xref: /linux/arch/arm64/kvm/sys_regs.c (revision 576d7fed09c7edbae7600f29a8a3ed6c1ead904f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19 
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31 
32 #include <trace/events/kvm.h>
33 
34 #include "sys_regs.h"
35 
36 #include "trace.h"
37 
38 /*
39  * For AArch32, we only take care of what is being trapped. Anything
40  * that has to do with init and userspace access has to go via the
41  * 64bit interface.
42  */
43 
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46 		      u64 val);
47 
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 				 struct sys_reg_params *params,
50 				 const struct sys_reg_desc *r)
51 {
52 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 	print_sys_reg_instr(params);
54 	kvm_inject_undefined(vcpu);
55 	return false;
56 }
57 
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 			       struct sys_reg_params *params,
60 			       const struct sys_reg_desc *r)
61 {
62 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 	print_sys_reg_instr(params);
64 	kvm_inject_undefined(vcpu);
65 	return false;
66 }
67 
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70 	u64 val = 0x8badf00d8badf00d;
71 
72 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
73 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
74 		return val;
75 
76 	return __vcpu_sys_reg(vcpu, reg);
77 }
78 
79 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
80 {
81 	if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
82 	    __vcpu_write_sys_reg_to_cpu(val, reg))
83 		return;
84 
85 	__vcpu_sys_reg(vcpu, reg) = val;
86 }
87 
88 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
89 #define CSSELR_MAX 14
90 
91 /*
92  * Returns the minimum line size for the selected cache, expressed as
93  * Log2(bytes).
94  */
95 static u8 get_min_cache_line_size(bool icache)
96 {
97 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
98 	u8 field;
99 
100 	if (icache)
101 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
102 	else
103 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
104 
105 	/*
106 	 * Cache line size is represented as Log2(words) in CTR_EL0.
107 	 * Log2(bytes) can be derived with the following:
108 	 *
109 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
110 	 * 		   = Log2(bytes) - 2 + 2
111 	 * 		   = Log2(bytes)
112 	 */
113 	return field + 2;
114 }
115 
116 /* Which cache CCSIDR represents depends on CSSELR value. */
117 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
118 {
119 	u8 line_size;
120 
121 	if (vcpu->arch.ccsidr)
122 		return vcpu->arch.ccsidr[csselr];
123 
124 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
125 
126 	/*
127 	 * Fabricate a CCSIDR value as the overriding value does not exist.
128 	 * The real CCSIDR value will not be used as it can vary by the
129 	 * physical CPU which the vcpu currently resides in.
130 	 *
131 	 * The line size is determined with get_min_cache_line_size(), which
132 	 * should be valid for all CPUs even if they have different cache
133 	 * configuration.
134 	 *
135 	 * The associativity bits are cleared, meaning the geometry of all data
136 	 * and unified caches (which are guaranteed to be PIPT and thus
137 	 * non-aliasing) are 1 set and 1 way.
138 	 * Guests should not be doing cache operations by set/way at all, and
139 	 * for this reason, we trap them and attempt to infer the intent, so
140 	 * that we can flush the entire guest's address space at the appropriate
141 	 * time. The exposed geometry minimizes the number of the traps.
142 	 * [If guests should attempt to infer aliasing properties from the
143 	 * geometry (which is not permitted by the architecture), they would
144 	 * only do so for virtually indexed caches.]
145 	 *
146 	 * We don't check if the cache level exists as it is allowed to return
147 	 * an UNKNOWN value if not.
148 	 */
149 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
150 }
151 
152 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
153 {
154 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
155 	u32 *ccsidr = vcpu->arch.ccsidr;
156 	u32 i;
157 
158 	if ((val & CCSIDR_EL1_RES0) ||
159 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
160 		return -EINVAL;
161 
162 	if (!ccsidr) {
163 		if (val == get_ccsidr(vcpu, csselr))
164 			return 0;
165 
166 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
167 		if (!ccsidr)
168 			return -ENOMEM;
169 
170 		for (i = 0; i < CSSELR_MAX; i++)
171 			ccsidr[i] = get_ccsidr(vcpu, i);
172 
173 		vcpu->arch.ccsidr = ccsidr;
174 	}
175 
176 	ccsidr[csselr] = val;
177 
178 	return 0;
179 }
180 
181 static bool access_rw(struct kvm_vcpu *vcpu,
182 		      struct sys_reg_params *p,
183 		      const struct sys_reg_desc *r)
184 {
185 	if (p->is_write)
186 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
187 	else
188 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
189 
190 	return true;
191 }
192 
193 /*
194  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195  */
196 static bool access_dcsw(struct kvm_vcpu *vcpu,
197 			struct sys_reg_params *p,
198 			const struct sys_reg_desc *r)
199 {
200 	if (!p->is_write)
201 		return read_from_write_only(vcpu, p, r);
202 
203 	/*
204 	 * Only track S/W ops if we don't have FWB. It still indicates
205 	 * that the guest is a bit broken (S/W operations should only
206 	 * be done by firmware, knowing that there is only a single
207 	 * CPU left in the system, and certainly not from non-secure
208 	 * software).
209 	 */
210 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
211 		kvm_set_way_flush(vcpu);
212 
213 	return true;
214 }
215 
216 static bool access_dcgsw(struct kvm_vcpu *vcpu,
217 			 struct sys_reg_params *p,
218 			 const struct sys_reg_desc *r)
219 {
220 	if (!kvm_has_mte(vcpu->kvm)) {
221 		kvm_inject_undefined(vcpu);
222 		return false;
223 	}
224 
225 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
226 	return access_dcsw(vcpu, p, r);
227 }
228 
229 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
230 {
231 	switch (r->aarch32_map) {
232 	case AA32_LO:
233 		*mask = GENMASK_ULL(31, 0);
234 		*shift = 0;
235 		break;
236 	case AA32_HI:
237 		*mask = GENMASK_ULL(63, 32);
238 		*shift = 32;
239 		break;
240 	default:
241 		*mask = GENMASK_ULL(63, 0);
242 		*shift = 0;
243 		break;
244 	}
245 }
246 
247 /*
248  * Generic accessor for VM registers. Only called as long as HCR_TVM
249  * is set. If the guest enables the MMU, we stop trapping the VM
250  * sys_regs and leave it in complete control of the caches.
251  */
252 static bool access_vm_reg(struct kvm_vcpu *vcpu,
253 			  struct sys_reg_params *p,
254 			  const struct sys_reg_desc *r)
255 {
256 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
257 	u64 val, mask, shift;
258 
259 	BUG_ON(!p->is_write);
260 
261 	get_access_mask(r, &mask, &shift);
262 
263 	if (~mask) {
264 		val = vcpu_read_sys_reg(vcpu, r->reg);
265 		val &= ~mask;
266 	} else {
267 		val = 0;
268 	}
269 
270 	val |= (p->regval & (mask >> shift)) << shift;
271 	vcpu_write_sys_reg(vcpu, val, r->reg);
272 
273 	kvm_toggle_cache(vcpu, was_enabled);
274 	return true;
275 }
276 
277 static bool access_actlr(struct kvm_vcpu *vcpu,
278 			 struct sys_reg_params *p,
279 			 const struct sys_reg_desc *r)
280 {
281 	u64 mask, shift;
282 
283 	if (p->is_write)
284 		return ignore_write(vcpu, p);
285 
286 	get_access_mask(r, &mask, &shift);
287 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
288 
289 	return true;
290 }
291 
292 /*
293  * Trap handler for the GICv3 SGI generation system register.
294  * Forward the request to the VGIC emulation.
295  * The cp15_64 code makes sure this automatically works
296  * for both AArch64 and AArch32 accesses.
297  */
298 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
299 			   struct sys_reg_params *p,
300 			   const struct sys_reg_desc *r)
301 {
302 	bool g1;
303 
304 	if (!p->is_write)
305 		return read_from_write_only(vcpu, p, r);
306 
307 	/*
308 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
309 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
310 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
311 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
312 	 * group.
313 	 */
314 	if (p->Op0 == 0) {		/* AArch32 */
315 		switch (p->Op1) {
316 		default:		/* Keep GCC quiet */
317 		case 0:			/* ICC_SGI1R */
318 			g1 = true;
319 			break;
320 		case 1:			/* ICC_ASGI1R */
321 		case 2:			/* ICC_SGI0R */
322 			g1 = false;
323 			break;
324 		}
325 	} else {			/* AArch64 */
326 		switch (p->Op2) {
327 		default:		/* Keep GCC quiet */
328 		case 5:			/* ICC_SGI1R_EL1 */
329 			g1 = true;
330 			break;
331 		case 6:			/* ICC_ASGI1R_EL1 */
332 		case 7:			/* ICC_SGI0R_EL1 */
333 			g1 = false;
334 			break;
335 		}
336 	}
337 
338 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
339 
340 	return true;
341 }
342 
343 static bool access_gic_sre(struct kvm_vcpu *vcpu,
344 			   struct sys_reg_params *p,
345 			   const struct sys_reg_desc *r)
346 {
347 	if (p->is_write)
348 		return ignore_write(vcpu, p);
349 
350 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
351 	return true;
352 }
353 
354 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
355 			struct sys_reg_params *p,
356 			const struct sys_reg_desc *r)
357 {
358 	if (p->is_write)
359 		return ignore_write(vcpu, p);
360 	else
361 		return read_zero(vcpu, p);
362 }
363 
364 static bool trap_undef(struct kvm_vcpu *vcpu,
365 		       struct sys_reg_params *p,
366 		       const struct sys_reg_desc *r)
367 {
368 	kvm_inject_undefined(vcpu);
369 	return false;
370 }
371 
372 /*
373  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
374  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
375  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
376  * treat it separately.
377  */
378 static bool trap_loregion(struct kvm_vcpu *vcpu,
379 			  struct sys_reg_params *p,
380 			  const struct sys_reg_desc *r)
381 {
382 	u64 val = IDREG(vcpu->kvm, SYS_ID_AA64MMFR1_EL1);
383 	u32 sr = reg_to_encoding(r);
384 
385 	if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
386 		kvm_inject_undefined(vcpu);
387 		return false;
388 	}
389 
390 	if (p->is_write && sr == SYS_LORID_EL1)
391 		return write_to_read_only(vcpu, p, r);
392 
393 	return trap_raz_wi(vcpu, p, r);
394 }
395 
396 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
397 			   struct sys_reg_params *p,
398 			   const struct sys_reg_desc *r)
399 {
400 	u64 oslsr;
401 
402 	if (!p->is_write)
403 		return read_from_write_only(vcpu, p, r);
404 
405 	/* Forward the OSLK bit to OSLSR */
406 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
407 	if (p->regval & OSLAR_EL1_OSLK)
408 		oslsr |= OSLSR_EL1_OSLK;
409 
410 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
411 	return true;
412 }
413 
414 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
415 			   struct sys_reg_params *p,
416 			   const struct sys_reg_desc *r)
417 {
418 	if (p->is_write)
419 		return write_to_read_only(vcpu, p, r);
420 
421 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
422 	return true;
423 }
424 
425 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
426 			 u64 val)
427 {
428 	/*
429 	 * The only modifiable bit is the OSLK bit. Refuse the write if
430 	 * userspace attempts to change any other bit in the register.
431 	 */
432 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
433 		return -EINVAL;
434 
435 	__vcpu_sys_reg(vcpu, rd->reg) = val;
436 	return 0;
437 }
438 
439 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
440 				   struct sys_reg_params *p,
441 				   const struct sys_reg_desc *r)
442 {
443 	if (p->is_write) {
444 		return ignore_write(vcpu, p);
445 	} else {
446 		p->regval = read_sysreg(dbgauthstatus_el1);
447 		return true;
448 	}
449 }
450 
451 /*
452  * We want to avoid world-switching all the DBG registers all the
453  * time:
454  *
455  * - If we've touched any debug register, it is likely that we're
456  *   going to touch more of them. It then makes sense to disable the
457  *   traps and start doing the save/restore dance
458  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
459  *   then mandatory to save/restore the registers, as the guest
460  *   depends on them.
461  *
462  * For this, we use a DIRTY bit, indicating the guest has modified the
463  * debug registers, used as follow:
464  *
465  * On guest entry:
466  * - If the dirty bit is set (because we're coming back from trapping),
467  *   disable the traps, save host registers, restore guest registers.
468  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
469  *   set the dirty bit, disable the traps, save host registers,
470  *   restore guest registers.
471  * - Otherwise, enable the traps
472  *
473  * On guest exit:
474  * - If the dirty bit is set, save guest registers, restore host
475  *   registers and clear the dirty bit. This ensure that the host can
476  *   now use the debug registers.
477  */
478 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
479 			    struct sys_reg_params *p,
480 			    const struct sys_reg_desc *r)
481 {
482 	access_rw(vcpu, p, r);
483 	if (p->is_write)
484 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
485 
486 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
487 
488 	return true;
489 }
490 
491 /*
492  * reg_to_dbg/dbg_to_reg
493  *
494  * A 32 bit write to a debug register leave top bits alone
495  * A 32 bit read from a debug register only returns the bottom bits
496  *
497  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
498  * switches between host and guest values in future.
499  */
500 static void reg_to_dbg(struct kvm_vcpu *vcpu,
501 		       struct sys_reg_params *p,
502 		       const struct sys_reg_desc *rd,
503 		       u64 *dbg_reg)
504 {
505 	u64 mask, shift, val;
506 
507 	get_access_mask(rd, &mask, &shift);
508 
509 	val = *dbg_reg;
510 	val &= ~mask;
511 	val |= (p->regval & (mask >> shift)) << shift;
512 	*dbg_reg = val;
513 
514 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
515 }
516 
517 static void dbg_to_reg(struct kvm_vcpu *vcpu,
518 		       struct sys_reg_params *p,
519 		       const struct sys_reg_desc *rd,
520 		       u64 *dbg_reg)
521 {
522 	u64 mask, shift;
523 
524 	get_access_mask(rd, &mask, &shift);
525 	p->regval = (*dbg_reg & mask) >> shift;
526 }
527 
528 static bool trap_bvr(struct kvm_vcpu *vcpu,
529 		     struct sys_reg_params *p,
530 		     const struct sys_reg_desc *rd)
531 {
532 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
533 
534 	if (p->is_write)
535 		reg_to_dbg(vcpu, p, rd, dbg_reg);
536 	else
537 		dbg_to_reg(vcpu, p, rd, dbg_reg);
538 
539 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
540 
541 	return true;
542 }
543 
544 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545 		   u64 val)
546 {
547 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
548 	return 0;
549 }
550 
551 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 		   u64 *val)
553 {
554 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
555 	return 0;
556 }
557 
558 static u64 reset_bvr(struct kvm_vcpu *vcpu,
559 		      const struct sys_reg_desc *rd)
560 {
561 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
562 	return rd->val;
563 }
564 
565 static bool trap_bcr(struct kvm_vcpu *vcpu,
566 		     struct sys_reg_params *p,
567 		     const struct sys_reg_desc *rd)
568 {
569 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
570 
571 	if (p->is_write)
572 		reg_to_dbg(vcpu, p, rd, dbg_reg);
573 	else
574 		dbg_to_reg(vcpu, p, rd, dbg_reg);
575 
576 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577 
578 	return true;
579 }
580 
581 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 		   u64 val)
583 {
584 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
585 	return 0;
586 }
587 
588 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
589 		   u64 *val)
590 {
591 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
592 	return 0;
593 }
594 
595 static u64 reset_bcr(struct kvm_vcpu *vcpu,
596 		      const struct sys_reg_desc *rd)
597 {
598 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
599 	return rd->val;
600 }
601 
602 static bool trap_wvr(struct kvm_vcpu *vcpu,
603 		     struct sys_reg_params *p,
604 		     const struct sys_reg_desc *rd)
605 {
606 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
607 
608 	if (p->is_write)
609 		reg_to_dbg(vcpu, p, rd, dbg_reg);
610 	else
611 		dbg_to_reg(vcpu, p, rd, dbg_reg);
612 
613 	trace_trap_reg(__func__, rd->CRm, p->is_write,
614 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
615 
616 	return true;
617 }
618 
619 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
620 		   u64 val)
621 {
622 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
623 	return 0;
624 }
625 
626 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
627 		   u64 *val)
628 {
629 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
630 	return 0;
631 }
632 
633 static u64 reset_wvr(struct kvm_vcpu *vcpu,
634 		      const struct sys_reg_desc *rd)
635 {
636 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
637 	return rd->val;
638 }
639 
640 static bool trap_wcr(struct kvm_vcpu *vcpu,
641 		     struct sys_reg_params *p,
642 		     const struct sys_reg_desc *rd)
643 {
644 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
645 
646 	if (p->is_write)
647 		reg_to_dbg(vcpu, p, rd, dbg_reg);
648 	else
649 		dbg_to_reg(vcpu, p, rd, dbg_reg);
650 
651 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
652 
653 	return true;
654 }
655 
656 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
657 		   u64 val)
658 {
659 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
660 	return 0;
661 }
662 
663 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
664 		   u64 *val)
665 {
666 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
667 	return 0;
668 }
669 
670 static u64 reset_wcr(struct kvm_vcpu *vcpu,
671 		      const struct sys_reg_desc *rd)
672 {
673 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
674 	return rd->val;
675 }
676 
677 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
678 {
679 	u64 amair = read_sysreg(amair_el1);
680 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
681 	return amair;
682 }
683 
684 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
685 {
686 	u64 actlr = read_sysreg(actlr_el1);
687 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
688 	return actlr;
689 }
690 
691 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
692 {
693 	u64 mpidr;
694 
695 	/*
696 	 * Map the vcpu_id into the first three affinity level fields of
697 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
698 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
699 	 * of the GICv3 to be able to address each CPU directly when
700 	 * sending IPIs.
701 	 */
702 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
703 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
704 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
705 	mpidr |= (1ULL << 31);
706 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
707 
708 	return mpidr;
709 }
710 
711 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
712 				   const struct sys_reg_desc *r)
713 {
714 	if (kvm_vcpu_has_pmu(vcpu))
715 		return 0;
716 
717 	return REG_HIDDEN;
718 }
719 
720 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
721 {
722 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
723 	u8 n = vcpu->kvm->arch.pmcr_n;
724 
725 	if (n)
726 		mask |= GENMASK(n - 1, 0);
727 
728 	reset_unknown(vcpu, r);
729 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
730 
731 	return __vcpu_sys_reg(vcpu, r->reg);
732 }
733 
734 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
735 {
736 	reset_unknown(vcpu, r);
737 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
738 
739 	return __vcpu_sys_reg(vcpu, r->reg);
740 }
741 
742 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
743 {
744 	/* This thing will UNDEF, who cares about the reset value? */
745 	if (!kvm_vcpu_has_pmu(vcpu))
746 		return 0;
747 
748 	reset_unknown(vcpu, r);
749 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
750 
751 	return __vcpu_sys_reg(vcpu, r->reg);
752 }
753 
754 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
755 {
756 	reset_unknown(vcpu, r);
757 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
758 
759 	return __vcpu_sys_reg(vcpu, r->reg);
760 }
761 
762 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
763 {
764 	u64 pmcr = 0;
765 
766 	if (!kvm_supports_32bit_el0())
767 		pmcr |= ARMV8_PMU_PMCR_LC;
768 
769 	/*
770 	 * The value of PMCR.N field is included when the
771 	 * vCPU register is read via kvm_vcpu_read_pmcr().
772 	 */
773 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
774 
775 	return __vcpu_sys_reg(vcpu, r->reg);
776 }
777 
778 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
779 {
780 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
781 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
782 
783 	if (!enabled)
784 		kvm_inject_undefined(vcpu);
785 
786 	return !enabled;
787 }
788 
789 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
790 {
791 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
792 }
793 
794 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
795 {
796 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
797 }
798 
799 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
800 {
801 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
802 }
803 
804 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
805 {
806 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
807 }
808 
809 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
810 			const struct sys_reg_desc *r)
811 {
812 	u64 val;
813 
814 	if (pmu_access_el0_disabled(vcpu))
815 		return false;
816 
817 	if (p->is_write) {
818 		/*
819 		 * Only update writeable bits of PMCR (continuing into
820 		 * kvm_pmu_handle_pmcr() as well)
821 		 */
822 		val = kvm_vcpu_read_pmcr(vcpu);
823 		val &= ~ARMV8_PMU_PMCR_MASK;
824 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
825 		if (!kvm_supports_32bit_el0())
826 			val |= ARMV8_PMU_PMCR_LC;
827 		kvm_pmu_handle_pmcr(vcpu, val);
828 	} else {
829 		/* PMCR.P & PMCR.C are RAZ */
830 		val = kvm_vcpu_read_pmcr(vcpu)
831 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
832 		p->regval = val;
833 	}
834 
835 	return true;
836 }
837 
838 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
839 			  const struct sys_reg_desc *r)
840 {
841 	if (pmu_access_event_counter_el0_disabled(vcpu))
842 		return false;
843 
844 	if (p->is_write)
845 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
846 	else
847 		/* return PMSELR.SEL field */
848 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
849 			    & ARMV8_PMU_COUNTER_MASK;
850 
851 	return true;
852 }
853 
854 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
855 			  const struct sys_reg_desc *r)
856 {
857 	u64 pmceid, mask, shift;
858 
859 	BUG_ON(p->is_write);
860 
861 	if (pmu_access_el0_disabled(vcpu))
862 		return false;
863 
864 	get_access_mask(r, &mask, &shift);
865 
866 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
867 	pmceid &= mask;
868 	pmceid >>= shift;
869 
870 	p->regval = pmceid;
871 
872 	return true;
873 }
874 
875 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
876 {
877 	u64 pmcr, val;
878 
879 	pmcr = kvm_vcpu_read_pmcr(vcpu);
880 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
881 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
882 		kvm_inject_undefined(vcpu);
883 		return false;
884 	}
885 
886 	return true;
887 }
888 
889 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
890 			  u64 *val)
891 {
892 	u64 idx;
893 
894 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
895 		/* PMCCNTR_EL0 */
896 		idx = ARMV8_PMU_CYCLE_IDX;
897 	else
898 		/* PMEVCNTRn_EL0 */
899 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
900 
901 	*val = kvm_pmu_get_counter_value(vcpu, idx);
902 	return 0;
903 }
904 
905 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
906 			      struct sys_reg_params *p,
907 			      const struct sys_reg_desc *r)
908 {
909 	u64 idx = ~0UL;
910 
911 	if (r->CRn == 9 && r->CRm == 13) {
912 		if (r->Op2 == 2) {
913 			/* PMXEVCNTR_EL0 */
914 			if (pmu_access_event_counter_el0_disabled(vcpu))
915 				return false;
916 
917 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
918 			      & ARMV8_PMU_COUNTER_MASK;
919 		} else if (r->Op2 == 0) {
920 			/* PMCCNTR_EL0 */
921 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
922 				return false;
923 
924 			idx = ARMV8_PMU_CYCLE_IDX;
925 		}
926 	} else if (r->CRn == 0 && r->CRm == 9) {
927 		/* PMCCNTR */
928 		if (pmu_access_event_counter_el0_disabled(vcpu))
929 			return false;
930 
931 		idx = ARMV8_PMU_CYCLE_IDX;
932 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
933 		/* PMEVCNTRn_EL0 */
934 		if (pmu_access_event_counter_el0_disabled(vcpu))
935 			return false;
936 
937 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
938 	}
939 
940 	/* Catch any decoding mistake */
941 	WARN_ON(idx == ~0UL);
942 
943 	if (!pmu_counter_idx_valid(vcpu, idx))
944 		return false;
945 
946 	if (p->is_write) {
947 		if (pmu_access_el0_disabled(vcpu))
948 			return false;
949 
950 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
951 	} else {
952 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
953 	}
954 
955 	return true;
956 }
957 
958 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
959 			       const struct sys_reg_desc *r)
960 {
961 	u64 idx, reg;
962 
963 	if (pmu_access_el0_disabled(vcpu))
964 		return false;
965 
966 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
967 		/* PMXEVTYPER_EL0 */
968 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
969 		reg = PMEVTYPER0_EL0 + idx;
970 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
971 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
972 		if (idx == ARMV8_PMU_CYCLE_IDX)
973 			reg = PMCCFILTR_EL0;
974 		else
975 			/* PMEVTYPERn_EL0 */
976 			reg = PMEVTYPER0_EL0 + idx;
977 	} else {
978 		BUG();
979 	}
980 
981 	if (!pmu_counter_idx_valid(vcpu, idx))
982 		return false;
983 
984 	if (p->is_write) {
985 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
986 		kvm_vcpu_pmu_restore_guest(vcpu);
987 	} else {
988 		p->regval = __vcpu_sys_reg(vcpu, reg);
989 	}
990 
991 	return true;
992 }
993 
994 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
995 {
996 	bool set;
997 
998 	val &= kvm_pmu_valid_counter_mask(vcpu);
999 
1000 	switch (r->reg) {
1001 	case PMOVSSET_EL0:
1002 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1003 		set = r->CRm & 2;
1004 		break;
1005 	default:
1006 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1007 		set = r->Op2 & 1;
1008 		break;
1009 	}
1010 
1011 	if (set)
1012 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1013 	else
1014 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1015 
1016 	return 0;
1017 }
1018 
1019 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1020 {
1021 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1022 
1023 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1024 	return 0;
1025 }
1026 
1027 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1028 			   const struct sys_reg_desc *r)
1029 {
1030 	u64 val, mask;
1031 
1032 	if (pmu_access_el0_disabled(vcpu))
1033 		return false;
1034 
1035 	mask = kvm_pmu_valid_counter_mask(vcpu);
1036 	if (p->is_write) {
1037 		val = p->regval & mask;
1038 		if (r->Op2 & 0x1) {
1039 			/* accessing PMCNTENSET_EL0 */
1040 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1041 			kvm_pmu_enable_counter_mask(vcpu, val);
1042 			kvm_vcpu_pmu_restore_guest(vcpu);
1043 		} else {
1044 			/* accessing PMCNTENCLR_EL0 */
1045 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1046 			kvm_pmu_disable_counter_mask(vcpu, val);
1047 		}
1048 	} else {
1049 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1050 	}
1051 
1052 	return true;
1053 }
1054 
1055 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1056 			   const struct sys_reg_desc *r)
1057 {
1058 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1059 
1060 	if (check_pmu_access_disabled(vcpu, 0))
1061 		return false;
1062 
1063 	if (p->is_write) {
1064 		u64 val = p->regval & mask;
1065 
1066 		if (r->Op2 & 0x1)
1067 			/* accessing PMINTENSET_EL1 */
1068 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1069 		else
1070 			/* accessing PMINTENCLR_EL1 */
1071 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1072 	} else {
1073 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1074 	}
1075 
1076 	return true;
1077 }
1078 
1079 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1080 			 const struct sys_reg_desc *r)
1081 {
1082 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1083 
1084 	if (pmu_access_el0_disabled(vcpu))
1085 		return false;
1086 
1087 	if (p->is_write) {
1088 		if (r->CRm & 0x2)
1089 			/* accessing PMOVSSET_EL0 */
1090 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1091 		else
1092 			/* accessing PMOVSCLR_EL0 */
1093 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1094 	} else {
1095 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1096 	}
1097 
1098 	return true;
1099 }
1100 
1101 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1102 			   const struct sys_reg_desc *r)
1103 {
1104 	u64 mask;
1105 
1106 	if (!p->is_write)
1107 		return read_from_write_only(vcpu, p, r);
1108 
1109 	if (pmu_write_swinc_el0_disabled(vcpu))
1110 		return false;
1111 
1112 	mask = kvm_pmu_valid_counter_mask(vcpu);
1113 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1114 	return true;
1115 }
1116 
1117 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1118 			     const struct sys_reg_desc *r)
1119 {
1120 	if (p->is_write) {
1121 		if (!vcpu_mode_priv(vcpu)) {
1122 			kvm_inject_undefined(vcpu);
1123 			return false;
1124 		}
1125 
1126 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1127 			       p->regval & ARMV8_PMU_USERENR_MASK;
1128 	} else {
1129 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1130 			    & ARMV8_PMU_USERENR_MASK;
1131 	}
1132 
1133 	return true;
1134 }
1135 
1136 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1137 		    u64 *val)
1138 {
1139 	*val = kvm_vcpu_read_pmcr(vcpu);
1140 	return 0;
1141 }
1142 
1143 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1144 		    u64 val)
1145 {
1146 	u8 new_n = (val >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
1147 	struct kvm *kvm = vcpu->kvm;
1148 
1149 	mutex_lock(&kvm->arch.config_lock);
1150 
1151 	/*
1152 	 * The vCPU can't have more counters than the PMU hardware
1153 	 * implements. Ignore this error to maintain compatibility
1154 	 * with the existing KVM behavior.
1155 	 */
1156 	if (!kvm_vm_has_ran_once(kvm) &&
1157 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1158 		kvm->arch.pmcr_n = new_n;
1159 
1160 	mutex_unlock(&kvm->arch.config_lock);
1161 
1162 	/*
1163 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1164 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1165 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1166 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1167 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1168 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1169 	 * if necessary).
1170 	 */
1171 	val &= ARMV8_PMU_PMCR_MASK;
1172 
1173 	/* The LC bit is RES1 when AArch32 is not supported */
1174 	if (!kvm_supports_32bit_el0())
1175 		val |= ARMV8_PMU_PMCR_LC;
1176 
1177 	__vcpu_sys_reg(vcpu, r->reg) = val;
1178 	return 0;
1179 }
1180 
1181 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1182 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1183 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1184 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1185 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1186 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1187 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1188 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1189 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1190 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1191 
1192 #define PMU_SYS_REG(name)						\
1193 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1194 	.visibility = pmu_visibility
1195 
1196 /* Macro to expand the PMEVCNTRn_EL0 register */
1197 #define PMU_PMEVCNTR_EL0(n)						\
1198 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1199 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1200 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1201 
1202 /* Macro to expand the PMEVTYPERn_EL0 register */
1203 #define PMU_PMEVTYPER_EL0(n)						\
1204 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1205 	  .reset = reset_pmevtyper,					\
1206 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1207 
1208 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1209 			 const struct sys_reg_desc *r)
1210 {
1211 	kvm_inject_undefined(vcpu);
1212 
1213 	return false;
1214 }
1215 
1216 /* Macro to expand the AMU counter and type registers*/
1217 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1218 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1219 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1220 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1221 
1222 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1223 			const struct sys_reg_desc *rd)
1224 {
1225 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1226 }
1227 
1228 /*
1229  * If we land here on a PtrAuth access, that is because we didn't
1230  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1231  * way this happens is when the guest does not have PtrAuth support
1232  * enabled.
1233  */
1234 #define __PTRAUTH_KEY(k)						\
1235 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1236 	.visibility = ptrauth_visibility}
1237 
1238 #define PTRAUTH_KEY(k)							\
1239 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1240 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1241 
1242 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1243 			      struct sys_reg_params *p,
1244 			      const struct sys_reg_desc *r)
1245 {
1246 	enum kvm_arch_timers tmr;
1247 	enum kvm_arch_timer_regs treg;
1248 	u64 reg = reg_to_encoding(r);
1249 
1250 	switch (reg) {
1251 	case SYS_CNTP_TVAL_EL0:
1252 	case SYS_AARCH32_CNTP_TVAL:
1253 		tmr = TIMER_PTIMER;
1254 		treg = TIMER_REG_TVAL;
1255 		break;
1256 	case SYS_CNTP_CTL_EL0:
1257 	case SYS_AARCH32_CNTP_CTL:
1258 		tmr = TIMER_PTIMER;
1259 		treg = TIMER_REG_CTL;
1260 		break;
1261 	case SYS_CNTP_CVAL_EL0:
1262 	case SYS_AARCH32_CNTP_CVAL:
1263 		tmr = TIMER_PTIMER;
1264 		treg = TIMER_REG_CVAL;
1265 		break;
1266 	case SYS_CNTPCT_EL0:
1267 	case SYS_CNTPCTSS_EL0:
1268 	case SYS_AARCH32_CNTPCT:
1269 		tmr = TIMER_PTIMER;
1270 		treg = TIMER_REG_CNT;
1271 		break;
1272 	default:
1273 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1274 		kvm_inject_undefined(vcpu);
1275 		return false;
1276 	}
1277 
1278 	if (p->is_write)
1279 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1280 	else
1281 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1282 
1283 	return true;
1284 }
1285 
1286 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1287 				    s64 new, s64 cur)
1288 {
1289 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1290 
1291 	/* Some features have different safe value type in KVM than host features */
1292 	switch (id) {
1293 	case SYS_ID_AA64DFR0_EL1:
1294 		switch (kvm_ftr.shift) {
1295 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1296 			kvm_ftr.type = FTR_LOWER_SAFE;
1297 			break;
1298 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1299 			kvm_ftr.type = FTR_LOWER_SAFE;
1300 			break;
1301 		}
1302 		break;
1303 	case SYS_ID_DFR0_EL1:
1304 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1305 			kvm_ftr.type = FTR_LOWER_SAFE;
1306 		break;
1307 	}
1308 
1309 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1310 }
1311 
1312 /*
1313  * arm64_check_features() - Check if a feature register value constitutes
1314  * a subset of features indicated by the idreg's KVM sanitised limit.
1315  *
1316  * This function will check if each feature field of @val is the "safe" value
1317  * against idreg's KVM sanitised limit return from reset() callback.
1318  * If a field value in @val is the same as the one in limit, it is always
1319  * considered the safe value regardless For register fields that are not in
1320  * writable, only the value in limit is considered the safe value.
1321  *
1322  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1323  */
1324 static int arm64_check_features(struct kvm_vcpu *vcpu,
1325 				const struct sys_reg_desc *rd,
1326 				u64 val)
1327 {
1328 	const struct arm64_ftr_reg *ftr_reg;
1329 	const struct arm64_ftr_bits *ftrp = NULL;
1330 	u32 id = reg_to_encoding(rd);
1331 	u64 writable_mask = rd->val;
1332 	u64 limit = rd->reset(vcpu, rd);
1333 	u64 mask = 0;
1334 
1335 	/*
1336 	 * Hidden and unallocated ID registers may not have a corresponding
1337 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1338 	 * only safe value is 0.
1339 	 */
1340 	if (sysreg_visible_as_raz(vcpu, rd))
1341 		return val ? -E2BIG : 0;
1342 
1343 	ftr_reg = get_arm64_ftr_reg(id);
1344 	if (!ftr_reg)
1345 		return -EINVAL;
1346 
1347 	ftrp = ftr_reg->ftr_bits;
1348 
1349 	for (; ftrp && ftrp->width; ftrp++) {
1350 		s64 f_val, f_lim, safe_val;
1351 		u64 ftr_mask;
1352 
1353 		ftr_mask = arm64_ftr_mask(ftrp);
1354 		if ((ftr_mask & writable_mask) != ftr_mask)
1355 			continue;
1356 
1357 		f_val = arm64_ftr_value(ftrp, val);
1358 		f_lim = arm64_ftr_value(ftrp, limit);
1359 		mask |= ftr_mask;
1360 
1361 		if (f_val == f_lim)
1362 			safe_val = f_val;
1363 		else
1364 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1365 
1366 		if (safe_val != f_val)
1367 			return -E2BIG;
1368 	}
1369 
1370 	/* For fields that are not writable, values in limit are the safe values. */
1371 	if ((val & ~mask) != (limit & ~mask))
1372 		return -E2BIG;
1373 
1374 	return 0;
1375 }
1376 
1377 static u8 pmuver_to_perfmon(u8 pmuver)
1378 {
1379 	switch (pmuver) {
1380 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1381 		return ID_DFR0_EL1_PerfMon_PMUv3;
1382 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1383 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1384 	default:
1385 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1386 		return pmuver;
1387 	}
1388 }
1389 
1390 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1391 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1392 				       const struct sys_reg_desc *r)
1393 {
1394 	u32 id = reg_to_encoding(r);
1395 	u64 val;
1396 
1397 	if (sysreg_visible_as_raz(vcpu, r))
1398 		return 0;
1399 
1400 	val = read_sanitised_ftr_reg(id);
1401 
1402 	switch (id) {
1403 	case SYS_ID_AA64PFR1_EL1:
1404 		if (!kvm_has_mte(vcpu->kvm))
1405 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1406 
1407 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1408 		break;
1409 	case SYS_ID_AA64ISAR1_EL1:
1410 		if (!vcpu_has_ptrauth(vcpu))
1411 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1412 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1413 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1414 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1415 		break;
1416 	case SYS_ID_AA64ISAR2_EL1:
1417 		if (!vcpu_has_ptrauth(vcpu))
1418 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1419 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1420 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1421 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1422 		break;
1423 	case SYS_ID_AA64MMFR2_EL1:
1424 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1425 		break;
1426 	case SYS_ID_MMFR4_EL1:
1427 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1428 		break;
1429 	}
1430 
1431 	return val;
1432 }
1433 
1434 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1435 				     const struct sys_reg_desc *r)
1436 {
1437 	return __kvm_read_sanitised_id_reg(vcpu, r);
1438 }
1439 
1440 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1441 {
1442 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1443 }
1444 
1445 /*
1446  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1447  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1448  */
1449 static inline bool is_id_reg(u32 id)
1450 {
1451 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1452 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1453 		sys_reg_CRm(id) < 8);
1454 }
1455 
1456 static inline bool is_aa32_id_reg(u32 id)
1457 {
1458 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1459 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1460 		sys_reg_CRm(id) <= 3);
1461 }
1462 
1463 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1464 				  const struct sys_reg_desc *r)
1465 {
1466 	u32 id = reg_to_encoding(r);
1467 
1468 	switch (id) {
1469 	case SYS_ID_AA64ZFR0_EL1:
1470 		if (!vcpu_has_sve(vcpu))
1471 			return REG_RAZ;
1472 		break;
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1479 				       const struct sys_reg_desc *r)
1480 {
1481 	/*
1482 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1483 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1484 	 * systems.
1485 	 */
1486 	if (!kvm_supports_32bit_el0())
1487 		return REG_RAZ | REG_USER_WI;
1488 
1489 	return id_visibility(vcpu, r);
1490 }
1491 
1492 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1493 				   const struct sys_reg_desc *r)
1494 {
1495 	return REG_RAZ;
1496 }
1497 
1498 /* cpufeature ID register access trap handlers */
1499 
1500 static bool access_id_reg(struct kvm_vcpu *vcpu,
1501 			  struct sys_reg_params *p,
1502 			  const struct sys_reg_desc *r)
1503 {
1504 	if (p->is_write)
1505 		return write_to_read_only(vcpu, p, r);
1506 
1507 	p->regval = read_id_reg(vcpu, r);
1508 	if (vcpu_has_nv(vcpu))
1509 		access_nested_id_reg(vcpu, p, r);
1510 
1511 	return true;
1512 }
1513 
1514 /* Visibility overrides for SVE-specific control registers */
1515 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1516 				   const struct sys_reg_desc *rd)
1517 {
1518 	if (vcpu_has_sve(vcpu))
1519 		return 0;
1520 
1521 	return REG_HIDDEN;
1522 }
1523 
1524 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1525 					  const struct sys_reg_desc *rd)
1526 {
1527 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1528 
1529 	if (!vcpu_has_sve(vcpu))
1530 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1531 
1532 	/*
1533 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1534 	 * Although this is a per-CPU feature, we make it global because
1535 	 * asymmetric systems are just a nuisance.
1536 	 *
1537 	 * Userspace can override this as long as it doesn't promise
1538 	 * the impossible.
1539 	 */
1540 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1541 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1542 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1543 	}
1544 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1545 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1546 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1547 	}
1548 
1549 	if (kvm_vgic_global_state.type == VGIC_V3) {
1550 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1551 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1552 	}
1553 
1554 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1555 
1556 	return val;
1557 }
1558 
1559 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1560 ({									       \
1561 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1562 	(val) &= ~reg##_##field##_MASK;					       \
1563 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1564 			min(__f_val, (u64)reg##_##field##_##limit));	       \
1565 	(val);								       \
1566 })
1567 
1568 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1569 					  const struct sys_reg_desc *rd)
1570 {
1571 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1572 
1573 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1574 
1575 	/*
1576 	 * Only initialize the PMU version if the vCPU was configured with one.
1577 	 */
1578 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1579 	if (kvm_vcpu_has_pmu(vcpu))
1580 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1581 				      kvm_arm_pmu_get_pmuver_limit());
1582 
1583 	/* Hide SPE from guests */
1584 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1585 
1586 	return val;
1587 }
1588 
1589 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1590 			       const struct sys_reg_desc *rd,
1591 			       u64 val)
1592 {
1593 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1594 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1595 
1596 	/*
1597 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1598 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1599 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1600 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1601 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1602 	 *
1603 	 * At minimum, we're on the hook to allow values that were given to
1604 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1605 	 * with a more sensible NI. The value of an ID register changing under
1606 	 * the nose of the guest is unfortunate, but is certainly no more
1607 	 * surprising than an ill-guided PMU driver poking at impdef system
1608 	 * registers that end in an UNDEF...
1609 	 */
1610 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1611 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1612 
1613 	/*
1614 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1615 	 * nonzero minimum safe value.
1616 	 */
1617 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1618 		return -EINVAL;
1619 
1620 	return set_id_reg(vcpu, rd, val);
1621 }
1622 
1623 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1624 				      const struct sys_reg_desc *rd)
1625 {
1626 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1627 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1628 
1629 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1630 	if (kvm_vcpu_has_pmu(vcpu))
1631 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1632 
1633 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1634 
1635 	return val;
1636 }
1637 
1638 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1639 			   const struct sys_reg_desc *rd,
1640 			   u64 val)
1641 {
1642 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1643 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1644 
1645 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1646 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1647 		perfmon = 0;
1648 	}
1649 
1650 	/*
1651 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1652 	 * it doesn't promise more than what the HW gives us on the
1653 	 * AArch64 side (as everything is emulated with that), and
1654 	 * that this is a PMUv3.
1655 	 */
1656 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1657 		return -EINVAL;
1658 
1659 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1660 		return -EINVAL;
1661 
1662 	return set_id_reg(vcpu, rd, val);
1663 }
1664 
1665 /*
1666  * cpufeature ID register user accessors
1667  *
1668  * For now, these registers are immutable for userspace, so no values
1669  * are stored, and for set_id_reg() we don't allow the effective value
1670  * to be changed.
1671  */
1672 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1673 		      u64 *val)
1674 {
1675 	/*
1676 	 * Avoid locking if the VM has already started, as the ID registers are
1677 	 * guaranteed to be invariant at that point.
1678 	 */
1679 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1680 		*val = read_id_reg(vcpu, rd);
1681 		return 0;
1682 	}
1683 
1684 	mutex_lock(&vcpu->kvm->arch.config_lock);
1685 	*val = read_id_reg(vcpu, rd);
1686 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1687 
1688 	return 0;
1689 }
1690 
1691 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1692 		      u64 val)
1693 {
1694 	u32 id = reg_to_encoding(rd);
1695 	int ret;
1696 
1697 	mutex_lock(&vcpu->kvm->arch.config_lock);
1698 
1699 	/*
1700 	 * Once the VM has started the ID registers are immutable. Reject any
1701 	 * write that does not match the final register value.
1702 	 */
1703 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1704 		if (val != read_id_reg(vcpu, rd))
1705 			ret = -EBUSY;
1706 		else
1707 			ret = 0;
1708 
1709 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1710 		return ret;
1711 	}
1712 
1713 	ret = arm64_check_features(vcpu, rd, val);
1714 	if (!ret)
1715 		IDREG(vcpu->kvm, id) = val;
1716 
1717 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1718 
1719 	/*
1720 	 * arm64_check_features() returns -E2BIG to indicate the register's
1721 	 * feature set is a superset of the maximally-allowed register value.
1722 	 * While it would be nice to precisely describe this to userspace, the
1723 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1724 	 * writes return -EINVAL.
1725 	 */
1726 	if (ret == -E2BIG)
1727 		ret = -EINVAL;
1728 	return ret;
1729 }
1730 
1731 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1732 		       u64 *val)
1733 {
1734 	*val = 0;
1735 	return 0;
1736 }
1737 
1738 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1739 		      u64 val)
1740 {
1741 	return 0;
1742 }
1743 
1744 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1745 		       const struct sys_reg_desc *r)
1746 {
1747 	if (p->is_write)
1748 		return write_to_read_only(vcpu, p, r);
1749 
1750 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1751 	return true;
1752 }
1753 
1754 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1755 			 const struct sys_reg_desc *r)
1756 {
1757 	if (p->is_write)
1758 		return write_to_read_only(vcpu, p, r);
1759 
1760 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1761 	return true;
1762 }
1763 
1764 /*
1765  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1766  * by the physical CPU which the vcpu currently resides in.
1767  */
1768 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1769 {
1770 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1771 	u64 clidr;
1772 	u8 loc;
1773 
1774 	if ((ctr_el0 & CTR_EL0_IDC)) {
1775 		/*
1776 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1777 		 * will not be set and a unified cache, which will be marked as
1778 		 * LoC, will be added.
1779 		 *
1780 		 * If not DIC, let the unified cache L2 so that an instruction
1781 		 * cache can be added as L1 later.
1782 		 */
1783 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1784 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1785 	} else {
1786 		/*
1787 		 * Data cache clean to the PoU is required so let L1 have a data
1788 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1789 		 * it can be marked as LoC too.
1790 		 */
1791 		loc = 1;
1792 		clidr = 1 << CLIDR_LOUU_SHIFT;
1793 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1794 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1795 	}
1796 
1797 	/*
1798 	 * Instruction cache invalidation to the PoU is required so let L1 have
1799 	 * an instruction cache. If L1 already has a data cache, it will be
1800 	 * CACHE_TYPE_SEPARATE.
1801 	 */
1802 	if (!(ctr_el0 & CTR_EL0_DIC))
1803 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1804 
1805 	clidr |= loc << CLIDR_LOC_SHIFT;
1806 
1807 	/*
1808 	 * Add tag cache unified to data cache. Allocation tags and data are
1809 	 * unified in a cache line so that it looks valid even if there is only
1810 	 * one cache line.
1811 	 */
1812 	if (kvm_has_mte(vcpu->kvm))
1813 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1814 
1815 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1816 
1817 	return __vcpu_sys_reg(vcpu, r->reg);
1818 }
1819 
1820 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1821 		      u64 val)
1822 {
1823 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1824 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1825 
1826 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1827 		return -EINVAL;
1828 
1829 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1830 
1831 	return 0;
1832 }
1833 
1834 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1835 			  const struct sys_reg_desc *r)
1836 {
1837 	int reg = r->reg;
1838 
1839 	if (p->is_write)
1840 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1841 	else
1842 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1843 	return true;
1844 }
1845 
1846 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1847 			  const struct sys_reg_desc *r)
1848 {
1849 	u32 csselr;
1850 
1851 	if (p->is_write)
1852 		return write_to_read_only(vcpu, p, r);
1853 
1854 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1855 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1856 	if (csselr < CSSELR_MAX)
1857 		p->regval = get_ccsidr(vcpu, csselr);
1858 
1859 	return true;
1860 }
1861 
1862 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1863 				   const struct sys_reg_desc *rd)
1864 {
1865 	if (kvm_has_mte(vcpu->kvm))
1866 		return 0;
1867 
1868 	return REG_HIDDEN;
1869 }
1870 
1871 #define MTE_REG(name) {				\
1872 	SYS_DESC(SYS_##name),			\
1873 	.access = undef_access,			\
1874 	.reset = reset_unknown,			\
1875 	.reg = name,				\
1876 	.visibility = mte_visibility,		\
1877 }
1878 
1879 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1880 				   const struct sys_reg_desc *rd)
1881 {
1882 	if (vcpu_has_nv(vcpu))
1883 		return 0;
1884 
1885 	return REG_HIDDEN;
1886 }
1887 
1888 #define EL2_REG(name, acc, rst, v) {		\
1889 	SYS_DESC(SYS_##name),			\
1890 	.access = acc,				\
1891 	.reset = rst,				\
1892 	.reg = name,				\
1893 	.visibility = el2_visibility,		\
1894 	.val = v,				\
1895 }
1896 
1897 /*
1898  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1899  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1900  * handling traps. Given that, they are always hidden from userspace.
1901  */
1902 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
1903 					   const struct sys_reg_desc *rd)
1904 {
1905 	return REG_HIDDEN_USER;
1906 }
1907 
1908 #define EL12_REG(name, acc, rst, v) {		\
1909 	SYS_DESC(SYS_##name##_EL12),		\
1910 	.access = acc,				\
1911 	.reset = rst,				\
1912 	.reg = name##_EL1,			\
1913 	.val = v,				\
1914 	.visibility = hidden_user_visibility,	\
1915 }
1916 
1917 /*
1918  * Since reset() callback and field val are not used for idregs, they will be
1919  * used for specific purposes for idregs.
1920  * The reset() would return KVM sanitised register value. The value would be the
1921  * same as the host kernel sanitised value if there is no KVM sanitisation.
1922  * The val would be used as a mask indicating writable fields for the idreg.
1923  * Only bits with 1 are writable from userspace. This mask might not be
1924  * necessary in the future whenever all ID registers are enabled as writable
1925  * from userspace.
1926  */
1927 
1928 #define ID_DESC(name)				\
1929 	SYS_DESC(SYS_##name),			\
1930 	.access	= access_id_reg,		\
1931 	.get_user = get_id_reg			\
1932 
1933 /* sys_reg_desc initialiser for known cpufeature ID registers */
1934 #define ID_SANITISED(name) {			\
1935 	ID_DESC(name),				\
1936 	.set_user = set_id_reg,			\
1937 	.visibility = id_visibility,		\
1938 	.reset = kvm_read_sanitised_id_reg,	\
1939 	.val = 0,				\
1940 }
1941 
1942 /* sys_reg_desc initialiser for known cpufeature ID registers */
1943 #define AA32_ID_SANITISED(name) {		\
1944 	ID_DESC(name),				\
1945 	.set_user = set_id_reg,			\
1946 	.visibility = aa32_id_visibility,	\
1947 	.reset = kvm_read_sanitised_id_reg,	\
1948 	.val = 0,				\
1949 }
1950 
1951 /* sys_reg_desc initialiser for writable ID registers */
1952 #define ID_WRITABLE(name, mask) {		\
1953 	ID_DESC(name),				\
1954 	.set_user = set_id_reg,			\
1955 	.visibility = id_visibility,		\
1956 	.reset = kvm_read_sanitised_id_reg,	\
1957 	.val = mask,				\
1958 }
1959 
1960 /*
1961  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1962  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1963  * (1 <= crm < 8, 0 <= Op2 < 8).
1964  */
1965 #define ID_UNALLOCATED(crm, op2) {			\
1966 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1967 	.access = access_id_reg,			\
1968 	.get_user = get_id_reg,				\
1969 	.set_user = set_id_reg,				\
1970 	.visibility = raz_visibility,			\
1971 	.reset = kvm_read_sanitised_id_reg,		\
1972 	.val = 0,					\
1973 }
1974 
1975 /*
1976  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1977  * For now, these are exposed just like unallocated ID regs: they appear
1978  * RAZ for the guest.
1979  */
1980 #define ID_HIDDEN(name) {			\
1981 	ID_DESC(name),				\
1982 	.set_user = set_id_reg,			\
1983 	.visibility = raz_visibility,		\
1984 	.reset = kvm_read_sanitised_id_reg,	\
1985 	.val = 0,				\
1986 }
1987 
1988 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1989 			  struct sys_reg_params *p,
1990 			  const struct sys_reg_desc *r)
1991 {
1992 	if (p->is_write)
1993 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1994 	else
1995 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1996 
1997 	return true;
1998 }
1999 
2000 static bool access_elr(struct kvm_vcpu *vcpu,
2001 		       struct sys_reg_params *p,
2002 		       const struct sys_reg_desc *r)
2003 {
2004 	if (p->is_write)
2005 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2006 	else
2007 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2008 
2009 	return true;
2010 }
2011 
2012 static bool access_spsr(struct kvm_vcpu *vcpu,
2013 			struct sys_reg_params *p,
2014 			const struct sys_reg_desc *r)
2015 {
2016 	if (p->is_write)
2017 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2018 	else
2019 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2020 
2021 	return true;
2022 }
2023 
2024 /*
2025  * Architected system registers.
2026  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2027  *
2028  * Debug handling: We do trap most, if not all debug related system
2029  * registers. The implementation is good enough to ensure that a guest
2030  * can use these with minimal performance degradation. The drawback is
2031  * that we don't implement any of the external debug architecture.
2032  * This should be revisited if we ever encounter a more demanding
2033  * guest...
2034  */
2035 static const struct sys_reg_desc sys_reg_descs[] = {
2036 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2037 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2038 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2039 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2040 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2041 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2042 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2043 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2044 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2045 
2046 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2047 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2048 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2049 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2050 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2051 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2052 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2053 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2054 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2055 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2056 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2057 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2058 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2059 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2060 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2061 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2062 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2063 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2064 
2065 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2066 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2067 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2068 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2069 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2070 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2071 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2072 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2073 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2074 
2075 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2076 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2077 	// DBGDTR[TR]X_EL0 share the same encoding
2078 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2079 
2080 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2081 
2082 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2083 
2084 	/*
2085 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2086 	 * entries in arm64_ftr_regs[].
2087 	 */
2088 
2089 	/* AArch64 mappings of the AArch32 ID registers */
2090 	/* CRm=1 */
2091 	AA32_ID_SANITISED(ID_PFR0_EL1),
2092 	AA32_ID_SANITISED(ID_PFR1_EL1),
2093 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2094 	  .access = access_id_reg,
2095 	  .get_user = get_id_reg,
2096 	  .set_user = set_id_dfr0_el1,
2097 	  .visibility = aa32_id_visibility,
2098 	  .reset = read_sanitised_id_dfr0_el1,
2099 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2100 		 ID_DFR0_EL1_CopDbg_MASK, },
2101 	ID_HIDDEN(ID_AFR0_EL1),
2102 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2103 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2104 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2105 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2106 
2107 	/* CRm=2 */
2108 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2109 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2110 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2111 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2112 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2113 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2114 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2115 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2116 
2117 	/* CRm=3 */
2118 	AA32_ID_SANITISED(MVFR0_EL1),
2119 	AA32_ID_SANITISED(MVFR1_EL1),
2120 	AA32_ID_SANITISED(MVFR2_EL1),
2121 	ID_UNALLOCATED(3,3),
2122 	AA32_ID_SANITISED(ID_PFR2_EL1),
2123 	ID_HIDDEN(ID_DFR1_EL1),
2124 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2125 	ID_UNALLOCATED(3,7),
2126 
2127 	/* AArch64 ID registers */
2128 	/* CRm=4 */
2129 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2130 	  .access = access_id_reg,
2131 	  .get_user = get_id_reg,
2132 	  .set_user = set_id_reg,
2133 	  .reset = read_sanitised_id_aa64pfr0_el1,
2134 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2135 		   ID_AA64PFR0_EL1_MPAM |
2136 		   ID_AA64PFR0_EL1_SVE |
2137 		   ID_AA64PFR0_EL1_RAS |
2138 		   ID_AA64PFR0_EL1_GIC |
2139 		   ID_AA64PFR0_EL1_AdvSIMD |
2140 		   ID_AA64PFR0_EL1_FP), },
2141 	ID_SANITISED(ID_AA64PFR1_EL1),
2142 	ID_UNALLOCATED(4,2),
2143 	ID_UNALLOCATED(4,3),
2144 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2145 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2146 	ID_UNALLOCATED(4,6),
2147 	ID_UNALLOCATED(4,7),
2148 
2149 	/* CRm=5 */
2150 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2151 	  .access = access_id_reg,
2152 	  .get_user = get_id_reg,
2153 	  .set_user = set_id_aa64dfr0_el1,
2154 	  .reset = read_sanitised_id_aa64dfr0_el1,
2155 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2156 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2157 	ID_SANITISED(ID_AA64DFR1_EL1),
2158 	ID_UNALLOCATED(5,2),
2159 	ID_UNALLOCATED(5,3),
2160 	ID_HIDDEN(ID_AA64AFR0_EL1),
2161 	ID_HIDDEN(ID_AA64AFR1_EL1),
2162 	ID_UNALLOCATED(5,6),
2163 	ID_UNALLOCATED(5,7),
2164 
2165 	/* CRm=6 */
2166 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2167 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2168 					ID_AA64ISAR1_EL1_GPA |
2169 					ID_AA64ISAR1_EL1_API |
2170 					ID_AA64ISAR1_EL1_APA)),
2171 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2172 					ID_AA64ISAR2_EL1_APA3 |
2173 					ID_AA64ISAR2_EL1_GPA3)),
2174 	ID_UNALLOCATED(6,3),
2175 	ID_UNALLOCATED(6,4),
2176 	ID_UNALLOCATED(6,5),
2177 	ID_UNALLOCATED(6,6),
2178 	ID_UNALLOCATED(6,7),
2179 
2180 	/* CRm=7 */
2181 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2182 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2183 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2184 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2185 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2186 					ID_AA64MMFR1_EL1_HCX |
2187 					ID_AA64MMFR1_EL1_XNX |
2188 					ID_AA64MMFR1_EL1_TWED |
2189 					ID_AA64MMFR1_EL1_XNX |
2190 					ID_AA64MMFR1_EL1_VH |
2191 					ID_AA64MMFR1_EL1_VMIDBits)),
2192 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2193 					ID_AA64MMFR2_EL1_EVT |
2194 					ID_AA64MMFR2_EL1_FWB |
2195 					ID_AA64MMFR2_EL1_IDS |
2196 					ID_AA64MMFR2_EL1_NV |
2197 					ID_AA64MMFR2_EL1_CCIDX)),
2198 	ID_SANITISED(ID_AA64MMFR3_EL1),
2199 	ID_UNALLOCATED(7,4),
2200 	ID_UNALLOCATED(7,5),
2201 	ID_UNALLOCATED(7,6),
2202 	ID_UNALLOCATED(7,7),
2203 
2204 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2205 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2206 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2207 
2208 	MTE_REG(RGSR_EL1),
2209 	MTE_REG(GCR_EL1),
2210 
2211 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2212 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2213 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2214 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2215 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2216 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2217 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2218 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2219 
2220 	PTRAUTH_KEY(APIA),
2221 	PTRAUTH_KEY(APIB),
2222 	PTRAUTH_KEY(APDA),
2223 	PTRAUTH_KEY(APDB),
2224 	PTRAUTH_KEY(APGA),
2225 
2226 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2227 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2228 
2229 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2230 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2231 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2232 
2233 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2234 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2235 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2236 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2237 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2238 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2239 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2240 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2241 
2242 	MTE_REG(TFSR_EL1),
2243 	MTE_REG(TFSRE0_EL1),
2244 
2245 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2246 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2247 
2248 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2249 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2250 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2251 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2252 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2253 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2254 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2255 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2256 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2257 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2258 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2259 	/* PMBIDR_EL1 is not trapped */
2260 
2261 	{ PMU_SYS_REG(PMINTENSET_EL1),
2262 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2263 	  .get_user = get_pmreg, .set_user = set_pmreg },
2264 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2265 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2266 	  .get_user = get_pmreg, .set_user = set_pmreg },
2267 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2268 
2269 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2270 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2271 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2272 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2273 
2274 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2275 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2276 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2277 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2278 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2279 
2280 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2281 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2282 
2283 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2284 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2285 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2286 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2287 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2288 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2289 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2290 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2291 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2292 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2293 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2294 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2295 
2296 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2297 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2298 
2299 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2300 
2301 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2302 
2303 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2304 
2305 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2306 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2307 	  .set_user = set_clidr },
2308 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2309 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2310 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2311 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2312 	{ SYS_DESC(SYS_SVCR), undef_access },
2313 
2314 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2315 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2316 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2317 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2318 	  .get_user = get_pmreg, .set_user = set_pmreg },
2319 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2320 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2321 	  .get_user = get_pmreg, .set_user = set_pmreg },
2322 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2323 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2324 	  .get_user = get_pmreg, .set_user = set_pmreg },
2325 	/*
2326 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2327 	 * previously (and pointlessly) advertised in the past...
2328 	 */
2329 	{ PMU_SYS_REG(PMSWINC_EL0),
2330 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2331 	  .access = access_pmswinc, .reset = NULL },
2332 	{ PMU_SYS_REG(PMSELR_EL0),
2333 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2334 	{ PMU_SYS_REG(PMCEID0_EL0),
2335 	  .access = access_pmceid, .reset = NULL },
2336 	{ PMU_SYS_REG(PMCEID1_EL0),
2337 	  .access = access_pmceid, .reset = NULL },
2338 	{ PMU_SYS_REG(PMCCNTR_EL0),
2339 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2340 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2341 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2342 	  .access = access_pmu_evtyper, .reset = NULL },
2343 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2344 	  .access = access_pmu_evcntr, .reset = NULL },
2345 	/*
2346 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2347 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2348 	 */
2349 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2350 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2351 	{ PMU_SYS_REG(PMOVSSET_EL0),
2352 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2353 	  .get_user = get_pmreg, .set_user = set_pmreg },
2354 
2355 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2356 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2357 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2358 
2359 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2360 
2361 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2362 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2363 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2364 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2365 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2366 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2367 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2368 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2369 	AMU_AMEVCNTR0_EL0(0),
2370 	AMU_AMEVCNTR0_EL0(1),
2371 	AMU_AMEVCNTR0_EL0(2),
2372 	AMU_AMEVCNTR0_EL0(3),
2373 	AMU_AMEVCNTR0_EL0(4),
2374 	AMU_AMEVCNTR0_EL0(5),
2375 	AMU_AMEVCNTR0_EL0(6),
2376 	AMU_AMEVCNTR0_EL0(7),
2377 	AMU_AMEVCNTR0_EL0(8),
2378 	AMU_AMEVCNTR0_EL0(9),
2379 	AMU_AMEVCNTR0_EL0(10),
2380 	AMU_AMEVCNTR0_EL0(11),
2381 	AMU_AMEVCNTR0_EL0(12),
2382 	AMU_AMEVCNTR0_EL0(13),
2383 	AMU_AMEVCNTR0_EL0(14),
2384 	AMU_AMEVCNTR0_EL0(15),
2385 	AMU_AMEVTYPER0_EL0(0),
2386 	AMU_AMEVTYPER0_EL0(1),
2387 	AMU_AMEVTYPER0_EL0(2),
2388 	AMU_AMEVTYPER0_EL0(3),
2389 	AMU_AMEVTYPER0_EL0(4),
2390 	AMU_AMEVTYPER0_EL0(5),
2391 	AMU_AMEVTYPER0_EL0(6),
2392 	AMU_AMEVTYPER0_EL0(7),
2393 	AMU_AMEVTYPER0_EL0(8),
2394 	AMU_AMEVTYPER0_EL0(9),
2395 	AMU_AMEVTYPER0_EL0(10),
2396 	AMU_AMEVTYPER0_EL0(11),
2397 	AMU_AMEVTYPER0_EL0(12),
2398 	AMU_AMEVTYPER0_EL0(13),
2399 	AMU_AMEVTYPER0_EL0(14),
2400 	AMU_AMEVTYPER0_EL0(15),
2401 	AMU_AMEVCNTR1_EL0(0),
2402 	AMU_AMEVCNTR1_EL0(1),
2403 	AMU_AMEVCNTR1_EL0(2),
2404 	AMU_AMEVCNTR1_EL0(3),
2405 	AMU_AMEVCNTR1_EL0(4),
2406 	AMU_AMEVCNTR1_EL0(5),
2407 	AMU_AMEVCNTR1_EL0(6),
2408 	AMU_AMEVCNTR1_EL0(7),
2409 	AMU_AMEVCNTR1_EL0(8),
2410 	AMU_AMEVCNTR1_EL0(9),
2411 	AMU_AMEVCNTR1_EL0(10),
2412 	AMU_AMEVCNTR1_EL0(11),
2413 	AMU_AMEVCNTR1_EL0(12),
2414 	AMU_AMEVCNTR1_EL0(13),
2415 	AMU_AMEVCNTR1_EL0(14),
2416 	AMU_AMEVCNTR1_EL0(15),
2417 	AMU_AMEVTYPER1_EL0(0),
2418 	AMU_AMEVTYPER1_EL0(1),
2419 	AMU_AMEVTYPER1_EL0(2),
2420 	AMU_AMEVTYPER1_EL0(3),
2421 	AMU_AMEVTYPER1_EL0(4),
2422 	AMU_AMEVTYPER1_EL0(5),
2423 	AMU_AMEVTYPER1_EL0(6),
2424 	AMU_AMEVTYPER1_EL0(7),
2425 	AMU_AMEVTYPER1_EL0(8),
2426 	AMU_AMEVTYPER1_EL0(9),
2427 	AMU_AMEVTYPER1_EL0(10),
2428 	AMU_AMEVTYPER1_EL0(11),
2429 	AMU_AMEVTYPER1_EL0(12),
2430 	AMU_AMEVTYPER1_EL0(13),
2431 	AMU_AMEVTYPER1_EL0(14),
2432 	AMU_AMEVTYPER1_EL0(15),
2433 
2434 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2435 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2436 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2437 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2438 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2439 
2440 	/* PMEVCNTRn_EL0 */
2441 	PMU_PMEVCNTR_EL0(0),
2442 	PMU_PMEVCNTR_EL0(1),
2443 	PMU_PMEVCNTR_EL0(2),
2444 	PMU_PMEVCNTR_EL0(3),
2445 	PMU_PMEVCNTR_EL0(4),
2446 	PMU_PMEVCNTR_EL0(5),
2447 	PMU_PMEVCNTR_EL0(6),
2448 	PMU_PMEVCNTR_EL0(7),
2449 	PMU_PMEVCNTR_EL0(8),
2450 	PMU_PMEVCNTR_EL0(9),
2451 	PMU_PMEVCNTR_EL0(10),
2452 	PMU_PMEVCNTR_EL0(11),
2453 	PMU_PMEVCNTR_EL0(12),
2454 	PMU_PMEVCNTR_EL0(13),
2455 	PMU_PMEVCNTR_EL0(14),
2456 	PMU_PMEVCNTR_EL0(15),
2457 	PMU_PMEVCNTR_EL0(16),
2458 	PMU_PMEVCNTR_EL0(17),
2459 	PMU_PMEVCNTR_EL0(18),
2460 	PMU_PMEVCNTR_EL0(19),
2461 	PMU_PMEVCNTR_EL0(20),
2462 	PMU_PMEVCNTR_EL0(21),
2463 	PMU_PMEVCNTR_EL0(22),
2464 	PMU_PMEVCNTR_EL0(23),
2465 	PMU_PMEVCNTR_EL0(24),
2466 	PMU_PMEVCNTR_EL0(25),
2467 	PMU_PMEVCNTR_EL0(26),
2468 	PMU_PMEVCNTR_EL0(27),
2469 	PMU_PMEVCNTR_EL0(28),
2470 	PMU_PMEVCNTR_EL0(29),
2471 	PMU_PMEVCNTR_EL0(30),
2472 	/* PMEVTYPERn_EL0 */
2473 	PMU_PMEVTYPER_EL0(0),
2474 	PMU_PMEVTYPER_EL0(1),
2475 	PMU_PMEVTYPER_EL0(2),
2476 	PMU_PMEVTYPER_EL0(3),
2477 	PMU_PMEVTYPER_EL0(4),
2478 	PMU_PMEVTYPER_EL0(5),
2479 	PMU_PMEVTYPER_EL0(6),
2480 	PMU_PMEVTYPER_EL0(7),
2481 	PMU_PMEVTYPER_EL0(8),
2482 	PMU_PMEVTYPER_EL0(9),
2483 	PMU_PMEVTYPER_EL0(10),
2484 	PMU_PMEVTYPER_EL0(11),
2485 	PMU_PMEVTYPER_EL0(12),
2486 	PMU_PMEVTYPER_EL0(13),
2487 	PMU_PMEVTYPER_EL0(14),
2488 	PMU_PMEVTYPER_EL0(15),
2489 	PMU_PMEVTYPER_EL0(16),
2490 	PMU_PMEVTYPER_EL0(17),
2491 	PMU_PMEVTYPER_EL0(18),
2492 	PMU_PMEVTYPER_EL0(19),
2493 	PMU_PMEVTYPER_EL0(20),
2494 	PMU_PMEVTYPER_EL0(21),
2495 	PMU_PMEVTYPER_EL0(22),
2496 	PMU_PMEVTYPER_EL0(23),
2497 	PMU_PMEVTYPER_EL0(24),
2498 	PMU_PMEVTYPER_EL0(25),
2499 	PMU_PMEVTYPER_EL0(26),
2500 	PMU_PMEVTYPER_EL0(27),
2501 	PMU_PMEVTYPER_EL0(28),
2502 	PMU_PMEVTYPER_EL0(29),
2503 	PMU_PMEVTYPER_EL0(30),
2504 	/*
2505 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2506 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2507 	 */
2508 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2509 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2510 
2511 	EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2512 	EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2513 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2514 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2515 	EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2516 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2517 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2518 	EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2519 	EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2520 	EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2521 	EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
2522 	EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2523 
2524 	EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2525 
2526 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2527 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2528 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2529 	EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2530 	EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2531 
2532 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2533 	EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2534 	EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
2535 	EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2536 	EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2537 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2538 
2539 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2540 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2541 	  .visibility = hidden_user_visibility },
2542 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2543 	  .visibility = hidden_user_visibility },
2544 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2545 	  .visibility = hidden_user_visibility },
2546 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2547 	  .visibility = hidden_user_visibility },
2548 
2549 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2550 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2551 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2552 	EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2553 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2554 
2555 	EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2556 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2557 
2558 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2559 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2560 
2561 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2562 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2563 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2564 
2565 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2566 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2567 
2568 	EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2569 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2570 
2571 	EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2572 	EL12_REG(CPACR, access_rw, reset_val, 0),
2573 	EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2574 	EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2575 	EL12_REG(TCR, access_vm_reg, reset_val, 0),
2576 	{ SYS_DESC(SYS_SPSR_EL12), access_spsr},
2577 	{ SYS_DESC(SYS_ELR_EL12), access_elr},
2578 	EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2579 	EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2580 	EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2581 	EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2582 	EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2583 	EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2584 	EL12_REG(VBAR, access_rw, reset_val, 0),
2585 	EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2586 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2587 
2588 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2589 };
2590 
2591 static const struct sys_reg_desc *first_idreg;
2592 
2593 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2594 			struct sys_reg_params *p,
2595 			const struct sys_reg_desc *r)
2596 {
2597 	if (p->is_write) {
2598 		return ignore_write(vcpu, p);
2599 	} else {
2600 		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2601 		u64 pfr = IDREG(vcpu->kvm, SYS_ID_AA64PFR0_EL1);
2602 		u32 el3 = !!SYS_FIELD_GET(ID_AA64PFR0_EL1, EL3, pfr);
2603 
2604 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2605 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2606 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2607 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2608 			     (1 << 15) | (el3 << 14) | (el3 << 12));
2609 		return true;
2610 	}
2611 }
2612 
2613 /*
2614  * AArch32 debug register mappings
2615  *
2616  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2617  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2618  *
2619  * None of the other registers share their location, so treat them as
2620  * if they were 64bit.
2621  */
2622 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2623 	/* DBGBVRn */							      \
2624 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2625 	/* DBGBCRn */							      \
2626 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2627 	/* DBGWVRn */							      \
2628 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2629 	/* DBGWCRn */							      \
2630 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2631 
2632 #define DBGBXVR(n)							      \
2633 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2634 
2635 /*
2636  * Trapped cp14 registers. We generally ignore most of the external
2637  * debug, on the principle that they don't really make sense to a
2638  * guest. Revisit this one day, would this principle change.
2639  */
2640 static const struct sys_reg_desc cp14_regs[] = {
2641 	/* DBGDIDR */
2642 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2643 	/* DBGDTRRXext */
2644 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2645 
2646 	DBG_BCR_BVR_WCR_WVR(0),
2647 	/* DBGDSCRint */
2648 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2649 	DBG_BCR_BVR_WCR_WVR(1),
2650 	/* DBGDCCINT */
2651 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2652 	/* DBGDSCRext */
2653 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2654 	DBG_BCR_BVR_WCR_WVR(2),
2655 	/* DBGDTR[RT]Xint */
2656 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2657 	/* DBGDTR[RT]Xext */
2658 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2659 	DBG_BCR_BVR_WCR_WVR(3),
2660 	DBG_BCR_BVR_WCR_WVR(4),
2661 	DBG_BCR_BVR_WCR_WVR(5),
2662 	/* DBGWFAR */
2663 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2664 	/* DBGOSECCR */
2665 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2666 	DBG_BCR_BVR_WCR_WVR(6),
2667 	/* DBGVCR */
2668 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2669 	DBG_BCR_BVR_WCR_WVR(7),
2670 	DBG_BCR_BVR_WCR_WVR(8),
2671 	DBG_BCR_BVR_WCR_WVR(9),
2672 	DBG_BCR_BVR_WCR_WVR(10),
2673 	DBG_BCR_BVR_WCR_WVR(11),
2674 	DBG_BCR_BVR_WCR_WVR(12),
2675 	DBG_BCR_BVR_WCR_WVR(13),
2676 	DBG_BCR_BVR_WCR_WVR(14),
2677 	DBG_BCR_BVR_WCR_WVR(15),
2678 
2679 	/* DBGDRAR (32bit) */
2680 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2681 
2682 	DBGBXVR(0),
2683 	/* DBGOSLAR */
2684 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2685 	DBGBXVR(1),
2686 	/* DBGOSLSR */
2687 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2688 	DBGBXVR(2),
2689 	DBGBXVR(3),
2690 	/* DBGOSDLR */
2691 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2692 	DBGBXVR(4),
2693 	/* DBGPRCR */
2694 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2695 	DBGBXVR(5),
2696 	DBGBXVR(6),
2697 	DBGBXVR(7),
2698 	DBGBXVR(8),
2699 	DBGBXVR(9),
2700 	DBGBXVR(10),
2701 	DBGBXVR(11),
2702 	DBGBXVR(12),
2703 	DBGBXVR(13),
2704 	DBGBXVR(14),
2705 	DBGBXVR(15),
2706 
2707 	/* DBGDSAR (32bit) */
2708 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2709 
2710 	/* DBGDEVID2 */
2711 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2712 	/* DBGDEVID1 */
2713 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2714 	/* DBGDEVID */
2715 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2716 	/* DBGCLAIMSET */
2717 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2718 	/* DBGCLAIMCLR */
2719 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2720 	/* DBGAUTHSTATUS */
2721 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2722 };
2723 
2724 /* Trapped cp14 64bit registers */
2725 static const struct sys_reg_desc cp14_64_regs[] = {
2726 	/* DBGDRAR (64bit) */
2727 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2728 
2729 	/* DBGDSAR (64bit) */
2730 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2731 };
2732 
2733 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2734 	AA32(_map),							\
2735 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2736 	.visibility = pmu_visibility
2737 
2738 /* Macro to expand the PMEVCNTRn register */
2739 #define PMU_PMEVCNTR(n)							\
2740 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2741 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2742 	  .access = access_pmu_evcntr }
2743 
2744 /* Macro to expand the PMEVTYPERn register */
2745 #define PMU_PMEVTYPER(n)						\
2746 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2747 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2748 	  .access = access_pmu_evtyper }
2749 /*
2750  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2751  * depending on the way they are accessed (as a 32bit or a 64bit
2752  * register).
2753  */
2754 static const struct sys_reg_desc cp15_regs[] = {
2755 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2756 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2757 	/* ACTLR */
2758 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2759 	/* ACTLR2 */
2760 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2761 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2762 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2763 	/* TTBCR */
2764 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2765 	/* TTBCR2 */
2766 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2767 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2768 	/* DFSR */
2769 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2770 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2771 	/* ADFSR */
2772 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2773 	/* AIFSR */
2774 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2775 	/* DFAR */
2776 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2777 	/* IFAR */
2778 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2779 
2780 	/*
2781 	 * DC{C,I,CI}SW operations:
2782 	 */
2783 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2784 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2785 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2786 
2787 	/* PMU */
2788 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2789 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2790 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2791 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2792 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2793 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2794 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2795 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2796 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2797 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2798 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2799 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2800 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2801 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2802 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2803 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
2804 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
2805 	/* PMMIR */
2806 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2807 
2808 	/* PRRR/MAIR0 */
2809 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2810 	/* NMRR/MAIR1 */
2811 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2812 	/* AMAIR0 */
2813 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2814 	/* AMAIR1 */
2815 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2816 
2817 	/* ICC_SRE */
2818 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2819 
2820 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2821 
2822 	/* Arch Tmers */
2823 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2824 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2825 
2826 	/* PMEVCNTRn */
2827 	PMU_PMEVCNTR(0),
2828 	PMU_PMEVCNTR(1),
2829 	PMU_PMEVCNTR(2),
2830 	PMU_PMEVCNTR(3),
2831 	PMU_PMEVCNTR(4),
2832 	PMU_PMEVCNTR(5),
2833 	PMU_PMEVCNTR(6),
2834 	PMU_PMEVCNTR(7),
2835 	PMU_PMEVCNTR(8),
2836 	PMU_PMEVCNTR(9),
2837 	PMU_PMEVCNTR(10),
2838 	PMU_PMEVCNTR(11),
2839 	PMU_PMEVCNTR(12),
2840 	PMU_PMEVCNTR(13),
2841 	PMU_PMEVCNTR(14),
2842 	PMU_PMEVCNTR(15),
2843 	PMU_PMEVCNTR(16),
2844 	PMU_PMEVCNTR(17),
2845 	PMU_PMEVCNTR(18),
2846 	PMU_PMEVCNTR(19),
2847 	PMU_PMEVCNTR(20),
2848 	PMU_PMEVCNTR(21),
2849 	PMU_PMEVCNTR(22),
2850 	PMU_PMEVCNTR(23),
2851 	PMU_PMEVCNTR(24),
2852 	PMU_PMEVCNTR(25),
2853 	PMU_PMEVCNTR(26),
2854 	PMU_PMEVCNTR(27),
2855 	PMU_PMEVCNTR(28),
2856 	PMU_PMEVCNTR(29),
2857 	PMU_PMEVCNTR(30),
2858 	/* PMEVTYPERn */
2859 	PMU_PMEVTYPER(0),
2860 	PMU_PMEVTYPER(1),
2861 	PMU_PMEVTYPER(2),
2862 	PMU_PMEVTYPER(3),
2863 	PMU_PMEVTYPER(4),
2864 	PMU_PMEVTYPER(5),
2865 	PMU_PMEVTYPER(6),
2866 	PMU_PMEVTYPER(7),
2867 	PMU_PMEVTYPER(8),
2868 	PMU_PMEVTYPER(9),
2869 	PMU_PMEVTYPER(10),
2870 	PMU_PMEVTYPER(11),
2871 	PMU_PMEVTYPER(12),
2872 	PMU_PMEVTYPER(13),
2873 	PMU_PMEVTYPER(14),
2874 	PMU_PMEVTYPER(15),
2875 	PMU_PMEVTYPER(16),
2876 	PMU_PMEVTYPER(17),
2877 	PMU_PMEVTYPER(18),
2878 	PMU_PMEVTYPER(19),
2879 	PMU_PMEVTYPER(20),
2880 	PMU_PMEVTYPER(21),
2881 	PMU_PMEVTYPER(22),
2882 	PMU_PMEVTYPER(23),
2883 	PMU_PMEVTYPER(24),
2884 	PMU_PMEVTYPER(25),
2885 	PMU_PMEVTYPER(26),
2886 	PMU_PMEVTYPER(27),
2887 	PMU_PMEVTYPER(28),
2888 	PMU_PMEVTYPER(29),
2889 	PMU_PMEVTYPER(30),
2890 	/* PMCCFILTR */
2891 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2892 
2893 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2894 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2895 
2896 	/* CCSIDR2 */
2897 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
2898 
2899 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2900 };
2901 
2902 static const struct sys_reg_desc cp15_64_regs[] = {
2903 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2904 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2905 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2906 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
2907 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2908 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2909 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2910 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2911 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
2912 };
2913 
2914 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2915 			       bool is_32)
2916 {
2917 	unsigned int i;
2918 
2919 	for (i = 0; i < n; i++) {
2920 		if (!is_32 && table[i].reg && !table[i].reset) {
2921 			kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2922 			return false;
2923 		}
2924 
2925 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2926 			kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2927 			return false;
2928 		}
2929 	}
2930 
2931 	return true;
2932 }
2933 
2934 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2935 {
2936 	kvm_inject_undefined(vcpu);
2937 	return 1;
2938 }
2939 
2940 static void perform_access(struct kvm_vcpu *vcpu,
2941 			   struct sys_reg_params *params,
2942 			   const struct sys_reg_desc *r)
2943 {
2944 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2945 
2946 	/* Check for regs disabled by runtime config */
2947 	if (sysreg_hidden(vcpu, r)) {
2948 		kvm_inject_undefined(vcpu);
2949 		return;
2950 	}
2951 
2952 	/*
2953 	 * Not having an accessor means that we have configured a trap
2954 	 * that we don't know how to handle. This certainly qualifies
2955 	 * as a gross bug that should be fixed right away.
2956 	 */
2957 	BUG_ON(!r->access);
2958 
2959 	/* Skip instruction if instructed so */
2960 	if (likely(r->access(vcpu, params, r)))
2961 		kvm_incr_pc(vcpu);
2962 }
2963 
2964 /*
2965  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2966  *                call the corresponding trap handler.
2967  *
2968  * @params: pointer to the descriptor of the access
2969  * @table: array of trap descriptors
2970  * @num: size of the trap descriptor array
2971  *
2972  * Return true if the access has been handled, false if not.
2973  */
2974 static bool emulate_cp(struct kvm_vcpu *vcpu,
2975 		       struct sys_reg_params *params,
2976 		       const struct sys_reg_desc *table,
2977 		       size_t num)
2978 {
2979 	const struct sys_reg_desc *r;
2980 
2981 	if (!table)
2982 		return false;	/* Not handled */
2983 
2984 	r = find_reg(params, table, num);
2985 
2986 	if (r) {
2987 		perform_access(vcpu, params, r);
2988 		return true;
2989 	}
2990 
2991 	/* Not handled */
2992 	return false;
2993 }
2994 
2995 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2996 				struct sys_reg_params *params)
2997 {
2998 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2999 	int cp = -1;
3000 
3001 	switch (esr_ec) {
3002 	case ESR_ELx_EC_CP15_32:
3003 	case ESR_ELx_EC_CP15_64:
3004 		cp = 15;
3005 		break;
3006 	case ESR_ELx_EC_CP14_MR:
3007 	case ESR_ELx_EC_CP14_64:
3008 		cp = 14;
3009 		break;
3010 	default:
3011 		WARN_ON(1);
3012 	}
3013 
3014 	print_sys_reg_msg(params,
3015 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3016 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3017 	kvm_inject_undefined(vcpu);
3018 }
3019 
3020 /**
3021  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3022  * @vcpu: The VCPU pointer
3023  * @run:  The kvm_run struct
3024  */
3025 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3026 			    const struct sys_reg_desc *global,
3027 			    size_t nr_global)
3028 {
3029 	struct sys_reg_params params;
3030 	u64 esr = kvm_vcpu_get_esr(vcpu);
3031 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3032 	int Rt2 = (esr >> 10) & 0x1f;
3033 
3034 	params.CRm = (esr >> 1) & 0xf;
3035 	params.is_write = ((esr & 1) == 0);
3036 
3037 	params.Op0 = 0;
3038 	params.Op1 = (esr >> 16) & 0xf;
3039 	params.Op2 = 0;
3040 	params.CRn = 0;
3041 
3042 	/*
3043 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3044 	 * backends between AArch32 and AArch64, we get away with it.
3045 	 */
3046 	if (params.is_write) {
3047 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3048 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3049 	}
3050 
3051 	/*
3052 	 * If the table contains a handler, handle the
3053 	 * potential register operation in the case of a read and return
3054 	 * with success.
3055 	 */
3056 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3057 		/* Split up the value between registers for the read side */
3058 		if (!params.is_write) {
3059 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3060 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3061 		}
3062 
3063 		return 1;
3064 	}
3065 
3066 	unhandled_cp_access(vcpu, &params);
3067 	return 1;
3068 }
3069 
3070 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3071 
3072 /*
3073  * The CP10 ID registers are architecturally mapped to AArch64 feature
3074  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3075  * from AArch32.
3076  */
3077 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3078 {
3079 	u8 reg_id = (esr >> 10) & 0xf;
3080 	bool valid;
3081 
3082 	params->is_write = ((esr & 1) == 0);
3083 	params->Op0 = 3;
3084 	params->Op1 = 0;
3085 	params->CRn = 0;
3086 	params->CRm = 3;
3087 
3088 	/* CP10 ID registers are read-only */
3089 	valid = !params->is_write;
3090 
3091 	switch (reg_id) {
3092 	/* MVFR0 */
3093 	case 0b0111:
3094 		params->Op2 = 0;
3095 		break;
3096 	/* MVFR1 */
3097 	case 0b0110:
3098 		params->Op2 = 1;
3099 		break;
3100 	/* MVFR2 */
3101 	case 0b0101:
3102 		params->Op2 = 2;
3103 		break;
3104 	default:
3105 		valid = false;
3106 	}
3107 
3108 	if (valid)
3109 		return true;
3110 
3111 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3112 		      params->is_write ? "write" : "read", reg_id);
3113 	return false;
3114 }
3115 
3116 /**
3117  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3118  *			  VFP Register' from AArch32.
3119  * @vcpu: The vCPU pointer
3120  *
3121  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3122  * Work out the correct AArch64 system register encoding and reroute to the
3123  * AArch64 system register emulation.
3124  */
3125 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3126 {
3127 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3128 	u64 esr = kvm_vcpu_get_esr(vcpu);
3129 	struct sys_reg_params params;
3130 
3131 	/* UNDEF on any unhandled register access */
3132 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3133 		kvm_inject_undefined(vcpu);
3134 		return 1;
3135 	}
3136 
3137 	if (emulate_sys_reg(vcpu, &params))
3138 		vcpu_set_reg(vcpu, Rt, params.regval);
3139 
3140 	return 1;
3141 }
3142 
3143 /**
3144  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3145  *			       CRn=0, which corresponds to the AArch32 feature
3146  *			       registers.
3147  * @vcpu: the vCPU pointer
3148  * @params: the system register access parameters.
3149  *
3150  * Our cp15 system register tables do not enumerate the AArch32 feature
3151  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3152  * register encoding can be trivially remapped into the AArch64 for the feature
3153  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3154  *
3155  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3156  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3157  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3158  * treat undefined registers in this range as RAZ.
3159  */
3160 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3161 				   struct sys_reg_params *params)
3162 {
3163 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3164 
3165 	/* Treat impossible writes to RO registers as UNDEFINED */
3166 	if (params->is_write) {
3167 		unhandled_cp_access(vcpu, params);
3168 		return 1;
3169 	}
3170 
3171 	params->Op0 = 3;
3172 
3173 	/*
3174 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3175 	 * Avoid conflicting with future expansion of AArch64 feature registers
3176 	 * and simply treat them as RAZ here.
3177 	 */
3178 	if (params->CRm > 3)
3179 		params->regval = 0;
3180 	else if (!emulate_sys_reg(vcpu, params))
3181 		return 1;
3182 
3183 	vcpu_set_reg(vcpu, Rt, params->regval);
3184 	return 1;
3185 }
3186 
3187 /**
3188  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3189  * @vcpu: The VCPU pointer
3190  * @run:  The kvm_run struct
3191  */
3192 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3193 			    struct sys_reg_params *params,
3194 			    const struct sys_reg_desc *global,
3195 			    size_t nr_global)
3196 {
3197 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3198 
3199 	params->regval = vcpu_get_reg(vcpu, Rt);
3200 
3201 	if (emulate_cp(vcpu, params, global, nr_global)) {
3202 		if (!params->is_write)
3203 			vcpu_set_reg(vcpu, Rt, params->regval);
3204 		return 1;
3205 	}
3206 
3207 	unhandled_cp_access(vcpu, params);
3208 	return 1;
3209 }
3210 
3211 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3212 {
3213 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3214 }
3215 
3216 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3217 {
3218 	struct sys_reg_params params;
3219 
3220 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3221 
3222 	/*
3223 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3224 	 * system register table. Registers in the ID range where CRm=0 are
3225 	 * excluded from this scheme as they do not trivially map into AArch64
3226 	 * system register encodings.
3227 	 */
3228 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3229 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3230 
3231 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3232 }
3233 
3234 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3235 {
3236 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3237 }
3238 
3239 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3240 {
3241 	struct sys_reg_params params;
3242 
3243 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3244 
3245 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3246 }
3247 
3248 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3249 {
3250 	// See ARM DDI 0487E.a, section D12.3.2
3251 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3252 }
3253 
3254 /**
3255  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3256  * @vcpu: The VCPU pointer
3257  * @params: Decoded system register parameters
3258  *
3259  * Return: true if the system register access was successful, false otherwise.
3260  */
3261 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3262 			   struct sys_reg_params *params)
3263 {
3264 	const struct sys_reg_desc *r;
3265 
3266 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3267 
3268 	if (likely(r)) {
3269 		perform_access(vcpu, params, r);
3270 		return true;
3271 	}
3272 
3273 	if (is_imp_def_sys_reg(params)) {
3274 		kvm_inject_undefined(vcpu);
3275 	} else {
3276 		print_sys_reg_msg(params,
3277 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3278 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3279 		kvm_inject_undefined(vcpu);
3280 	}
3281 	return false;
3282 }
3283 
3284 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3285 {
3286 	const struct sys_reg_desc *idreg = first_idreg;
3287 	u32 id = reg_to_encoding(idreg);
3288 	struct kvm *kvm = vcpu->kvm;
3289 
3290 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3291 		return;
3292 
3293 	lockdep_assert_held(&kvm->arch.config_lock);
3294 
3295 	/* Initialize all idregs */
3296 	while (is_id_reg(id)) {
3297 		IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3298 
3299 		idreg++;
3300 		id = reg_to_encoding(idreg);
3301 	}
3302 
3303 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3304 }
3305 
3306 /**
3307  * kvm_reset_sys_regs - sets system registers to reset value
3308  * @vcpu: The VCPU pointer
3309  *
3310  * This function finds the right table above and sets the registers on the
3311  * virtual CPU struct to their architecturally defined reset values.
3312  */
3313 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3314 {
3315 	unsigned long i;
3316 
3317 	kvm_reset_id_regs(vcpu);
3318 
3319 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3320 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3321 
3322 		if (is_id_reg(reg_to_encoding(r)))
3323 			continue;
3324 
3325 		if (r->reset)
3326 			r->reset(vcpu, r);
3327 	}
3328 }
3329 
3330 /**
3331  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3332  * @vcpu: The VCPU pointer
3333  */
3334 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3335 {
3336 	struct sys_reg_params params;
3337 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3338 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3339 
3340 	trace_kvm_handle_sys_reg(esr);
3341 
3342 	if (__check_nv_sr_forward(vcpu))
3343 		return 1;
3344 
3345 	params = esr_sys64_to_params(esr);
3346 	params.regval = vcpu_get_reg(vcpu, Rt);
3347 
3348 	if (!emulate_sys_reg(vcpu, &params))
3349 		return 1;
3350 
3351 	if (!params.is_write)
3352 		vcpu_set_reg(vcpu, Rt, params.regval);
3353 	return 1;
3354 }
3355 
3356 /******************************************************************************
3357  * Userspace API
3358  *****************************************************************************/
3359 
3360 static bool index_to_params(u64 id, struct sys_reg_params *params)
3361 {
3362 	switch (id & KVM_REG_SIZE_MASK) {
3363 	case KVM_REG_SIZE_U64:
3364 		/* Any unused index bits means it's not valid. */
3365 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3366 			      | KVM_REG_ARM_COPROC_MASK
3367 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3368 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3369 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3370 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3371 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3372 			return false;
3373 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3374 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3375 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3376 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3377 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3378 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3379 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3380 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3381 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3382 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3383 		return true;
3384 	default:
3385 		return false;
3386 	}
3387 }
3388 
3389 const struct sys_reg_desc *get_reg_by_id(u64 id,
3390 					 const struct sys_reg_desc table[],
3391 					 unsigned int num)
3392 {
3393 	struct sys_reg_params params;
3394 
3395 	if (!index_to_params(id, &params))
3396 		return NULL;
3397 
3398 	return find_reg(&params, table, num);
3399 }
3400 
3401 /* Decode an index value, and find the sys_reg_desc entry. */
3402 static const struct sys_reg_desc *
3403 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3404 		   const struct sys_reg_desc table[], unsigned int num)
3405 
3406 {
3407 	const struct sys_reg_desc *r;
3408 
3409 	/* We only do sys_reg for now. */
3410 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3411 		return NULL;
3412 
3413 	r = get_reg_by_id(id, table, num);
3414 
3415 	/* Not saved in the sys_reg array and not otherwise accessible? */
3416 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3417 		r = NULL;
3418 
3419 	return r;
3420 }
3421 
3422 /*
3423  * These are the invariant sys_reg registers: we let the guest see the
3424  * host versions of these, so they're part of the guest state.
3425  *
3426  * A future CPU may provide a mechanism to present different values to
3427  * the guest, or a future kvm may trap them.
3428  */
3429 
3430 #define FUNCTION_INVARIANT(reg)						\
3431 	static u64 get_##reg(struct kvm_vcpu *v,			\
3432 			      const struct sys_reg_desc *r)		\
3433 	{								\
3434 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3435 		return ((struct sys_reg_desc *)r)->val;			\
3436 	}
3437 
3438 FUNCTION_INVARIANT(midr_el1)
3439 FUNCTION_INVARIANT(revidr_el1)
3440 FUNCTION_INVARIANT(aidr_el1)
3441 
3442 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3443 {
3444 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3445 	return ((struct sys_reg_desc *)r)->val;
3446 }
3447 
3448 /* ->val is filled in by kvm_sys_reg_table_init() */
3449 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3450 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3451 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3452 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3453 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3454 };
3455 
3456 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3457 {
3458 	const struct sys_reg_desc *r;
3459 
3460 	r = get_reg_by_id(id, invariant_sys_regs,
3461 			  ARRAY_SIZE(invariant_sys_regs));
3462 	if (!r)
3463 		return -ENOENT;
3464 
3465 	return put_user(r->val, uaddr);
3466 }
3467 
3468 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3469 {
3470 	const struct sys_reg_desc *r;
3471 	u64 val;
3472 
3473 	r = get_reg_by_id(id, invariant_sys_regs,
3474 			  ARRAY_SIZE(invariant_sys_regs));
3475 	if (!r)
3476 		return -ENOENT;
3477 
3478 	if (get_user(val, uaddr))
3479 		return -EFAULT;
3480 
3481 	/* This is what we mean by invariant: you can't change it. */
3482 	if (r->val != val)
3483 		return -EINVAL;
3484 
3485 	return 0;
3486 }
3487 
3488 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3489 {
3490 	u32 val;
3491 	u32 __user *uval = uaddr;
3492 
3493 	/* Fail if we have unknown bits set. */
3494 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3495 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3496 		return -ENOENT;
3497 
3498 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3499 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3500 		if (KVM_REG_SIZE(id) != 4)
3501 			return -ENOENT;
3502 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3503 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3504 		if (val >= CSSELR_MAX)
3505 			return -ENOENT;
3506 
3507 		return put_user(get_ccsidr(vcpu, val), uval);
3508 	default:
3509 		return -ENOENT;
3510 	}
3511 }
3512 
3513 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3514 {
3515 	u32 val, newval;
3516 	u32 __user *uval = uaddr;
3517 
3518 	/* Fail if we have unknown bits set. */
3519 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3520 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3521 		return -ENOENT;
3522 
3523 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3524 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3525 		if (KVM_REG_SIZE(id) != 4)
3526 			return -ENOENT;
3527 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3528 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3529 		if (val >= CSSELR_MAX)
3530 			return -ENOENT;
3531 
3532 		if (get_user(newval, uval))
3533 			return -EFAULT;
3534 
3535 		return set_ccsidr(vcpu, val, newval);
3536 	default:
3537 		return -ENOENT;
3538 	}
3539 }
3540 
3541 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3542 			 const struct sys_reg_desc table[], unsigned int num)
3543 {
3544 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3545 	const struct sys_reg_desc *r;
3546 	u64 val;
3547 	int ret;
3548 
3549 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3550 	if (!r || sysreg_hidden_user(vcpu, r))
3551 		return -ENOENT;
3552 
3553 	if (r->get_user) {
3554 		ret = (r->get_user)(vcpu, r, &val);
3555 	} else {
3556 		val = __vcpu_sys_reg(vcpu, r->reg);
3557 		ret = 0;
3558 	}
3559 
3560 	if (!ret)
3561 		ret = put_user(val, uaddr);
3562 
3563 	return ret;
3564 }
3565 
3566 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3567 {
3568 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3569 	int err;
3570 
3571 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3572 		return demux_c15_get(vcpu, reg->id, uaddr);
3573 
3574 	err = get_invariant_sys_reg(reg->id, uaddr);
3575 	if (err != -ENOENT)
3576 		return err;
3577 
3578 	return kvm_sys_reg_get_user(vcpu, reg,
3579 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3580 }
3581 
3582 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3583 			 const struct sys_reg_desc table[], unsigned int num)
3584 {
3585 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3586 	const struct sys_reg_desc *r;
3587 	u64 val;
3588 	int ret;
3589 
3590 	if (get_user(val, uaddr))
3591 		return -EFAULT;
3592 
3593 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3594 	if (!r || sysreg_hidden_user(vcpu, r))
3595 		return -ENOENT;
3596 
3597 	if (sysreg_user_write_ignore(vcpu, r))
3598 		return 0;
3599 
3600 	if (r->set_user) {
3601 		ret = (r->set_user)(vcpu, r, val);
3602 	} else {
3603 		__vcpu_sys_reg(vcpu, r->reg) = val;
3604 		ret = 0;
3605 	}
3606 
3607 	return ret;
3608 }
3609 
3610 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3611 {
3612 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3613 	int err;
3614 
3615 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3616 		return demux_c15_set(vcpu, reg->id, uaddr);
3617 
3618 	err = set_invariant_sys_reg(reg->id, uaddr);
3619 	if (err != -ENOENT)
3620 		return err;
3621 
3622 	return kvm_sys_reg_set_user(vcpu, reg,
3623 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3624 }
3625 
3626 static unsigned int num_demux_regs(void)
3627 {
3628 	return CSSELR_MAX;
3629 }
3630 
3631 static int write_demux_regids(u64 __user *uindices)
3632 {
3633 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3634 	unsigned int i;
3635 
3636 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3637 	for (i = 0; i < CSSELR_MAX; i++) {
3638 		if (put_user(val | i, uindices))
3639 			return -EFAULT;
3640 		uindices++;
3641 	}
3642 	return 0;
3643 }
3644 
3645 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3646 {
3647 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3648 		KVM_REG_ARM64_SYSREG |
3649 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3650 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3651 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3652 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3653 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3654 }
3655 
3656 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3657 {
3658 	if (!*uind)
3659 		return true;
3660 
3661 	if (put_user(sys_reg_to_index(reg), *uind))
3662 		return false;
3663 
3664 	(*uind)++;
3665 	return true;
3666 }
3667 
3668 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3669 			    const struct sys_reg_desc *rd,
3670 			    u64 __user **uind,
3671 			    unsigned int *total)
3672 {
3673 	/*
3674 	 * Ignore registers we trap but don't save,
3675 	 * and for which no custom user accessor is provided.
3676 	 */
3677 	if (!(rd->reg || rd->get_user))
3678 		return 0;
3679 
3680 	if (sysreg_hidden_user(vcpu, rd))
3681 		return 0;
3682 
3683 	if (!copy_reg_to_user(rd, uind))
3684 		return -EFAULT;
3685 
3686 	(*total)++;
3687 	return 0;
3688 }
3689 
3690 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3691 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3692 {
3693 	const struct sys_reg_desc *i2, *end2;
3694 	unsigned int total = 0;
3695 	int err;
3696 
3697 	i2 = sys_reg_descs;
3698 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3699 
3700 	while (i2 != end2) {
3701 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3702 		if (err)
3703 			return err;
3704 	}
3705 	return total;
3706 }
3707 
3708 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3709 {
3710 	return ARRAY_SIZE(invariant_sys_regs)
3711 		+ num_demux_regs()
3712 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
3713 }
3714 
3715 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3716 {
3717 	unsigned int i;
3718 	int err;
3719 
3720 	/* Then give them all the invariant registers' indices. */
3721 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3722 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3723 			return -EFAULT;
3724 		uindices++;
3725 	}
3726 
3727 	err = walk_sys_regs(vcpu, uindices);
3728 	if (err < 0)
3729 		return err;
3730 	uindices += err;
3731 
3732 	return write_demux_regids(uindices);
3733 }
3734 
3735 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
3736 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
3737 		sys_reg_Op1(r),					\
3738 		sys_reg_CRn(r),					\
3739 		sys_reg_CRm(r),					\
3740 		sys_reg_Op2(r))
3741 
3742 static bool is_feature_id_reg(u32 encoding)
3743 {
3744 	return (sys_reg_Op0(encoding) == 3 &&
3745 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
3746 		sys_reg_CRn(encoding) == 0 &&
3747 		sys_reg_CRm(encoding) <= 7);
3748 }
3749 
3750 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
3751 {
3752 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
3753 	u64 __user *masks = (u64 __user *)range->addr;
3754 
3755 	/* Only feature id range is supported, reserved[13] must be zero. */
3756 	if (range->range ||
3757 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
3758 		return -EINVAL;
3759 
3760 	/* Wipe the whole thing first */
3761 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
3762 		return -EFAULT;
3763 
3764 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3765 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
3766 		u32 encoding = reg_to_encoding(reg);
3767 		u64 val;
3768 
3769 		if (!is_feature_id_reg(encoding) || !reg->set_user)
3770 			continue;
3771 
3772 		/*
3773 		 * For ID registers, we return the writable mask. Other feature
3774 		 * registers return a full 64bit mask. That's not necessary
3775 		 * compliant with a given revision of the architecture, but the
3776 		 * RES0/RES1 definitions allow us to do that.
3777 		 */
3778 		if (is_id_reg(encoding)) {
3779 			if (!reg->val ||
3780 			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
3781 				continue;
3782 			val = reg->val;
3783 		} else {
3784 			val = ~0UL;
3785 		}
3786 
3787 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
3788 			return -EFAULT;
3789 	}
3790 
3791 	return 0;
3792 }
3793 
3794 int __init kvm_sys_reg_table_init(void)
3795 {
3796 	struct sys_reg_params params;
3797 	bool valid = true;
3798 	unsigned int i;
3799 
3800 	/* Make sure tables are unique and in order. */
3801 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3802 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3803 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3804 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3805 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3806 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3807 
3808 	if (!valid)
3809 		return -EINVAL;
3810 
3811 	/* We abuse the reset function to overwrite the table itself. */
3812 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3813 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3814 
3815 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3816 	params = encoding_to_params(SYS_ID_PFR0_EL1);
3817 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3818 	if (!first_idreg)
3819 		return -EINVAL;
3820 
3821 	if (kvm_get_mode() == KVM_MODE_NV)
3822 		return populate_nv_trap_config();
3823 
3824 	return 0;
3825 }
3826