu);
863 	if (p->is_write) {
864 		val = p->regval & mask;
865 		if (r->Op2 & 0x1) {
866 			/* accessing PMCNTENSET_EL0 */
867 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
868 			kvm_pmu_enable_counter_mask(vcpu, val);
869 			kvm_vcpu_pmu_restore_guest(vcpu);
870 		} else {
871 			/* accessing PMCNTENCLR_EL0 */
872 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
873 			kvm_pmu_disable_counter_mask(vcpu, val);
874 		}
875 	} else {
876 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
877 	}
878 
879 	return true;
880 }
881 
882 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
883 			   const struct sys_reg_desc *r)
884 {
885 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
886 
887 	if (!kvm_arm_pmu_v3_ready(vcpu))
888 		return trap_raz_wi(vcpu, p, r);
889 
890 	if (!vcpu_mode_priv(vcpu)) {
891 		kvm_inject_undefined(vcpu);
892 		return false;
893 	}
894 
895 	if (p->is_write) {
896 		u64 val = p->regval & mask;
897 
898 		if (r->Op2 & 0x1)
899 			/* accessing PMINTENSET_EL1 */
900 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
901 		else
902 			/* accessing PMINTENCLR_EL1 */
903 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
904 	} else {
905 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
906 	}
907 
908 	return true;
909 }
910 
911 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
912 			 const struct sys_reg_desc *r)
913 {
914 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
915 
916 	if (!kvm_arm_pmu_v3_ready(vcpu))
917 		return trap_raz_wi(vcpu, p, r);
918 
919 	if (pmu_access_el0_disabled(vcpu))
920 		return false;
921 
922 	if (p->is_write) {
923 		if (r->CRm & 0x2)
924 			/* accessing PMOVSSET_EL0 */
925 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
926 		else
927 			/* accessing PMOVSCLR_EL0 */
928 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
929 	} else {
930 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
931 	}
932 
933 	return true;
934 }
935 
936 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
937 			   const struct sys_reg_desc *r)
938 {
939 	u64 mask;
940 
941 	if (!kvm_arm_pmu_v3_ready(vcpu))
942 		return trap_raz_wi(vcpu, p, r);
943 
944 	if (!p->is_write)
945 		return read_from_write_only(vcpu, p, r);
946 
947 	if (pmu_write_swinc_el0_disabled(vcpu))
948 		return false;
949 
950 	mask = kvm_pmu_valid_counter_mask(vcpu);
951 	kvm_pmu_software_increment(vcpu, p->regval & mask);
952 	return true;
953 }
954 
955 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
956 			     const struct sys_reg_desc *r)
957 {
958 	if (!kvm_arm_pmu_v3_ready(vcpu))
959 		return trap_raz_wi(vcpu, p, r);
960 
961 	if (p->is_write) {
962 		if (!vcpu_mode_priv(vcpu)) {
963 			kvm_inject_undefined(vcpu);
964 			return false;
965 		}
966 
967 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
968 			       p->regval & ARMV8_PMU_USERENR_MASK;
969 	} else {
970 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
971 			    & ARMV8_PMU_USERENR_MASK;
972 	}
973 
974 	return true;
975 }
976 
977 #define reg_to_encoding(x)						\
978 	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
979 		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);
980 
981 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
982 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
983 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
984 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
985 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
986 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
987 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
988 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
989 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
990 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
991 
992 /* Macro to expand the PMEVCNTRn_EL0 register */
993 #define PMU_PMEVCNTR_EL0(n)						\
994 	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
995 	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
996 
997 /* Macro to expand the PMEVTYPERn_EL0 register */
998 #define PMU_PMEVTYPER_EL0(n)						\
999 	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
1000 	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1001 
1002 static bool trap_ptrauth(struct kvm_vcpu *vcpu,
1003 			 struct sys_reg_params *p,
1004 			 const struct sys_reg_desc *rd)
1005 {
1006 	kvm_arm_vcpu_ptrauth_trap(vcpu);
1007 
1008 	/*
1009 	 * Return false for both cases as we never skip the trapped
1010 	 * instruction:
1011 	 *
1012 	 * - Either we re-execute the same key register access instruction
1013 	 *   after enabling ptrauth.
1014 	 * - Or an UNDEF is injected as ptrauth is not supported/enabled.
1015 	 */
1016 	return false;
1017 }
1018 
1019 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1020 			const struct sys_reg_desc *rd)
1021 {
1022 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1023 }
1024 
1025 #define __PTRAUTH_KEY(k)						\
1026 	{ SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,		\
1027 	.visibility = ptrauth_visibility}
1028 
1029 #define PTRAUTH_KEY(k)							\
1030 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1031 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1032 
1033 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1034 			      struct sys_reg_params *p,
1035 			      const struct sys_reg_desc *r)
1036 {
1037 	enum kvm_arch_timers tmr;
1038 	enum kvm_arch_timer_regs treg;
1039 	u64 reg = reg_to_encoding(r);
1040 
1041 	switch (reg) {
1042 	case SYS_CNTP_TVAL_EL0:
1043 	case SYS_AARCH32_CNTP_TVAL:
1044 		tmr = TIMER_PTIMER;
1045 		treg = TIMER_REG_TVAL;
1046 		break;
1047 	case SYS_CNTP_CTL_EL0:
1048 	case SYS_AARCH32_CNTP_CTL:
1049 		tmr = TIMER_PTIMER;
1050 		treg = TIMER_REG_CTL;
1051 		break;
1052 	case SYS_CNTP_CVAL_EL0:
1053 	case SYS_AARCH32_CNTP_CVAL:
1054 		tmr = TIMER_PTIMER;
1055 		treg = TIMER_REG_CVAL;
1056 		break;
1057 	default:
1058 		BUG();
1059 	}
1060 
1061 	if (p->is_write)
1062 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1063 	else
1064 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1065 
1066 	return true;
1067 }
1068 
1069 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1070 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1071 		struct sys_reg_desc const *r, bool raz)
1072 {
1073 	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1074 			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1075 	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1076 
1077 	if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
1078 		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1079 	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
1080 		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1081 			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1082 			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1083 			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
1084 	}
1085 
1086 	return val;
1087 }
1088 
1089 /* cpufeature ID register access trap handlers */
1090 
1091 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1092 			    struct sys_reg_params *p,
1093 			    const struct sys_reg_desc *r,
1094 			    bool raz)
1095 {
1096 	if (p->is_write)
1097 		return write_to_read_only(vcpu, p, r);
1098 
1099 	p->regval = read_id_reg(vcpu, r, raz);
1100 	return true;
1101 }
1102 
1103 static bool access_id_reg(struct kvm_vcpu *vcpu,
1104 			  struct sys_reg_params *p,
1105 			  const struct sys_reg_desc *r)
1106 {
1107 	return __access_id_reg(vcpu, p, r, false);
1108 }
1109 
1110 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1111 			      struct sys_reg_params *p,
1112 			      const struct sys_reg_desc *r)
1113 {
1114 	return __access_id_reg(vcpu, p, r, true);
1115 }
1116 
1117 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1118 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1119 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1120 
1121 /* Visibility overrides for SVE-specific control registers */
1122 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1123 				   const struct sys_reg_desc *rd)
1124 {
1125 	if (vcpu_has_sve(vcpu))
1126 		return 0;
1127 
1128 	return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
1129 }
1130 
1131 /* Visibility overrides for SVE-specific ID registers */
1132 static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
1133 				      const struct sys_reg_desc *rd)
1134 {
1135 	if (vcpu_has_sve(vcpu))
1136 		return 0;
1137 
1138 	return REG_HIDDEN_USER;
1139 }
1140 
1141 /* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
1142 static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
1143 {
1144 	if (!vcpu_has_sve(vcpu))
1145 		return 0;
1146 
1147 	return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
1148 }
1149 
1150 static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1151 				   struct sys_reg_params *p,
1152 				   const struct sys_reg_desc *rd)
1153 {
1154 	if (p->is_write)
1155 		return write_to_read_only(vcpu, p, rd);
1156 
1157 	p->regval = guest_id_aa64zfr0_el1(vcpu);
1158 	return true;
1159 }
1160 
1161 static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1162 		const struct sys_reg_desc *rd,
1163 		const struct kvm_one_reg *reg, void __user *uaddr)
1164 {
1165 	u64 val;
1166 
1167 	if (WARN_ON(!vcpu_has_sve(vcpu)))
1168 		return -ENOENT;
1169 
1170 	val = guest_id_aa64zfr0_el1(vcpu);
1171 	return reg_to_user(uaddr, &val, reg->id);
1172 }
1173 
1174 static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
1175 		const struct sys_reg_desc *rd,
1176 		const struct kvm_one_reg *reg, void __user *uaddr)
1177 {
1178 	const u64 id = sys_reg_to_index(rd);
1179 	int err;
1180 	u64 val;
1181 
1182 	if (WARN_ON(!vcpu_has_sve(vcpu)))
1183 		return -ENOENT;
1184 
1185 	err = reg_from_user(&val, uaddr, id);
1186 	if (err)
1187 		return err;
1188 
1189 	/* This is what we mean by invariant: you can't change it. */
1190 	if (val != guest_id_aa64zfr0_el1(vcpu))
1191 		return -EINVAL;
1192 
1193 	return 0;
1194 }
1195 
1196 /*
1197  * cpufeature ID register user accessors
1198  *
1199  * For now, these registers are immutable for userspace, so no values
1200  * are stored, and for set_id_reg() we don't allow the effective value
1201  * to be changed.
1202  */
1203 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1204 			const struct sys_reg_desc *rd, void __user *uaddr,
1205 			bool raz)
1206 {
1207 	const u64 id = sys_reg_to_index(rd);
1208 	const u64 val = read_id_reg(vcpu, rd, raz);
1209 
1210 	return reg_to_user(uaddr, &val, id);
1211 }
1212 
1213 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1214 			const struct sys_reg_desc *rd, void __user *uaddr,
1215 			bool raz)
1216 {
1217 	const u64 id = sys_reg_to_index(rd);
1218 	int err;
1219 	u64 val;
1220 
1221 	err = reg_from_user(&val, uaddr, id);
1222 	if (err)
1223 		return err;
1224 
1225 	/* This is what we mean by invariant: you can't change it. */
1226 	if (val != read_id_reg(vcpu, rd, raz))
1227 		return -EINVAL;
1228 
1229 	return 0;
1230 }
1231 
1232 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1233 		      const struct kvm_one_reg *reg, void __user *uaddr)
1234 {
1235 	return __get_id_reg(vcpu, rd, uaddr, false);
1236 }
1237 
1238 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1239 		      const struct kvm_one_reg *reg, void __user *uaddr)
1240 {
1241 	return __set_id_reg(vcpu, rd, uaddr, false);
1242 }
1243 
1244 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1245 			  const struct kvm_one_reg *reg, void __user *uaddr)
1246 {
1247 	return __get_id_reg(vcpu, rd, uaddr, true);
1248 }
1249 
1250 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1251 			  const struct kvm_one_reg *reg, void __user *uaddr)
1252 {
1253 	return __set_id_reg(vcpu, rd, uaddr, true);
1254 }
1255 
1256 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257 		       const struct sys_reg_desc *r)
1258 {
1259 	if (p->is_write)
1260 		return write_to_read_only(vcpu, p, r);
1261 
1262 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1263 	return true;
1264 }
1265 
1266 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1267 			 const struct sys_reg_desc *r)
1268 {
1269 	if (p->is_write)
1270 		return write_to_read_only(vcpu, p, r);
1271 
1272 	p->regval = read_sysreg(clidr_el1);
1273 	return true;
1274 }
1275 
1276 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1277 			  const struct sys_reg_desc *r)
1278 {
1279 	if (p->is_write)
1280 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
1281 	else
1282 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
1283 	return true;
1284 }
1285 
1286 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1287 			  const struct sys_reg_desc *r)
1288 {
1289 	u32 csselr;
1290 
1291 	if (p->is_write)
1292 		return write_to_read_only(vcpu, p, r);
1293 
1294 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1295 	p->regval = get_ccsidr(csselr);
1296 
1297 	/*
1298 	 * Guests should not be doing cache operations by set/way at all, and
1299 	 * for this reason, we trap them and attempt to infer the intent, so
1300 	 * that we can flush the entire guest's address space at the appropriate
1301 	 * time.
1302 	 * To prevent this trapping from causing performance problems, let's
1303 	 * expose the geometry of all data and unified caches (which are
1304 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1305 	 * [If guests should attempt to infer aliasing properties from the
1306 	 * geometry (which is not permitted by the architecture), they would
1307 	 * only do so for virtually indexed caches.]
1308 	 */
1309 	if (!(csselr & 1)) // data or unified cache
1310 		p->regval &= ~GENMASK(27, 3);
1311 	return true;
1312 }
1313 
1314 /* sys_reg_desc initialiser for known cpufeature ID registers */
1315 #define ID_SANITISED(name) {			\
1316 	SYS_DESC(SYS_##name),			\
1317 	.access	= access_id_reg,		\
1318 	.get_user = get_id_reg,			\
1319 	.set_user = set_id_reg,			\
1320 }
1321 
1322 /*
1323  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1324  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1325  * (1 <= crm < 8, 0 <= Op2 < 8).
1326  */
1327 #define ID_UNALLOCATED(crm, op2) {			\
1328 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1329 	.access = access_raz_id_reg,			\
1330 	.get_user = get_raz_id_reg,			\
1331 	.set_user = set_raz_id_reg,			\
1332 }
1333 
1334 /*
1335  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1336  * For now, these are exposed just like unallocated ID regs: they appear
1337  * RAZ for the guest.
1338  */
1339 #define ID_HIDDEN(name) {			\
1340 	SYS_DESC(SYS_##name),			\
1341 	.access = access_raz_id_reg,		\
1342 	.get_user = get_raz_id_reg,		\
1343 	.set_user = set_raz_id_reg,		\
1344 }
1345 
1346 /*
1347  * Architected system registers.
1348  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1349  *
1350  * Debug handling: We do trap most, if not all debug related system
1351  * registers. The implementation is good enough to ensure that a guest
1352  * can use these with minimal performance degradation. The drawback is
1353  * that we don't implement any of the external debug, none of the
1354  * OSlock protocol. This should be revisited if we ever encounter a
1355  * more demanding guest...
1356  */
1357 static const struct sys_reg_desc sys_reg_descs[] = {
1358 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1359 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1360 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1361 
1362 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1363 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1364 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1365 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1366 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1367 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1368 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1369 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1370 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1371 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1372 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1373 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1374 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1375 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1376 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1377 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1378 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1379 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1380 
1381 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1382 	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1383 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1384 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1385 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1386 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1387 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1388 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1389 
1390 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1391 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1392 	// DBGDTR[TR]X_EL0 share the same encoding
1393 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1394 
1395 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1396 
1397 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1398 
1399 	/*
1400 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1401 	 * entries in arm64_ftr_regs[].
1402 	 */
1403 
1404 	/* AArch64 mappings of the AArch32 ID registers */
1405 	/* CRm=1 */
1406 	ID_SANITISED(ID_PFR0_EL1),
1407 	ID_SANITISED(ID_PFR1_EL1),
1408 	ID_SANITISED(ID_DFR0_EL1),
1409 	ID_HIDDEN(ID_AFR0_EL1),
1410 	ID_SANITISED(ID_MMFR0_EL1),
1411 	ID_SANITISED(ID_MMFR1_EL1),
1412 	ID_SANITISED(ID_MMFR2_EL1),
1413 	ID_SANITISED(ID_MMFR3_EL1),
1414 
1415 	/* CRm=2 */
1416 	ID_SANITISED(ID_ISAR0_EL1),
1417 	ID_SANITISED(ID_ISAR1_EL1),
1418 	ID_SANITISED(ID_ISAR2_EL1),
1419 	ID_SANITISED(ID_ISAR3_EL1),
1420 	ID_SANITISED(ID_ISAR4_EL1),
1421 	ID_SANITISED(ID_ISAR5_EL1),
1422 	ID_SANITISED(ID_MMFR4_EL1),
1423 	ID_UNALLOCATED(2,7),
1424 
1425 	/* CRm=3 */
1426 	ID_SANITISED(MVFR0_EL1),
1427 	ID_SANITISED(MVFR1_EL1),
1428 	ID_SANITISED(MVFR2_EL1),
1429 	ID_UNALLOCATED(3,3),
1430 	ID_UNALLOCATED(3,4),
1431 	ID_UNALLOCATED(3,5),
1432 	ID_UNALLOCATED(3,6),
1433 	ID_UNALLOCATED(3,7),
1434 
1435 	/* AArch64 ID registers */
1436 	/* CRm=4 */
1437 	ID_SANITISED(ID_AA64PFR0_EL1),
1438 	ID_SANITISED(ID_AA64PFR1_EL1),
1439 	ID_UNALLOCATED(4,2),
1440 	ID_UNALLOCATED(4,3),
1441 	{ SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
1442 	ID_UNALLOCATED(4,5),
1443 	ID_UNALLOCATED(4,6),
1444 	ID_UNALLOCATED(4,7),
1445 
1446 	/* CRm=5 */
1447 	ID_SANITISED(ID_AA64DFR0_EL1),
1448 	ID_SANITISED(ID_AA64DFR1_EL1),
1449 	ID_UNALLOCATED(5,2),
1450 	ID_UNALLOCATED(5,3),
1451 	ID_HIDDEN(ID_AA64AFR0_EL1),
1452 	ID_HIDDEN(ID_AA64AFR1_EL1),
1453 	ID_UNALLOCATED(5,6),
1454 	ID_UNALLOCATED(5,7),
1455 
1456 	/* CRm=6 */
1457 	ID_SANITISED(ID_AA64ISAR0_EL1),
1458 	ID_SANITISED(ID_AA64ISAR1_EL1),
1459 	ID_UNALLOCATED(6,2),
1460 	ID_UNALLOCATED(6,3),
1461 	ID_UNALLOCATED(6,4),
1462 	ID_UNALLOCATED(6,5),
1463 	ID_UNALLOCATED(6,6),
1464 	ID_UNALLOCATED(6,7),
1465 
1466 	/* CRm=7 */
1467 	ID_SANITISED(ID_AA64MMFR0_EL1),
1468 	ID_SANITISED(ID_AA64MMFR1_EL1),
1469 	ID_SANITISED(ID_AA64MMFR2_EL1),
1470 	ID_UNALLOCATED(7,3),
1471 	ID_UNALLOCATED(7,4),
1472 	ID_UNALLOCATED(7,5),
1473 	ID_UNALLOCATED(7,6),
1474 	ID_UNALLOCATED(7,7),
1475 
1476 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1477 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1478 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1479 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1480 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1481 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1482 
1483 	PTRAUTH_KEY(APIA),
1484 	PTRAUTH_KEY(APIB),
1485 	PTRAUTH_KEY(APDA),
1486 	PTRAUTH_KEY(APDB),
1487 	PTRAUTH_KEY(APGA),
1488 
1489 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1490 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1491 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1492 
1493 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1494 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1495 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1496 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1497 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1498 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1499 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1500 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1501 
1502 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1503 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1504 
1505 	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1506 	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1507 
1508 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1509 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1510 
1511 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1512 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1513 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1514 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1515 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1516 
1517 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1518 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1519 
1520 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1521 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1522 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1523 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1524 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1525 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1526 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1527 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1528 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1529 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1530 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1531 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1532 
1533 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1534 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1535 
1536 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1537 
1538 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1539 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1540 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1541 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1542 
1543 	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
1544 	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1545 	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1546 	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1547 	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1548 	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1549 	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1550 	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1551 	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1552 	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1553 	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1554 	/*
1555 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1556 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1557 	 */
1558 	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1559 	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1560 
1561 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1562 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1563 
1564 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1565 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1566 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1567 
1568 	/* PMEVCNTRn_EL0 */
1569 	PMU_PMEVCNTR_EL0(0),
1570 	PMU_PMEVCNTR_EL0(1),
1571 	PMU_PMEVCNTR_EL0(2),
1572 	PMU_PMEVCNTR_EL0(3),
1573 	PMU_PMEVCNTR_EL0(4),
1574 	PMU_PMEVCNTR_EL0(5),
1575 	PMU_PMEVCNTR_EL0(6),
1576 	PMU_PMEVCNTR_EL0(7),
1577 	PMU_PMEVCNTR_EL0(8),
1578 	PMU_PMEVCNTR_EL0(9),
1579 	PMU_PMEVCNTR_EL0(10),
1580 	PMU_PMEVCNTR_EL0(11),
1581 	PMU_PMEVCNTR_EL0(12),
1582 	PMU_PMEVCNTR_EL0(13),
1583 	PMU_PMEVCNTR_EL0(14),
1584 	PMU_PMEVCNTR_EL0(15),
1585 	PMU_PMEVCNTR_EL0(16),
1586 	PMU_PMEVCNTR_EL0(17),
1587 	PMU_PMEVCNTR_EL0(18),
1588 	PMU_PMEVCNTR_EL0(19),
1589 	PMU_PMEVCNTR_EL0(20),
1590 	PMU_PMEVCNTR_EL0(21),
1591 	PMU_PMEVCNTR_EL0(22),
1592 	PMU_PMEVCNTR_EL0(23),
1593 	PMU_PMEVCNTR_EL0(24),
1594 	PMU_PMEVCNTR_EL0(25),
1595 	PMU_PMEVCNTR_EL0(26),
1596 	PMU_PMEVCNTR_EL0(27),
1597 	PMU_PMEVCNTR_EL0(28),
1598 	PMU_PMEVCNTR_EL0(29),
1599 	PMU_PMEVCNTR_EL0(30),
1600 	/* PMEVTYPERn_EL0 */
1601 	PMU_PMEVTYPER_EL0(0),
1602 	PMU_PMEVTYPER_EL0(1),
1603 	PMU_PMEVTYPER_EL0(2),
1604 	PMU_PMEVTYPER_EL0(3),
1605 	PMU_PMEVTYPER_EL0(4),
1606 	PMU_PMEVTYPER_EL0(5),
1607 	PMU_PMEVTYPER_EL0(6),
1608 	PMU_PMEVTYPER_EL0(7),
1609 	PMU_PMEVTYPER_EL0(8),
1610 	PMU_PMEVTYPER_EL0(9),
1611 	PMU_PMEVTYPER_EL0(10),
1612 	PMU_PMEVTYPER_EL0(11),
1613 	PMU_PMEVTYPER_EL0(12),
1614 	PMU_PMEVTYPER_EL0(13),
1615 	PMU_PMEVTYPER_EL0(14),
1616 	PMU_PMEVTYPER_EL0(15),
1617 	PMU_PMEVTYPER_EL0(16),
1618 	PMU_PMEVTYPER_EL0(17),
1619 	PMU_PMEVTYPER_EL0(18),
1620 	PMU_PMEVTYPER_EL0(19),
1621 	PMU_PMEVTYPER_EL0(20),
1622 	PMU_PMEVTYPER_EL0(21),
1623 	PMU_PMEVTYPER_EL0(22),
1624 	PMU_PMEVTYPER_EL0(23),
1625 	PMU_PMEVTYPER_EL0(24),
1626 	PMU_PMEVTYPER_EL0(25),
1627 	PMU_PMEVTYPER_EL0(26),
1628 	PMU_PMEVTYPER_EL0(27),
1629 	PMU_PMEVTYPER_EL0(28),
1630 	PMU_PMEVTYPER_EL0(29),
1631 	PMU_PMEVTYPER_EL0(30),
1632 	/*
1633 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1634 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1635 	 */
1636 	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1637 
1638 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1639 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1640 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1641 };
1642 
1643 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1644 			struct sys_reg_params *p,
1645 			const struct sys_reg_desc *r)
1646 {
1647 	if (p->is_write) {
1648 		return ignore_write(vcpu, p);
1649 	} else {
1650 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1651 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1653 
1654 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1655 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1656 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1657 			     | (6 << 16) | (el3 << 14) | (el3 << 12));
1658 		return true;
1659 	}
1660 }
1661 
1662 static bool trap_debug32(struct kvm_vcpu *vcpu,
1663 			 struct sys_reg_params *p,
1664 			 const struct sys_reg_desc *r)
1665 {
1666 	if (p->is_write) {
1667 		vcpu_cp14(vcpu, r->reg) = p->regval;
1668 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1669 	} else {
1670 		p->regval = vcpu_cp14(vcpu, r->reg);
1671 	}
1672 
1673 	return true;
1674 }
1675 
1676 /* AArch32 debug register mappings
1677  *
1678  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1679  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1680  *
1681  * All control registers and watchpoint value registers are mapped to
1682  * the lower 32 bits of their AArch64 equivalents. We share the trap
1683  * handlers with the above AArch64 code which checks what mode the
1684  * system is in.
1685  */
1686 
1687 static bool trap_xvr(struct kvm_vcpu *vcpu,
1688 		     struct sys_reg_params *p,
1689 		     const struct sys_reg_desc *rd)
1690 {
1691 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1692 
1693 	if (p->is_write) {
1694 		u64 val = *dbg_reg;
1695 
1696 		val &= 0xffffffffUL;
1697 		val |= p->regval << 32;
1698 		*dbg_reg = val;
1699 
1700 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1701 	} else {
1702 		p->regval = *dbg_reg >> 32;
1703 	}
1704 
1705 	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1706 
1707 	return true;
1708 }
1709 
1710 #define DBG_BCR_BVR_WCR_WVR(n)						\
1711 	/* DBGBVRn */							\
1712 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
1713 	/* DBGBCRn */							\
1714 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
1715 	/* DBGWVRn */							\
1716 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
1717 	/* DBGWCRn */							\
1718 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1719 
1720 #define DBGBXVR(n)							\
1721 	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1722 
1723 /*
1724  * Trapped cp14 registers. We generally ignore most of the external
1725  * debug, on the principle that they don't really make sense to a
1726  * guest. Revisit this one day, would this principle change.
1727  */
1728 static const struct sys_reg_desc cp14_regs[] = {
1729 	/* DBGIDR */
1730 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1731 	/* DBGDTRRXext */
1732 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1733 
1734 	DBG_BCR_BVR_WCR_WVR(0),
1735 	/* DBGDSCRint */
1736 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1737 	DBG_BCR_BVR_WCR_WVR(1),
1738 	/* DBGDCCINT */
1739 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1740 	/* DBGDSCRext */
1741 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1742 	DBG_BCR_BVR_WCR_WVR(2),
1743 	/* DBGDTR[RT]Xint */
1744 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1745 	/* DBGDTR[RT]Xext */
1746 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1747 	DBG_BCR_BVR_WCR_WVR(3),
1748 	DBG_BCR_BVR_WCR_WVR(4),
1749 	DBG_BCR_BVR_WCR_WVR(5),
1750 	/* DBGWFAR */
1751 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1752 	/* DBGOSECCR */
1753 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1754 	DBG_BCR_BVR_WCR_WVR(6),
1755 	/* DBGVCR */
1756 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1757 	DBG_BCR_BVR_WCR_WVR(7),
1758 	DBG_BCR_BVR_WCR_WVR(8),
1759 	DBG_BCR_BVR_WCR_WVR(9),
1760 	DBG_BCR_BVR_WCR_WVR(10),
1761 	DBG_BCR_BVR_WCR_WVR(11),
1762 	DBG_BCR_BVR_WCR_WVR(12),
1763 	DBG_BCR_BVR_WCR_WVR(13),
1764 	DBG_BCR_BVR_WCR_WVR(14),
1765 	DBG_BCR_BVR_WCR_WVR(15),
1766 
1767 	/* DBGDRAR (32bit) */
1768 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1769 
1770 	DBGBXVR(0),
1771 	/* DBGOSLAR */
1772 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1773 	DBGBXVR(1),
1774 	/* DBGOSLSR */
1775 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1776 	DBGBXVR(2),
1777 	DBGBXVR(3),
1778 	/* DBGOSDLR */
1779 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1780 	DBGBXVR(4),
1781 	/* DBGPRCR */
1782 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1783 	DBGBXVR(5),
1784 	DBGBXVR(6),
1785 	DBGBXVR(7),
1786 	DBGBXVR(8),
1787 	DBGBXVR(9),
1788 	DBGBXVR(10),
1789 	DBGBXVR(11),
1790 	DBGBXVR(12),
1791 	DBGBXVR(13),
1792 	DBGBXVR(14),
1793 	DBGBXVR(15),
1794 
1795 	/* DBGDSAR (32bit) */
1796 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1797 
1798 	/* DBGDEVID2 */
1799 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1800 	/* DBGDEVID1 */
1801 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1802 	/* DBGDEVID */
1803 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1804 	/* DBGCLAIMSET */
1805 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1806 	/* DBGCLAIMCLR */
1807 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1808 	/* DBGAUTHSTATUS */
1809 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1810 };
1811 
1812 /* Trapped cp14 64bit registers */
1813 static const struct sys_reg_desc cp14_64_regs[] = {
1814 	/* DBGDRAR (64bit) */
1815 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
1816 
1817 	/* DBGDSAR (64bit) */
1818 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
1819 };
1820 
1821 /* Macro to expand the PMEVCNTRn register */
1822 #define PMU_PMEVCNTR(n)							\
1823 	/* PMEVCNTRn */							\
1824 	{ Op1(0), CRn(0b1110),						\
1825 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1826 	  access_pmu_evcntr }
1827 
1828 /* Macro to expand the PMEVTYPERn register */
1829 #define PMU_PMEVTYPER(n)						\
1830 	/* PMEVTYPERn */						\
1831 	{ Op1(0), CRn(0b1110),						\
1832 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
1833 	  access_pmu_evtyper }
1834 
1835 /*
1836  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1837  * depending on the way they are accessed (as a 32bit or a 64bit
1838  * register).
1839  */
1840 static const struct sys_reg_desc cp15_regs[] = {
1841 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
1842 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1843 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1844 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1845 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1846 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1847 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1848 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1849 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1850 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1851 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1852 	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1853 
1854 	/*
1855 	 * DC{C,I,CI}SW operations:
1856 	 */
1857 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1858 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1859 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1860 
1861 	/* PMU */
1862 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1863 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1864 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1865 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1866 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1867 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1868 	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1869 	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1870 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1871 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1872 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1873 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1874 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1875 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1876 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1877 
1878 	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1879 	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1880 	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1881 	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1882 
1883 	/* ICC_SRE */
1884 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1885 
1886 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1887 
1888 	/* Arch Tmers */
1889 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
1890 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
1891 
1892 	/* PMEVCNTRn */
1893 	PMU_PMEVCNTR(0),
1894 	PMU_PMEVCNTR(1),
1895 	PMU_PMEVCNTR(2),
1896 	PMU_PMEVCNTR(3),
1897 	PMU_PMEVCNTR(4),
1898 	PMU_PMEVCNTR(5),
1899 	PMU_PMEVCNTR(6),
1900 	PMU_PMEVCNTR(7),
1901 	PMU_PMEVCNTR(8),
1902 	PMU_PMEVCNTR(9),
1903 	PMU_PMEVCNTR(10),
1904 	PMU_PMEVCNTR(11),
1905 	PMU_PMEVCNTR(12),
1906 	PMU_PMEVCNTR(13),
1907 	PMU_PMEVCNTR(14),
1908 	PMU_PMEVCNTR(15),
1909 	PMU_PMEVCNTR(16),
1910 	PMU_PMEVCNTR(17),
1911 	PMU_PMEVCNTR(18),
1912 	PMU_PMEVCNTR(19),
1913 	PMU_PMEVCNTR(20),
1914 	PMU_PMEVCNTR(21),
1915 	PMU_PMEVCNTR(22),
1916 	PMU_PMEVCNTR(23),
1917 	PMU_PMEVCNTR(24),
1918 	PMU_PMEVCNTR(25),
1919 	PMU_PMEVCNTR(26),
1920 	PMU_PMEVCNTR(27),
1921 	PMU_PMEVCNTR(28),
1922 	PMU_PMEVCNTR(29),
1923 	PMU_PMEVCNTR(30),
1924 	/* PMEVTYPERn */
1925 	PMU_PMEVTYPER(0),
1926 	PMU_PMEVTYPER(1),
1927 	PMU_PMEVTYPER(2),
1928 	PMU_PMEVTYPER(3),
1929 	PMU_PMEVTYPER(4),
1930 	PMU_PMEVTYPER(5),
1931 	PMU_PMEVTYPER(6),
1932 	PMU_PMEVTYPER(7),
1933 	PMU_PMEVTYPER(8),
1934 	PMU_PMEVTYPER(9),
1935 	PMU_PMEVTYPER(10),
1936 	PMU_PMEVTYPER(11),
1937 	PMU_PMEVTYPER(12),
1938 	PMU_PMEVTYPER(13),
1939 	PMU_PMEVTYPER(14),
1940 	PMU_PMEVTYPER(15),
1941 	PMU_PMEVTYPER(16),
1942 	PMU_PMEVTYPER(17),
1943 	PMU_PMEVTYPER(18),
1944 	PMU_PMEVTYPER(19),
1945 	PMU_PMEVTYPER(20),
1946 	PMU_PMEVTYPER(21),
1947 	PMU_PMEVTYPER(22),
1948 	PMU_PMEVTYPER(23),
1949 	PMU_PMEVTYPER(24),
1950 	PMU_PMEVTYPER(25),
1951 	PMU_PMEVTYPER(26),
1952 	PMU_PMEVTYPER(27),
1953 	PMU_PMEVTYPER(28),
1954 	PMU_PMEVTYPER(29),
1955 	PMU_PMEVTYPER(30),
1956 	/* PMCCFILTR */
1957 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1958 
1959 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
1960 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
1961 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
1962 };
1963 
1964 static const struct sys_reg_desc cp15_64_regs[] = {
1965 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1966 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1967 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1968 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1969 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1970 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1971 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
1972 };
1973 
1974 /* Target specific emulation tables */
1975 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1976 
1977 void kvm_register_target_sys_reg_table(unsigned int target,
1978 				       struct kvm_sys_reg_target_table *table)
1979 {
1980 	target_tables[target] = table;
1981 }
1982 
1983 /* Get specific register table for this target. */
1984 static const struct sys_reg_desc *get_target_table(unsigned target,
1985 						   bool mode_is_64,
1986 						   size_t *num)
1987 {
1988 	struct kvm_sys_reg_target_table *table;
1989 
1990 	table = target_tables[target];
1991 	if (mode_is_64) {
1992 		*num = table->table64.num;
1993 		return table->table64.table;
1994 	} else {
1995 		*num = table->table32.num;
1996 		return table->table32.table;
1997 	}
1998 }
1999 
2000 static int match_sys_reg(const void *key, const void *elt)
2001 {
2002 	const unsigned long pval = (unsigned long)key;
2003 	const struct sys_reg_desc *r = elt;
2004 
2005 	return pval - reg_to_encoding(r);
2006 }
2007 
2008 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
2009 					 const struct sys_reg_desc table[],
2010 					 unsigned int num)
2011 {
2012 	unsigned long pval = reg_to_encoding(params);
2013 
2014 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
2015 }
2016 
2017 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
2018 {
2019 	kvm_inject_undefined(vcpu);
2020 	return 1;
2021 }
2022 
2023 static void perform_access(struct kvm_vcpu *vcpu,
2024 			   struct sys_reg_params *params,
2025 			   const struct sys_reg_desc *r)
2026 {
2027 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2028 
2029 	/* Check for regs disabled by runtime config */
2030 	if (sysreg_hidden_from_guest(vcpu, r)) {
2031 		kvm_inject_undefined(vcpu);
2032 		return;
2033 	}
2034 
2035 	/*
2036 	 * Not having an accessor means that we have configured a trap
2037 	 * that we don't know how to handle. This certainly qualifies
2038 	 * as a gross bug that should be fixed right away.
2039 	 */
2040 	BUG_ON(!r->access);
2041 
2042 	/* Skip instruction if instructed so */
2043 	if (likely(r->access(vcpu, params, r)))
2044 		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
2045 }
2046 
2047 /*
2048  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2049  *                call the corresponding trap handler.
2050  *
2051  * @params: pointer to the descriptor of the access
2052  * @table: array of trap descriptors
2053  * @num: size of the trap descriptor array
2054  *
2055  * Return 0 if the access has been handled, and -1 if not.
2056  */
2057 static int emulate_cp(struct kvm_vcpu *vcpu,
2058 		      struct sys_reg_params *params,
2059 		      const struct sys_reg_desc *table,
2060 		      size_t num)
2061 {
2062 	const struct sys_reg_desc *r;
2063 
2064 	if (!table)
2065 		return -1;	/* Not handled */
2066 
2067 	r = find_reg(params, table, num);
2068 
2069 	if (r) {
2070 		perform_access(vcpu, params, r);
2071 		return 0;
2072 	}
2073 
2074 	/* Not handled */
2075 	return -1;
2076 }
2077 
2078 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2079 				struct sys_reg_params *params)
2080 {
2081 	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
2082 	int cp = -1;
2083 
2084 	switch(hsr_ec) {
2085 	case ESR_ELx_EC_CP15_32:
2086 	case ESR_ELx_EC_CP15_64:
2087 		cp = 15;
2088 		break;
2089 	case ESR_ELx_EC_CP14_MR:
2090 	case ESR_ELx_EC_CP14_64:
2091 		cp = 14;
2092 		break;
2093 	default:
2094 		WARN_ON(1);
2095 	}
2096 
2097 	kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
2098 		cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2099 	print_sys_reg_instr(params);
2100 	kvm_inject_undefined(vcpu);
2101 }
2102 
2103 /**
2104  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2105  * @vcpu: The VCPU pointer
2106  * @run:  The kvm_run struct
2107  */
2108 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2109 			    const struct sys_reg_desc *global,
2110 			    size_t nr_global,
2111 			    const struct sys_reg_desc *target_specific,
2112 			    size_t nr_specific)
2113 {
2114 	struct sys_reg_params params;
2115 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2116 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2117 	int Rt2 = (hsr >> 10) & 0x1f;
2118 
2119 	params.is_aarch32 = true;
2120 	params.is_32bit = false;
2121 	params.CRm = (hsr >> 1) & 0xf;
2122 	params.is_write = ((hsr & 1) == 0);
2123 
2124 	params.Op0 = 0;
2125 	params.Op1 = (hsr >> 16) & 0xf;
2126 	params.Op2 = 0;
2127 	params.CRn = 0;
2128 
2129 	/*
2130 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2131 	 * backends between AArch32 and AArch64, we get away with it.
2132 	 */
2133 	if (params.is_write) {
2134 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2135 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2136 	}
2137 
2138 	/*
2139 	 * Try to emulate the coprocessor access using the target
2140 	 * specific table first, and using the global table afterwards.
2141 	 * If either of the tables contains a handler, handle the
2142 	 * potential register operation in the case of a read and return
2143 	 * with success.
2144 	 */
2145 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2146 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2147 		/* Split up the value between registers for the read side */
2148 		if (!params.is_write) {
2149 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2150 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2151 		}
2152 
2153 		return 1;
2154 	}
2155 
2156 	unhandled_cp_access(vcpu, &params);
2157 	return 1;
2158 }
2159 
2160 /**
2161  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2162  * @vcpu: The VCPU pointer
2163  * @run:  The kvm_run struct
2164  */
2165 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2166 			    const struct sys_reg_desc *global,
2167 			    size_t nr_global,
2168 			    const struct sys_reg_desc *target_specific,
2169 			    size_t nr_specific)
2170 {
2171 	struct sys_reg_params params;
2172 	u32 hsr = kvm_vcpu_get_hsr(vcpu);
2173 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2174 
2175 	params.is_aarch32 = true;
2176 	params.is_32bit = true;
2177 	params.CRm = (hsr >> 1) & 0xf;
2178 	params.regval = vcpu_get_reg(vcpu, Rt);
2179 	params.is_write = ((hsr & 1) == 0);
2180 	params.CRn = (hsr >> 10) & 0xf;
2181 	params.Op0 = 0;
2182 	params.Op1 = (hsr >> 14) & 0x7;
2183 	params.Op2 = (hsr >> 17) & 0x7;
2184 
2185 	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2186 	    !emulate_cp(vcpu, &params, global, nr_global)) {
2187 		if (!params.is_write)
2188 			vcpu_set_reg(vcpu, Rt, params.regval);
2189 		return 1;
2190 	}
2191 
2192 	unhandled_cp_access(vcpu, &params);
2193 	return 1;
2194 }
2195 
2196 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2197 {
2198 	const struct sys_reg_desc *target_specific;
2199 	size_t num;
2200 
2201 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2202 	return kvm_handle_cp_64(vcpu,
2203 				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2204 				target_specific, num);
2205 }
2206 
2207 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2208 {
2209 	const struct sys_reg_desc *target_specific;
2210 	size_t num;
2211 
2212 	target_specific = get_target_table(vcpu->arch.target, false, &num);
2213 	return kvm_handle_cp_32(vcpu,
2214 				cp15_regs, ARRAY_SIZE(cp15_regs),
2215 				target_specific, num);
2216 }
2217 
2218 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2219 {
2220 	return kvm_handle_cp_64(vcpu,
2221 				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2222 				NULL, 0);
2223 }
2224 
2225 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2226 {
2227 	return kvm_handle_cp_32(vcpu,
2228 				cp14_regs, ARRAY_SIZE(cp14_regs),
2229 				NULL, 0);
2230 }
2231 
2232 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2233 			   struct sys_reg_params *params)
2234 {
2235 	size_t num;
2236 	const struct sys_reg_desc *table, *r;
2237 
2238 	table = get_target_table(vcpu->arch.target, true, &num);
2239 
2240 	/* Search target-specific then generic table. */
2241 	r = find_reg(params, table, num);
2242 	if (!r)
2243 		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2244 
2245 	if (likely(r)) {
2246 		perform_access(vcpu, params, r);
2247 	} else {
2248 		kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2249 			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2250 		print_sys_reg_instr(params);
2251 		kvm_inject_undefined(vcpu);
2252 	}
2253 	return 1;
2254 }
2255 
2256 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2257 				const struct sys_reg_desc *table, size_t num,
2258 				unsigned long *bmap)
2259 {
2260 	unsigned long i;
2261 
2262 	for (i = 0; i < num; i++)
2263 		if (table[i].reset) {
2264 			int reg = table[i].reg;
2265 
2266 			table[i].reset(vcpu, &table[i]);
2267 			if (reg > 0 && reg < NR_SYS_REGS)
2268 				set_bit(reg, bmap);
2269 		}
2270 }
2271 
2272 /**
2273  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2274  * @vcpu: The VCPU pointer
2275  * @run:  The kvm_run struct
2276  */
2277 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2278 {
2279 	struct sys_reg_params params;
2280 	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2281 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2282 	int ret;
2283 
2284 	trace_kvm_handle_sys_reg(esr);
2285 
2286 	params.is_aarch32 = false;
2287 	params.is_32bit = false;
2288 	params.Op0 = (esr >> 20) & 3;
2289 	params.Op1 = (esr >> 14) & 0x7;
2290 	params.CRn = (esr >> 10) & 0xf;
2291 	params.CRm = (esr >> 1) & 0xf;
2292 	params.Op2 = (esr >> 17) & 0x7;
2293 	params.regval = vcpu_get_reg(vcpu, Rt);
2294 	params.is_write = !(esr & 1);
2295 
2296 	ret = emulate_sys_reg(vcpu, &params);
2297 
2298 	if (!params.is_write)
2299 		vcpu_set_reg(vcpu, Rt, params.regval);
2300 	return ret;
2301 }
2302 
2303 /******************************************************************************
2304  * Userspace API
2305  *****************************************************************************/
2306 
2307 static bool index_to_params(u64 id, struct sys_reg_params *params)
2308 {
2309 	switch (id & KVM_REG_SIZE_MASK) {
2310 	case KVM_REG_SIZE_U64:
2311 		/* Any unused index bits means it's not valid. */
2312 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2313 			      | KVM_REG_ARM_COPROC_MASK
2314 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2315 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2316 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2317 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2318 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2319 			return false;
2320 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2321 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2322 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2323 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2324 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2325 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2326 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2327 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2328 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2329 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2330 		return true;
2331 	default:
2332 		return false;
2333 	}
2334 }
2335 
2336 const struct sys_reg_desc *find_reg_by_id(u64 id,
2337 					  struct sys_reg_params *params,
2338 					  const struct sys_reg_desc table[],
2339 					  unsigned int num)
2340 {
2341 	if (!index_to_params(id, params))
2342 		return NULL;
2343 
2344 	return find_reg(params, table, num);
2345 }
2346 
2347 /* Decode an index value, and find the sys_reg_desc entry. */
2348 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2349 						    u64 id)
2350 {
2351 	size_t num;
2352 	const struct sys_reg_desc *table, *r;
2353 	struct sys_reg_params params;
2354 
2355 	/* We only do sys_reg for now. */
2356 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2357 		return NULL;
2358 
2359 	table = get_target_table(vcpu->arch.target, true, &num);
2360 	r = find_reg_by_id(id, &params, table, num);
2361 	if (!r)
2362 		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2363 
2364 	/* Not saved in the sys_reg array and not otherwise accessible? */
2365 	if (r && !(r->reg || r->get_user))
2366 		r = NULL;
2367 
2368 	return r;
2369 }
2370 
2371 /*
2372  * These are the invariant sys_reg registers: we let the guest see the
2373  * host versions of these, so they're part of the guest state.
2374  *
2375  * A future CPU may provide a mechanism to present different values to
2376  * the guest, or a future kvm may trap them.
2377  */
2378 
2379 #define FUNCTION_INVARIANT(reg)						\
2380 	static void get_##reg(struct kvm_vcpu *v,			\
2381 			      const struct sys_reg_desc *r)		\
2382 	{								\
2383 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2384 	}
2385 
2386 FUNCTION_INVARIANT(midr_el1)
2387 FUNCTION_INVARIANT(revidr_el1)
2388 FUNCTION_INVARIANT(clidr_el1)
2389 FUNCTION_INVARIANT(aidr_el1)
2390 
2391 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2392 {
2393 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2394 }
2395 
2396 /* ->val is filled in by kvm_sys_reg_table_init() */
2397 static struct sys_reg_desc invariant_sys_regs[] = {
2398 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2399 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2400 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2401 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2402 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2403 };
2404 
2405 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2406 {
2407 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2408 		return -EFAULT;
2409 	return 0;
2410 }
2411 
2412 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2413 {
2414 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2415 		return -EFAULT;
2416 	return 0;
2417 }
2418 
2419 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2420 {
2421 	struct sys_reg_params params;
2422 	const struct sys_reg_desc *r;
2423 
2424 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2425 			   ARRAY_SIZE(invariant_sys_regs));
2426 	if (!r)
2427 		return -ENOENT;
2428 
2429 	return reg_to_user(uaddr, &r->val, id);
2430 }
2431 
2432 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2433 {
2434 	struct sys_reg_params params;
2435 	const struct sys_reg_desc *r;
2436 	int err;
2437 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2438 
2439 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2440 			   ARRAY_SIZE(invariant_sys_regs));
2441 	if (!r)
2442 		return -ENOENT;
2443 
2444 	err = reg_from_user(&val, uaddr, id);
2445 	if (err)
2446 		return err;
2447 
2448 	/* This is what we mean by invariant: you can't change it. */
2449 	if (r->val != val)
2450 		return -EINVAL;
2451 
2452 	return 0;
2453 }
2454 
2455 static bool is_valid_cache(u32 val)
2456 {
2457 	u32 level, ctype;
2458 
2459 	if (val >= CSSELR_MAX)
2460 		return false;
2461 
2462 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2463 	level = (val >> 1);
2464 	ctype = (cache_levels >> (level * 3)) & 7;
2465 
2466 	switch (ctype) {
2467 	case 0: /* No cache */
2468 		return false;
2469 	case 1: /* Instruction cache only */
2470 		return (val & 1);
2471 	case 2: /* Data cache only */
2472 	case 4: /* Unified cache */
2473 		return !(val & 1);
2474 	case 3: /* Separate instruction and data caches */
2475 		return true;
2476 	default: /* Reserved: we can't know instruction or data. */
2477 		return false;
2478 	}
2479 }
2480 
2481 static int demux_c15_get(u64 id, void __user *uaddr)
2482 {
2483 	u32 val;
2484 	u32 __user *uval = uaddr;
2485 
2486 	/* Fail if we have unknown bits set. */
2487 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2488 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2489 		return -ENOENT;
2490 
2491 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2492 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2493 		if (KVM_REG_SIZE(id) != 4)
2494 			return -ENOENT;
2495 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2496 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2497 		if (!is_valid_cache(val))
2498 			return -ENOENT;
2499 
2500 		return put_user(get_ccsidr(val), uval);
2501 	default:
2502 		return -ENOENT;
2503 	}
2504 }
2505 
2506 static int demux_c15_set(u64 id, void __user *uaddr)
2507 {
2508 	u32 val, newval;
2509 	u32 __user *uval = uaddr;
2510 
2511 	/* Fail if we have unknown bits set. */
2512 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2513 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2514 		return -ENOENT;
2515 
2516 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2517 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2518 		if (KVM_REG_SIZE(id) != 4)
2519 			return -ENOENT;
2520 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2521 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2522 		if (!is_valid_cache(val))
2523 			return -ENOENT;
2524 
2525 		if (get_user(newval, uval))
2526 			return -EFAULT;
2527 
2528 		/* This is also invariant: you can't change it. */
2529 		if (newval != get_ccsidr(val))
2530 			return -EINVAL;
2531 		return 0;
2532 	default:
2533 		return -ENOENT;
2534 	}
2535 }
2536 
2537 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2538 {
2539 	const struct sys_reg_desc *r;
2540 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2541 
2542 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2543 		return demux_c15_get(reg->id, uaddr);
2544 
2545 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2546 		return -ENOENT;
2547 
2548 	r = index_to_sys_reg_desc(vcpu, reg->id);
2549 	if (!r)
2550 		return get_invariant_sys_reg(reg->id, uaddr);
2551 
2552 	/* Check for regs disabled by runtime config */
2553 	if (sysreg_hidden_from_user(vcpu, r))
2554 		return -ENOENT;
2555 
2556 	if (r->get_user)
2557 		return (r->get_user)(vcpu, r, reg, uaddr);
2558 
2559 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2560 }
2561 
2562 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2563 {
2564 	const struct sys_reg_desc *r;
2565 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2566 
2567 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2568 		return demux_c15_set(reg->id, uaddr);
2569 
2570 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2571 		return -ENOENT;
2572 
2573 	r = index_to_sys_reg_desc(vcpu, reg->id);
2574 	if (!r)
2575 		return set_invariant_sys_reg(reg->id, uaddr);
2576 
2577 	/* Check for regs disabled by runtime config */
2578 	if (sysreg_hidden_from_user(vcpu, r))
2579 		return -ENOENT;
2580 
2581 	if (r->set_user)
2582 		return (r->set_user)(vcpu, r, reg, uaddr);
2583 
2584 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2585 }
2586 
2587 static unsigned int num_demux_regs(void)
2588 {
2589 	unsigned int i, count = 0;
2590 
2591 	for (i = 0; i < CSSELR_MAX; i++)
2592 		if (is_valid_cache(i))
2593 			count++;
2594 
2595 	return count;
2596 }
2597 
2598 static int write_demux_regids(u64 __user *uindices)
2599 {
2600 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2601 	unsigned int i;
2602 
2603 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2604 	for (i = 0; i < CSSELR_MAX; i++) {
2605 		if (!is_valid_cache(i))
2606 			continue;
2607 		if (put_user(val | i, uindices))
2608 			return -EFAULT;
2609 		uindices++;
2610 	}
2611 	return 0;
2612 }
2613 
2614 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2615 {
2616 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2617 		KVM_REG_ARM64_SYSREG |
2618 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2619 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2620 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2621 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2622 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2623 }
2624 
2625 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2626 {
2627 	if (!*uind)
2628 		return true;
2629 
2630 	if (put_user(sys_reg_to_index(reg), *uind))
2631 		return false;
2632 
2633 	(*uind)++;
2634 	return true;
2635 }
2636 
2637 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2638 			    const struct sys_reg_desc *rd,
2639 			    u64 __user **uind,
2640 			    unsigned int *total)
2641 {
2642 	/*
2643 	 * Ignore registers we trap but don't save,
2644 	 * and for which no custom user accessor is provided.
2645 	 */
2646 	if (!(rd->reg || rd->get_user))
2647 		return 0;
2648 
2649 	if (sysreg_hidden_from_user(vcpu, rd))
2650 		return 0;
2651 
2652 	if (!copy_reg_to_user(rd, uind))
2653 		return -EFAULT;
2654 
2655 	(*total)++;
2656 	return 0;
2657 }
2658 
2659 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2660 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2661 {
2662 	const struct sys_reg_desc *i1, *i2, *end1, *end2;
2663 	unsigned int total = 0;
2664 	size_t num;
2665 	int err;
2666 
2667 	/* We check for duplicates here, to allow arch-specific overrides. */
2668 	i1 = get_target_table(vcpu->arch.target, true, &num);
2669 	end1 = i1 + num;
2670 	i2 = sys_reg_descs;
2671 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2672 
2673 	BUG_ON(i1 == end1 || i2 == end2);
2674 
2675 	/* Walk carefully, as both tables may refer to the same register. */
2676 	while (i1 || i2) {
2677 		int cmp = cmp_sys_reg(i1, i2);
2678 		/* target-specific overrides generic entry. */
2679 		if (cmp <= 0)
2680 			err = walk_one_sys_reg(vcpu, i1, &uind, &total);
2681 		else
2682 			err = walk_one_sys_reg(vcpu, i2, &uind, &total);
2683 
2684 		if (err)
2685 			return err;
2686 
2687 		if (cmp <= 0 && ++i1 == end1)
2688 			i1 = NULL;
2689 		if (cmp >= 0 && ++i2 == end2)
2690 			i2 = NULL;
2691 	}
2692 	return total;
2693 }
2694 
2695 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2696 {
2697 	return ARRAY_SIZE(invariant_sys_regs)
2698 		+ num_demux_regs()
2699 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2700 }
2701 
2702 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2703 {
2704 	unsigned int i;
2705 	int err;
2706 
2707 	/* Then give them all the invariant registers' indices. */
2708 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2709 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2710 			return -EFAULT;
2711 		uindices++;
2712 	}
2713 
2714 	err = walk_sys_regs(vcpu, uindices);
2715 	if (err < 0)
2716 		return err;
2717 	uindices += err;
2718 
2719 	return write_demux_regids(uindices);
2720 }
2721 
2722 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2723 {
2724 	unsigned int i;
2725 
2726 	for (i = 1; i < n; i++) {
2727 		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2728 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2729 			return 1;
2730 		}
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 void kvm_sys_reg_table_init(void)
2737 {
2738 	unsigned int i;
2739 	struct sys_reg_desc clidr;
2740 
2741 	/* Make sure tables are unique and in order. */
2742 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2743 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2744 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2745 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2746 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2747 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2748 
2749 	/* We abuse the reset function to overwrite the table itself. */
2750 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2751 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2752 
2753 	/*
2754 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2755 	 *
2756 	 *   If software reads the Cache Type fields from Ctype1
2757 	 *   upwards, once it has seen a value of 0b000, no caches
2758 	 *   exist at further-out levels of the hierarchy. So, for
2759 	 *   example, if Ctype3 is the first Cache Type field with a
2760 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2761 	 *   ignored.
2762 	 */
2763 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2764 	cache_levels = clidr.val;
2765 	for (i = 0; i < 7; i++)
2766 		if (((cache_levels >> (i*3)) & 7) == 0)
2767 			break;
2768 	/* Clear all higher bits. */
2769 	cache_levels &= (1 << (i*3))-1;
2770 }
2771 
2772 /**
2773  * kvm_reset_sys_regs - sets system registers to reset value
2774  * @vcpu: The VCPU pointer
2775  *
2776  * This function finds the right table above and sets the registers on the
2777  * virtual CPU struct to their architecturally defined reset values.
2778  */
2779 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2780 {
2781 	size_t num;
2782 	const struct sys_reg_desc *table;
2783 	DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };
2784 
2785 	/* Generic chip reset first (so target could override). */
2786 	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);
2787 
2788 	table = get_target_table(vcpu->arch.target, true, &num);
2789 	reset_sys_reg_descs(vcpu, table, num, bmap);
2790 
2791 	for (num = 1; num < NR_SYS_REGS; num++) {
2792 		if (WARN(!test_bit(num, bmap),
2793 			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2794 			break;
2795 	}
2796 }
2797