xref: /linux/arch/arm64/kvm/sys_regs.c (revision 811f35ff59b6f99ae272d6f5b96bc9e974f88196)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * For AArch32, we only take care of what is being trapped. Anything
38  * that has to do with init and userspace access has to go via the
39  * 64bit interface.
40  */
41 
42 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
43 
44 static bool read_from_write_only(struct kvm_vcpu *vcpu,
45 				 struct sys_reg_params *params,
46 				 const struct sys_reg_desc *r)
47 {
48 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
49 	print_sys_reg_instr(params);
50 	kvm_inject_undefined(vcpu);
51 	return false;
52 }
53 
54 static bool write_to_read_only(struct kvm_vcpu *vcpu,
55 			       struct sys_reg_params *params,
56 			       const struct sys_reg_desc *r)
57 {
58 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
59 	print_sys_reg_instr(params);
60 	kvm_inject_undefined(vcpu);
61 	return false;
62 }
63 
64 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
65 {
66 	u64 val = 0x8badf00d8badf00d;
67 
68 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
69 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
70 		return val;
71 
72 	return __vcpu_sys_reg(vcpu, reg);
73 }
74 
75 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
76 {
77 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
78 	    __vcpu_write_sys_reg_to_cpu(val, reg))
79 		return;
80 
81 	 __vcpu_sys_reg(vcpu, reg) = val;
82 }
83 
84 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
85 static u32 cache_levels;
86 
87 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
88 #define CSSELR_MAX 14
89 
90 /* Which cache CCSIDR represents depends on CSSELR value. */
91 static u32 get_ccsidr(u32 csselr)
92 {
93 	u32 ccsidr;
94 
95 	/* Make sure noone else changes CSSELR during this! */
96 	local_irq_disable();
97 	write_sysreg(csselr, csselr_el1);
98 	isb();
99 	ccsidr = read_sysreg(ccsidr_el1);
100 	local_irq_enable();
101 
102 	return ccsidr;
103 }
104 
105 /*
106  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
107  */
108 static bool access_dcsw(struct kvm_vcpu *vcpu,
109 			struct sys_reg_params *p,
110 			const struct sys_reg_desc *r)
111 {
112 	if (!p->is_write)
113 		return read_from_write_only(vcpu, p, r);
114 
115 	/*
116 	 * Only track S/W ops if we don't have FWB. It still indicates
117 	 * that the guest is a bit broken (S/W operations should only
118 	 * be done by firmware, knowing that there is only a single
119 	 * CPU left in the system, and certainly not from non-secure
120 	 * software).
121 	 */
122 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
123 		kvm_set_way_flush(vcpu);
124 
125 	return true;
126 }
127 
128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
129 {
130 	switch (r->aarch32_map) {
131 	case AA32_LO:
132 		*mask = GENMASK_ULL(31, 0);
133 		*shift = 0;
134 		break;
135 	case AA32_HI:
136 		*mask = GENMASK_ULL(63, 32);
137 		*shift = 32;
138 		break;
139 	default:
140 		*mask = GENMASK_ULL(63, 0);
141 		*shift = 0;
142 		break;
143 	}
144 }
145 
146 /*
147  * Generic accessor for VM registers. Only called as long as HCR_TVM
148  * is set. If the guest enables the MMU, we stop trapping the VM
149  * sys_regs and leave it in complete control of the caches.
150  */
151 static bool access_vm_reg(struct kvm_vcpu *vcpu,
152 			  struct sys_reg_params *p,
153 			  const struct sys_reg_desc *r)
154 {
155 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
156 	u64 val, mask, shift;
157 
158 	BUG_ON(!p->is_write);
159 
160 	get_access_mask(r, &mask, &shift);
161 
162 	if (~mask) {
163 		val = vcpu_read_sys_reg(vcpu, r->reg);
164 		val &= ~mask;
165 	} else {
166 		val = 0;
167 	}
168 
169 	val |= (p->regval & (mask >> shift)) << shift;
170 	vcpu_write_sys_reg(vcpu, val, r->reg);
171 
172 	kvm_toggle_cache(vcpu, was_enabled);
173 	return true;
174 }
175 
176 static bool access_actlr(struct kvm_vcpu *vcpu,
177 			 struct sys_reg_params *p,
178 			 const struct sys_reg_desc *r)
179 {
180 	u64 mask, shift;
181 
182 	if (p->is_write)
183 		return ignore_write(vcpu, p);
184 
185 	get_access_mask(r, &mask, &shift);
186 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
187 
188 	return true;
189 }
190 
191 /*
192  * Trap handler for the GICv3 SGI generation system register.
193  * Forward the request to the VGIC emulation.
194  * The cp15_64 code makes sure this automatically works
195  * for both AArch64 and AArch32 accesses.
196  */
197 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
198 			   struct sys_reg_params *p,
199 			   const struct sys_reg_desc *r)
200 {
201 	bool g1;
202 
203 	if (!p->is_write)
204 		return read_from_write_only(vcpu, p, r);
205 
206 	/*
207 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
208 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
209 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
210 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
211 	 * group.
212 	 */
213 	if (p->Op0 == 0) {		/* AArch32 */
214 		switch (p->Op1) {
215 		default:		/* Keep GCC quiet */
216 		case 0:			/* ICC_SGI1R */
217 			g1 = true;
218 			break;
219 		case 1:			/* ICC_ASGI1R */
220 		case 2:			/* ICC_SGI0R */
221 			g1 = false;
222 			break;
223 		}
224 	} else {			/* AArch64 */
225 		switch (p->Op2) {
226 		default:		/* Keep GCC quiet */
227 		case 5:			/* ICC_SGI1R_EL1 */
228 			g1 = true;
229 			break;
230 		case 6:			/* ICC_ASGI1R_EL1 */
231 		case 7:			/* ICC_SGI0R_EL1 */
232 			g1 = false;
233 			break;
234 		}
235 	}
236 
237 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
238 
239 	return true;
240 }
241 
242 static bool access_gic_sre(struct kvm_vcpu *vcpu,
243 			   struct sys_reg_params *p,
244 			   const struct sys_reg_desc *r)
245 {
246 	if (p->is_write)
247 		return ignore_write(vcpu, p);
248 
249 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
250 	return true;
251 }
252 
253 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
254 			struct sys_reg_params *p,
255 			const struct sys_reg_desc *r)
256 {
257 	if (p->is_write)
258 		return ignore_write(vcpu, p);
259 	else
260 		return read_zero(vcpu, p);
261 }
262 
263 /*
264  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
265  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
266  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
267  * treat it separately.
268  */
269 static bool trap_loregion(struct kvm_vcpu *vcpu,
270 			  struct sys_reg_params *p,
271 			  const struct sys_reg_desc *r)
272 {
273 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
274 	u32 sr = reg_to_encoding(r);
275 
276 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
277 		kvm_inject_undefined(vcpu);
278 		return false;
279 	}
280 
281 	if (p->is_write && sr == SYS_LORID_EL1)
282 		return write_to_read_only(vcpu, p, r);
283 
284 	return trap_raz_wi(vcpu, p, r);
285 }
286 
287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
288 			   struct sys_reg_params *p,
289 			   const struct sys_reg_desc *r)
290 {
291 	u64 oslsr;
292 
293 	if (!p->is_write)
294 		return read_from_write_only(vcpu, p, r);
295 
296 	/* Forward the OSLK bit to OSLSR */
297 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
298 	if (p->regval & SYS_OSLAR_OSLK)
299 		oslsr |= SYS_OSLSR_OSLK;
300 
301 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
302 	return true;
303 }
304 
305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
306 			   struct sys_reg_params *p,
307 			   const struct sys_reg_desc *r)
308 {
309 	if (p->is_write)
310 		return write_to_read_only(vcpu, p, r);
311 
312 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
313 	return true;
314 }
315 
316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
317 			 u64 val)
318 {
319 	/*
320 	 * The only modifiable bit is the OSLK bit. Refuse the write if
321 	 * userspace attempts to change any other bit in the register.
322 	 */
323 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
324 		return -EINVAL;
325 
326 	__vcpu_sys_reg(vcpu, rd->reg) = val;
327 	return 0;
328 }
329 
330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
331 				   struct sys_reg_params *p,
332 				   const struct sys_reg_desc *r)
333 {
334 	if (p->is_write) {
335 		return ignore_write(vcpu, p);
336 	} else {
337 		p->regval = read_sysreg(dbgauthstatus_el1);
338 		return true;
339 	}
340 }
341 
342 /*
343  * We want to avoid world-switching all the DBG registers all the
344  * time:
345  *
346  * - If we've touched any debug register, it is likely that we're
347  *   going to touch more of them. It then makes sense to disable the
348  *   traps and start doing the save/restore dance
349  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
350  *   then mandatory to save/restore the registers, as the guest
351  *   depends on them.
352  *
353  * For this, we use a DIRTY bit, indicating the guest has modified the
354  * debug registers, used as follow:
355  *
356  * On guest entry:
357  * - If the dirty bit is set (because we're coming back from trapping),
358  *   disable the traps, save host registers, restore guest registers.
359  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
360  *   set the dirty bit, disable the traps, save host registers,
361  *   restore guest registers.
362  * - Otherwise, enable the traps
363  *
364  * On guest exit:
365  * - If the dirty bit is set, save guest registers, restore host
366  *   registers and clear the dirty bit. This ensure that the host can
367  *   now use the debug registers.
368  */
369 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
370 			    struct sys_reg_params *p,
371 			    const struct sys_reg_desc *r)
372 {
373 	if (p->is_write) {
374 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
375 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
376 	} else {
377 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
378 	}
379 
380 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
381 
382 	return true;
383 }
384 
385 /*
386  * reg_to_dbg/dbg_to_reg
387  *
388  * A 32 bit write to a debug register leave top bits alone
389  * A 32 bit read from a debug register only returns the bottom bits
390  *
391  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
392  * switches between host and guest values in future.
393  */
394 static void reg_to_dbg(struct kvm_vcpu *vcpu,
395 		       struct sys_reg_params *p,
396 		       const struct sys_reg_desc *rd,
397 		       u64 *dbg_reg)
398 {
399 	u64 mask, shift, val;
400 
401 	get_access_mask(rd, &mask, &shift);
402 
403 	val = *dbg_reg;
404 	val &= ~mask;
405 	val |= (p->regval & (mask >> shift)) << shift;
406 	*dbg_reg = val;
407 
408 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
409 }
410 
411 static void dbg_to_reg(struct kvm_vcpu *vcpu,
412 		       struct sys_reg_params *p,
413 		       const struct sys_reg_desc *rd,
414 		       u64 *dbg_reg)
415 {
416 	u64 mask, shift;
417 
418 	get_access_mask(rd, &mask, &shift);
419 	p->regval = (*dbg_reg & mask) >> shift;
420 }
421 
422 static bool trap_bvr(struct kvm_vcpu *vcpu,
423 		     struct sys_reg_params *p,
424 		     const struct sys_reg_desc *rd)
425 {
426 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
427 
428 	if (p->is_write)
429 		reg_to_dbg(vcpu, p, rd, dbg_reg);
430 	else
431 		dbg_to_reg(vcpu, p, rd, dbg_reg);
432 
433 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
434 
435 	return true;
436 }
437 
438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
439 		   u64 val)
440 {
441 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
442 	return 0;
443 }
444 
445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
446 		   u64 *val)
447 {
448 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
449 	return 0;
450 }
451 
452 static void reset_bvr(struct kvm_vcpu *vcpu,
453 		      const struct sys_reg_desc *rd)
454 {
455 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
456 }
457 
458 static bool trap_bcr(struct kvm_vcpu *vcpu,
459 		     struct sys_reg_params *p,
460 		     const struct sys_reg_desc *rd)
461 {
462 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
463 
464 	if (p->is_write)
465 		reg_to_dbg(vcpu, p, rd, dbg_reg);
466 	else
467 		dbg_to_reg(vcpu, p, rd, dbg_reg);
468 
469 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
470 
471 	return true;
472 }
473 
474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
475 		   u64 val)
476 {
477 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
478 	return 0;
479 }
480 
481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
482 		   u64 *val)
483 {
484 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
485 	return 0;
486 }
487 
488 static void reset_bcr(struct kvm_vcpu *vcpu,
489 		      const struct sys_reg_desc *rd)
490 {
491 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
492 }
493 
494 static bool trap_wvr(struct kvm_vcpu *vcpu,
495 		     struct sys_reg_params *p,
496 		     const struct sys_reg_desc *rd)
497 {
498 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
499 
500 	if (p->is_write)
501 		reg_to_dbg(vcpu, p, rd, dbg_reg);
502 	else
503 		dbg_to_reg(vcpu, p, rd, dbg_reg);
504 
505 	trace_trap_reg(__func__, rd->CRm, p->is_write,
506 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
507 
508 	return true;
509 }
510 
511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512 		   u64 val)
513 {
514 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
515 	return 0;
516 }
517 
518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
519 		   u64 *val)
520 {
521 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
522 	return 0;
523 }
524 
525 static void reset_wvr(struct kvm_vcpu *vcpu,
526 		      const struct sys_reg_desc *rd)
527 {
528 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
529 }
530 
531 static bool trap_wcr(struct kvm_vcpu *vcpu,
532 		     struct sys_reg_params *p,
533 		     const struct sys_reg_desc *rd)
534 {
535 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
536 
537 	if (p->is_write)
538 		reg_to_dbg(vcpu, p, rd, dbg_reg);
539 	else
540 		dbg_to_reg(vcpu, p, rd, dbg_reg);
541 
542 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
543 
544 	return true;
545 }
546 
547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
548 		   u64 val)
549 {
550 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
551 	return 0;
552 }
553 
554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555 		   u64 *val)
556 {
557 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
558 	return 0;
559 }
560 
561 static void reset_wcr(struct kvm_vcpu *vcpu,
562 		      const struct sys_reg_desc *rd)
563 {
564 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
565 }
566 
567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
568 {
569 	u64 amair = read_sysreg(amair_el1);
570 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
571 }
572 
573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
574 {
575 	u64 actlr = read_sysreg(actlr_el1);
576 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
577 }
578 
579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
580 {
581 	u64 mpidr;
582 
583 	/*
584 	 * Map the vcpu_id into the first three affinity level fields of
585 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
586 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
587 	 * of the GICv3 to be able to address each CPU directly when
588 	 * sending IPIs.
589 	 */
590 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
591 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
592 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
593 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
594 }
595 
596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
597 				   const struct sys_reg_desc *r)
598 {
599 	if (kvm_vcpu_has_pmu(vcpu))
600 		return 0;
601 
602 	return REG_HIDDEN;
603 }
604 
605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
606 {
607 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
608 
609 	/* No PMU available, any PMU reg may UNDEF... */
610 	if (!kvm_arm_support_pmu_v3())
611 		return;
612 
613 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
614 	n &= ARMV8_PMU_PMCR_N_MASK;
615 	if (n)
616 		mask |= GENMASK(n - 1, 0);
617 
618 	reset_unknown(vcpu, r);
619 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
620 }
621 
622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
623 {
624 	reset_unknown(vcpu, r);
625 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
626 }
627 
628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
629 {
630 	reset_unknown(vcpu, r);
631 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
632 }
633 
634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
635 {
636 	reset_unknown(vcpu, r);
637 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
638 }
639 
640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
641 {
642 	u64 pmcr;
643 
644 	/* No PMU available, PMCR_EL0 may UNDEF... */
645 	if (!kvm_arm_support_pmu_v3())
646 		return;
647 
648 	/* Only preserve PMCR_EL0.N, and reset the rest to 0 */
649 	pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
650 	if (!kvm_supports_32bit_el0())
651 		pmcr |= ARMV8_PMU_PMCR_LC;
652 
653 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
654 }
655 
656 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
657 {
658 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
659 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
660 
661 	if (!enabled)
662 		kvm_inject_undefined(vcpu);
663 
664 	return !enabled;
665 }
666 
667 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
668 {
669 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
670 }
671 
672 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
673 {
674 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
675 }
676 
677 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
678 {
679 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
680 }
681 
682 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
683 {
684 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
685 }
686 
687 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
688 			const struct sys_reg_desc *r)
689 {
690 	u64 val;
691 
692 	if (pmu_access_el0_disabled(vcpu))
693 		return false;
694 
695 	if (p->is_write) {
696 		/*
697 		 * Only update writeable bits of PMCR (continuing into
698 		 * kvm_pmu_handle_pmcr() as well)
699 		 */
700 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
701 		val &= ~ARMV8_PMU_PMCR_MASK;
702 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
703 		if (!kvm_supports_32bit_el0())
704 			val |= ARMV8_PMU_PMCR_LC;
705 		kvm_pmu_handle_pmcr(vcpu, val);
706 		kvm_vcpu_pmu_restore_guest(vcpu);
707 	} else {
708 		/* PMCR.P & PMCR.C are RAZ */
709 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
710 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
711 		p->regval = val;
712 	}
713 
714 	return true;
715 }
716 
717 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718 			  const struct sys_reg_desc *r)
719 {
720 	if (pmu_access_event_counter_el0_disabled(vcpu))
721 		return false;
722 
723 	if (p->is_write)
724 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
725 	else
726 		/* return PMSELR.SEL field */
727 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
728 			    & ARMV8_PMU_COUNTER_MASK;
729 
730 	return true;
731 }
732 
733 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
734 			  const struct sys_reg_desc *r)
735 {
736 	u64 pmceid, mask, shift;
737 
738 	BUG_ON(p->is_write);
739 
740 	if (pmu_access_el0_disabled(vcpu))
741 		return false;
742 
743 	get_access_mask(r, &mask, &shift);
744 
745 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
746 	pmceid &= mask;
747 	pmceid >>= shift;
748 
749 	p->regval = pmceid;
750 
751 	return true;
752 }
753 
754 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
755 {
756 	u64 pmcr, val;
757 
758 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
759 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
760 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
761 		kvm_inject_undefined(vcpu);
762 		return false;
763 	}
764 
765 	return true;
766 }
767 
768 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
769 			      struct sys_reg_params *p,
770 			      const struct sys_reg_desc *r)
771 {
772 	u64 idx = ~0UL;
773 
774 	if (r->CRn == 9 && r->CRm == 13) {
775 		if (r->Op2 == 2) {
776 			/* PMXEVCNTR_EL0 */
777 			if (pmu_access_event_counter_el0_disabled(vcpu))
778 				return false;
779 
780 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
781 			      & ARMV8_PMU_COUNTER_MASK;
782 		} else if (r->Op2 == 0) {
783 			/* PMCCNTR_EL0 */
784 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
785 				return false;
786 
787 			idx = ARMV8_PMU_CYCLE_IDX;
788 		}
789 	} else if (r->CRn == 0 && r->CRm == 9) {
790 		/* PMCCNTR */
791 		if (pmu_access_event_counter_el0_disabled(vcpu))
792 			return false;
793 
794 		idx = ARMV8_PMU_CYCLE_IDX;
795 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
796 		/* PMEVCNTRn_EL0 */
797 		if (pmu_access_event_counter_el0_disabled(vcpu))
798 			return false;
799 
800 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
801 	}
802 
803 	/* Catch any decoding mistake */
804 	WARN_ON(idx == ~0UL);
805 
806 	if (!pmu_counter_idx_valid(vcpu, idx))
807 		return false;
808 
809 	if (p->is_write) {
810 		if (pmu_access_el0_disabled(vcpu))
811 			return false;
812 
813 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814 	} else {
815 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816 	}
817 
818 	return true;
819 }
820 
821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822 			       const struct sys_reg_desc *r)
823 {
824 	u64 idx, reg;
825 
826 	if (pmu_access_el0_disabled(vcpu))
827 		return false;
828 
829 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
830 		/* PMXEVTYPER_EL0 */
831 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
832 		reg = PMEVTYPER0_EL0 + idx;
833 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
834 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
835 		if (idx == ARMV8_PMU_CYCLE_IDX)
836 			reg = PMCCFILTR_EL0;
837 		else
838 			/* PMEVTYPERn_EL0 */
839 			reg = PMEVTYPER0_EL0 + idx;
840 	} else {
841 		BUG();
842 	}
843 
844 	if (!pmu_counter_idx_valid(vcpu, idx))
845 		return false;
846 
847 	if (p->is_write) {
848 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
849 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
850 		kvm_vcpu_pmu_restore_guest(vcpu);
851 	} else {
852 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
853 	}
854 
855 	return true;
856 }
857 
858 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
859 			   const struct sys_reg_desc *r)
860 {
861 	u64 val, mask;
862 
863 	if (pmu_access_el0_disabled(vcpu))
864 		return false;
865 
866 	mask = kvm_pmu_valid_counter_mask(vcpu);
867 	if (p->is_write) {
868 		val = p->regval & mask;
869 		if (r->Op2 & 0x1) {
870 			/* accessing PMCNTENSET_EL0 */
871 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
872 			kvm_pmu_enable_counter_mask(vcpu, val);
873 			kvm_vcpu_pmu_restore_guest(vcpu);
874 		} else {
875 			/* accessing PMCNTENCLR_EL0 */
876 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
877 			kvm_pmu_disable_counter_mask(vcpu, val);
878 		}
879 	} else {
880 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
881 	}
882 
883 	return true;
884 }
885 
886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
887 			   const struct sys_reg_desc *r)
888 {
889 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
890 
891 	if (check_pmu_access_disabled(vcpu, 0))
892 		return false;
893 
894 	if (p->is_write) {
895 		u64 val = p->regval & mask;
896 
897 		if (r->Op2 & 0x1)
898 			/* accessing PMINTENSET_EL1 */
899 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
900 		else
901 			/* accessing PMINTENCLR_EL1 */
902 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
903 	} else {
904 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
905 	}
906 
907 	return true;
908 }
909 
910 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
911 			 const struct sys_reg_desc *r)
912 {
913 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
914 
915 	if (pmu_access_el0_disabled(vcpu))
916 		return false;
917 
918 	if (p->is_write) {
919 		if (r->CRm & 0x2)
920 			/* accessing PMOVSSET_EL0 */
921 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
922 		else
923 			/* accessing PMOVSCLR_EL0 */
924 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
925 	} else {
926 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
927 	}
928 
929 	return true;
930 }
931 
932 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
933 			   const struct sys_reg_desc *r)
934 {
935 	u64 mask;
936 
937 	if (!p->is_write)
938 		return read_from_write_only(vcpu, p, r);
939 
940 	if (pmu_write_swinc_el0_disabled(vcpu))
941 		return false;
942 
943 	mask = kvm_pmu_valid_counter_mask(vcpu);
944 	kvm_pmu_software_increment(vcpu, p->regval & mask);
945 	return true;
946 }
947 
948 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
949 			     const struct sys_reg_desc *r)
950 {
951 	if (p->is_write) {
952 		if (!vcpu_mode_priv(vcpu)) {
953 			kvm_inject_undefined(vcpu);
954 			return false;
955 		}
956 
957 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
958 			       p->regval & ARMV8_PMU_USERENR_MASK;
959 	} else {
960 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
961 			    & ARMV8_PMU_USERENR_MASK;
962 	}
963 
964 	return true;
965 }
966 
967 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
968 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
969 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
970 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
971 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
972 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
973 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
974 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
975 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
976 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
977 
978 #define PMU_SYS_REG(r)						\
979 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
980 
981 /* Macro to expand the PMEVCNTRn_EL0 register */
982 #define PMU_PMEVCNTR_EL0(n)						\
983 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
984 	  .reset = reset_pmevcntr,					\
985 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
986 
987 /* Macro to expand the PMEVTYPERn_EL0 register */
988 #define PMU_PMEVTYPER_EL0(n)						\
989 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
990 	  .reset = reset_pmevtyper,					\
991 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
992 
993 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
994 			 const struct sys_reg_desc *r)
995 {
996 	kvm_inject_undefined(vcpu);
997 
998 	return false;
999 }
1000 
1001 /* Macro to expand the AMU counter and type registers*/
1002 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1003 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1004 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1005 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1006 
1007 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1008 			const struct sys_reg_desc *rd)
1009 {
1010 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1011 }
1012 
1013 /*
1014  * If we land here on a PtrAuth access, that is because we didn't
1015  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1016  * way this happens is when the guest does not have PtrAuth support
1017  * enabled.
1018  */
1019 #define __PTRAUTH_KEY(k)						\
1020 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1021 	.visibility = ptrauth_visibility}
1022 
1023 #define PTRAUTH_KEY(k)							\
1024 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1025 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1026 
1027 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1028 			      struct sys_reg_params *p,
1029 			      const struct sys_reg_desc *r)
1030 {
1031 	enum kvm_arch_timers tmr;
1032 	enum kvm_arch_timer_regs treg;
1033 	u64 reg = reg_to_encoding(r);
1034 
1035 	switch (reg) {
1036 	case SYS_CNTP_TVAL_EL0:
1037 	case SYS_AARCH32_CNTP_TVAL:
1038 		tmr = TIMER_PTIMER;
1039 		treg = TIMER_REG_TVAL;
1040 		break;
1041 	case SYS_CNTP_CTL_EL0:
1042 	case SYS_AARCH32_CNTP_CTL:
1043 		tmr = TIMER_PTIMER;
1044 		treg = TIMER_REG_CTL;
1045 		break;
1046 	case SYS_CNTP_CVAL_EL0:
1047 	case SYS_AARCH32_CNTP_CVAL:
1048 		tmr = TIMER_PTIMER;
1049 		treg = TIMER_REG_CVAL;
1050 		break;
1051 	default:
1052 		BUG();
1053 	}
1054 
1055 	if (p->is_write)
1056 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1057 	else
1058 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1059 
1060 	return true;
1061 }
1062 
1063 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu)
1064 {
1065 	if (kvm_vcpu_has_pmu(vcpu))
1066 		return vcpu->kvm->arch.dfr0_pmuver.imp;
1067 
1068 	return vcpu->kvm->arch.dfr0_pmuver.unimp;
1069 }
1070 
1071 static u8 perfmon_to_pmuver(u8 perfmon)
1072 {
1073 	switch (perfmon) {
1074 	case ID_DFR0_EL1_PerfMon_PMUv3:
1075 		return ID_AA64DFR0_EL1_PMUVer_IMP;
1076 	case ID_DFR0_EL1_PerfMon_IMPDEF:
1077 		return ID_AA64DFR0_EL1_PMUVer_IMP_DEF;
1078 	default:
1079 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1080 		return perfmon;
1081 	}
1082 }
1083 
1084 static u8 pmuver_to_perfmon(u8 pmuver)
1085 {
1086 	switch (pmuver) {
1087 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1088 		return ID_DFR0_EL1_PerfMon_PMUv3;
1089 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1090 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1091 	default:
1092 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1093 		return pmuver;
1094 	}
1095 }
1096 
1097 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1098 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
1099 {
1100 	u32 id = reg_to_encoding(r);
1101 	u64 val;
1102 
1103 	if (sysreg_visible_as_raz(vcpu, r))
1104 		return 0;
1105 
1106 	val = read_sanitised_ftr_reg(id);
1107 
1108 	switch (id) {
1109 	case SYS_ID_AA64PFR0_EL1:
1110 		if (!vcpu_has_sve(vcpu))
1111 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
1112 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
1113 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
1114 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1115 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
1116 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1117 		if (kvm_vgic_global_state.type == VGIC_V3) {
1118 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
1119 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
1120 		}
1121 		break;
1122 	case SYS_ID_AA64PFR1_EL1:
1123 		if (!kvm_has_mte(vcpu->kvm))
1124 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1125 
1126 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1127 		break;
1128 	case SYS_ID_AA64ISAR1_EL1:
1129 		if (!vcpu_has_ptrauth(vcpu))
1130 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1131 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1132 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1133 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1134 		break;
1135 	case SYS_ID_AA64ISAR2_EL1:
1136 		if (!vcpu_has_ptrauth(vcpu))
1137 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1138 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1139 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1140 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1141 		break;
1142 	case SYS_ID_AA64DFR0_EL1:
1143 		/* Limit debug to ARMv8.0 */
1144 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
1145 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
1146 		/* Set PMUver to the required version */
1147 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1148 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer),
1149 				  vcpu_pmuver(vcpu));
1150 		/* Hide SPE from guests */
1151 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
1152 		break;
1153 	case SYS_ID_DFR0_EL1:
1154 		val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1155 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon),
1156 				  pmuver_to_perfmon(vcpu_pmuver(vcpu)));
1157 		break;
1158 	}
1159 
1160 	return val;
1161 }
1162 
1163 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1164 				  const struct sys_reg_desc *r)
1165 {
1166 	u32 id = reg_to_encoding(r);
1167 
1168 	switch (id) {
1169 	case SYS_ID_AA64ZFR0_EL1:
1170 		if (!vcpu_has_sve(vcpu))
1171 			return REG_RAZ;
1172 		break;
1173 	}
1174 
1175 	return 0;
1176 }
1177 
1178 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1179 				       const struct sys_reg_desc *r)
1180 {
1181 	/*
1182 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1183 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1184 	 * systems.
1185 	 */
1186 	if (!kvm_supports_32bit_el0())
1187 		return REG_RAZ | REG_USER_WI;
1188 
1189 	return id_visibility(vcpu, r);
1190 }
1191 
1192 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1193 				   const struct sys_reg_desc *r)
1194 {
1195 	return REG_RAZ;
1196 }
1197 
1198 /* cpufeature ID register access trap handlers */
1199 
1200 static bool access_id_reg(struct kvm_vcpu *vcpu,
1201 			  struct sys_reg_params *p,
1202 			  const struct sys_reg_desc *r)
1203 {
1204 	if (p->is_write)
1205 		return write_to_read_only(vcpu, p, r);
1206 
1207 	p->regval = read_id_reg(vcpu, r);
1208 	return true;
1209 }
1210 
1211 /* Visibility overrides for SVE-specific control registers */
1212 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1213 				   const struct sys_reg_desc *rd)
1214 {
1215 	if (vcpu_has_sve(vcpu))
1216 		return 0;
1217 
1218 	return REG_HIDDEN;
1219 }
1220 
1221 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1222 			       const struct sys_reg_desc *rd,
1223 			       u64 val)
1224 {
1225 	u8 csv2, csv3;
1226 
1227 	/*
1228 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1229 	 * it doesn't promise more than what is actually provided (the
1230 	 * guest could otherwise be covered in ectoplasmic residue).
1231 	 */
1232 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
1233 	if (csv2 > 1 ||
1234 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1235 		return -EINVAL;
1236 
1237 	/* Same thing for CSV3 */
1238 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
1239 	if (csv3 > 1 ||
1240 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1241 		return -EINVAL;
1242 
1243 	/* We can only differ with CSV[23], and anything else is an error */
1244 	val ^= read_id_reg(vcpu, rd);
1245 	val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
1246 		 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
1247 	if (val)
1248 		return -EINVAL;
1249 
1250 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1251 	vcpu->kvm->arch.pfr0_csv3 = csv3;
1252 
1253 	return 0;
1254 }
1255 
1256 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1257 			       const struct sys_reg_desc *rd,
1258 			       u64 val)
1259 {
1260 	u8 pmuver, host_pmuver;
1261 	bool valid_pmu;
1262 
1263 	host_pmuver = kvm_arm_pmu_get_pmuver_limit();
1264 
1265 	/*
1266 	 * Allow AA64DFR0_EL1.PMUver to be set from userspace as long
1267 	 * as it doesn't promise more than what the HW gives us. We
1268 	 * allow an IMPDEF PMU though, only if no PMU is supported
1269 	 * (KVM backward compatibility handling).
1270 	 */
1271 	pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val);
1272 	if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver))
1273 		return -EINVAL;
1274 
1275 	valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF);
1276 
1277 	/* Make sure view register and PMU support do match */
1278 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1279 		return -EINVAL;
1280 
1281 	/* We can only differ with PMUver, and anything else is an error */
1282 	val ^= read_id_reg(vcpu, rd);
1283 	val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer);
1284 	if (val)
1285 		return -EINVAL;
1286 
1287 	if (valid_pmu)
1288 		vcpu->kvm->arch.dfr0_pmuver.imp = pmuver;
1289 	else
1290 		vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver;
1291 
1292 	return 0;
1293 }
1294 
1295 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1296 			   const struct sys_reg_desc *rd,
1297 			   u64 val)
1298 {
1299 	u8 perfmon, host_perfmon;
1300 	bool valid_pmu;
1301 
1302 	host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1303 
1304 	/*
1305 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1306 	 * it doesn't promise more than what the HW gives us on the
1307 	 * AArch64 side (as everything is emulated with that), and
1308 	 * that this is a PMUv3.
1309 	 */
1310 	perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val);
1311 	if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) ||
1312 	    (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3))
1313 		return -EINVAL;
1314 
1315 	valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF);
1316 
1317 	/* Make sure view register and PMU support do match */
1318 	if (kvm_vcpu_has_pmu(vcpu) != valid_pmu)
1319 		return -EINVAL;
1320 
1321 	/* We can only differ with PerfMon, and anything else is an error */
1322 	val ^= read_id_reg(vcpu, rd);
1323 	val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon);
1324 	if (val)
1325 		return -EINVAL;
1326 
1327 	if (valid_pmu)
1328 		vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon);
1329 	else
1330 		vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon);
1331 
1332 	return 0;
1333 }
1334 
1335 /*
1336  * cpufeature ID register user accessors
1337  *
1338  * For now, these registers are immutable for userspace, so no values
1339  * are stored, and for set_id_reg() we don't allow the effective value
1340  * to be changed.
1341  */
1342 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1343 		      u64 *val)
1344 {
1345 	*val = read_id_reg(vcpu, rd);
1346 	return 0;
1347 }
1348 
1349 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1350 		      u64 val)
1351 {
1352 	/* This is what we mean by invariant: you can't change it. */
1353 	if (val != read_id_reg(vcpu, rd))
1354 		return -EINVAL;
1355 
1356 	return 0;
1357 }
1358 
1359 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1360 		       u64 *val)
1361 {
1362 	*val = 0;
1363 	return 0;
1364 }
1365 
1366 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1367 		      u64 val)
1368 {
1369 	return 0;
1370 }
1371 
1372 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1373 		       const struct sys_reg_desc *r)
1374 {
1375 	if (p->is_write)
1376 		return write_to_read_only(vcpu, p, r);
1377 
1378 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1379 	return true;
1380 }
1381 
1382 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1383 			 const struct sys_reg_desc *r)
1384 {
1385 	if (p->is_write)
1386 		return write_to_read_only(vcpu, p, r);
1387 
1388 	p->regval = read_sysreg(clidr_el1);
1389 	return true;
1390 }
1391 
1392 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1393 			  const struct sys_reg_desc *r)
1394 {
1395 	int reg = r->reg;
1396 
1397 	if (p->is_write)
1398 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1399 	else
1400 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1401 	return true;
1402 }
1403 
1404 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1405 			  const struct sys_reg_desc *r)
1406 {
1407 	u32 csselr;
1408 
1409 	if (p->is_write)
1410 		return write_to_read_only(vcpu, p, r);
1411 
1412 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1413 	p->regval = get_ccsidr(csselr);
1414 
1415 	/*
1416 	 * Guests should not be doing cache operations by set/way at all, and
1417 	 * for this reason, we trap them and attempt to infer the intent, so
1418 	 * that we can flush the entire guest's address space at the appropriate
1419 	 * time.
1420 	 * To prevent this trapping from causing performance problems, let's
1421 	 * expose the geometry of all data and unified caches (which are
1422 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1423 	 * [If guests should attempt to infer aliasing properties from the
1424 	 * geometry (which is not permitted by the architecture), they would
1425 	 * only do so for virtually indexed caches.]
1426 	 */
1427 	if (!(csselr & 1)) // data or unified cache
1428 		p->regval &= ~GENMASK(27, 3);
1429 	return true;
1430 }
1431 
1432 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1433 				   const struct sys_reg_desc *rd)
1434 {
1435 	if (kvm_has_mte(vcpu->kvm))
1436 		return 0;
1437 
1438 	return REG_HIDDEN;
1439 }
1440 
1441 #define MTE_REG(name) {				\
1442 	SYS_DESC(SYS_##name),			\
1443 	.access = undef_access,			\
1444 	.reset = reset_unknown,			\
1445 	.reg = name,				\
1446 	.visibility = mte_visibility,		\
1447 }
1448 
1449 /* sys_reg_desc initialiser for known cpufeature ID registers */
1450 #define ID_SANITISED(name) {			\
1451 	SYS_DESC(SYS_##name),			\
1452 	.access	= access_id_reg,		\
1453 	.get_user = get_id_reg,			\
1454 	.set_user = set_id_reg,			\
1455 	.visibility = id_visibility,		\
1456 }
1457 
1458 /* sys_reg_desc initialiser for known cpufeature ID registers */
1459 #define AA32_ID_SANITISED(name) {		\
1460 	SYS_DESC(SYS_##name),			\
1461 	.access	= access_id_reg,		\
1462 	.get_user = get_id_reg,			\
1463 	.set_user = set_id_reg,			\
1464 	.visibility = aa32_id_visibility,	\
1465 }
1466 
1467 /*
1468  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1469  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1470  * (1 <= crm < 8, 0 <= Op2 < 8).
1471  */
1472 #define ID_UNALLOCATED(crm, op2) {			\
1473 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1474 	.access = access_id_reg,			\
1475 	.get_user = get_id_reg,				\
1476 	.set_user = set_id_reg,				\
1477 	.visibility = raz_visibility			\
1478 }
1479 
1480 /*
1481  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1482  * For now, these are exposed just like unallocated ID regs: they appear
1483  * RAZ for the guest.
1484  */
1485 #define ID_HIDDEN(name) {			\
1486 	SYS_DESC(SYS_##name),			\
1487 	.access = access_id_reg,		\
1488 	.get_user = get_id_reg,			\
1489 	.set_user = set_id_reg,			\
1490 	.visibility = raz_visibility,		\
1491 }
1492 
1493 /*
1494  * Architected system registers.
1495  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1496  *
1497  * Debug handling: We do trap most, if not all debug related system
1498  * registers. The implementation is good enough to ensure that a guest
1499  * can use these with minimal performance degradation. The drawback is
1500  * that we don't implement any of the external debug architecture.
1501  * This should be revisited if we ever encounter a more demanding
1502  * guest...
1503  */
1504 static const struct sys_reg_desc sys_reg_descs[] = {
1505 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1506 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1507 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1508 
1509 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1510 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1511 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1512 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1513 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1514 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1515 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1516 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1517 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1518 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1519 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1520 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1521 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1522 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1523 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1524 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1525 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1526 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1527 
1528 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1529 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1530 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1531 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1532 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1533 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1534 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1535 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1536 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1537 
1538 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1539 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1540 	// DBGDTR[TR]X_EL0 share the same encoding
1541 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1542 
1543 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1544 
1545 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1546 
1547 	/*
1548 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1549 	 * entries in arm64_ftr_regs[].
1550 	 */
1551 
1552 	/* AArch64 mappings of the AArch32 ID registers */
1553 	/* CRm=1 */
1554 	AA32_ID_SANITISED(ID_PFR0_EL1),
1555 	AA32_ID_SANITISED(ID_PFR1_EL1),
1556 	{ SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg,
1557 	  .get_user = get_id_reg, .set_user = set_id_dfr0_el1,
1558 	  .visibility = aa32_id_visibility, },
1559 	ID_HIDDEN(ID_AFR0_EL1),
1560 	AA32_ID_SANITISED(ID_MMFR0_EL1),
1561 	AA32_ID_SANITISED(ID_MMFR1_EL1),
1562 	AA32_ID_SANITISED(ID_MMFR2_EL1),
1563 	AA32_ID_SANITISED(ID_MMFR3_EL1),
1564 
1565 	/* CRm=2 */
1566 	AA32_ID_SANITISED(ID_ISAR0_EL1),
1567 	AA32_ID_SANITISED(ID_ISAR1_EL1),
1568 	AA32_ID_SANITISED(ID_ISAR2_EL1),
1569 	AA32_ID_SANITISED(ID_ISAR3_EL1),
1570 	AA32_ID_SANITISED(ID_ISAR4_EL1),
1571 	AA32_ID_SANITISED(ID_ISAR5_EL1),
1572 	AA32_ID_SANITISED(ID_MMFR4_EL1),
1573 	AA32_ID_SANITISED(ID_ISAR6_EL1),
1574 
1575 	/* CRm=3 */
1576 	AA32_ID_SANITISED(MVFR0_EL1),
1577 	AA32_ID_SANITISED(MVFR1_EL1),
1578 	AA32_ID_SANITISED(MVFR2_EL1),
1579 	ID_UNALLOCATED(3,3),
1580 	AA32_ID_SANITISED(ID_PFR2_EL1),
1581 	ID_HIDDEN(ID_DFR1_EL1),
1582 	AA32_ID_SANITISED(ID_MMFR5_EL1),
1583 	ID_UNALLOCATED(3,7),
1584 
1585 	/* AArch64 ID registers */
1586 	/* CRm=4 */
1587 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1588 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1589 	ID_SANITISED(ID_AA64PFR1_EL1),
1590 	ID_UNALLOCATED(4,2),
1591 	ID_UNALLOCATED(4,3),
1592 	ID_SANITISED(ID_AA64ZFR0_EL1),
1593 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1594 	ID_UNALLOCATED(4,6),
1595 	ID_UNALLOCATED(4,7),
1596 
1597 	/* CRm=5 */
1598 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg,
1599 	  .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, },
1600 	ID_SANITISED(ID_AA64DFR1_EL1),
1601 	ID_UNALLOCATED(5,2),
1602 	ID_UNALLOCATED(5,3),
1603 	ID_HIDDEN(ID_AA64AFR0_EL1),
1604 	ID_HIDDEN(ID_AA64AFR1_EL1),
1605 	ID_UNALLOCATED(5,6),
1606 	ID_UNALLOCATED(5,7),
1607 
1608 	/* CRm=6 */
1609 	ID_SANITISED(ID_AA64ISAR0_EL1),
1610 	ID_SANITISED(ID_AA64ISAR1_EL1),
1611 	ID_SANITISED(ID_AA64ISAR2_EL1),
1612 	ID_UNALLOCATED(6,3),
1613 	ID_UNALLOCATED(6,4),
1614 	ID_UNALLOCATED(6,5),
1615 	ID_UNALLOCATED(6,6),
1616 	ID_UNALLOCATED(6,7),
1617 
1618 	/* CRm=7 */
1619 	ID_SANITISED(ID_AA64MMFR0_EL1),
1620 	ID_SANITISED(ID_AA64MMFR1_EL1),
1621 	ID_SANITISED(ID_AA64MMFR2_EL1),
1622 	ID_UNALLOCATED(7,3),
1623 	ID_UNALLOCATED(7,4),
1624 	ID_UNALLOCATED(7,5),
1625 	ID_UNALLOCATED(7,6),
1626 	ID_UNALLOCATED(7,7),
1627 
1628 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1629 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1630 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1631 
1632 	MTE_REG(RGSR_EL1),
1633 	MTE_REG(GCR_EL1),
1634 
1635 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1636 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1637 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1638 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1639 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1640 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1641 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1642 
1643 	PTRAUTH_KEY(APIA),
1644 	PTRAUTH_KEY(APIB),
1645 	PTRAUTH_KEY(APDA),
1646 	PTRAUTH_KEY(APDB),
1647 	PTRAUTH_KEY(APGA),
1648 
1649 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1650 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1651 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1652 
1653 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1654 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1655 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1656 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1657 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1658 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1659 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1660 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1661 
1662 	MTE_REG(TFSR_EL1),
1663 	MTE_REG(TFSRE0_EL1),
1664 
1665 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1666 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1667 
1668 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1669 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1670 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1671 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1672 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1673 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1674 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1675 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1676 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1677 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1678 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1679 	/* PMBIDR_EL1 is not trapped */
1680 
1681 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1682 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1683 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1684 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1685 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1686 
1687 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1688 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1689 
1690 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1691 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1692 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1693 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1694 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1695 
1696 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1697 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1698 
1699 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1700 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1701 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1702 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1703 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1704 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1705 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1706 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1707 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1708 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1709 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1710 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1711 
1712 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1713 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1714 
1715 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1716 
1717 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1718 
1719 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1720 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1721 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1722 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1723 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1724 	{ SYS_DESC(SYS_SVCR), undef_access },
1725 
1726 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1727 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1728 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1729 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1730 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1731 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1732 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1733 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1734 	/*
1735 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1736 	 * previously (and pointlessly) advertised in the past...
1737 	 */
1738 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1739 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1740 	  .access = access_pmswinc, .reset = NULL },
1741 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1742 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1743 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1744 	  .access = access_pmceid, .reset = NULL },
1745 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1746 	  .access = access_pmceid, .reset = NULL },
1747 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1748 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1749 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1750 	  .access = access_pmu_evtyper, .reset = NULL },
1751 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1752 	  .access = access_pmu_evcntr, .reset = NULL },
1753 	/*
1754 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1755 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1756 	 */
1757 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1758 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1759 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1760 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1761 
1762 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1763 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1764 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1765 
1766 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1767 
1768 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1769 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1770 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1771 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1772 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1773 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1774 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1775 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1776 	AMU_AMEVCNTR0_EL0(0),
1777 	AMU_AMEVCNTR0_EL0(1),
1778 	AMU_AMEVCNTR0_EL0(2),
1779 	AMU_AMEVCNTR0_EL0(3),
1780 	AMU_AMEVCNTR0_EL0(4),
1781 	AMU_AMEVCNTR0_EL0(5),
1782 	AMU_AMEVCNTR0_EL0(6),
1783 	AMU_AMEVCNTR0_EL0(7),
1784 	AMU_AMEVCNTR0_EL0(8),
1785 	AMU_AMEVCNTR0_EL0(9),
1786 	AMU_AMEVCNTR0_EL0(10),
1787 	AMU_AMEVCNTR0_EL0(11),
1788 	AMU_AMEVCNTR0_EL0(12),
1789 	AMU_AMEVCNTR0_EL0(13),
1790 	AMU_AMEVCNTR0_EL0(14),
1791 	AMU_AMEVCNTR0_EL0(15),
1792 	AMU_AMEVTYPER0_EL0(0),
1793 	AMU_AMEVTYPER0_EL0(1),
1794 	AMU_AMEVTYPER0_EL0(2),
1795 	AMU_AMEVTYPER0_EL0(3),
1796 	AMU_AMEVTYPER0_EL0(4),
1797 	AMU_AMEVTYPER0_EL0(5),
1798 	AMU_AMEVTYPER0_EL0(6),
1799 	AMU_AMEVTYPER0_EL0(7),
1800 	AMU_AMEVTYPER0_EL0(8),
1801 	AMU_AMEVTYPER0_EL0(9),
1802 	AMU_AMEVTYPER0_EL0(10),
1803 	AMU_AMEVTYPER0_EL0(11),
1804 	AMU_AMEVTYPER0_EL0(12),
1805 	AMU_AMEVTYPER0_EL0(13),
1806 	AMU_AMEVTYPER0_EL0(14),
1807 	AMU_AMEVTYPER0_EL0(15),
1808 	AMU_AMEVCNTR1_EL0(0),
1809 	AMU_AMEVCNTR1_EL0(1),
1810 	AMU_AMEVCNTR1_EL0(2),
1811 	AMU_AMEVCNTR1_EL0(3),
1812 	AMU_AMEVCNTR1_EL0(4),
1813 	AMU_AMEVCNTR1_EL0(5),
1814 	AMU_AMEVCNTR1_EL0(6),
1815 	AMU_AMEVCNTR1_EL0(7),
1816 	AMU_AMEVCNTR1_EL0(8),
1817 	AMU_AMEVCNTR1_EL0(9),
1818 	AMU_AMEVCNTR1_EL0(10),
1819 	AMU_AMEVCNTR1_EL0(11),
1820 	AMU_AMEVCNTR1_EL0(12),
1821 	AMU_AMEVCNTR1_EL0(13),
1822 	AMU_AMEVCNTR1_EL0(14),
1823 	AMU_AMEVCNTR1_EL0(15),
1824 	AMU_AMEVTYPER1_EL0(0),
1825 	AMU_AMEVTYPER1_EL0(1),
1826 	AMU_AMEVTYPER1_EL0(2),
1827 	AMU_AMEVTYPER1_EL0(3),
1828 	AMU_AMEVTYPER1_EL0(4),
1829 	AMU_AMEVTYPER1_EL0(5),
1830 	AMU_AMEVTYPER1_EL0(6),
1831 	AMU_AMEVTYPER1_EL0(7),
1832 	AMU_AMEVTYPER1_EL0(8),
1833 	AMU_AMEVTYPER1_EL0(9),
1834 	AMU_AMEVTYPER1_EL0(10),
1835 	AMU_AMEVTYPER1_EL0(11),
1836 	AMU_AMEVTYPER1_EL0(12),
1837 	AMU_AMEVTYPER1_EL0(13),
1838 	AMU_AMEVTYPER1_EL0(14),
1839 	AMU_AMEVTYPER1_EL0(15),
1840 
1841 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1842 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1843 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1844 
1845 	/* PMEVCNTRn_EL0 */
1846 	PMU_PMEVCNTR_EL0(0),
1847 	PMU_PMEVCNTR_EL0(1),
1848 	PMU_PMEVCNTR_EL0(2),
1849 	PMU_PMEVCNTR_EL0(3),
1850 	PMU_PMEVCNTR_EL0(4),
1851 	PMU_PMEVCNTR_EL0(5),
1852 	PMU_PMEVCNTR_EL0(6),
1853 	PMU_PMEVCNTR_EL0(7),
1854 	PMU_PMEVCNTR_EL0(8),
1855 	PMU_PMEVCNTR_EL0(9),
1856 	PMU_PMEVCNTR_EL0(10),
1857 	PMU_PMEVCNTR_EL0(11),
1858 	PMU_PMEVCNTR_EL0(12),
1859 	PMU_PMEVCNTR_EL0(13),
1860 	PMU_PMEVCNTR_EL0(14),
1861 	PMU_PMEVCNTR_EL0(15),
1862 	PMU_PMEVCNTR_EL0(16),
1863 	PMU_PMEVCNTR_EL0(17),
1864 	PMU_PMEVCNTR_EL0(18),
1865 	PMU_PMEVCNTR_EL0(19),
1866 	PMU_PMEVCNTR_EL0(20),
1867 	PMU_PMEVCNTR_EL0(21),
1868 	PMU_PMEVCNTR_EL0(22),
1869 	PMU_PMEVCNTR_EL0(23),
1870 	PMU_PMEVCNTR_EL0(24),
1871 	PMU_PMEVCNTR_EL0(25),
1872 	PMU_PMEVCNTR_EL0(26),
1873 	PMU_PMEVCNTR_EL0(27),
1874 	PMU_PMEVCNTR_EL0(28),
1875 	PMU_PMEVCNTR_EL0(29),
1876 	PMU_PMEVCNTR_EL0(30),
1877 	/* PMEVTYPERn_EL0 */
1878 	PMU_PMEVTYPER_EL0(0),
1879 	PMU_PMEVTYPER_EL0(1),
1880 	PMU_PMEVTYPER_EL0(2),
1881 	PMU_PMEVTYPER_EL0(3),
1882 	PMU_PMEVTYPER_EL0(4),
1883 	PMU_PMEVTYPER_EL0(5),
1884 	PMU_PMEVTYPER_EL0(6),
1885 	PMU_PMEVTYPER_EL0(7),
1886 	PMU_PMEVTYPER_EL0(8),
1887 	PMU_PMEVTYPER_EL0(9),
1888 	PMU_PMEVTYPER_EL0(10),
1889 	PMU_PMEVTYPER_EL0(11),
1890 	PMU_PMEVTYPER_EL0(12),
1891 	PMU_PMEVTYPER_EL0(13),
1892 	PMU_PMEVTYPER_EL0(14),
1893 	PMU_PMEVTYPER_EL0(15),
1894 	PMU_PMEVTYPER_EL0(16),
1895 	PMU_PMEVTYPER_EL0(17),
1896 	PMU_PMEVTYPER_EL0(18),
1897 	PMU_PMEVTYPER_EL0(19),
1898 	PMU_PMEVTYPER_EL0(20),
1899 	PMU_PMEVTYPER_EL0(21),
1900 	PMU_PMEVTYPER_EL0(22),
1901 	PMU_PMEVTYPER_EL0(23),
1902 	PMU_PMEVTYPER_EL0(24),
1903 	PMU_PMEVTYPER_EL0(25),
1904 	PMU_PMEVTYPER_EL0(26),
1905 	PMU_PMEVTYPER_EL0(27),
1906 	PMU_PMEVTYPER_EL0(28),
1907 	PMU_PMEVTYPER_EL0(29),
1908 	PMU_PMEVTYPER_EL0(30),
1909 	/*
1910 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1911 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1912 	 */
1913 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1914 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1915 
1916 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1917 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1918 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1919 };
1920 
1921 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1922 			struct sys_reg_params *p,
1923 			const struct sys_reg_desc *r)
1924 {
1925 	if (p->is_write) {
1926 		return ignore_write(vcpu, p);
1927 	} else {
1928 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1929 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1930 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
1931 
1932 		p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
1933 			     (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
1934 			     (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
1935 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1936 		return true;
1937 	}
1938 }
1939 
1940 /*
1941  * AArch32 debug register mappings
1942  *
1943  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1944  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1945  *
1946  * None of the other registers share their location, so treat them as
1947  * if they were 64bit.
1948  */
1949 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1950 	/* DBGBVRn */							      \
1951 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1952 	/* DBGBCRn */							      \
1953 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1954 	/* DBGWVRn */							      \
1955 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1956 	/* DBGWCRn */							      \
1957 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1958 
1959 #define DBGBXVR(n)							      \
1960 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1961 
1962 /*
1963  * Trapped cp14 registers. We generally ignore most of the external
1964  * debug, on the principle that they don't really make sense to a
1965  * guest. Revisit this one day, would this principle change.
1966  */
1967 static const struct sys_reg_desc cp14_regs[] = {
1968 	/* DBGDIDR */
1969 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1970 	/* DBGDTRRXext */
1971 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1972 
1973 	DBG_BCR_BVR_WCR_WVR(0),
1974 	/* DBGDSCRint */
1975 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1976 	DBG_BCR_BVR_WCR_WVR(1),
1977 	/* DBGDCCINT */
1978 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1979 	/* DBGDSCRext */
1980 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1981 	DBG_BCR_BVR_WCR_WVR(2),
1982 	/* DBGDTR[RT]Xint */
1983 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1984 	/* DBGDTR[RT]Xext */
1985 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1986 	DBG_BCR_BVR_WCR_WVR(3),
1987 	DBG_BCR_BVR_WCR_WVR(4),
1988 	DBG_BCR_BVR_WCR_WVR(5),
1989 	/* DBGWFAR */
1990 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1991 	/* DBGOSECCR */
1992 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1993 	DBG_BCR_BVR_WCR_WVR(6),
1994 	/* DBGVCR */
1995 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1996 	DBG_BCR_BVR_WCR_WVR(7),
1997 	DBG_BCR_BVR_WCR_WVR(8),
1998 	DBG_BCR_BVR_WCR_WVR(9),
1999 	DBG_BCR_BVR_WCR_WVR(10),
2000 	DBG_BCR_BVR_WCR_WVR(11),
2001 	DBG_BCR_BVR_WCR_WVR(12),
2002 	DBG_BCR_BVR_WCR_WVR(13),
2003 	DBG_BCR_BVR_WCR_WVR(14),
2004 	DBG_BCR_BVR_WCR_WVR(15),
2005 
2006 	/* DBGDRAR (32bit) */
2007 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2008 
2009 	DBGBXVR(0),
2010 	/* DBGOSLAR */
2011 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2012 	DBGBXVR(1),
2013 	/* DBGOSLSR */
2014 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2015 	DBGBXVR(2),
2016 	DBGBXVR(3),
2017 	/* DBGOSDLR */
2018 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2019 	DBGBXVR(4),
2020 	/* DBGPRCR */
2021 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2022 	DBGBXVR(5),
2023 	DBGBXVR(6),
2024 	DBGBXVR(7),
2025 	DBGBXVR(8),
2026 	DBGBXVR(9),
2027 	DBGBXVR(10),
2028 	DBGBXVR(11),
2029 	DBGBXVR(12),
2030 	DBGBXVR(13),
2031 	DBGBXVR(14),
2032 	DBGBXVR(15),
2033 
2034 	/* DBGDSAR (32bit) */
2035 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2036 
2037 	/* DBGDEVID2 */
2038 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2039 	/* DBGDEVID1 */
2040 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2041 	/* DBGDEVID */
2042 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2043 	/* DBGCLAIMSET */
2044 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2045 	/* DBGCLAIMCLR */
2046 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2047 	/* DBGAUTHSTATUS */
2048 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2049 };
2050 
2051 /* Trapped cp14 64bit registers */
2052 static const struct sys_reg_desc cp14_64_regs[] = {
2053 	/* DBGDRAR (64bit) */
2054 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2055 
2056 	/* DBGDSAR (64bit) */
2057 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2058 };
2059 
2060 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2061 	AA32(_map),							\
2062 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2063 	.visibility = pmu_visibility
2064 
2065 /* Macro to expand the PMEVCNTRn register */
2066 #define PMU_PMEVCNTR(n)							\
2067 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2068 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2069 	  .access = access_pmu_evcntr }
2070 
2071 /* Macro to expand the PMEVTYPERn register */
2072 #define PMU_PMEVTYPER(n)						\
2073 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2074 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2075 	  .access = access_pmu_evtyper }
2076 /*
2077  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2078  * depending on the way they are accessed (as a 32bit or a 64bit
2079  * register).
2080  */
2081 static const struct sys_reg_desc cp15_regs[] = {
2082 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2083 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2084 	/* ACTLR */
2085 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2086 	/* ACTLR2 */
2087 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2088 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2089 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2090 	/* TTBCR */
2091 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2092 	/* TTBCR2 */
2093 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2094 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2095 	/* DFSR */
2096 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2097 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2098 	/* ADFSR */
2099 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2100 	/* AIFSR */
2101 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2102 	/* DFAR */
2103 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2104 	/* IFAR */
2105 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2106 
2107 	/*
2108 	 * DC{C,I,CI}SW operations:
2109 	 */
2110 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2111 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2112 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2113 
2114 	/* PMU */
2115 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2116 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2117 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2118 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2119 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2120 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2121 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2122 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2123 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2124 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2125 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2126 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2127 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2128 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2129 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2130 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2131 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2132 	/* PMMIR */
2133 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2134 
2135 	/* PRRR/MAIR0 */
2136 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2137 	/* NMRR/MAIR1 */
2138 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2139 	/* AMAIR0 */
2140 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2141 	/* AMAIR1 */
2142 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2143 
2144 	/* ICC_SRE */
2145 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2146 
2147 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2148 
2149 	/* Arch Tmers */
2150 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2151 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2152 
2153 	/* PMEVCNTRn */
2154 	PMU_PMEVCNTR(0),
2155 	PMU_PMEVCNTR(1),
2156 	PMU_PMEVCNTR(2),
2157 	PMU_PMEVCNTR(3),
2158 	PMU_PMEVCNTR(4),
2159 	PMU_PMEVCNTR(5),
2160 	PMU_PMEVCNTR(6),
2161 	PMU_PMEVCNTR(7),
2162 	PMU_PMEVCNTR(8),
2163 	PMU_PMEVCNTR(9),
2164 	PMU_PMEVCNTR(10),
2165 	PMU_PMEVCNTR(11),
2166 	PMU_PMEVCNTR(12),
2167 	PMU_PMEVCNTR(13),
2168 	PMU_PMEVCNTR(14),
2169 	PMU_PMEVCNTR(15),
2170 	PMU_PMEVCNTR(16),
2171 	PMU_PMEVCNTR(17),
2172 	PMU_PMEVCNTR(18),
2173 	PMU_PMEVCNTR(19),
2174 	PMU_PMEVCNTR(20),
2175 	PMU_PMEVCNTR(21),
2176 	PMU_PMEVCNTR(22),
2177 	PMU_PMEVCNTR(23),
2178 	PMU_PMEVCNTR(24),
2179 	PMU_PMEVCNTR(25),
2180 	PMU_PMEVCNTR(26),
2181 	PMU_PMEVCNTR(27),
2182 	PMU_PMEVCNTR(28),
2183 	PMU_PMEVCNTR(29),
2184 	PMU_PMEVCNTR(30),
2185 	/* PMEVTYPERn */
2186 	PMU_PMEVTYPER(0),
2187 	PMU_PMEVTYPER(1),
2188 	PMU_PMEVTYPER(2),
2189 	PMU_PMEVTYPER(3),
2190 	PMU_PMEVTYPER(4),
2191 	PMU_PMEVTYPER(5),
2192 	PMU_PMEVTYPER(6),
2193 	PMU_PMEVTYPER(7),
2194 	PMU_PMEVTYPER(8),
2195 	PMU_PMEVTYPER(9),
2196 	PMU_PMEVTYPER(10),
2197 	PMU_PMEVTYPER(11),
2198 	PMU_PMEVTYPER(12),
2199 	PMU_PMEVTYPER(13),
2200 	PMU_PMEVTYPER(14),
2201 	PMU_PMEVTYPER(15),
2202 	PMU_PMEVTYPER(16),
2203 	PMU_PMEVTYPER(17),
2204 	PMU_PMEVTYPER(18),
2205 	PMU_PMEVTYPER(19),
2206 	PMU_PMEVTYPER(20),
2207 	PMU_PMEVTYPER(21),
2208 	PMU_PMEVTYPER(22),
2209 	PMU_PMEVTYPER(23),
2210 	PMU_PMEVTYPER(24),
2211 	PMU_PMEVTYPER(25),
2212 	PMU_PMEVTYPER(26),
2213 	PMU_PMEVTYPER(27),
2214 	PMU_PMEVTYPER(28),
2215 	PMU_PMEVTYPER(29),
2216 	PMU_PMEVTYPER(30),
2217 	/* PMCCFILTR */
2218 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2219 
2220 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2221 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2222 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2223 };
2224 
2225 static const struct sys_reg_desc cp15_64_regs[] = {
2226 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2227 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2228 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2229 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2230 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2231 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2232 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2233 };
2234 
2235 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2236 			       bool is_32)
2237 {
2238 	unsigned int i;
2239 
2240 	for (i = 0; i < n; i++) {
2241 		if (!is_32 && table[i].reg && !table[i].reset) {
2242 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2243 			return false;
2244 		}
2245 
2246 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2247 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2248 			return false;
2249 		}
2250 	}
2251 
2252 	return true;
2253 }
2254 
2255 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2256 {
2257 	kvm_inject_undefined(vcpu);
2258 	return 1;
2259 }
2260 
2261 static void perform_access(struct kvm_vcpu *vcpu,
2262 			   struct sys_reg_params *params,
2263 			   const struct sys_reg_desc *r)
2264 {
2265 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2266 
2267 	/* Check for regs disabled by runtime config */
2268 	if (sysreg_hidden(vcpu, r)) {
2269 		kvm_inject_undefined(vcpu);
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * Not having an accessor means that we have configured a trap
2275 	 * that we don't know how to handle. This certainly qualifies
2276 	 * as a gross bug that should be fixed right away.
2277 	 */
2278 	BUG_ON(!r->access);
2279 
2280 	/* Skip instruction if instructed so */
2281 	if (likely(r->access(vcpu, params, r)))
2282 		kvm_incr_pc(vcpu);
2283 }
2284 
2285 /*
2286  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2287  *                call the corresponding trap handler.
2288  *
2289  * @params: pointer to the descriptor of the access
2290  * @table: array of trap descriptors
2291  * @num: size of the trap descriptor array
2292  *
2293  * Return true if the access has been handled, false if not.
2294  */
2295 static bool emulate_cp(struct kvm_vcpu *vcpu,
2296 		       struct sys_reg_params *params,
2297 		       const struct sys_reg_desc *table,
2298 		       size_t num)
2299 {
2300 	const struct sys_reg_desc *r;
2301 
2302 	if (!table)
2303 		return false;	/* Not handled */
2304 
2305 	r = find_reg(params, table, num);
2306 
2307 	if (r) {
2308 		perform_access(vcpu, params, r);
2309 		return true;
2310 	}
2311 
2312 	/* Not handled */
2313 	return false;
2314 }
2315 
2316 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2317 				struct sys_reg_params *params)
2318 {
2319 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2320 	int cp = -1;
2321 
2322 	switch (esr_ec) {
2323 	case ESR_ELx_EC_CP15_32:
2324 	case ESR_ELx_EC_CP15_64:
2325 		cp = 15;
2326 		break;
2327 	case ESR_ELx_EC_CP14_MR:
2328 	case ESR_ELx_EC_CP14_64:
2329 		cp = 14;
2330 		break;
2331 	default:
2332 		WARN_ON(1);
2333 	}
2334 
2335 	print_sys_reg_msg(params,
2336 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2337 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2338 	kvm_inject_undefined(vcpu);
2339 }
2340 
2341 /**
2342  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2343  * @vcpu: The VCPU pointer
2344  * @run:  The kvm_run struct
2345  */
2346 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2347 			    const struct sys_reg_desc *global,
2348 			    size_t nr_global)
2349 {
2350 	struct sys_reg_params params;
2351 	u64 esr = kvm_vcpu_get_esr(vcpu);
2352 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2353 	int Rt2 = (esr >> 10) & 0x1f;
2354 
2355 	params.CRm = (esr >> 1) & 0xf;
2356 	params.is_write = ((esr & 1) == 0);
2357 
2358 	params.Op0 = 0;
2359 	params.Op1 = (esr >> 16) & 0xf;
2360 	params.Op2 = 0;
2361 	params.CRn = 0;
2362 
2363 	/*
2364 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2365 	 * backends between AArch32 and AArch64, we get away with it.
2366 	 */
2367 	if (params.is_write) {
2368 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2369 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2370 	}
2371 
2372 	/*
2373 	 * If the table contains a handler, handle the
2374 	 * potential register operation in the case of a read and return
2375 	 * with success.
2376 	 */
2377 	if (emulate_cp(vcpu, &params, global, nr_global)) {
2378 		/* Split up the value between registers for the read side */
2379 		if (!params.is_write) {
2380 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2381 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2382 		}
2383 
2384 		return 1;
2385 	}
2386 
2387 	unhandled_cp_access(vcpu, &params);
2388 	return 1;
2389 }
2390 
2391 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2392 
2393 /*
2394  * The CP10 ID registers are architecturally mapped to AArch64 feature
2395  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2396  * from AArch32.
2397  */
2398 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2399 {
2400 	u8 reg_id = (esr >> 10) & 0xf;
2401 	bool valid;
2402 
2403 	params->is_write = ((esr & 1) == 0);
2404 	params->Op0 = 3;
2405 	params->Op1 = 0;
2406 	params->CRn = 0;
2407 	params->CRm = 3;
2408 
2409 	/* CP10 ID registers are read-only */
2410 	valid = !params->is_write;
2411 
2412 	switch (reg_id) {
2413 	/* MVFR0 */
2414 	case 0b0111:
2415 		params->Op2 = 0;
2416 		break;
2417 	/* MVFR1 */
2418 	case 0b0110:
2419 		params->Op2 = 1;
2420 		break;
2421 	/* MVFR2 */
2422 	case 0b0101:
2423 		params->Op2 = 2;
2424 		break;
2425 	default:
2426 		valid = false;
2427 	}
2428 
2429 	if (valid)
2430 		return true;
2431 
2432 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2433 		      params->is_write ? "write" : "read", reg_id);
2434 	return false;
2435 }
2436 
2437 /**
2438  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2439  *			  VFP Register' from AArch32.
2440  * @vcpu: The vCPU pointer
2441  *
2442  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2443  * Work out the correct AArch64 system register encoding and reroute to the
2444  * AArch64 system register emulation.
2445  */
2446 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2447 {
2448 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2449 	u64 esr = kvm_vcpu_get_esr(vcpu);
2450 	struct sys_reg_params params;
2451 
2452 	/* UNDEF on any unhandled register access */
2453 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2454 		kvm_inject_undefined(vcpu);
2455 		return 1;
2456 	}
2457 
2458 	if (emulate_sys_reg(vcpu, &params))
2459 		vcpu_set_reg(vcpu, Rt, params.regval);
2460 
2461 	return 1;
2462 }
2463 
2464 /**
2465  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2466  *			       CRn=0, which corresponds to the AArch32 feature
2467  *			       registers.
2468  * @vcpu: the vCPU pointer
2469  * @params: the system register access parameters.
2470  *
2471  * Our cp15 system register tables do not enumerate the AArch32 feature
2472  * registers. Conveniently, our AArch64 table does, and the AArch32 system
2473  * register encoding can be trivially remapped into the AArch64 for the feature
2474  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2475  *
2476  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2477  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2478  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2479  * treat undefined registers in this range as RAZ.
2480  */
2481 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
2482 				   struct sys_reg_params *params)
2483 {
2484 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2485 
2486 	/* Treat impossible writes to RO registers as UNDEFINED */
2487 	if (params->is_write) {
2488 		unhandled_cp_access(vcpu, params);
2489 		return 1;
2490 	}
2491 
2492 	params->Op0 = 3;
2493 
2494 	/*
2495 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
2496 	 * Avoid conflicting with future expansion of AArch64 feature registers
2497 	 * and simply treat them as RAZ here.
2498 	 */
2499 	if (params->CRm > 3)
2500 		params->regval = 0;
2501 	else if (!emulate_sys_reg(vcpu, params))
2502 		return 1;
2503 
2504 	vcpu_set_reg(vcpu, Rt, params->regval);
2505 	return 1;
2506 }
2507 
2508 /**
2509  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2510  * @vcpu: The VCPU pointer
2511  * @run:  The kvm_run struct
2512  */
2513 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2514 			    struct sys_reg_params *params,
2515 			    const struct sys_reg_desc *global,
2516 			    size_t nr_global)
2517 {
2518 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2519 
2520 	params->regval = vcpu_get_reg(vcpu, Rt);
2521 
2522 	if (emulate_cp(vcpu, params, global, nr_global)) {
2523 		if (!params->is_write)
2524 			vcpu_set_reg(vcpu, Rt, params->regval);
2525 		return 1;
2526 	}
2527 
2528 	unhandled_cp_access(vcpu, params);
2529 	return 1;
2530 }
2531 
2532 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2533 {
2534 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2535 }
2536 
2537 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2538 {
2539 	struct sys_reg_params params;
2540 
2541 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2542 
2543 	/*
2544 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
2545 	 * system register table. Registers in the ID range where CRm=0 are
2546 	 * excluded from this scheme as they do not trivially map into AArch64
2547 	 * system register encodings.
2548 	 */
2549 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
2550 		return kvm_emulate_cp15_id_reg(vcpu, &params);
2551 
2552 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
2553 }
2554 
2555 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2556 {
2557 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2558 }
2559 
2560 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2561 {
2562 	struct sys_reg_params params;
2563 
2564 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
2565 
2566 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
2567 }
2568 
2569 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2570 {
2571 	// See ARM DDI 0487E.a, section D12.3.2
2572 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2573 }
2574 
2575 /**
2576  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
2577  * @vcpu: The VCPU pointer
2578  * @params: Decoded system register parameters
2579  *
2580  * Return: true if the system register access was successful, false otherwise.
2581  */
2582 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
2583 			   struct sys_reg_params *params)
2584 {
2585 	const struct sys_reg_desc *r;
2586 
2587 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2588 
2589 	if (likely(r)) {
2590 		perform_access(vcpu, params, r);
2591 		return true;
2592 	}
2593 
2594 	if (is_imp_def_sys_reg(params)) {
2595 		kvm_inject_undefined(vcpu);
2596 	} else {
2597 		print_sys_reg_msg(params,
2598 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2599 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2600 		kvm_inject_undefined(vcpu);
2601 	}
2602 	return false;
2603 }
2604 
2605 /**
2606  * kvm_reset_sys_regs - sets system registers to reset value
2607  * @vcpu: The VCPU pointer
2608  *
2609  * This function finds the right table above and sets the registers on the
2610  * virtual CPU struct to their architecturally defined reset values.
2611  */
2612 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2613 {
2614 	unsigned long i;
2615 
2616 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2617 		if (sys_reg_descs[i].reset)
2618 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2619 }
2620 
2621 /**
2622  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2623  * @vcpu: The VCPU pointer
2624  */
2625 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2626 {
2627 	struct sys_reg_params params;
2628 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2629 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2630 
2631 	trace_kvm_handle_sys_reg(esr);
2632 
2633 	params = esr_sys64_to_params(esr);
2634 	params.regval = vcpu_get_reg(vcpu, Rt);
2635 
2636 	if (!emulate_sys_reg(vcpu, &params))
2637 		return 1;
2638 
2639 	if (!params.is_write)
2640 		vcpu_set_reg(vcpu, Rt, params.regval);
2641 	return 1;
2642 }
2643 
2644 /******************************************************************************
2645  * Userspace API
2646  *****************************************************************************/
2647 
2648 static bool index_to_params(u64 id, struct sys_reg_params *params)
2649 {
2650 	switch (id & KVM_REG_SIZE_MASK) {
2651 	case KVM_REG_SIZE_U64:
2652 		/* Any unused index bits means it's not valid. */
2653 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2654 			      | KVM_REG_ARM_COPROC_MASK
2655 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2656 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2657 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2658 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2659 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2660 			return false;
2661 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2662 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2663 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2664 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2665 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2666 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2667 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2668 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2669 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2670 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2671 		return true;
2672 	default:
2673 		return false;
2674 	}
2675 }
2676 
2677 const struct sys_reg_desc *get_reg_by_id(u64 id,
2678 					 const struct sys_reg_desc table[],
2679 					 unsigned int num)
2680 {
2681 	struct sys_reg_params params;
2682 
2683 	if (!index_to_params(id, &params))
2684 		return NULL;
2685 
2686 	return find_reg(&params, table, num);
2687 }
2688 
2689 /* Decode an index value, and find the sys_reg_desc entry. */
2690 static const struct sys_reg_desc *
2691 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
2692 		   const struct sys_reg_desc table[], unsigned int num)
2693 
2694 {
2695 	const struct sys_reg_desc *r;
2696 
2697 	/* We only do sys_reg for now. */
2698 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2699 		return NULL;
2700 
2701 	r = get_reg_by_id(id, table, num);
2702 
2703 	/* Not saved in the sys_reg array and not otherwise accessible? */
2704 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
2705 		r = NULL;
2706 
2707 	return r;
2708 }
2709 
2710 /*
2711  * These are the invariant sys_reg registers: we let the guest see the
2712  * host versions of these, so they're part of the guest state.
2713  *
2714  * A future CPU may provide a mechanism to present different values to
2715  * the guest, or a future kvm may trap them.
2716  */
2717 
2718 #define FUNCTION_INVARIANT(reg)						\
2719 	static void get_##reg(struct kvm_vcpu *v,			\
2720 			      const struct sys_reg_desc *r)		\
2721 	{								\
2722 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2723 	}
2724 
2725 FUNCTION_INVARIANT(midr_el1)
2726 FUNCTION_INVARIANT(revidr_el1)
2727 FUNCTION_INVARIANT(clidr_el1)
2728 FUNCTION_INVARIANT(aidr_el1)
2729 
2730 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2731 {
2732 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2733 }
2734 
2735 /* ->val is filled in by kvm_sys_reg_table_init() */
2736 static struct sys_reg_desc invariant_sys_regs[] = {
2737 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2738 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2739 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2740 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2741 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2742 };
2743 
2744 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
2745 {
2746 	const struct sys_reg_desc *r;
2747 
2748 	r = get_reg_by_id(id, invariant_sys_regs,
2749 			  ARRAY_SIZE(invariant_sys_regs));
2750 	if (!r)
2751 		return -ENOENT;
2752 
2753 	return put_user(r->val, uaddr);
2754 }
2755 
2756 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
2757 {
2758 	const struct sys_reg_desc *r;
2759 	u64 val;
2760 
2761 	r = get_reg_by_id(id, invariant_sys_regs,
2762 			  ARRAY_SIZE(invariant_sys_regs));
2763 	if (!r)
2764 		return -ENOENT;
2765 
2766 	if (get_user(val, uaddr))
2767 		return -EFAULT;
2768 
2769 	/* This is what we mean by invariant: you can't change it. */
2770 	if (r->val != val)
2771 		return -EINVAL;
2772 
2773 	return 0;
2774 }
2775 
2776 static bool is_valid_cache(u32 val)
2777 {
2778 	u32 level, ctype;
2779 
2780 	if (val >= CSSELR_MAX)
2781 		return false;
2782 
2783 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2784 	level = (val >> 1);
2785 	ctype = (cache_levels >> (level * 3)) & 7;
2786 
2787 	switch (ctype) {
2788 	case 0: /* No cache */
2789 		return false;
2790 	case 1: /* Instruction cache only */
2791 		return (val & 1);
2792 	case 2: /* Data cache only */
2793 	case 4: /* Unified cache */
2794 		return !(val & 1);
2795 	case 3: /* Separate instruction and data caches */
2796 		return true;
2797 	default: /* Reserved: we can't know instruction or data. */
2798 		return false;
2799 	}
2800 }
2801 
2802 static int demux_c15_get(u64 id, void __user *uaddr)
2803 {
2804 	u32 val;
2805 	u32 __user *uval = uaddr;
2806 
2807 	/* Fail if we have unknown bits set. */
2808 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2809 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2810 		return -ENOENT;
2811 
2812 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2813 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2814 		if (KVM_REG_SIZE(id) != 4)
2815 			return -ENOENT;
2816 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2817 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2818 		if (!is_valid_cache(val))
2819 			return -ENOENT;
2820 
2821 		return put_user(get_ccsidr(val), uval);
2822 	default:
2823 		return -ENOENT;
2824 	}
2825 }
2826 
2827 static int demux_c15_set(u64 id, void __user *uaddr)
2828 {
2829 	u32 val, newval;
2830 	u32 __user *uval = uaddr;
2831 
2832 	/* Fail if we have unknown bits set. */
2833 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2834 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2835 		return -ENOENT;
2836 
2837 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2838 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2839 		if (KVM_REG_SIZE(id) != 4)
2840 			return -ENOENT;
2841 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2842 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2843 		if (!is_valid_cache(val))
2844 			return -ENOENT;
2845 
2846 		if (get_user(newval, uval))
2847 			return -EFAULT;
2848 
2849 		/* This is also invariant: you can't change it. */
2850 		if (newval != get_ccsidr(val))
2851 			return -EINVAL;
2852 		return 0;
2853 	default:
2854 		return -ENOENT;
2855 	}
2856 }
2857 
2858 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2859 			 const struct sys_reg_desc table[], unsigned int num)
2860 {
2861 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2862 	const struct sys_reg_desc *r;
2863 	u64 val;
2864 	int ret;
2865 
2866 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2867 	if (!r)
2868 		return -ENOENT;
2869 
2870 	if (r->get_user) {
2871 		ret = (r->get_user)(vcpu, r, &val);
2872 	} else {
2873 		val = __vcpu_sys_reg(vcpu, r->reg);
2874 		ret = 0;
2875 	}
2876 
2877 	if (!ret)
2878 		ret = put_user(val, uaddr);
2879 
2880 	return ret;
2881 }
2882 
2883 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2884 {
2885 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2886 	int err;
2887 
2888 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2889 		return demux_c15_get(reg->id, uaddr);
2890 
2891 	err = get_invariant_sys_reg(reg->id, uaddr);
2892 	if (err != -ENOENT)
2893 		return err;
2894 
2895 	return kvm_sys_reg_get_user(vcpu, reg,
2896 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2897 }
2898 
2899 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
2900 			 const struct sys_reg_desc table[], unsigned int num)
2901 {
2902 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
2903 	const struct sys_reg_desc *r;
2904 	u64 val;
2905 	int ret;
2906 
2907 	if (get_user(val, uaddr))
2908 		return -EFAULT;
2909 
2910 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
2911 	if (!r)
2912 		return -ENOENT;
2913 
2914 	if (sysreg_user_write_ignore(vcpu, r))
2915 		return 0;
2916 
2917 	if (r->set_user) {
2918 		ret = (r->set_user)(vcpu, r, val);
2919 	} else {
2920 		__vcpu_sys_reg(vcpu, r->reg) = val;
2921 		ret = 0;
2922 	}
2923 
2924 	return ret;
2925 }
2926 
2927 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2928 {
2929 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2930 	int err;
2931 
2932 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2933 		return demux_c15_set(reg->id, uaddr);
2934 
2935 	err = set_invariant_sys_reg(reg->id, uaddr);
2936 	if (err != -ENOENT)
2937 		return err;
2938 
2939 	return kvm_sys_reg_set_user(vcpu, reg,
2940 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2941 }
2942 
2943 static unsigned int num_demux_regs(void)
2944 {
2945 	unsigned int i, count = 0;
2946 
2947 	for (i = 0; i < CSSELR_MAX; i++)
2948 		if (is_valid_cache(i))
2949 			count++;
2950 
2951 	return count;
2952 }
2953 
2954 static int write_demux_regids(u64 __user *uindices)
2955 {
2956 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2957 	unsigned int i;
2958 
2959 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2960 	for (i = 0; i < CSSELR_MAX; i++) {
2961 		if (!is_valid_cache(i))
2962 			continue;
2963 		if (put_user(val | i, uindices))
2964 			return -EFAULT;
2965 		uindices++;
2966 	}
2967 	return 0;
2968 }
2969 
2970 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2971 {
2972 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2973 		KVM_REG_ARM64_SYSREG |
2974 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2975 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2976 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2977 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2978 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2979 }
2980 
2981 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2982 {
2983 	if (!*uind)
2984 		return true;
2985 
2986 	if (put_user(sys_reg_to_index(reg), *uind))
2987 		return false;
2988 
2989 	(*uind)++;
2990 	return true;
2991 }
2992 
2993 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2994 			    const struct sys_reg_desc *rd,
2995 			    u64 __user **uind,
2996 			    unsigned int *total)
2997 {
2998 	/*
2999 	 * Ignore registers we trap but don't save,
3000 	 * and for which no custom user accessor is provided.
3001 	 */
3002 	if (!(rd->reg || rd->get_user))
3003 		return 0;
3004 
3005 	if (sysreg_hidden(vcpu, rd))
3006 		return 0;
3007 
3008 	if (!copy_reg_to_user(rd, uind))
3009 		return -EFAULT;
3010 
3011 	(*total)++;
3012 	return 0;
3013 }
3014 
3015 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3016 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3017 {
3018 	const struct sys_reg_desc *i2, *end2;
3019 	unsigned int total = 0;
3020 	int err;
3021 
3022 	i2 = sys_reg_descs;
3023 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3024 
3025 	while (i2 != end2) {
3026 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3027 		if (err)
3028 			return err;
3029 	}
3030 	return total;
3031 }
3032 
3033 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3034 {
3035 	return ARRAY_SIZE(invariant_sys_regs)
3036 		+ num_demux_regs()
3037 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3038 }
3039 
3040 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3041 {
3042 	unsigned int i;
3043 	int err;
3044 
3045 	/* Then give them all the invariant registers' indices. */
3046 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3047 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3048 			return -EFAULT;
3049 		uindices++;
3050 	}
3051 
3052 	err = walk_sys_regs(vcpu, uindices);
3053 	if (err < 0)
3054 		return err;
3055 	uindices += err;
3056 
3057 	return write_demux_regids(uindices);
3058 }
3059 
3060 int kvm_sys_reg_table_init(void)
3061 {
3062 	bool valid = true;
3063 	unsigned int i;
3064 	struct sys_reg_desc clidr;
3065 
3066 	/* Make sure tables are unique and in order. */
3067 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3068 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3069 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3070 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3071 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3072 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3073 
3074 	if (!valid)
3075 		return -EINVAL;
3076 
3077 	/* We abuse the reset function to overwrite the table itself. */
3078 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3079 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3080 
3081 	/*
3082 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
3083 	 *
3084 	 *   If software reads the Cache Type fields from Ctype1
3085 	 *   upwards, once it has seen a value of 0b000, no caches
3086 	 *   exist at further-out levels of the hierarchy. So, for
3087 	 *   example, if Ctype3 is the first Cache Type field with a
3088 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
3089 	 *   ignored.
3090 	 */
3091 	get_clidr_el1(NULL, &clidr); /* Ugly... */
3092 	cache_levels = clidr.val;
3093 	for (i = 0; i < 7; i++)
3094 		if (((cache_levels >> (i*3)) & 7) == 0)
3095 			break;
3096 	/* Clear all higher bits. */
3097 	cache_levels &= (1 << (i*3))-1;
3098 
3099 	return 0;
3100 }
3101