xref: /linux/arch/arm64/kvm/sys_regs.c (revision 6c7353836a91b1479e6b81791cdc163fb04b4834)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 #include "trace.h"
37 
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43 
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46 		      u64 val);
47 
48 static bool bad_trap(struct kvm_vcpu *vcpu,
49 		     struct sys_reg_params *params,
50 		     const struct sys_reg_desc *r,
51 		     const char *msg)
52 {
53 	WARN_ONCE(1, "Unexpected %s\n", msg);
54 	print_sys_reg_instr(params);
55 	kvm_inject_undefined(vcpu);
56 	return false;
57 }
58 
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60 				 struct sys_reg_params *params,
61 				 const struct sys_reg_desc *r)
62 {
63 	return bad_trap(vcpu, params, r,
64 			"sys_reg read to write-only register");
65 }
66 
67 static bool write_to_read_only(struct kvm_vcpu *vcpu,
68 			       struct sys_reg_params *params,
69 			       const struct sys_reg_desc *r)
70 {
71 	return bad_trap(vcpu, params, r,
72 			"sys_reg write to read-only register");
73 }
74 
75 #define PURE_EL2_SYSREG(el2)						\
76 	case el2: {							\
77 		*el1r = el2;						\
78 		return true;						\
79 	}
80 
81 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
82 	case el2: {							\
83 		*xlate = fn;						\
84 		*el1r = el1;						\
85 		return true;						\
86 	}
87 
88 static bool get_el2_to_el1_mapping(unsigned int reg,
89 				   unsigned int *el1r, u64 (**xlate)(u64))
90 {
91 	switch (reg) {
92 		PURE_EL2_SYSREG(  VPIDR_EL2	);
93 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
94 		PURE_EL2_SYSREG(  ACTLR_EL2	);
95 		PURE_EL2_SYSREG(  HCR_EL2	);
96 		PURE_EL2_SYSREG(  MDCR_EL2	);
97 		PURE_EL2_SYSREG(  HSTR_EL2	);
98 		PURE_EL2_SYSREG(  HACR_EL2	);
99 		PURE_EL2_SYSREG(  VTTBR_EL2	);
100 		PURE_EL2_SYSREG(  VTCR_EL2	);
101 		PURE_EL2_SYSREG(  RVBAR_EL2	);
102 		PURE_EL2_SYSREG(  TPIDR_EL2	);
103 		PURE_EL2_SYSREG(  HPFAR_EL2	);
104 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
105 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
106 				  translate_sctlr_el2_to_sctlr_el1	     );
107 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
108 				  translate_cptr_el2_to_cpacr_el1	     );
109 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
110 				  translate_ttbr0_el2_to_ttbr0_el1	     );
111 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
112 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
113 				  translate_tcr_el2_to_tcr_el1		     );
114 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
115 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
116 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
117 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
118 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
119 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
120 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
121 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
122 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
123 	default:
124 		return false;
125 	}
126 }
127 
128 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
129 {
130 	u64 val = 0x8badf00d8badf00d;
131 	u64 (*xlate)(u64) = NULL;
132 	unsigned int el1r;
133 
134 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
135 		goto memory_read;
136 
137 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
138 		if (!is_hyp_ctxt(vcpu))
139 			goto memory_read;
140 
141 		/*
142 		 * If this register does not have an EL1 counterpart,
143 		 * then read the stored EL2 version.
144 		 */
145 		if (reg == el1r)
146 			goto memory_read;
147 
148 		/*
149 		 * If we have a non-VHE guest and that the sysreg
150 		 * requires translation to be used at EL1, use the
151 		 * in-memory copy instead.
152 		 */
153 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
154 			goto memory_read;
155 
156 		/* Get the current version of the EL1 counterpart. */
157 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
158 		return val;
159 	}
160 
161 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
162 	if (unlikely(is_hyp_ctxt(vcpu)))
163 		goto memory_read;
164 
165 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
166 		return val;
167 
168 memory_read:
169 	return __vcpu_sys_reg(vcpu, reg);
170 }
171 
172 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
173 {
174 	u64 (*xlate)(u64) = NULL;
175 	unsigned int el1r;
176 
177 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
178 		goto memory_write;
179 
180 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
181 		if (!is_hyp_ctxt(vcpu))
182 			goto memory_write;
183 
184 		/*
185 		 * Always store a copy of the write to memory to avoid having
186 		 * to reverse-translate virtual EL2 system registers for a
187 		 * non-VHE guest hypervisor.
188 		 */
189 		__vcpu_sys_reg(vcpu, reg) = val;
190 
191 		/* No EL1 counterpart? We're done here.? */
192 		if (reg == el1r)
193 			return;
194 
195 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
196 			val = xlate(val);
197 
198 		/* Redirect this to the EL1 version of the register. */
199 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
200 		return;
201 	}
202 
203 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
204 	if (unlikely(is_hyp_ctxt(vcpu)))
205 		goto memory_write;
206 
207 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
208 		return;
209 
210 memory_write:
211 	 __vcpu_sys_reg(vcpu, reg) = val;
212 }
213 
214 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
215 #define CSSELR_MAX 14
216 
217 /*
218  * Returns the minimum line size for the selected cache, expressed as
219  * Log2(bytes).
220  */
221 static u8 get_min_cache_line_size(bool icache)
222 {
223 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
224 	u8 field;
225 
226 	if (icache)
227 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
228 	else
229 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
230 
231 	/*
232 	 * Cache line size is represented as Log2(words) in CTR_EL0.
233 	 * Log2(bytes) can be derived with the following:
234 	 *
235 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
236 	 * 		   = Log2(bytes) - 2 + 2
237 	 * 		   = Log2(bytes)
238 	 */
239 	return field + 2;
240 }
241 
242 /* Which cache CCSIDR represents depends on CSSELR value. */
243 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
244 {
245 	u8 line_size;
246 
247 	if (vcpu->arch.ccsidr)
248 		return vcpu->arch.ccsidr[csselr];
249 
250 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
251 
252 	/*
253 	 * Fabricate a CCSIDR value as the overriding value does not exist.
254 	 * The real CCSIDR value will not be used as it can vary by the
255 	 * physical CPU which the vcpu currently resides in.
256 	 *
257 	 * The line size is determined with get_min_cache_line_size(), which
258 	 * should be valid for all CPUs even if they have different cache
259 	 * configuration.
260 	 *
261 	 * The associativity bits are cleared, meaning the geometry of all data
262 	 * and unified caches (which are guaranteed to be PIPT and thus
263 	 * non-aliasing) are 1 set and 1 way.
264 	 * Guests should not be doing cache operations by set/way at all, and
265 	 * for this reason, we trap them and attempt to infer the intent, so
266 	 * that we can flush the entire guest's address space at the appropriate
267 	 * time. The exposed geometry minimizes the number of the traps.
268 	 * [If guests should attempt to infer aliasing properties from the
269 	 * geometry (which is not permitted by the architecture), they would
270 	 * only do so for virtually indexed caches.]
271 	 *
272 	 * We don't check if the cache level exists as it is allowed to return
273 	 * an UNKNOWN value if not.
274 	 */
275 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
276 }
277 
278 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
279 {
280 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
281 	u32 *ccsidr = vcpu->arch.ccsidr;
282 	u32 i;
283 
284 	if ((val & CCSIDR_EL1_RES0) ||
285 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
286 		return -EINVAL;
287 
288 	if (!ccsidr) {
289 		if (val == get_ccsidr(vcpu, csselr))
290 			return 0;
291 
292 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
293 		if (!ccsidr)
294 			return -ENOMEM;
295 
296 		for (i = 0; i < CSSELR_MAX; i++)
297 			ccsidr[i] = get_ccsidr(vcpu, i);
298 
299 		vcpu->arch.ccsidr = ccsidr;
300 	}
301 
302 	ccsidr[csselr] = val;
303 
304 	return 0;
305 }
306 
307 static bool access_rw(struct kvm_vcpu *vcpu,
308 		      struct sys_reg_params *p,
309 		      const struct sys_reg_desc *r)
310 {
311 	if (p->is_write)
312 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
313 	else
314 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
315 
316 	return true;
317 }
318 
319 /*
320  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
321  */
322 static bool access_dcsw(struct kvm_vcpu *vcpu,
323 			struct sys_reg_params *p,
324 			const struct sys_reg_desc *r)
325 {
326 	if (!p->is_write)
327 		return read_from_write_only(vcpu, p, r);
328 
329 	/*
330 	 * Only track S/W ops if we don't have FWB. It still indicates
331 	 * that the guest is a bit broken (S/W operations should only
332 	 * be done by firmware, knowing that there is only a single
333 	 * CPU left in the system, and certainly not from non-secure
334 	 * software).
335 	 */
336 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
337 		kvm_set_way_flush(vcpu);
338 
339 	return true;
340 }
341 
342 static bool access_dcgsw(struct kvm_vcpu *vcpu,
343 			 struct sys_reg_params *p,
344 			 const struct sys_reg_desc *r)
345 {
346 	if (!kvm_has_mte(vcpu->kvm)) {
347 		kvm_inject_undefined(vcpu);
348 		return false;
349 	}
350 
351 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
352 	return access_dcsw(vcpu, p, r);
353 }
354 
355 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
356 {
357 	switch (r->aarch32_map) {
358 	case AA32_LO:
359 		*mask = GENMASK_ULL(31, 0);
360 		*shift = 0;
361 		break;
362 	case AA32_HI:
363 		*mask = GENMASK_ULL(63, 32);
364 		*shift = 32;
365 		break;
366 	default:
367 		*mask = GENMASK_ULL(63, 0);
368 		*shift = 0;
369 		break;
370 	}
371 }
372 
373 /*
374  * Generic accessor for VM registers. Only called as long as HCR_TVM
375  * is set. If the guest enables the MMU, we stop trapping the VM
376  * sys_regs and leave it in complete control of the caches.
377  */
378 static bool access_vm_reg(struct kvm_vcpu *vcpu,
379 			  struct sys_reg_params *p,
380 			  const struct sys_reg_desc *r)
381 {
382 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
383 	u64 val, mask, shift;
384 
385 	BUG_ON(!p->is_write);
386 
387 	get_access_mask(r, &mask, &shift);
388 
389 	if (~mask) {
390 		val = vcpu_read_sys_reg(vcpu, r->reg);
391 		val &= ~mask;
392 	} else {
393 		val = 0;
394 	}
395 
396 	val |= (p->regval & (mask >> shift)) << shift;
397 	vcpu_write_sys_reg(vcpu, val, r->reg);
398 
399 	kvm_toggle_cache(vcpu, was_enabled);
400 	return true;
401 }
402 
403 static bool access_actlr(struct kvm_vcpu *vcpu,
404 			 struct sys_reg_params *p,
405 			 const struct sys_reg_desc *r)
406 {
407 	u64 mask, shift;
408 
409 	if (p->is_write)
410 		return ignore_write(vcpu, p);
411 
412 	get_access_mask(r, &mask, &shift);
413 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
414 
415 	return true;
416 }
417 
418 /*
419  * Trap handler for the GICv3 SGI generation system register.
420  * Forward the request to the VGIC emulation.
421  * The cp15_64 code makes sure this automatically works
422  * for both AArch64 and AArch32 accesses.
423  */
424 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
425 			   struct sys_reg_params *p,
426 			   const struct sys_reg_desc *r)
427 {
428 	bool g1;
429 
430 	if (!p->is_write)
431 		return read_from_write_only(vcpu, p, r);
432 
433 	/*
434 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
435 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
436 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
437 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
438 	 * group.
439 	 */
440 	if (p->Op0 == 0) {		/* AArch32 */
441 		switch (p->Op1) {
442 		default:		/* Keep GCC quiet */
443 		case 0:			/* ICC_SGI1R */
444 			g1 = true;
445 			break;
446 		case 1:			/* ICC_ASGI1R */
447 		case 2:			/* ICC_SGI0R */
448 			g1 = false;
449 			break;
450 		}
451 	} else {			/* AArch64 */
452 		switch (p->Op2) {
453 		default:		/* Keep GCC quiet */
454 		case 5:			/* ICC_SGI1R_EL1 */
455 			g1 = true;
456 			break;
457 		case 6:			/* ICC_ASGI1R_EL1 */
458 		case 7:			/* ICC_SGI0R_EL1 */
459 			g1 = false;
460 			break;
461 		}
462 	}
463 
464 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
465 
466 	return true;
467 }
468 
469 static bool access_gic_sre(struct kvm_vcpu *vcpu,
470 			   struct sys_reg_params *p,
471 			   const struct sys_reg_desc *r)
472 {
473 	if (p->is_write)
474 		return ignore_write(vcpu, p);
475 
476 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
477 	return true;
478 }
479 
480 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
481 			struct sys_reg_params *p,
482 			const struct sys_reg_desc *r)
483 {
484 	if (p->is_write)
485 		return ignore_write(vcpu, p);
486 	else
487 		return read_zero(vcpu, p);
488 }
489 
490 static bool trap_undef(struct kvm_vcpu *vcpu,
491 		       struct sys_reg_params *p,
492 		       const struct sys_reg_desc *r)
493 {
494 	kvm_inject_undefined(vcpu);
495 	return false;
496 }
497 
498 /*
499  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
500  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
501  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
502  * treat it separately.
503  */
504 static bool trap_loregion(struct kvm_vcpu *vcpu,
505 			  struct sys_reg_params *p,
506 			  const struct sys_reg_desc *r)
507 {
508 	u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
509 	u32 sr = reg_to_encoding(r);
510 
511 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
512 		kvm_inject_undefined(vcpu);
513 		return false;
514 	}
515 
516 	if (p->is_write && sr == SYS_LORID_EL1)
517 		return write_to_read_only(vcpu, p, r);
518 
519 	return trap_raz_wi(vcpu, p, r);
520 }
521 
522 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
523 			   struct sys_reg_params *p,
524 			   const struct sys_reg_desc *r)
525 {
526 	u64 oslsr;
527 
528 	if (!p->is_write)
529 		return read_from_write_only(vcpu, p, r);
530 
531 	/* Forward the OSLK bit to OSLSR */
532 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
533 	if (p->regval & OSLAR_EL1_OSLK)
534 		oslsr |= OSLSR_EL1_OSLK;
535 
536 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
537 	return true;
538 }
539 
540 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
541 			   struct sys_reg_params *p,
542 			   const struct sys_reg_desc *r)
543 {
544 	if (p->is_write)
545 		return write_to_read_only(vcpu, p, r);
546 
547 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
548 	return true;
549 }
550 
551 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 			 u64 val)
553 {
554 	/*
555 	 * The only modifiable bit is the OSLK bit. Refuse the write if
556 	 * userspace attempts to change any other bit in the register.
557 	 */
558 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
559 		return -EINVAL;
560 
561 	__vcpu_sys_reg(vcpu, rd->reg) = val;
562 	return 0;
563 }
564 
565 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
566 				   struct sys_reg_params *p,
567 				   const struct sys_reg_desc *r)
568 {
569 	if (p->is_write) {
570 		return ignore_write(vcpu, p);
571 	} else {
572 		p->regval = read_sysreg(dbgauthstatus_el1);
573 		return true;
574 	}
575 }
576 
577 /*
578  * We want to avoid world-switching all the DBG registers all the
579  * time:
580  *
581  * - If we've touched any debug register, it is likely that we're
582  *   going to touch more of them. It then makes sense to disable the
583  *   traps and start doing the save/restore dance
584  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
585  *   then mandatory to save/restore the registers, as the guest
586  *   depends on them.
587  *
588  * For this, we use a DIRTY bit, indicating the guest has modified the
589  * debug registers, used as follow:
590  *
591  * On guest entry:
592  * - If the dirty bit is set (because we're coming back from trapping),
593  *   disable the traps, save host registers, restore guest registers.
594  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
595  *   set the dirty bit, disable the traps, save host registers,
596  *   restore guest registers.
597  * - Otherwise, enable the traps
598  *
599  * On guest exit:
600  * - If the dirty bit is set, save guest registers, restore host
601  *   registers and clear the dirty bit. This ensure that the host can
602  *   now use the debug registers.
603  */
604 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
605 			    struct sys_reg_params *p,
606 			    const struct sys_reg_desc *r)
607 {
608 	access_rw(vcpu, p, r);
609 	if (p->is_write)
610 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
611 
612 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
613 
614 	return true;
615 }
616 
617 /*
618  * reg_to_dbg/dbg_to_reg
619  *
620  * A 32 bit write to a debug register leave top bits alone
621  * A 32 bit read from a debug register only returns the bottom bits
622  *
623  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
624  * switches between host and guest values in future.
625  */
626 static void reg_to_dbg(struct kvm_vcpu *vcpu,
627 		       struct sys_reg_params *p,
628 		       const struct sys_reg_desc *rd,
629 		       u64 *dbg_reg)
630 {
631 	u64 mask, shift, val;
632 
633 	get_access_mask(rd, &mask, &shift);
634 
635 	val = *dbg_reg;
636 	val &= ~mask;
637 	val |= (p->regval & (mask >> shift)) << shift;
638 	*dbg_reg = val;
639 
640 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
641 }
642 
643 static void dbg_to_reg(struct kvm_vcpu *vcpu,
644 		       struct sys_reg_params *p,
645 		       const struct sys_reg_desc *rd,
646 		       u64 *dbg_reg)
647 {
648 	u64 mask, shift;
649 
650 	get_access_mask(rd, &mask, &shift);
651 	p->regval = (*dbg_reg & mask) >> shift;
652 }
653 
654 static bool trap_bvr(struct kvm_vcpu *vcpu,
655 		     struct sys_reg_params *p,
656 		     const struct sys_reg_desc *rd)
657 {
658 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
659 
660 	if (p->is_write)
661 		reg_to_dbg(vcpu, p, rd, dbg_reg);
662 	else
663 		dbg_to_reg(vcpu, p, rd, dbg_reg);
664 
665 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
666 
667 	return true;
668 }
669 
670 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
671 		   u64 val)
672 {
673 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
674 	return 0;
675 }
676 
677 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
678 		   u64 *val)
679 {
680 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
681 	return 0;
682 }
683 
684 static u64 reset_bvr(struct kvm_vcpu *vcpu,
685 		      const struct sys_reg_desc *rd)
686 {
687 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
688 	return rd->val;
689 }
690 
691 static bool trap_bcr(struct kvm_vcpu *vcpu,
692 		     struct sys_reg_params *p,
693 		     const struct sys_reg_desc *rd)
694 {
695 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
696 
697 	if (p->is_write)
698 		reg_to_dbg(vcpu, p, rd, dbg_reg);
699 	else
700 		dbg_to_reg(vcpu, p, rd, dbg_reg);
701 
702 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
703 
704 	return true;
705 }
706 
707 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
708 		   u64 val)
709 {
710 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
711 	return 0;
712 }
713 
714 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
715 		   u64 *val)
716 {
717 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
718 	return 0;
719 }
720 
721 static u64 reset_bcr(struct kvm_vcpu *vcpu,
722 		      const struct sys_reg_desc *rd)
723 {
724 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
725 	return rd->val;
726 }
727 
728 static bool trap_wvr(struct kvm_vcpu *vcpu,
729 		     struct sys_reg_params *p,
730 		     const struct sys_reg_desc *rd)
731 {
732 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
733 
734 	if (p->is_write)
735 		reg_to_dbg(vcpu, p, rd, dbg_reg);
736 	else
737 		dbg_to_reg(vcpu, p, rd, dbg_reg);
738 
739 	trace_trap_reg(__func__, rd->CRm, p->is_write,
740 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
741 
742 	return true;
743 }
744 
745 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
746 		   u64 val)
747 {
748 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
749 	return 0;
750 }
751 
752 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
753 		   u64 *val)
754 {
755 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
756 	return 0;
757 }
758 
759 static u64 reset_wvr(struct kvm_vcpu *vcpu,
760 		      const struct sys_reg_desc *rd)
761 {
762 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
763 	return rd->val;
764 }
765 
766 static bool trap_wcr(struct kvm_vcpu *vcpu,
767 		     struct sys_reg_params *p,
768 		     const struct sys_reg_desc *rd)
769 {
770 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
771 
772 	if (p->is_write)
773 		reg_to_dbg(vcpu, p, rd, dbg_reg);
774 	else
775 		dbg_to_reg(vcpu, p, rd, dbg_reg);
776 
777 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
778 
779 	return true;
780 }
781 
782 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
783 		   u64 val)
784 {
785 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
786 	return 0;
787 }
788 
789 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
790 		   u64 *val)
791 {
792 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
793 	return 0;
794 }
795 
796 static u64 reset_wcr(struct kvm_vcpu *vcpu,
797 		      const struct sys_reg_desc *rd)
798 {
799 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
800 	return rd->val;
801 }
802 
803 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
804 {
805 	u64 amair = read_sysreg(amair_el1);
806 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
807 	return amair;
808 }
809 
810 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
811 {
812 	u64 actlr = read_sysreg(actlr_el1);
813 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
814 	return actlr;
815 }
816 
817 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
818 {
819 	u64 mpidr;
820 
821 	/*
822 	 * Map the vcpu_id into the first three affinity level fields of
823 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
824 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
825 	 * of the GICv3 to be able to address each CPU directly when
826 	 * sending IPIs.
827 	 */
828 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
829 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
830 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
831 	mpidr |= (1ULL << 31);
832 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
833 
834 	return mpidr;
835 }
836 
837 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
838 				   const struct sys_reg_desc *r)
839 {
840 	if (kvm_vcpu_has_pmu(vcpu))
841 		return 0;
842 
843 	return REG_HIDDEN;
844 }
845 
846 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
847 {
848 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
849 	u8 n = vcpu->kvm->arch.pmcr_n;
850 
851 	if (n)
852 		mask |= GENMASK(n - 1, 0);
853 
854 	reset_unknown(vcpu, r);
855 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
856 
857 	return __vcpu_sys_reg(vcpu, r->reg);
858 }
859 
860 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
861 {
862 	reset_unknown(vcpu, r);
863 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
864 
865 	return __vcpu_sys_reg(vcpu, r->reg);
866 }
867 
868 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
869 {
870 	/* This thing will UNDEF, who cares about the reset value? */
871 	if (!kvm_vcpu_has_pmu(vcpu))
872 		return 0;
873 
874 	reset_unknown(vcpu, r);
875 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
876 
877 	return __vcpu_sys_reg(vcpu, r->reg);
878 }
879 
880 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
881 {
882 	reset_unknown(vcpu, r);
883 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
884 
885 	return __vcpu_sys_reg(vcpu, r->reg);
886 }
887 
888 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
889 {
890 	u64 pmcr = 0;
891 
892 	if (!kvm_supports_32bit_el0())
893 		pmcr |= ARMV8_PMU_PMCR_LC;
894 
895 	/*
896 	 * The value of PMCR.N field is included when the
897 	 * vCPU register is read via kvm_vcpu_read_pmcr().
898 	 */
899 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
900 
901 	return __vcpu_sys_reg(vcpu, r->reg);
902 }
903 
904 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
905 {
906 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
907 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
908 
909 	if (!enabled)
910 		kvm_inject_undefined(vcpu);
911 
912 	return !enabled;
913 }
914 
915 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
916 {
917 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
918 }
919 
920 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
921 {
922 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
923 }
924 
925 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
926 {
927 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
928 }
929 
930 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
931 {
932 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
933 }
934 
935 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
936 			const struct sys_reg_desc *r)
937 {
938 	u64 val;
939 
940 	if (pmu_access_el0_disabled(vcpu))
941 		return false;
942 
943 	if (p->is_write) {
944 		/*
945 		 * Only update writeable bits of PMCR (continuing into
946 		 * kvm_pmu_handle_pmcr() as well)
947 		 */
948 		val = kvm_vcpu_read_pmcr(vcpu);
949 		val &= ~ARMV8_PMU_PMCR_MASK;
950 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
951 		if (!kvm_supports_32bit_el0())
952 			val |= ARMV8_PMU_PMCR_LC;
953 		kvm_pmu_handle_pmcr(vcpu, val);
954 	} else {
955 		/* PMCR.P & PMCR.C are RAZ */
956 		val = kvm_vcpu_read_pmcr(vcpu)
957 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
958 		p->regval = val;
959 	}
960 
961 	return true;
962 }
963 
964 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
965 			  const struct sys_reg_desc *r)
966 {
967 	if (pmu_access_event_counter_el0_disabled(vcpu))
968 		return false;
969 
970 	if (p->is_write)
971 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
972 	else
973 		/* return PMSELR.SEL field */
974 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
975 			    & ARMV8_PMU_COUNTER_MASK;
976 
977 	return true;
978 }
979 
980 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
981 			  const struct sys_reg_desc *r)
982 {
983 	u64 pmceid, mask, shift;
984 
985 	BUG_ON(p->is_write);
986 
987 	if (pmu_access_el0_disabled(vcpu))
988 		return false;
989 
990 	get_access_mask(r, &mask, &shift);
991 
992 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
993 	pmceid &= mask;
994 	pmceid >>= shift;
995 
996 	p->regval = pmceid;
997 
998 	return true;
999 }
1000 
1001 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1002 {
1003 	u64 pmcr, val;
1004 
1005 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1006 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1007 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1008 		kvm_inject_undefined(vcpu);
1009 		return false;
1010 	}
1011 
1012 	return true;
1013 }
1014 
1015 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1016 			  u64 *val)
1017 {
1018 	u64 idx;
1019 
1020 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1021 		/* PMCCNTR_EL0 */
1022 		idx = ARMV8_PMU_CYCLE_IDX;
1023 	else
1024 		/* PMEVCNTRn_EL0 */
1025 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1026 
1027 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1028 	return 0;
1029 }
1030 
1031 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1032 			      struct sys_reg_params *p,
1033 			      const struct sys_reg_desc *r)
1034 {
1035 	u64 idx = ~0UL;
1036 
1037 	if (r->CRn == 9 && r->CRm == 13) {
1038 		if (r->Op2 == 2) {
1039 			/* PMXEVCNTR_EL0 */
1040 			if (pmu_access_event_counter_el0_disabled(vcpu))
1041 				return false;
1042 
1043 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1044 			      & ARMV8_PMU_COUNTER_MASK;
1045 		} else if (r->Op2 == 0) {
1046 			/* PMCCNTR_EL0 */
1047 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1048 				return false;
1049 
1050 			idx = ARMV8_PMU_CYCLE_IDX;
1051 		}
1052 	} else if (r->CRn == 0 && r->CRm == 9) {
1053 		/* PMCCNTR */
1054 		if (pmu_access_event_counter_el0_disabled(vcpu))
1055 			return false;
1056 
1057 		idx = ARMV8_PMU_CYCLE_IDX;
1058 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1059 		/* PMEVCNTRn_EL0 */
1060 		if (pmu_access_event_counter_el0_disabled(vcpu))
1061 			return false;
1062 
1063 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1064 	}
1065 
1066 	/* Catch any decoding mistake */
1067 	WARN_ON(idx == ~0UL);
1068 
1069 	if (!pmu_counter_idx_valid(vcpu, idx))
1070 		return false;
1071 
1072 	if (p->is_write) {
1073 		if (pmu_access_el0_disabled(vcpu))
1074 			return false;
1075 
1076 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1077 	} else {
1078 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1079 	}
1080 
1081 	return true;
1082 }
1083 
1084 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1085 			       const struct sys_reg_desc *r)
1086 {
1087 	u64 idx, reg;
1088 
1089 	if (pmu_access_el0_disabled(vcpu))
1090 		return false;
1091 
1092 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1093 		/* PMXEVTYPER_EL0 */
1094 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1095 		reg = PMEVTYPER0_EL0 + idx;
1096 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1097 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1098 		if (idx == ARMV8_PMU_CYCLE_IDX)
1099 			reg = PMCCFILTR_EL0;
1100 		else
1101 			/* PMEVTYPERn_EL0 */
1102 			reg = PMEVTYPER0_EL0 + idx;
1103 	} else {
1104 		BUG();
1105 	}
1106 
1107 	if (!pmu_counter_idx_valid(vcpu, idx))
1108 		return false;
1109 
1110 	if (p->is_write) {
1111 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1112 		kvm_vcpu_pmu_restore_guest(vcpu);
1113 	} else {
1114 		p->regval = __vcpu_sys_reg(vcpu, reg);
1115 	}
1116 
1117 	return true;
1118 }
1119 
1120 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1121 {
1122 	bool set;
1123 
1124 	val &= kvm_pmu_valid_counter_mask(vcpu);
1125 
1126 	switch (r->reg) {
1127 	case PMOVSSET_EL0:
1128 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1129 		set = r->CRm & 2;
1130 		break;
1131 	default:
1132 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1133 		set = r->Op2 & 1;
1134 		break;
1135 	}
1136 
1137 	if (set)
1138 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1139 	else
1140 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1141 
1142 	return 0;
1143 }
1144 
1145 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1146 {
1147 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1148 
1149 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1150 	return 0;
1151 }
1152 
1153 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1154 			   const struct sys_reg_desc *r)
1155 {
1156 	u64 val, mask;
1157 
1158 	if (pmu_access_el0_disabled(vcpu))
1159 		return false;
1160 
1161 	mask = kvm_pmu_valid_counter_mask(vcpu);
1162 	if (p->is_write) {
1163 		val = p->regval & mask;
1164 		if (r->Op2 & 0x1) {
1165 			/* accessing PMCNTENSET_EL0 */
1166 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1167 			kvm_pmu_enable_counter_mask(vcpu, val);
1168 			kvm_vcpu_pmu_restore_guest(vcpu);
1169 		} else {
1170 			/* accessing PMCNTENCLR_EL0 */
1171 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1172 			kvm_pmu_disable_counter_mask(vcpu, val);
1173 		}
1174 	} else {
1175 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1176 	}
1177 
1178 	return true;
1179 }
1180 
1181 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1182 			   const struct sys_reg_desc *r)
1183 {
1184 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1185 
1186 	if (check_pmu_access_disabled(vcpu, 0))
1187 		return false;
1188 
1189 	if (p->is_write) {
1190 		u64 val = p->regval & mask;
1191 
1192 		if (r->Op2 & 0x1)
1193 			/* accessing PMINTENSET_EL1 */
1194 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1195 		else
1196 			/* accessing PMINTENCLR_EL1 */
1197 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1198 	} else {
1199 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1200 	}
1201 
1202 	return true;
1203 }
1204 
1205 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1206 			 const struct sys_reg_desc *r)
1207 {
1208 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1209 
1210 	if (pmu_access_el0_disabled(vcpu))
1211 		return false;
1212 
1213 	if (p->is_write) {
1214 		if (r->CRm & 0x2)
1215 			/* accessing PMOVSSET_EL0 */
1216 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1217 		else
1218 			/* accessing PMOVSCLR_EL0 */
1219 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1220 	} else {
1221 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1222 	}
1223 
1224 	return true;
1225 }
1226 
1227 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1228 			   const struct sys_reg_desc *r)
1229 {
1230 	u64 mask;
1231 
1232 	if (!p->is_write)
1233 		return read_from_write_only(vcpu, p, r);
1234 
1235 	if (pmu_write_swinc_el0_disabled(vcpu))
1236 		return false;
1237 
1238 	mask = kvm_pmu_valid_counter_mask(vcpu);
1239 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1240 	return true;
1241 }
1242 
1243 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1244 			     const struct sys_reg_desc *r)
1245 {
1246 	if (p->is_write) {
1247 		if (!vcpu_mode_priv(vcpu)) {
1248 			kvm_inject_undefined(vcpu);
1249 			return false;
1250 		}
1251 
1252 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1253 			       p->regval & ARMV8_PMU_USERENR_MASK;
1254 	} else {
1255 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1256 			    & ARMV8_PMU_USERENR_MASK;
1257 	}
1258 
1259 	return true;
1260 }
1261 
1262 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1263 		    u64 *val)
1264 {
1265 	*val = kvm_vcpu_read_pmcr(vcpu);
1266 	return 0;
1267 }
1268 
1269 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1270 		    u64 val)
1271 {
1272 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1273 	struct kvm *kvm = vcpu->kvm;
1274 
1275 	mutex_lock(&kvm->arch.config_lock);
1276 
1277 	/*
1278 	 * The vCPU can't have more counters than the PMU hardware
1279 	 * implements. Ignore this error to maintain compatibility
1280 	 * with the existing KVM behavior.
1281 	 */
1282 	if (!kvm_vm_has_ran_once(kvm) &&
1283 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1284 		kvm->arch.pmcr_n = new_n;
1285 
1286 	mutex_unlock(&kvm->arch.config_lock);
1287 
1288 	/*
1289 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1290 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1291 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1292 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1293 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1294 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1295 	 * if necessary).
1296 	 */
1297 	val &= ARMV8_PMU_PMCR_MASK;
1298 
1299 	/* The LC bit is RES1 when AArch32 is not supported */
1300 	if (!kvm_supports_32bit_el0())
1301 		val |= ARMV8_PMU_PMCR_LC;
1302 
1303 	__vcpu_sys_reg(vcpu, r->reg) = val;
1304 	return 0;
1305 }
1306 
1307 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1308 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1309 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1310 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1311 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1312 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1313 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1314 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1315 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1316 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1317 
1318 #define PMU_SYS_REG(name)						\
1319 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1320 	.visibility = pmu_visibility
1321 
1322 /* Macro to expand the PMEVCNTRn_EL0 register */
1323 #define PMU_PMEVCNTR_EL0(n)						\
1324 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1325 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1326 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1327 
1328 /* Macro to expand the PMEVTYPERn_EL0 register */
1329 #define PMU_PMEVTYPER_EL0(n)						\
1330 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1331 	  .reset = reset_pmevtyper,					\
1332 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1333 
1334 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1335 			 const struct sys_reg_desc *r)
1336 {
1337 	kvm_inject_undefined(vcpu);
1338 
1339 	return false;
1340 }
1341 
1342 /* Macro to expand the AMU counter and type registers*/
1343 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1344 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1345 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1346 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1347 
1348 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1349 			const struct sys_reg_desc *rd)
1350 {
1351 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1352 }
1353 
1354 /*
1355  * If we land here on a PtrAuth access, that is because we didn't
1356  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1357  * way this happens is when the guest does not have PtrAuth support
1358  * enabled.
1359  */
1360 #define __PTRAUTH_KEY(k)						\
1361 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1362 	.visibility = ptrauth_visibility}
1363 
1364 #define PTRAUTH_KEY(k)							\
1365 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1366 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1367 
1368 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1369 			      struct sys_reg_params *p,
1370 			      const struct sys_reg_desc *r)
1371 {
1372 	enum kvm_arch_timers tmr;
1373 	enum kvm_arch_timer_regs treg;
1374 	u64 reg = reg_to_encoding(r);
1375 
1376 	switch (reg) {
1377 	case SYS_CNTP_TVAL_EL0:
1378 	case SYS_AARCH32_CNTP_TVAL:
1379 		tmr = TIMER_PTIMER;
1380 		treg = TIMER_REG_TVAL;
1381 		break;
1382 	case SYS_CNTP_CTL_EL0:
1383 	case SYS_AARCH32_CNTP_CTL:
1384 		tmr = TIMER_PTIMER;
1385 		treg = TIMER_REG_CTL;
1386 		break;
1387 	case SYS_CNTP_CVAL_EL0:
1388 	case SYS_AARCH32_CNTP_CVAL:
1389 		tmr = TIMER_PTIMER;
1390 		treg = TIMER_REG_CVAL;
1391 		break;
1392 	case SYS_CNTPCT_EL0:
1393 	case SYS_CNTPCTSS_EL0:
1394 	case SYS_AARCH32_CNTPCT:
1395 		tmr = TIMER_PTIMER;
1396 		treg = TIMER_REG_CNT;
1397 		break;
1398 	default:
1399 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1400 		kvm_inject_undefined(vcpu);
1401 		return false;
1402 	}
1403 
1404 	if (p->is_write)
1405 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1406 	else
1407 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1408 
1409 	return true;
1410 }
1411 
1412 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1413 				    s64 new, s64 cur)
1414 {
1415 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1416 
1417 	/* Some features have different safe value type in KVM than host features */
1418 	switch (id) {
1419 	case SYS_ID_AA64DFR0_EL1:
1420 		switch (kvm_ftr.shift) {
1421 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1422 			kvm_ftr.type = FTR_LOWER_SAFE;
1423 			break;
1424 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1425 			kvm_ftr.type = FTR_LOWER_SAFE;
1426 			break;
1427 		}
1428 		break;
1429 	case SYS_ID_DFR0_EL1:
1430 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1431 			kvm_ftr.type = FTR_LOWER_SAFE;
1432 		break;
1433 	}
1434 
1435 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1436 }
1437 
1438 /*
1439  * arm64_check_features() - Check if a feature register value constitutes
1440  * a subset of features indicated by the idreg's KVM sanitised limit.
1441  *
1442  * This function will check if each feature field of @val is the "safe" value
1443  * against idreg's KVM sanitised limit return from reset() callback.
1444  * If a field value in @val is the same as the one in limit, it is always
1445  * considered the safe value regardless For register fields that are not in
1446  * writable, only the value in limit is considered the safe value.
1447  *
1448  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1449  */
1450 static int arm64_check_features(struct kvm_vcpu *vcpu,
1451 				const struct sys_reg_desc *rd,
1452 				u64 val)
1453 {
1454 	const struct arm64_ftr_reg *ftr_reg;
1455 	const struct arm64_ftr_bits *ftrp = NULL;
1456 	u32 id = reg_to_encoding(rd);
1457 	u64 writable_mask = rd->val;
1458 	u64 limit = rd->reset(vcpu, rd);
1459 	u64 mask = 0;
1460 
1461 	/*
1462 	 * Hidden and unallocated ID registers may not have a corresponding
1463 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1464 	 * only safe value is 0.
1465 	 */
1466 	if (sysreg_visible_as_raz(vcpu, rd))
1467 		return val ? -E2BIG : 0;
1468 
1469 	ftr_reg = get_arm64_ftr_reg(id);
1470 	if (!ftr_reg)
1471 		return -EINVAL;
1472 
1473 	ftrp = ftr_reg->ftr_bits;
1474 
1475 	for (; ftrp && ftrp->width; ftrp++) {
1476 		s64 f_val, f_lim, safe_val;
1477 		u64 ftr_mask;
1478 
1479 		ftr_mask = arm64_ftr_mask(ftrp);
1480 		if ((ftr_mask & writable_mask) != ftr_mask)
1481 			continue;
1482 
1483 		f_val = arm64_ftr_value(ftrp, val);
1484 		f_lim = arm64_ftr_value(ftrp, limit);
1485 		mask |= ftr_mask;
1486 
1487 		if (f_val == f_lim)
1488 			safe_val = f_val;
1489 		else
1490 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1491 
1492 		if (safe_val != f_val)
1493 			return -E2BIG;
1494 	}
1495 
1496 	/* For fields that are not writable, values in limit are the safe values. */
1497 	if ((val & ~mask) != (limit & ~mask))
1498 		return -E2BIG;
1499 
1500 	return 0;
1501 }
1502 
1503 static u8 pmuver_to_perfmon(u8 pmuver)
1504 {
1505 	switch (pmuver) {
1506 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1507 		return ID_DFR0_EL1_PerfMon_PMUv3;
1508 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1509 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1510 	default:
1511 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1512 		return pmuver;
1513 	}
1514 }
1515 
1516 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1517 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1518 				       const struct sys_reg_desc *r)
1519 {
1520 	u32 id = reg_to_encoding(r);
1521 	u64 val;
1522 
1523 	if (sysreg_visible_as_raz(vcpu, r))
1524 		return 0;
1525 
1526 	val = read_sanitised_ftr_reg(id);
1527 
1528 	switch (id) {
1529 	case SYS_ID_AA64PFR1_EL1:
1530 		if (!kvm_has_mte(vcpu->kvm))
1531 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1532 
1533 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1534 		break;
1535 	case SYS_ID_AA64ISAR1_EL1:
1536 		if (!vcpu_has_ptrauth(vcpu))
1537 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1538 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1539 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1540 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1541 		break;
1542 	case SYS_ID_AA64ISAR2_EL1:
1543 		if (!vcpu_has_ptrauth(vcpu))
1544 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1545 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1546 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1547 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1548 		break;
1549 	case SYS_ID_AA64MMFR2_EL1:
1550 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1551 		break;
1552 	case SYS_ID_MMFR4_EL1:
1553 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1554 		break;
1555 	}
1556 
1557 	return val;
1558 }
1559 
1560 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1561 				     const struct sys_reg_desc *r)
1562 {
1563 	return __kvm_read_sanitised_id_reg(vcpu, r);
1564 }
1565 
1566 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1567 {
1568 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1569 }
1570 
1571 /*
1572  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1573  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1574  */
1575 static inline bool is_id_reg(u32 id)
1576 {
1577 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1578 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1579 		sys_reg_CRm(id) < 8);
1580 }
1581 
1582 static inline bool is_aa32_id_reg(u32 id)
1583 {
1584 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1585 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1586 		sys_reg_CRm(id) <= 3);
1587 }
1588 
1589 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1590 				  const struct sys_reg_desc *r)
1591 {
1592 	u32 id = reg_to_encoding(r);
1593 
1594 	switch (id) {
1595 	case SYS_ID_AA64ZFR0_EL1:
1596 		if (!vcpu_has_sve(vcpu))
1597 			return REG_RAZ;
1598 		break;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1605 				       const struct sys_reg_desc *r)
1606 {
1607 	/*
1608 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1609 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1610 	 * systems.
1611 	 */
1612 	if (!kvm_supports_32bit_el0())
1613 		return REG_RAZ | REG_USER_WI;
1614 
1615 	return id_visibility(vcpu, r);
1616 }
1617 
1618 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1619 				   const struct sys_reg_desc *r)
1620 {
1621 	return REG_RAZ;
1622 }
1623 
1624 /* cpufeature ID register access trap handlers */
1625 
1626 static bool access_id_reg(struct kvm_vcpu *vcpu,
1627 			  struct sys_reg_params *p,
1628 			  const struct sys_reg_desc *r)
1629 {
1630 	if (p->is_write)
1631 		return write_to_read_only(vcpu, p, r);
1632 
1633 	p->regval = read_id_reg(vcpu, r);
1634 
1635 	return true;
1636 }
1637 
1638 /* Visibility overrides for SVE-specific control registers */
1639 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1640 				   const struct sys_reg_desc *rd)
1641 {
1642 	if (vcpu_has_sve(vcpu))
1643 		return 0;
1644 
1645 	return REG_HIDDEN;
1646 }
1647 
1648 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1649 					  const struct sys_reg_desc *rd)
1650 {
1651 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1652 
1653 	if (!vcpu_has_sve(vcpu))
1654 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1655 
1656 	/*
1657 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1658 	 * Although this is a per-CPU feature, we make it global because
1659 	 * asymmetric systems are just a nuisance.
1660 	 *
1661 	 * Userspace can override this as long as it doesn't promise
1662 	 * the impossible.
1663 	 */
1664 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1665 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1666 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1667 	}
1668 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1669 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1670 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1671 	}
1672 
1673 	if (kvm_vgic_global_state.type == VGIC_V3) {
1674 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1675 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1676 	}
1677 
1678 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1679 
1680 	return val;
1681 }
1682 
1683 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1684 ({									       \
1685 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1686 	(val) &= ~reg##_##field##_MASK;					       \
1687 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1688 			min(__f_val, (u64)reg##_##field##_##limit));	       \
1689 	(val);								       \
1690 })
1691 
1692 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1693 					  const struct sys_reg_desc *rd)
1694 {
1695 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1696 
1697 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1698 
1699 	/*
1700 	 * Only initialize the PMU version if the vCPU was configured with one.
1701 	 */
1702 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1703 	if (kvm_vcpu_has_pmu(vcpu))
1704 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1705 				      kvm_arm_pmu_get_pmuver_limit());
1706 
1707 	/* Hide SPE from guests */
1708 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1709 
1710 	return val;
1711 }
1712 
1713 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1714 			       const struct sys_reg_desc *rd,
1715 			       u64 val)
1716 {
1717 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1718 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1719 
1720 	/*
1721 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1722 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1723 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1724 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1725 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1726 	 *
1727 	 * At minimum, we're on the hook to allow values that were given to
1728 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1729 	 * with a more sensible NI. The value of an ID register changing under
1730 	 * the nose of the guest is unfortunate, but is certainly no more
1731 	 * surprising than an ill-guided PMU driver poking at impdef system
1732 	 * registers that end in an UNDEF...
1733 	 */
1734 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1735 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1736 
1737 	/*
1738 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1739 	 * nonzero minimum safe value.
1740 	 */
1741 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1742 		return -EINVAL;
1743 
1744 	return set_id_reg(vcpu, rd, val);
1745 }
1746 
1747 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1748 				      const struct sys_reg_desc *rd)
1749 {
1750 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1751 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1752 
1753 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1754 	if (kvm_vcpu_has_pmu(vcpu))
1755 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1756 
1757 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1758 
1759 	return val;
1760 }
1761 
1762 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1763 			   const struct sys_reg_desc *rd,
1764 			   u64 val)
1765 {
1766 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1767 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1768 
1769 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1770 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1771 		perfmon = 0;
1772 	}
1773 
1774 	/*
1775 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1776 	 * it doesn't promise more than what the HW gives us on the
1777 	 * AArch64 side (as everything is emulated with that), and
1778 	 * that this is a PMUv3.
1779 	 */
1780 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1781 		return -EINVAL;
1782 
1783 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1784 		return -EINVAL;
1785 
1786 	return set_id_reg(vcpu, rd, val);
1787 }
1788 
1789 /*
1790  * cpufeature ID register user accessors
1791  *
1792  * For now, these registers are immutable for userspace, so no values
1793  * are stored, and for set_id_reg() we don't allow the effective value
1794  * to be changed.
1795  */
1796 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1797 		      u64 *val)
1798 {
1799 	/*
1800 	 * Avoid locking if the VM has already started, as the ID registers are
1801 	 * guaranteed to be invariant at that point.
1802 	 */
1803 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1804 		*val = read_id_reg(vcpu, rd);
1805 		return 0;
1806 	}
1807 
1808 	mutex_lock(&vcpu->kvm->arch.config_lock);
1809 	*val = read_id_reg(vcpu, rd);
1810 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1811 
1812 	return 0;
1813 }
1814 
1815 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1816 		      u64 val)
1817 {
1818 	u32 id = reg_to_encoding(rd);
1819 	int ret;
1820 
1821 	mutex_lock(&vcpu->kvm->arch.config_lock);
1822 
1823 	/*
1824 	 * Once the VM has started the ID registers are immutable. Reject any
1825 	 * write that does not match the final register value.
1826 	 */
1827 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1828 		if (val != read_id_reg(vcpu, rd))
1829 			ret = -EBUSY;
1830 		else
1831 			ret = 0;
1832 
1833 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1834 		return ret;
1835 	}
1836 
1837 	ret = arm64_check_features(vcpu, rd, val);
1838 	if (!ret)
1839 		IDREG(vcpu->kvm, id) = val;
1840 
1841 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1842 
1843 	/*
1844 	 * arm64_check_features() returns -E2BIG to indicate the register's
1845 	 * feature set is a superset of the maximally-allowed register value.
1846 	 * While it would be nice to precisely describe this to userspace, the
1847 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1848 	 * writes return -EINVAL.
1849 	 */
1850 	if (ret == -E2BIG)
1851 		ret = -EINVAL;
1852 	return ret;
1853 }
1854 
1855 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1856 		       u64 *val)
1857 {
1858 	*val = 0;
1859 	return 0;
1860 }
1861 
1862 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1863 		      u64 val)
1864 {
1865 	return 0;
1866 }
1867 
1868 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1869 		       const struct sys_reg_desc *r)
1870 {
1871 	if (p->is_write)
1872 		return write_to_read_only(vcpu, p, r);
1873 
1874 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1875 	return true;
1876 }
1877 
1878 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1879 			 const struct sys_reg_desc *r)
1880 {
1881 	if (p->is_write)
1882 		return write_to_read_only(vcpu, p, r);
1883 
1884 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1885 	return true;
1886 }
1887 
1888 /*
1889  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1890  * by the physical CPU which the vcpu currently resides in.
1891  */
1892 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1893 {
1894 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1895 	u64 clidr;
1896 	u8 loc;
1897 
1898 	if ((ctr_el0 & CTR_EL0_IDC)) {
1899 		/*
1900 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1901 		 * will not be set and a unified cache, which will be marked as
1902 		 * LoC, will be added.
1903 		 *
1904 		 * If not DIC, let the unified cache L2 so that an instruction
1905 		 * cache can be added as L1 later.
1906 		 */
1907 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1908 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1909 	} else {
1910 		/*
1911 		 * Data cache clean to the PoU is required so let L1 have a data
1912 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1913 		 * it can be marked as LoC too.
1914 		 */
1915 		loc = 1;
1916 		clidr = 1 << CLIDR_LOUU_SHIFT;
1917 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1918 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1919 	}
1920 
1921 	/*
1922 	 * Instruction cache invalidation to the PoU is required so let L1 have
1923 	 * an instruction cache. If L1 already has a data cache, it will be
1924 	 * CACHE_TYPE_SEPARATE.
1925 	 */
1926 	if (!(ctr_el0 & CTR_EL0_DIC))
1927 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1928 
1929 	clidr |= loc << CLIDR_LOC_SHIFT;
1930 
1931 	/*
1932 	 * Add tag cache unified to data cache. Allocation tags and data are
1933 	 * unified in a cache line so that it looks valid even if there is only
1934 	 * one cache line.
1935 	 */
1936 	if (kvm_has_mte(vcpu->kvm))
1937 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1938 
1939 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1940 
1941 	return __vcpu_sys_reg(vcpu, r->reg);
1942 }
1943 
1944 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1945 		      u64 val)
1946 {
1947 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1948 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1949 
1950 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1951 		return -EINVAL;
1952 
1953 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1954 
1955 	return 0;
1956 }
1957 
1958 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1959 			  const struct sys_reg_desc *r)
1960 {
1961 	int reg = r->reg;
1962 
1963 	if (p->is_write)
1964 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1965 	else
1966 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1967 	return true;
1968 }
1969 
1970 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1971 			  const struct sys_reg_desc *r)
1972 {
1973 	u32 csselr;
1974 
1975 	if (p->is_write)
1976 		return write_to_read_only(vcpu, p, r);
1977 
1978 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1979 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1980 	if (csselr < CSSELR_MAX)
1981 		p->regval = get_ccsidr(vcpu, csselr);
1982 
1983 	return true;
1984 }
1985 
1986 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1987 				   const struct sys_reg_desc *rd)
1988 {
1989 	if (kvm_has_mte(vcpu->kvm))
1990 		return 0;
1991 
1992 	return REG_HIDDEN;
1993 }
1994 
1995 #define MTE_REG(name) {				\
1996 	SYS_DESC(SYS_##name),			\
1997 	.access = undef_access,			\
1998 	.reset = reset_unknown,			\
1999 	.reg = name,				\
2000 	.visibility = mte_visibility,		\
2001 }
2002 
2003 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2004 				   const struct sys_reg_desc *rd)
2005 {
2006 	if (vcpu_has_nv(vcpu))
2007 		return 0;
2008 
2009 	return REG_HIDDEN;
2010 }
2011 
2012 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2013 			  struct sys_reg_params *p,
2014 			  const struct sys_reg_desc *r)
2015 {
2016 	/*
2017 	 * We really shouldn't be here, and this is likely the result
2018 	 * of a misconfigured trap, as this register should target the
2019 	 * VNCR page, and nothing else.
2020 	 */
2021 	return bad_trap(vcpu, p, r,
2022 			"trap of VNCR-backed register");
2023 }
2024 
2025 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2026 			   struct sys_reg_params *p,
2027 			   const struct sys_reg_desc *r)
2028 {
2029 	/*
2030 	 * We really shouldn't be here, and this is likely the result
2031 	 * of a misconfigured trap, as this register should target the
2032 	 * corresponding EL1, and nothing else.
2033 	 */
2034 	return bad_trap(vcpu, p, r,
2035 			"trap of EL2 register redirected to EL1");
2036 }
2037 
2038 #define EL2_REG(name, acc, rst, v) {		\
2039 	SYS_DESC(SYS_##name),			\
2040 	.access = acc,				\
2041 	.reset = rst,				\
2042 	.reg = name,				\
2043 	.visibility = el2_visibility,		\
2044 	.val = v,				\
2045 }
2046 
2047 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2048 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2049 
2050 /*
2051  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2052  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2053  * handling traps. Given that, they are always hidden from userspace.
2054  */
2055 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2056 					   const struct sys_reg_desc *rd)
2057 {
2058 	return REG_HIDDEN_USER;
2059 }
2060 
2061 #define EL12_REG(name, acc, rst, v) {		\
2062 	SYS_DESC(SYS_##name##_EL12),		\
2063 	.access = acc,				\
2064 	.reset = rst,				\
2065 	.reg = name##_EL1,			\
2066 	.val = v,				\
2067 	.visibility = hidden_user_visibility,	\
2068 }
2069 
2070 /*
2071  * Since reset() callback and field val are not used for idregs, they will be
2072  * used for specific purposes for idregs.
2073  * The reset() would return KVM sanitised register value. The value would be the
2074  * same as the host kernel sanitised value if there is no KVM sanitisation.
2075  * The val would be used as a mask indicating writable fields for the idreg.
2076  * Only bits with 1 are writable from userspace. This mask might not be
2077  * necessary in the future whenever all ID registers are enabled as writable
2078  * from userspace.
2079  */
2080 
2081 #define ID_DESC(name)				\
2082 	SYS_DESC(SYS_##name),			\
2083 	.access	= access_id_reg,		\
2084 	.get_user = get_id_reg			\
2085 
2086 /* sys_reg_desc initialiser for known cpufeature ID registers */
2087 #define ID_SANITISED(name) {			\
2088 	ID_DESC(name),				\
2089 	.set_user = set_id_reg,			\
2090 	.visibility = id_visibility,		\
2091 	.reset = kvm_read_sanitised_id_reg,	\
2092 	.val = 0,				\
2093 }
2094 
2095 /* sys_reg_desc initialiser for known cpufeature ID registers */
2096 #define AA32_ID_SANITISED(name) {		\
2097 	ID_DESC(name),				\
2098 	.set_user = set_id_reg,			\
2099 	.visibility = aa32_id_visibility,	\
2100 	.reset = kvm_read_sanitised_id_reg,	\
2101 	.val = 0,				\
2102 }
2103 
2104 /* sys_reg_desc initialiser for writable ID registers */
2105 #define ID_WRITABLE(name, mask) {		\
2106 	ID_DESC(name),				\
2107 	.set_user = set_id_reg,			\
2108 	.visibility = id_visibility,		\
2109 	.reset = kvm_read_sanitised_id_reg,	\
2110 	.val = mask,				\
2111 }
2112 
2113 /*
2114  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2115  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2116  * (1 <= crm < 8, 0 <= Op2 < 8).
2117  */
2118 #define ID_UNALLOCATED(crm, op2) {			\
2119 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2120 	.access = access_id_reg,			\
2121 	.get_user = get_id_reg,				\
2122 	.set_user = set_id_reg,				\
2123 	.visibility = raz_visibility,			\
2124 	.reset = kvm_read_sanitised_id_reg,		\
2125 	.val = 0,					\
2126 }
2127 
2128 /*
2129  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2130  * For now, these are exposed just like unallocated ID regs: they appear
2131  * RAZ for the guest.
2132  */
2133 #define ID_HIDDEN(name) {			\
2134 	ID_DESC(name),				\
2135 	.set_user = set_id_reg,			\
2136 	.visibility = raz_visibility,		\
2137 	.reset = kvm_read_sanitised_id_reg,	\
2138 	.val = 0,				\
2139 }
2140 
2141 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2142 			  struct sys_reg_params *p,
2143 			  const struct sys_reg_desc *r)
2144 {
2145 	if (p->is_write)
2146 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2147 	else
2148 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2149 
2150 	return true;
2151 }
2152 
2153 static bool access_elr(struct kvm_vcpu *vcpu,
2154 		       struct sys_reg_params *p,
2155 		       const struct sys_reg_desc *r)
2156 {
2157 	if (p->is_write)
2158 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2159 	else
2160 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2161 
2162 	return true;
2163 }
2164 
2165 static bool access_spsr(struct kvm_vcpu *vcpu,
2166 			struct sys_reg_params *p,
2167 			const struct sys_reg_desc *r)
2168 {
2169 	if (p->is_write)
2170 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2171 	else
2172 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2173 
2174 	return true;
2175 }
2176 
2177 /*
2178  * Architected system registers.
2179  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2180  *
2181  * Debug handling: We do trap most, if not all debug related system
2182  * registers. The implementation is good enough to ensure that a guest
2183  * can use these with minimal performance degradation. The drawback is
2184  * that we don't implement any of the external debug architecture.
2185  * This should be revisited if we ever encounter a more demanding
2186  * guest...
2187  */
2188 static const struct sys_reg_desc sys_reg_descs[] = {
2189 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2190 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2191 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2192 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2193 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2194 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2195 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2196 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2197 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2198 
2199 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2200 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2201 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2202 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2203 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2204 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2205 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2206 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2207 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2208 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2209 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2210 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2211 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2212 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2213 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2214 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2215 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2216 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2217 
2218 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2219 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2220 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2221 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2222 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2223 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2224 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2225 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2226 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2227 
2228 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2229 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2230 	// DBGDTR[TR]X_EL0 share the same encoding
2231 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2232 
2233 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2234 
2235 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2236 
2237 	/*
2238 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2239 	 * entries in arm64_ftr_regs[].
2240 	 */
2241 
2242 	/* AArch64 mappings of the AArch32 ID registers */
2243 	/* CRm=1 */
2244 	AA32_ID_SANITISED(ID_PFR0_EL1),
2245 	AA32_ID_SANITISED(ID_PFR1_EL1),
2246 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2247 	  .access = access_id_reg,
2248 	  .get_user = get_id_reg,
2249 	  .set_user = set_id_dfr0_el1,
2250 	  .visibility = aa32_id_visibility,
2251 	  .reset = read_sanitised_id_dfr0_el1,
2252 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2253 		 ID_DFR0_EL1_CopDbg_MASK, },
2254 	ID_HIDDEN(ID_AFR0_EL1),
2255 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2256 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2257 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2258 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2259 
2260 	/* CRm=2 */
2261 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2262 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2263 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2264 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2265 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2266 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2267 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2268 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2269 
2270 	/* CRm=3 */
2271 	AA32_ID_SANITISED(MVFR0_EL1),
2272 	AA32_ID_SANITISED(MVFR1_EL1),
2273 	AA32_ID_SANITISED(MVFR2_EL1),
2274 	ID_UNALLOCATED(3,3),
2275 	AA32_ID_SANITISED(ID_PFR2_EL1),
2276 	ID_HIDDEN(ID_DFR1_EL1),
2277 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2278 	ID_UNALLOCATED(3,7),
2279 
2280 	/* AArch64 ID registers */
2281 	/* CRm=4 */
2282 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2283 	  .access = access_id_reg,
2284 	  .get_user = get_id_reg,
2285 	  .set_user = set_id_reg,
2286 	  .reset = read_sanitised_id_aa64pfr0_el1,
2287 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2288 		   ID_AA64PFR0_EL1_MPAM |
2289 		   ID_AA64PFR0_EL1_SVE |
2290 		   ID_AA64PFR0_EL1_RAS |
2291 		   ID_AA64PFR0_EL1_GIC |
2292 		   ID_AA64PFR0_EL1_AdvSIMD |
2293 		   ID_AA64PFR0_EL1_FP), },
2294 	ID_SANITISED(ID_AA64PFR1_EL1),
2295 	ID_UNALLOCATED(4,2),
2296 	ID_UNALLOCATED(4,3),
2297 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2298 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2299 	ID_UNALLOCATED(4,6),
2300 	ID_UNALLOCATED(4,7),
2301 
2302 	/* CRm=5 */
2303 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2304 	  .access = access_id_reg,
2305 	  .get_user = get_id_reg,
2306 	  .set_user = set_id_aa64dfr0_el1,
2307 	  .reset = read_sanitised_id_aa64dfr0_el1,
2308 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2309 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2310 	ID_SANITISED(ID_AA64DFR1_EL1),
2311 	ID_UNALLOCATED(5,2),
2312 	ID_UNALLOCATED(5,3),
2313 	ID_HIDDEN(ID_AA64AFR0_EL1),
2314 	ID_HIDDEN(ID_AA64AFR1_EL1),
2315 	ID_UNALLOCATED(5,6),
2316 	ID_UNALLOCATED(5,7),
2317 
2318 	/* CRm=6 */
2319 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2320 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2321 					ID_AA64ISAR1_EL1_GPA |
2322 					ID_AA64ISAR1_EL1_API |
2323 					ID_AA64ISAR1_EL1_APA)),
2324 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2325 					ID_AA64ISAR2_EL1_APA3 |
2326 					ID_AA64ISAR2_EL1_GPA3)),
2327 	ID_UNALLOCATED(6,3),
2328 	ID_UNALLOCATED(6,4),
2329 	ID_UNALLOCATED(6,5),
2330 	ID_UNALLOCATED(6,6),
2331 	ID_UNALLOCATED(6,7),
2332 
2333 	/* CRm=7 */
2334 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2335 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2336 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2337 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2338 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2339 					ID_AA64MMFR1_EL1_HCX |
2340 					ID_AA64MMFR1_EL1_XNX |
2341 					ID_AA64MMFR1_EL1_TWED |
2342 					ID_AA64MMFR1_EL1_XNX |
2343 					ID_AA64MMFR1_EL1_VH |
2344 					ID_AA64MMFR1_EL1_VMIDBits)),
2345 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2346 					ID_AA64MMFR2_EL1_EVT |
2347 					ID_AA64MMFR2_EL1_FWB |
2348 					ID_AA64MMFR2_EL1_IDS |
2349 					ID_AA64MMFR2_EL1_NV |
2350 					ID_AA64MMFR2_EL1_CCIDX)),
2351 	ID_SANITISED(ID_AA64MMFR3_EL1),
2352 	ID_UNALLOCATED(7,4),
2353 	ID_UNALLOCATED(7,5),
2354 	ID_UNALLOCATED(7,6),
2355 	ID_UNALLOCATED(7,7),
2356 
2357 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2358 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2359 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2360 
2361 	MTE_REG(RGSR_EL1),
2362 	MTE_REG(GCR_EL1),
2363 
2364 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2365 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2366 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2367 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2368 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2369 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2370 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2371 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2372 
2373 	PTRAUTH_KEY(APIA),
2374 	PTRAUTH_KEY(APIB),
2375 	PTRAUTH_KEY(APDA),
2376 	PTRAUTH_KEY(APDB),
2377 	PTRAUTH_KEY(APGA),
2378 
2379 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2380 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2381 
2382 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2383 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2384 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2385 
2386 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2387 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2388 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2389 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2390 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2391 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2392 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2393 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2394 
2395 	MTE_REG(TFSR_EL1),
2396 	MTE_REG(TFSRE0_EL1),
2397 
2398 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2399 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2400 
2401 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2402 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2403 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2404 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2405 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2406 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2407 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2408 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2409 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2410 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2411 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2412 	/* PMBIDR_EL1 is not trapped */
2413 
2414 	{ PMU_SYS_REG(PMINTENSET_EL1),
2415 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2416 	  .get_user = get_pmreg, .set_user = set_pmreg },
2417 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2418 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2419 	  .get_user = get_pmreg, .set_user = set_pmreg },
2420 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2421 
2422 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2423 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2424 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2425 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2426 
2427 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2428 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2429 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2430 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2431 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2432 
2433 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2434 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2435 
2436 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2437 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2438 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2439 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2440 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2441 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2442 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2443 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2444 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2445 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2446 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2447 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2448 
2449 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2450 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2451 
2452 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2453 
2454 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2455 
2456 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2457 
2458 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2459 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2460 	  .set_user = set_clidr },
2461 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2462 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2463 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2464 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2465 	{ SYS_DESC(SYS_SVCR), undef_access },
2466 
2467 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2468 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2469 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2470 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2471 	  .get_user = get_pmreg, .set_user = set_pmreg },
2472 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2473 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2474 	  .get_user = get_pmreg, .set_user = set_pmreg },
2475 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2476 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2477 	  .get_user = get_pmreg, .set_user = set_pmreg },
2478 	/*
2479 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2480 	 * previously (and pointlessly) advertised in the past...
2481 	 */
2482 	{ PMU_SYS_REG(PMSWINC_EL0),
2483 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2484 	  .access = access_pmswinc, .reset = NULL },
2485 	{ PMU_SYS_REG(PMSELR_EL0),
2486 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2487 	{ PMU_SYS_REG(PMCEID0_EL0),
2488 	  .access = access_pmceid, .reset = NULL },
2489 	{ PMU_SYS_REG(PMCEID1_EL0),
2490 	  .access = access_pmceid, .reset = NULL },
2491 	{ PMU_SYS_REG(PMCCNTR_EL0),
2492 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2493 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2494 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2495 	  .access = access_pmu_evtyper, .reset = NULL },
2496 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2497 	  .access = access_pmu_evcntr, .reset = NULL },
2498 	/*
2499 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2500 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2501 	 */
2502 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2503 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2504 	{ PMU_SYS_REG(PMOVSSET_EL0),
2505 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2506 	  .get_user = get_pmreg, .set_user = set_pmreg },
2507 
2508 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2509 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2510 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2511 
2512 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2513 
2514 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2515 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2516 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2517 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2518 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2519 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2520 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2521 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2522 	AMU_AMEVCNTR0_EL0(0),
2523 	AMU_AMEVCNTR0_EL0(1),
2524 	AMU_AMEVCNTR0_EL0(2),
2525 	AMU_AMEVCNTR0_EL0(3),
2526 	AMU_AMEVCNTR0_EL0(4),
2527 	AMU_AMEVCNTR0_EL0(5),
2528 	AMU_AMEVCNTR0_EL0(6),
2529 	AMU_AMEVCNTR0_EL0(7),
2530 	AMU_AMEVCNTR0_EL0(8),
2531 	AMU_AMEVCNTR0_EL0(9),
2532 	AMU_AMEVCNTR0_EL0(10),
2533 	AMU_AMEVCNTR0_EL0(11),
2534 	AMU_AMEVCNTR0_EL0(12),
2535 	AMU_AMEVCNTR0_EL0(13),
2536 	AMU_AMEVCNTR0_EL0(14),
2537 	AMU_AMEVCNTR0_EL0(15),
2538 	AMU_AMEVTYPER0_EL0(0),
2539 	AMU_AMEVTYPER0_EL0(1),
2540 	AMU_AMEVTYPER0_EL0(2),
2541 	AMU_AMEVTYPER0_EL0(3),
2542 	AMU_AMEVTYPER0_EL0(4),
2543 	AMU_AMEVTYPER0_EL0(5),
2544 	AMU_AMEVTYPER0_EL0(6),
2545 	AMU_AMEVTYPER0_EL0(7),
2546 	AMU_AMEVTYPER0_EL0(8),
2547 	AMU_AMEVTYPER0_EL0(9),
2548 	AMU_AMEVTYPER0_EL0(10),
2549 	AMU_AMEVTYPER0_EL0(11),
2550 	AMU_AMEVTYPER0_EL0(12),
2551 	AMU_AMEVTYPER0_EL0(13),
2552 	AMU_AMEVTYPER0_EL0(14),
2553 	AMU_AMEVTYPER0_EL0(15),
2554 	AMU_AMEVCNTR1_EL0(0),
2555 	AMU_AMEVCNTR1_EL0(1),
2556 	AMU_AMEVCNTR1_EL0(2),
2557 	AMU_AMEVCNTR1_EL0(3),
2558 	AMU_AMEVCNTR1_EL0(4),
2559 	AMU_AMEVCNTR1_EL0(5),
2560 	AMU_AMEVCNTR1_EL0(6),
2561 	AMU_AMEVCNTR1_EL0(7),
2562 	AMU_AMEVCNTR1_EL0(8),
2563 	AMU_AMEVCNTR1_EL0(9),
2564 	AMU_AMEVCNTR1_EL0(10),
2565 	AMU_AMEVCNTR1_EL0(11),
2566 	AMU_AMEVCNTR1_EL0(12),
2567 	AMU_AMEVCNTR1_EL0(13),
2568 	AMU_AMEVCNTR1_EL0(14),
2569 	AMU_AMEVCNTR1_EL0(15),
2570 	AMU_AMEVTYPER1_EL0(0),
2571 	AMU_AMEVTYPER1_EL0(1),
2572 	AMU_AMEVTYPER1_EL0(2),
2573 	AMU_AMEVTYPER1_EL0(3),
2574 	AMU_AMEVTYPER1_EL0(4),
2575 	AMU_AMEVTYPER1_EL0(5),
2576 	AMU_AMEVTYPER1_EL0(6),
2577 	AMU_AMEVTYPER1_EL0(7),
2578 	AMU_AMEVTYPER1_EL0(8),
2579 	AMU_AMEVTYPER1_EL0(9),
2580 	AMU_AMEVTYPER1_EL0(10),
2581 	AMU_AMEVTYPER1_EL0(11),
2582 	AMU_AMEVTYPER1_EL0(12),
2583 	AMU_AMEVTYPER1_EL0(13),
2584 	AMU_AMEVTYPER1_EL0(14),
2585 	AMU_AMEVTYPER1_EL0(15),
2586 
2587 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2588 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2589 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2590 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2591 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2592 
2593 	/* PMEVCNTRn_EL0 */
2594 	PMU_PMEVCNTR_EL0(0),
2595 	PMU_PMEVCNTR_EL0(1),
2596 	PMU_PMEVCNTR_EL0(2),
2597 	PMU_PMEVCNTR_EL0(3),
2598 	PMU_PMEVCNTR_EL0(4),
2599 	PMU_PMEVCNTR_EL0(5),
2600 	PMU_PMEVCNTR_EL0(6),
2601 	PMU_PMEVCNTR_EL0(7),
2602 	PMU_PMEVCNTR_EL0(8),
2603 	PMU_PMEVCNTR_EL0(9),
2604 	PMU_PMEVCNTR_EL0(10),
2605 	PMU_PMEVCNTR_EL0(11),
2606 	PMU_PMEVCNTR_EL0(12),
2607 	PMU_PMEVCNTR_EL0(13),
2608 	PMU_PMEVCNTR_EL0(14),
2609 	PMU_PMEVCNTR_EL0(15),
2610 	PMU_PMEVCNTR_EL0(16),
2611 	PMU_PMEVCNTR_EL0(17),
2612 	PMU_PMEVCNTR_EL0(18),
2613 	PMU_PMEVCNTR_EL0(19),
2614 	PMU_PMEVCNTR_EL0(20),
2615 	PMU_PMEVCNTR_EL0(21),
2616 	PMU_PMEVCNTR_EL0(22),
2617 	PMU_PMEVCNTR_EL0(23),
2618 	PMU_PMEVCNTR_EL0(24),
2619 	PMU_PMEVCNTR_EL0(25),
2620 	PMU_PMEVCNTR_EL0(26),
2621 	PMU_PMEVCNTR_EL0(27),
2622 	PMU_PMEVCNTR_EL0(28),
2623 	PMU_PMEVCNTR_EL0(29),
2624 	PMU_PMEVCNTR_EL0(30),
2625 	/* PMEVTYPERn_EL0 */
2626 	PMU_PMEVTYPER_EL0(0),
2627 	PMU_PMEVTYPER_EL0(1),
2628 	PMU_PMEVTYPER_EL0(2),
2629 	PMU_PMEVTYPER_EL0(3),
2630 	PMU_PMEVTYPER_EL0(4),
2631 	PMU_PMEVTYPER_EL0(5),
2632 	PMU_PMEVTYPER_EL0(6),
2633 	PMU_PMEVTYPER_EL0(7),
2634 	PMU_PMEVTYPER_EL0(8),
2635 	PMU_PMEVTYPER_EL0(9),
2636 	PMU_PMEVTYPER_EL0(10),
2637 	PMU_PMEVTYPER_EL0(11),
2638 	PMU_PMEVTYPER_EL0(12),
2639 	PMU_PMEVTYPER_EL0(13),
2640 	PMU_PMEVTYPER_EL0(14),
2641 	PMU_PMEVTYPER_EL0(15),
2642 	PMU_PMEVTYPER_EL0(16),
2643 	PMU_PMEVTYPER_EL0(17),
2644 	PMU_PMEVTYPER_EL0(18),
2645 	PMU_PMEVTYPER_EL0(19),
2646 	PMU_PMEVTYPER_EL0(20),
2647 	PMU_PMEVTYPER_EL0(21),
2648 	PMU_PMEVTYPER_EL0(22),
2649 	PMU_PMEVTYPER_EL0(23),
2650 	PMU_PMEVTYPER_EL0(24),
2651 	PMU_PMEVTYPER_EL0(25),
2652 	PMU_PMEVTYPER_EL0(26),
2653 	PMU_PMEVTYPER_EL0(27),
2654 	PMU_PMEVTYPER_EL0(28),
2655 	PMU_PMEVTYPER_EL0(29),
2656 	PMU_PMEVTYPER_EL0(30),
2657 	/*
2658 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2659 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2660 	 */
2661 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2662 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2663 
2664 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2665 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2666 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2667 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2668 	EL2_REG_VNCR(HCR_EL2, reset_val, 0),
2669 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2670 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2671 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2672 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2673 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2674 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2675 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2676 
2677 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2678 
2679 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2680 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2681 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2682 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2683 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2684 
2685 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2686 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2687 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2688 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2689 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2690 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2691 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2692 
2693 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2694 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2695 	  .visibility = hidden_user_visibility },
2696 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2697 	  .visibility = hidden_user_visibility },
2698 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2699 	  .visibility = hidden_user_visibility },
2700 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2701 	  .visibility = hidden_user_visibility },
2702 
2703 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2704 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2705 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2706 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2707 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2708 
2709 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2710 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2711 
2712 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2713 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2714 
2715 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2716 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2717 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2718 
2719 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2720 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2721 
2722 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2723 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2724 
2725 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2726 
2727 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2728 };
2729 
2730 static const struct sys_reg_desc *first_idreg;
2731 
2732 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2733 			struct sys_reg_params *p,
2734 			const struct sys_reg_desc *r)
2735 {
2736 	if (p->is_write) {
2737 		return ignore_write(vcpu, p);
2738 	} else {
2739 		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2740 		u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
2741 		u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);
2742 
2743 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2744 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2745 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2746 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2747 			     (1 << 15) | (el3 << 14) | (el3 << 12));
2748 		return true;
2749 	}
2750 }
2751 
2752 /*
2753  * AArch32 debug register mappings
2754  *
2755  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2756  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2757  *
2758  * None of the other registers share their location, so treat them as
2759  * if they were 64bit.
2760  */
2761 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2762 	/* DBGBVRn */							      \
2763 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2764 	/* DBGBCRn */							      \
2765 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2766 	/* DBGWVRn */							      \
2767 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2768 	/* DBGWCRn */							      \
2769 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2770 
2771 #define DBGBXVR(n)							      \
2772 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2773 
2774 /*
2775  * Trapped cp14 registers. We generally ignore most of the external
2776  * debug, on the principle that they don't really make sense to a
2777  * guest. Revisit this one day, would this principle change.
2778  */
2779 static const struct sys_reg_desc cp14_regs[] = {
2780 	/* DBGDIDR */
2781 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2782 	/* DBGDTRRXext */
2783 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2784 
2785 	DBG_BCR_BVR_WCR_WVR(0),
2786 	/* DBGDSCRint */
2787 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2788 	DBG_BCR_BVR_WCR_WVR(1),
2789 	/* DBGDCCINT */
2790 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2791 	/* DBGDSCRext */
2792 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2793 	DBG_BCR_BVR_WCR_WVR(2),
2794 	/* DBGDTR[RT]Xint */
2795 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2796 	/* DBGDTR[RT]Xext */
2797 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2798 	DBG_BCR_BVR_WCR_WVR(3),
2799 	DBG_BCR_BVR_WCR_WVR(4),
2800 	DBG_BCR_BVR_WCR_WVR(5),
2801 	/* DBGWFAR */
2802 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2803 	/* DBGOSECCR */
2804 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2805 	DBG_BCR_BVR_WCR_WVR(6),
2806 	/* DBGVCR */
2807 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2808 	DBG_BCR_BVR_WCR_WVR(7),
2809 	DBG_BCR_BVR_WCR_WVR(8),
2810 	DBG_BCR_BVR_WCR_WVR(9),
2811 	DBG_BCR_BVR_WCR_WVR(10),
2812 	DBG_BCR_BVR_WCR_WVR(11),
2813 	DBG_BCR_BVR_WCR_WVR(12),
2814 	DBG_BCR_BVR_WCR_WVR(13),
2815 	DBG_BCR_BVR_WCR_WVR(14),
2816 	DBG_BCR_BVR_WCR_WVR(15),
2817 
2818 	/* DBGDRAR (32bit) */
2819 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2820 
2821 	DBGBXVR(0),
2822 	/* DBGOSLAR */
2823 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2824 	DBGBXVR(1),
2825 	/* DBGOSLSR */
2826 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2827 	DBGBXVR(2),
2828 	DBGBXVR(3),
2829 	/* DBGOSDLR */
2830 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2831 	DBGBXVR(4),
2832 	/* DBGPRCR */
2833 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2834 	DBGBXVR(5),
2835 	DBGBXVR(6),
2836 	DBGBXVR(7),
2837 	DBGBXVR(8),
2838 	DBGBXVR(9),
2839 	DBGBXVR(10),
2840 	DBGBXVR(11),
2841 	DBGBXVR(12),
2842 	DBGBXVR(13),
2843 	DBGBXVR(14),
2844 	DBGBXVR(15),
2845 
2846 	/* DBGDSAR (32bit) */
2847 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2848 
2849 	/* DBGDEVID2 */
2850 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2851 	/* DBGDEVID1 */
2852 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2853 	/* DBGDEVID */
2854 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2855 	/* DBGCLAIMSET */
2856 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2857 	/* DBGCLAIMCLR */
2858 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2859 	/* DBGAUTHSTATUS */
2860 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2861 };
2862 
2863 /* Trapped cp14 64bit registers */
2864 static const struct sys_reg_desc cp14_64_regs[] = {
2865 	/* DBGDRAR (64bit) */
2866 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2867 
2868 	/* DBGDSAR (64bit) */
2869 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2870 };
2871 
2872 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2873 	AA32(_map),							\
2874 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2875 	.visibility = pmu_visibility
2876 
2877 /* Macro to expand the PMEVCNTRn register */
2878 #define PMU_PMEVCNTR(n)							\
2879 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2880 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2881 	  .access = access_pmu_evcntr }
2882 
2883 /* Macro to expand the PMEVTYPERn register */
2884 #define PMU_PMEVTYPER(n)						\
2885 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2886 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2887 	  .access = access_pmu_evtyper }
2888 /*
2889  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2890  * depending on the way they are accessed (as a 32bit or a 64bit
2891  * register).
2892  */
2893 static const struct sys_reg_desc cp15_regs[] = {
2894 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2895 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2896 	/* ACTLR */
2897 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2898 	/* ACTLR2 */
2899 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2900 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2901 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2902 	/* TTBCR */
2903 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2904 	/* TTBCR2 */
2905 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2906 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2907 	/* DFSR */
2908 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2909 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2910 	/* ADFSR */
2911 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2912 	/* AIFSR */
2913 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2914 	/* DFAR */
2915 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2916 	/* IFAR */
2917 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2918 
2919 	/*
2920 	 * DC{C,I,CI}SW operations:
2921 	 */
2922 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2923 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2924 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2925 
2926 	/* PMU */
2927 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2928 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2929 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2930 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2931 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2932 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2933 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2934 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2935 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2936 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2937 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2938 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2939 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2940 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2941 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2942 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2943 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2944 	/* PMMIR */
2945 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2946 
2947 	/* PRRR/MAIR0 */
2948 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2949 	/* NMRR/MAIR1 */
2950 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2951 	/* AMAIR0 */
2952 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2953 	/* AMAIR1 */
2954 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2955 
2956 	/* ICC_SRE */
2957 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2958 
2959 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2960 
2961 	/* Arch Tmers */
2962 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2963 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2964 
2965 	/* PMEVCNTRn */
2966 	PMU_PMEVCNTR(0),
2967 	PMU_PMEVCNTR(1),
2968 	PMU_PMEVCNTR(2),
2969 	PMU_PMEVCNTR(3),
2970 	PMU_PMEVCNTR(4),
2971 	PMU_PMEVCNTR(5),
2972 	PMU_PMEVCNTR(6),
2973 	PMU_PMEVCNTR(7),
2974 	PMU_PMEVCNTR(8),
2975 	PMU_PMEVCNTR(9),
2976 	PMU_PMEVCNTR(10),
2977 	PMU_PMEVCNTR(11),
2978 	PMU_PMEVCNTR(12),
2979 	PMU_PMEVCNTR(13),
2980 	PMU_PMEVCNTR(14),
2981 	PMU_PMEVCNTR(15),
2982 	PMU_PMEVCNTR(16),
2983 	PMU_PMEVCNTR(17),
2984 	PMU_PMEVCNTR(18),
2985 	PMU_PMEVCNTR(19),
2986 	PMU_PMEVCNTR(20),
2987 	PMU_PMEVCNTR(21),
2988 	PMU_PMEVCNTR(22),
2989 	PMU_PMEVCNTR(23),
2990 	PMU_PMEVCNTR(24),
2991 	PMU_PMEVCNTR(25),
2992 	PMU_PMEVCNTR(26),
2993 	PMU_PMEVCNTR(27),
2994 	PMU_PMEVCNTR(28),
2995 	PMU_PMEVCNTR(29),
2996 	PMU_PMEVCNTR(30),
2997 	/* PMEVTYPERn */
2998 	PMU_PMEVTYPER(0),
2999 	PMU_PMEVTYPER(1),
3000 	PMU_PMEVTYPER(2),
3001 	PMU_PMEVTYPER(3),
3002 	PMU_PMEVTYPER(4),
3003 	PMU_PMEVTYPER(5),
3004 	PMU_PMEVTYPER(6),
3005 	PMU_PMEVTYPER(7),
3006 	PMU_PMEVTYPER(8),
3007 	PMU_PMEVTYPER(9),
3008 	PMU_PMEVTYPER(10),
3009 	PMU_PMEVTYPER(11),
3010 	PMU_PMEVTYPER(12),
3011 	PMU_PMEVTYPER(13),
3012 	PMU_PMEVTYPER(14),
3013 	PMU_PMEVTYPER(15),
3014 	PMU_PMEVTYPER(16),
3015 	PMU_PMEVTYPER(17),
3016 	PMU_PMEVTYPER(18),
3017 	PMU_PMEVTYPER(19),
3018 	PMU_PMEVTYPER(20),
3019 	PMU_PMEVTYPER(21),
3020 	PMU_PMEVTYPER(22),
3021 	PMU_PMEVTYPER(23),
3022 	PMU_PMEVTYPER(24),
3023 	PMU_PMEVTYPER(25),
3024 	PMU_PMEVTYPER(26),
3025 	PMU_PMEVTYPER(27),
3026 	PMU_PMEVTYPER(28),
3027 	PMU_PMEVTYPER(29),
3028 	PMU_PMEVTYPER(30),
3029 	/* PMCCFILTR */
3030 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3031 
3032 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3033 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3034 
3035 	/* CCSIDR2 */
3036 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3037 
3038 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3039 };
3040 
3041 static const struct sys_reg_desc cp15_64_regs[] = {
3042 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3043 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3044 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3045 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3046 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3047 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3048 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3049 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3050 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3051 };
3052 
3053 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3054 			       bool is_32)
3055 {
3056 	unsigned int i;
3057 
3058 	for (i = 0; i < n; i++) {
3059 		if (!is_32 && table[i].reg && !table[i].reset) {
3060 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
3061 			return false;
3062 		}
3063 
3064 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3065 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
3066 			return false;
3067 		}
3068 	}
3069 
3070 	return true;
3071 }
3072 
3073 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3074 {
3075 	kvm_inject_undefined(vcpu);
3076 	return 1;
3077 }
3078 
3079 static void perform_access(struct kvm_vcpu *vcpu,
3080 			   struct sys_reg_params *params,
3081 			   const struct sys_reg_desc *r)
3082 {
3083 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3084 
3085 	/* Check for regs disabled by runtime config */
3086 	if (sysreg_hidden(vcpu, r)) {
3087 		kvm_inject_undefined(vcpu);
3088 		return;
3089 	}
3090 
3091 	/*
3092 	 * Not having an accessor means that we have configured a trap
3093 	 * that we don't know how to handle. This certainly qualifies
3094 	 * as a gross bug that should be fixed right away.
3095 	 */
3096 	BUG_ON(!r->access);
3097 
3098 	/* Skip instruction if instructed so */
3099 	if (likely(r->access(vcpu, params, r)))
3100 		kvm_incr_pc(vcpu);
3101 }
3102 
3103 /*
3104  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3105  *                call the corresponding trap handler.
3106  *
3107  * @params: pointer to the descriptor of the access
3108  * @table: array of trap descriptors
3109  * @num: size of the trap descriptor array
3110  *
3111  * Return true if the access has been handled, false if not.
3112  */
3113 static bool emulate_cp(struct kvm_vcpu *vcpu,
3114 		       struct sys_reg_params *params,
3115 		       const struct sys_reg_desc *table,
3116 		       size_t num)
3117 {
3118 	const struct sys_reg_desc *r;
3119 
3120 	if (!table)
3121 		return false;	/* Not handled */
3122 
3123 	r = find_reg(params, table, num);
3124 
3125 	if (r) {
3126 		perform_access(vcpu, params, r);
3127 		return true;
3128 	}
3129 
3130 	/* Not handled */
3131 	return false;
3132 }
3133 
3134 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3135 				struct sys_reg_params *params)
3136 {
3137 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3138 	int cp = -1;
3139 
3140 	switch (esr_ec) {
3141 	case ESR_ELx_EC_CP15_32:
3142 	case ESR_ELx_EC_CP15_64:
3143 		cp = 15;
3144 		break;
3145 	case ESR_ELx_EC_CP14_MR:
3146 	case ESR_ELx_EC_CP14_64:
3147 		cp = 14;
3148 		break;
3149 	default:
3150 		WARN_ON(1);
3151 	}
3152 
3153 	print_sys_reg_msg(params,
3154 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3155 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3156 	kvm_inject_undefined(vcpu);
3157 }
3158 
3159 /**
3160  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3161  * @vcpu: The VCPU pointer
3162  * @run:  The kvm_run struct
3163  */
3164 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3165 			    const struct sys_reg_desc *global,
3166 			    size_t nr_global)
3167 {
3168 	struct sys_reg_params params;
3169 	u64 esr = kvm_vcpu_get_esr(vcpu);
3170 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3171 	int Rt2 = (esr >> 10) & 0x1f;
3172 
3173 	params.CRm = (esr >> 1) & 0xf;
3174 	params.is_write = ((esr & 1) == 0);
3175 
3176 	params.Op0 = 0;
3177 	params.Op1 = (esr >> 16) & 0xf;
3178 	params.Op2 = 0;
3179 	params.CRn = 0;
3180 
3181 	/*
3182 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3183 	 * backends between AArch32 and AArch64, we get away with it.
3184 	 */
3185 	if (params.is_write) {
3186 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3187 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3188 	}
3189 
3190 	/*
3191 	 * If the table contains a handler, handle the
3192 	 * potential register operation in the case of a read and return
3193 	 * with success.
3194 	 */
3195 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3196 		/* Split up the value between registers for the read side */
3197 		if (!params.is_write) {
3198 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3199 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3200 		}
3201 
3202 		return 1;
3203 	}
3204 
3205 	unhandled_cp_access(vcpu, &params);
3206 	return 1;
3207 }
3208 
3209 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3210 
3211 /*
3212  * The CP10 ID registers are architecturally mapped to AArch64 feature
3213  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3214  * from AArch32.
3215  */
3216 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3217 {
3218 	u8 reg_id = (esr >> 10) & 0xf;
3219 	bool valid;
3220 
3221 	params->is_write = ((esr & 1) == 0);
3222 	params->Op0 = 3;
3223 	params->Op1 = 0;
3224 	params->CRn = 0;
3225 	params->CRm = 3;
3226 
3227 	/* CP10 ID registers are read-only */
3228 	valid = !params->is_write;
3229 
3230 	switch (reg_id) {
3231 	/* MVFR0 */
3232 	case 0b0111:
3233 		params->Op2 = 0;
3234 		break;
3235 	/* MVFR1 */
3236 	case 0b0110:
3237 		params->Op2 = 1;
3238 		break;
3239 	/* MVFR2 */
3240 	case 0b0101:
3241 		params->Op2 = 2;
3242 		break;
3243 	default:
3244 		valid = false;
3245 	}
3246 
3247 	if (valid)
3248 		return true;
3249 
3250 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3251 		      params->is_write ? "write" : "read", reg_id);
3252 	return false;
3253 }
3254 
3255 /**
3256  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3257  *			  VFP Register' from AArch32.
3258  * @vcpu: The vCPU pointer
3259  *
3260  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3261  * Work out the correct AArch64 system register encoding and reroute to the
3262  * AArch64 system register emulation.
3263  */
3264 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3265 {
3266 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3267 	u64 esr = kvm_vcpu_get_esr(vcpu);
3268 	struct sys_reg_params params;
3269 
3270 	/* UNDEF on any unhandled register access */
3271 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3272 		kvm_inject_undefined(vcpu);
3273 		return 1;
3274 	}
3275 
3276 	if (emulate_sys_reg(vcpu, &params))
3277 		vcpu_set_reg(vcpu, Rt, params.regval);
3278 
3279 	return 1;
3280 }
3281 
3282 /**
3283  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3284  *			       CRn=0, which corresponds to the AArch32 feature
3285  *			       registers.
3286  * @vcpu: the vCPU pointer
3287  * @params: the system register access parameters.
3288  *
3289  * Our cp15 system register tables do not enumerate the AArch32 feature
3290  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3291  * register encoding can be trivially remapped into the AArch64 for the feature
3292  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3293  *
3294  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3295  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3296  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3297  * treat undefined registers in this range as RAZ.
3298  */
3299 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3300 				   struct sys_reg_params *params)
3301 {
3302 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3303 
3304 	/* Treat impossible writes to RO registers as UNDEFINED */
3305 	if (params->is_write) {
3306 		unhandled_cp_access(vcpu, params);
3307 		return 1;
3308 	}
3309 
3310 	params->Op0 = 3;
3311 
3312 	/*
3313 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3314 	 * Avoid conflicting with future expansion of AArch64 feature registers
3315 	 * and simply treat them as RAZ here.
3316 	 */
3317 	if (params->CRm > 3)
3318 		params->regval = 0;
3319 	else if (!emulate_sys_reg(vcpu, params))
3320 		return 1;
3321 
3322 	vcpu_set_reg(vcpu, Rt, params->regval);
3323 	return 1;
3324 }
3325 
3326 /**
3327  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3328  * @vcpu: The VCPU pointer
3329  * @run:  The kvm_run struct
3330  */
3331 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3332 			    struct sys_reg_params *params,
3333 			    const struct sys_reg_desc *global,
3334 			    size_t nr_global)
3335 {
3336 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3337 
3338 	params->regval = vcpu_get_reg(vcpu, Rt);
3339 
3340 	if (emulate_cp(vcpu, params, global, nr_global)) {
3341 		if (!params->is_write)
3342 			vcpu_set_reg(vcpu, Rt, params->regval);
3343 		return 1;
3344 	}
3345 
3346 	unhandled_cp_access(vcpu, params);
3347 	return 1;
3348 }
3349 
3350 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3351 {
3352 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3353 }
3354 
3355 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3356 {
3357 	struct sys_reg_params params;
3358 
3359 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3360 
3361 	/*
3362 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3363 	 * system register table. Registers in the ID range where CRm=0 are
3364 	 * excluded from this scheme as they do not trivially map into AArch64
3365 	 * system register encodings.
3366 	 */
3367 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3368 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3369 
3370 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3371 }
3372 
3373 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3374 {
3375 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3376 }
3377 
3378 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3379 {
3380 	struct sys_reg_params params;
3381 
3382 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3383 
3384 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3385 }
3386 
3387 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3388 {
3389 	// See ARM DDI 0487E.a, section D12.3.2
3390 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3391 }
3392 
3393 /**
3394  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3395  * @vcpu: The VCPU pointer
3396  * @params: Decoded system register parameters
3397  *
3398  * Return: true if the system register access was successful, false otherwise.
3399  */
3400 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3401 			   struct sys_reg_params *params)
3402 {
3403 	const struct sys_reg_desc *r;
3404 
3405 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3406 
3407 	if (likely(r)) {
3408 		perform_access(vcpu, params, r);
3409 		return true;
3410 	}
3411 
3412 	if (is_imp_def_sys_reg(params)) {
3413 		kvm_inject_undefined(vcpu);
3414 	} else {
3415 		print_sys_reg_msg(params,
3416 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3417 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3418 		kvm_inject_undefined(vcpu);
3419 	}
3420 	return false;
3421 }
3422 
3423 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3424 {
3425 	const struct sys_reg_desc *idreg = first_idreg;
3426 	u32 id = reg_to_encoding(idreg);
3427 	struct kvm *kvm = vcpu->kvm;
3428 
3429 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3430 		return;
3431 
3432 	lockdep_assert_held(&kvm->arch.config_lock);
3433 
3434 	/* Initialize all idregs */
3435 	while (is_id_reg(id)) {
3436 		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3437 
3438 		idreg++;
3439 		id = reg_to_encoding(idreg);
3440 	}
3441 
3442 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3443 }
3444 
3445 /**
3446  * kvm_reset_sys_regs - sets system registers to reset value
3447  * @vcpu: The VCPU pointer
3448  *
3449  * This function finds the right table above and sets the registers on the
3450  * virtual CPU struct to their architecturally defined reset values.
3451  */
3452 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3453 {
3454 	unsigned long i;
3455 
3456 	kvm_reset_id_regs(vcpu);
3457 
3458 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3459 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3460 
3461 		if (is_id_reg(reg_to_encoding(r)))
3462 			continue;
3463 
3464 		if (r->reset)
3465 			r->reset(vcpu, r);
3466 	}
3467 }
3468 
3469 /**
3470  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3471  * @vcpu: The VCPU pointer
3472  */
3473 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3474 {
3475 	struct sys_reg_params params;
3476 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3477 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3478 
3479 	trace_kvm_handle_sys_reg(esr);
3480 
3481 	if (__check_nv_sr_forward(vcpu))
3482 		return 1;
3483 
3484 	params = esr_sys64_to_params(esr);
3485 	params.regval = vcpu_get_reg(vcpu, Rt);
3486 
3487 	if (!emulate_sys_reg(vcpu, &params))
3488 		return 1;
3489 
3490 	if (!params.is_write)
3491 		vcpu_set_reg(vcpu, Rt, params.regval);
3492 	return 1;
3493 }
3494 
3495 /******************************************************************************
3496  * Userspace API
3497  *****************************************************************************/
3498 
3499 static bool index_to_params(u64 id, struct sys_reg_params *params)
3500 {
3501 	switch (id & KVM_REG_SIZE_MASK) {
3502 	case KVM_REG_SIZE_U64:
3503 		/* Any unused index bits means it's not valid. */
3504 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3505 			      | KVM_REG_ARM_COPROC_MASK
3506 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3507 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3508 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3509 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3510 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3511 			return false;
3512 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3513 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3514 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3515 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3516 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3517 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3518 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3519 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3520 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3521 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3522 		return true;
3523 	default:
3524 		return false;
3525 	}
3526 }
3527 
3528 const struct sys_reg_desc *get_reg_by_id(u64 id,
3529 					 const struct sys_reg_desc table[],
3530 					 unsigned int num)
3531 {
3532 	struct sys_reg_params params;
3533 
3534 	if (!index_to_params(id, &params))
3535 		return NULL;
3536 
3537 	return find_reg(&params, table, num);
3538 }
3539 
3540 /* Decode an index value, and find the sys_reg_desc entry. */
3541 static const struct sys_reg_desc *
3542 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3543 		   const struct sys_reg_desc table[], unsigned int num)
3544 
3545 {
3546 	const struct sys_reg_desc *r;
3547 
3548 	/* We only do sys_reg for now. */
3549 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3550 		return NULL;
3551 
3552 	r = get_reg_by_id(id, table, num);
3553 
3554 	/* Not saved in the sys_reg array and not otherwise accessible? */
3555 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3556 		r = NULL;
3557 
3558 	return r;
3559 }
3560 
3561 /*
3562  * These are the invariant sys_reg registers: we let the guest see the
3563  * host versions of these, so they're part of the guest state.
3564  *
3565  * A future CPU may provide a mechanism to present different values to
3566  * the guest, or a future kvm may trap them.
3567  */
3568 
3569 #define FUNCTION_INVARIANT(reg)						\
3570 	static u64 get_##reg(struct kvm_vcpu *v,			\
3571 			      const struct sys_reg_desc *r)		\
3572 	{								\
3573 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3574 		return ((struct sys_reg_desc *)r)->val;			\
3575 	}
3576 
3577 FUNCTION_INVARIANT(midr_el1)
3578 FUNCTION_INVARIANT(revidr_el1)
3579 FUNCTION_INVARIANT(aidr_el1)
3580 
3581 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3582 {
3583 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3584 	return ((struct sys_reg_desc *)r)->val;
3585 }
3586 
3587 /* ->val is filled in by kvm_sys_reg_table_init() */
3588 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3589 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3590 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3591 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3592 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3593 };
3594 
3595 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3596 {
3597 	const struct sys_reg_desc *r;
3598 
3599 	r = get_reg_by_id(id, invariant_sys_regs,
3600 			  ARRAY_SIZE(invariant_sys_regs));
3601 	if (!r)
3602 		return -ENOENT;
3603 
3604 	return put_user(r->val, uaddr);
3605 }
3606 
3607 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3608 {
3609 	const struct sys_reg_desc *r;
3610 	u64 val;
3611 
3612 	r = get_reg_by_id(id, invariant_sys_regs,
3613 			  ARRAY_SIZE(invariant_sys_regs));
3614 	if (!r)
3615 		return -ENOENT;
3616 
3617 	if (get_user(val, uaddr))
3618 		return -EFAULT;
3619 
3620 	/* This is what we mean by invariant: you can't change it. */
3621 	if (r->val != val)
3622 		return -EINVAL;
3623 
3624 	return 0;
3625 }
3626 
3627 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3628 {
3629 	u32 val;
3630 	u32 __user *uval = uaddr;
3631 
3632 	/* Fail if we have unknown bits set. */
3633 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3634 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3635 		return -ENOENT;
3636 
3637 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3638 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3639 		if (KVM_REG_SIZE(id) != 4)
3640 			return -ENOENT;
3641 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3642 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3643 		if (val >= CSSELR_MAX)
3644 			return -ENOENT;
3645 
3646 		return put_user(get_ccsidr(vcpu, val), uval);
3647 	default:
3648 		return -ENOENT;
3649 	}
3650 }
3651 
3652 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3653 {
3654 	u32 val, newval;
3655 	u32 __user *uval = uaddr;
3656 
3657 	/* Fail if we have unknown bits set. */
3658 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3659 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3660 		return -ENOENT;
3661 
3662 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3663 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3664 		if (KVM_REG_SIZE(id) != 4)
3665 			return -ENOENT;
3666 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3667 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3668 		if (val >= CSSELR_MAX)
3669 			return -ENOENT;
3670 
3671 		if (get_user(newval, uval))
3672 			return -EFAULT;
3673 
3674 		return set_ccsidr(vcpu, val, newval);
3675 	default:
3676 		return -ENOENT;
3677 	}
3678 }
3679 
3680 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3681 			 const struct sys_reg_desc table[], unsigned int num)
3682 {
3683 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3684 	const struct sys_reg_desc *r;
3685 	u64 val;
3686 	int ret;
3687 
3688 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3689 	if (!r || sysreg_hidden_user(vcpu, r))
3690 		return -ENOENT;
3691 
3692 	if (r->get_user) {
3693 		ret = (r->get_user)(vcpu, r, &val);
3694 	} else {
3695 		val = __vcpu_sys_reg(vcpu, r->reg);
3696 		ret = 0;
3697 	}
3698 
3699 	if (!ret)
3700 		ret = put_user(val, uaddr);
3701 
3702 	return ret;
3703 }
3704 
3705 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3706 {
3707 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3708 	int err;
3709 
3710 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3711 		return demux_c15_get(vcpu, reg->id, uaddr);
3712 
3713 	err = get_invariant_sys_reg(reg->id, uaddr);
3714 	if (err != -ENOENT)
3715 		return err;
3716 
3717 	return kvm_sys_reg_get_user(vcpu, reg,
3718 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3719 }
3720 
3721 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3722 			 const struct sys_reg_desc table[], unsigned int num)
3723 {
3724 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3725 	const struct sys_reg_desc *r;
3726 	u64 val;
3727 	int ret;
3728 
3729 	if (get_user(val, uaddr))
3730 		return -EFAULT;
3731 
3732 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3733 	if (!r || sysreg_hidden_user(vcpu, r))
3734 		return -ENOENT;
3735 
3736 	if (sysreg_user_write_ignore(vcpu, r))
3737 		return 0;
3738 
3739 	if (r->set_user) {
3740 		ret = (r->set_user)(vcpu, r, val);
3741 	} else {
3742 		__vcpu_sys_reg(vcpu, r->reg) = val;
3743 		ret = 0;
3744 	}
3745 
3746 	return ret;
3747 }
3748 
3749 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3750 {
3751 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3752 	int err;
3753 
3754 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3755 		return demux_c15_set(vcpu, reg->id, uaddr);
3756 
3757 	err = set_invariant_sys_reg(reg->id, uaddr);
3758 	if (err != -ENOENT)
3759 		return err;
3760 
3761 	return kvm_sys_reg_set_user(vcpu, reg,
3762 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3763 }
3764 
3765 static unsigned int num_demux_regs(void)
3766 {
3767 	return CSSELR_MAX;
3768 }
3769 
3770 static int write_demux_regids(u64 __user *uindices)
3771 {
3772 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3773 	unsigned int i;
3774 
3775 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3776 	for (i = 0; i < CSSELR_MAX; i++) {
3777 		if (put_user(val | i, uindices))
3778 			return -EFAULT;
3779 		uindices++;
3780 	}
3781 	return 0;
3782 }
3783 
3784 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3785 {
3786 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3787 		KVM_REG_ARM64_SYSREG |
3788 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3789 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3790 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3791 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3792 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3793 }
3794 
3795 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3796 {
3797 	if (!*uind)
3798 		return true;
3799 
3800 	if (put_user(sys_reg_to_index(reg), *uind))
3801 		return false;
3802 
3803 	(*uind)++;
3804 	return true;
3805 }
3806 
3807 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3808 			    const struct sys_reg_desc *rd,
3809 			    u64 __user **uind,
3810 			    unsigned int *total)
3811 {
3812 	/*
3813 	 * Ignore registers we trap but don't save,
3814 	 * and for which no custom user accessor is provided.
3815 	 */
3816 	if (!(rd->reg || rd->get_user))
3817 		return 0;
3818 
3819 	if (sysreg_hidden_user(vcpu, rd))
3820 		return 0;
3821 
3822 	if (!copy_reg_to_user(rd, uind))
3823 		return -EFAULT;
3824 
3825 	(*total)++;
3826 	return 0;
3827 }
3828 
3829 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3830 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3831 {
3832 	const struct sys_reg_desc *i2, *end2;
3833 	unsigned int total = 0;
3834 	int err;
3835 
3836 	i2 = sys_reg_descs;
3837 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3838 
3839 	while (i2 != end2) {
3840 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3841 		if (err)
3842 			return err;
3843 	}
3844 	return total;
3845 }
3846 
3847 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3848 {
3849 	return ARRAY_SIZE(invariant_sys_regs)
3850 		+ num_demux_regs()
3851 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3852 }
3853 
3854 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3855 {
3856 	unsigned int i;
3857 	int err;
3858 
3859 	/* Then give them all the invariant registers' indices. */
3860 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3861 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3862 			return -EFAULT;
3863 		uindices++;
3864 	}
3865 
3866 	err = walk_sys_regs(vcpu, uindices);
3867 	if (err < 0)
3868 		return err;
3869 	uindices += err;
3870 
3871 	return write_demux_regids(uindices);
3872 }
3873 
3874 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
3875 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
3876 		sys_reg_Op1(r),					\
3877 		sys_reg_CRn(r),					\
3878 		sys_reg_CRm(r),					\
3879 		sys_reg_Op2(r))
3880 
3881 static bool is_feature_id_reg(u32 encoding)
3882 {
3883 	return (sys_reg_Op0(encoding) == 3 &&
3884 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3885 		sys_reg_CRn(encoding) == 0 &&
3886 		sys_reg_CRm(encoding) <= 7);
3887 }
3888 
3889 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3890 {
3891 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
3892 	u64 __user *masks = (u64 __user *)range->addr;
3893 
3894 	/* Only feature id range is supported, reserved[13] must be zero. */
3895 	if (range->range ||
3896 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3897 		return -EINVAL;
3898 
3899 	/* Wipe the whole thing first */
3900 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3901 		return -EFAULT;
3902 
3903 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3904 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
3905 		u32 encoding = reg_to_encoding(reg);
3906 		u64 val;
3907 
3908 		if (!is_feature_id_reg(encoding) || !reg->set_user)
3909 			continue;
3910 
3911 		/*
3912 		 * For ID registers, we return the writable mask. Other feature
3913 		 * registers return a full 64bit mask. That's not necessary
3914 		 * compliant with a given revision of the architecture, but the
3915 		 * RES0/RES1 definitions allow us to do that.
3916 		 */
3917 		if (is_id_reg(encoding)) {
3918 			if (!reg->val ||
3919 			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3920 				continue;
3921 			val = reg->val;
3922 		} else {
3923 			val = ~0UL;
3924 		}
3925 
3926 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3927 			return -EFAULT;
3928 	}
3929 
3930 	return 0;
3931 }
3932 
3933 int __init kvm_sys_reg_table_init(void)
3934 {
3935 	struct sys_reg_params params;
3936 	bool valid = true;
3937 	unsigned int i;
3938 
3939 	/* Make sure tables are unique and in order. */
3940 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3941 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3942 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3943 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3944 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3945 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3946 
3947 	if (!valid)
3948 		return -EINVAL;
3949 
3950 	/* We abuse the reset function to overwrite the table itself. */
3951 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3952 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3953 
3954 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3955 	params = encoding_to_params(SYS_ID_PFR0_EL1);
3956 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3957 	if (!first_idreg)
3958 		return -EINVAL;
3959 
3960 	if (kvm_get_mode() == KVM_MODE_NV)
3961 		return populate_nv_trap_config();
3962 
3963 	return 0;
3964 }
3965