1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/coproc.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Authors: Rusty Russell <rusty@rustcorp.com.au> 9 * Christoffer Dall <c.dall@virtualopensystems.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/bsearch.h> 14 #include <linux/kvm_host.h> 15 #include <linux/mm.h> 16 #include <linux/printk.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/cacheflush.h> 20 #include <asm/cputype.h> 21 #include <asm/debug-monitors.h> 22 #include <asm/esr.h> 23 #include <asm/kvm_arm.h> 24 #include <asm/kvm_emulate.h> 25 #include <asm/kvm_hyp.h> 26 #include <asm/kvm_mmu.h> 27 #include <asm/perf_event.h> 28 #include <asm/sysreg.h> 29 30 #include <trace/events/kvm.h> 31 32 #include "sys_regs.h" 33 34 #include "trace.h" 35 36 /* 37 * For AArch32, we only take care of what is being trapped. Anything 38 * that has to do with init and userspace access has to go via the 39 * 64bit interface. 40 */ 41 42 static u64 sys_reg_to_index(const struct sys_reg_desc *reg); 43 44 static bool read_from_write_only(struct kvm_vcpu *vcpu, 45 struct sys_reg_params *params, 46 const struct sys_reg_desc *r) 47 { 48 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); 49 print_sys_reg_instr(params); 50 kvm_inject_undefined(vcpu); 51 return false; 52 } 53 54 static bool write_to_read_only(struct kvm_vcpu *vcpu, 55 struct sys_reg_params *params, 56 const struct sys_reg_desc *r) 57 { 58 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); 59 print_sys_reg_instr(params); 60 kvm_inject_undefined(vcpu); 61 return false; 62 } 63 64 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) 65 { 66 u64 val = 0x8badf00d8badf00d; 67 68 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && 69 __vcpu_read_sys_reg_from_cpu(reg, &val)) 70 return val; 71 72 return __vcpu_sys_reg(vcpu, reg); 73 } 74 75 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) 76 { 77 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && 78 __vcpu_write_sys_reg_to_cpu(val, reg)) 79 return; 80 81 __vcpu_sys_reg(vcpu, reg) = val; 82 } 83 84 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ 85 static u32 cache_levels; 86 87 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 88 #define CSSELR_MAX 14 89 90 /* Which cache CCSIDR represents depends on CSSELR value. */ 91 static u32 get_ccsidr(u32 csselr) 92 { 93 u32 ccsidr; 94 95 /* Make sure noone else changes CSSELR during this! */ 96 local_irq_disable(); 97 write_sysreg(csselr, csselr_el1); 98 isb(); 99 ccsidr = read_sysreg(ccsidr_el1); 100 local_irq_enable(); 101 102 return ccsidr; 103 } 104 105 /* 106 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 107 */ 108 static bool access_dcsw(struct kvm_vcpu *vcpu, 109 struct sys_reg_params *p, 110 const struct sys_reg_desc *r) 111 { 112 if (!p->is_write) 113 return read_from_write_only(vcpu, p, r); 114 115 /* 116 * Only track S/W ops if we don't have FWB. It still indicates 117 * that the guest is a bit broken (S/W operations should only 118 * be done by firmware, knowing that there is only a single 119 * CPU left in the system, and certainly not from non-secure 120 * software). 121 */ 122 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 123 kvm_set_way_flush(vcpu); 124 125 return true; 126 } 127 128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) 129 { 130 switch (r->aarch32_map) { 131 case AA32_LO: 132 *mask = GENMASK_ULL(31, 0); 133 *shift = 0; 134 break; 135 case AA32_HI: 136 *mask = GENMASK_ULL(63, 32); 137 *shift = 32; 138 break; 139 default: 140 *mask = GENMASK_ULL(63, 0); 141 *shift = 0; 142 break; 143 } 144 } 145 146 /* 147 * Generic accessor for VM registers. Only called as long as HCR_TVM 148 * is set. If the guest enables the MMU, we stop trapping the VM 149 * sys_regs and leave it in complete control of the caches. 150 */ 151 static bool access_vm_reg(struct kvm_vcpu *vcpu, 152 struct sys_reg_params *p, 153 const struct sys_reg_desc *r) 154 { 155 bool was_enabled = vcpu_has_cache_enabled(vcpu); 156 u64 val, mask, shift; 157 158 BUG_ON(!p->is_write); 159 160 get_access_mask(r, &mask, &shift); 161 162 if (~mask) { 163 val = vcpu_read_sys_reg(vcpu, r->reg); 164 val &= ~mask; 165 } else { 166 val = 0; 167 } 168 169 val |= (p->regval & (mask >> shift)) << shift; 170 vcpu_write_sys_reg(vcpu, val, r->reg); 171 172 kvm_toggle_cache(vcpu, was_enabled); 173 return true; 174 } 175 176 static bool access_actlr(struct kvm_vcpu *vcpu, 177 struct sys_reg_params *p, 178 const struct sys_reg_desc *r) 179 { 180 u64 mask, shift; 181 182 if (p->is_write) 183 return ignore_write(vcpu, p); 184 185 get_access_mask(r, &mask, &shift); 186 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; 187 188 return true; 189 } 190 191 /* 192 * Trap handler for the GICv3 SGI generation system register. 193 * Forward the request to the VGIC emulation. 194 * The cp15_64 code makes sure this automatically works 195 * for both AArch64 and AArch32 accesses. 196 */ 197 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 198 struct sys_reg_params *p, 199 const struct sys_reg_desc *r) 200 { 201 bool g1; 202 203 if (!p->is_write) 204 return read_from_write_only(vcpu, p, r); 205 206 /* 207 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates 208 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, 209 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively 210 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure 211 * group. 212 */ 213 if (p->Op0 == 0) { /* AArch32 */ 214 switch (p->Op1) { 215 default: /* Keep GCC quiet */ 216 case 0: /* ICC_SGI1R */ 217 g1 = true; 218 break; 219 case 1: /* ICC_ASGI1R */ 220 case 2: /* ICC_SGI0R */ 221 g1 = false; 222 break; 223 } 224 } else { /* AArch64 */ 225 switch (p->Op2) { 226 default: /* Keep GCC quiet */ 227 case 5: /* ICC_SGI1R_EL1 */ 228 g1 = true; 229 break; 230 case 6: /* ICC_ASGI1R_EL1 */ 231 case 7: /* ICC_SGI0R_EL1 */ 232 g1 = false; 233 break; 234 } 235 } 236 237 vgic_v3_dispatch_sgi(vcpu, p->regval, g1); 238 239 return true; 240 } 241 242 static bool access_gic_sre(struct kvm_vcpu *vcpu, 243 struct sys_reg_params *p, 244 const struct sys_reg_desc *r) 245 { 246 if (p->is_write) 247 return ignore_write(vcpu, p); 248 249 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; 250 return true; 251 } 252 253 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 254 struct sys_reg_params *p, 255 const struct sys_reg_desc *r) 256 { 257 if (p->is_write) 258 return ignore_write(vcpu, p); 259 else 260 return read_zero(vcpu, p); 261 } 262 263 /* 264 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the 265 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 266 * system, these registers should UNDEF. LORID_EL1 being a RO register, we 267 * treat it separately. 268 */ 269 static bool trap_loregion(struct kvm_vcpu *vcpu, 270 struct sys_reg_params *p, 271 const struct sys_reg_desc *r) 272 { 273 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 274 u32 sr = reg_to_encoding(r); 275 276 if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) { 277 kvm_inject_undefined(vcpu); 278 return false; 279 } 280 281 if (p->is_write && sr == SYS_LORID_EL1) 282 return write_to_read_only(vcpu, p, r); 283 284 return trap_raz_wi(vcpu, p, r); 285 } 286 287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu, 288 struct sys_reg_params *p, 289 const struct sys_reg_desc *r) 290 { 291 u64 oslsr; 292 293 if (!p->is_write) 294 return read_from_write_only(vcpu, p, r); 295 296 /* Forward the OSLK bit to OSLSR */ 297 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK; 298 if (p->regval & SYS_OSLAR_OSLK) 299 oslsr |= SYS_OSLSR_OSLK; 300 301 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; 302 return true; 303 } 304 305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 306 struct sys_reg_params *p, 307 const struct sys_reg_desc *r) 308 { 309 if (p->is_write) 310 return write_to_read_only(vcpu, p, r); 311 312 p->regval = __vcpu_sys_reg(vcpu, r->reg); 313 return true; 314 } 315 316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 317 u64 val) 318 { 319 /* 320 * The only modifiable bit is the OSLK bit. Refuse the write if 321 * userspace attempts to change any other bit in the register. 322 */ 323 if ((val ^ rd->val) & ~SYS_OSLSR_OSLK) 324 return -EINVAL; 325 326 __vcpu_sys_reg(vcpu, rd->reg) = val; 327 return 0; 328 } 329 330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 331 struct sys_reg_params *p, 332 const struct sys_reg_desc *r) 333 { 334 if (p->is_write) { 335 return ignore_write(vcpu, p); 336 } else { 337 p->regval = read_sysreg(dbgauthstatus_el1); 338 return true; 339 } 340 } 341 342 /* 343 * We want to avoid world-switching all the DBG registers all the 344 * time: 345 * 346 * - If we've touched any debug register, it is likely that we're 347 * going to touch more of them. It then makes sense to disable the 348 * traps and start doing the save/restore dance 349 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 350 * then mandatory to save/restore the registers, as the guest 351 * depends on them. 352 * 353 * For this, we use a DIRTY bit, indicating the guest has modified the 354 * debug registers, used as follow: 355 * 356 * On guest entry: 357 * - If the dirty bit is set (because we're coming back from trapping), 358 * disable the traps, save host registers, restore guest registers. 359 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 360 * set the dirty bit, disable the traps, save host registers, 361 * restore guest registers. 362 * - Otherwise, enable the traps 363 * 364 * On guest exit: 365 * - If the dirty bit is set, save guest registers, restore host 366 * registers and clear the dirty bit. This ensure that the host can 367 * now use the debug registers. 368 */ 369 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 370 struct sys_reg_params *p, 371 const struct sys_reg_desc *r) 372 { 373 if (p->is_write) { 374 vcpu_write_sys_reg(vcpu, p->regval, r->reg); 375 vcpu_set_flag(vcpu, DEBUG_DIRTY); 376 } else { 377 p->regval = vcpu_read_sys_reg(vcpu, r->reg); 378 } 379 380 trace_trap_reg(__func__, r->reg, p->is_write, p->regval); 381 382 return true; 383 } 384 385 /* 386 * reg_to_dbg/dbg_to_reg 387 * 388 * A 32 bit write to a debug register leave top bits alone 389 * A 32 bit read from a debug register only returns the bottom bits 390 * 391 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code 392 * switches between host and guest values in future. 393 */ 394 static void reg_to_dbg(struct kvm_vcpu *vcpu, 395 struct sys_reg_params *p, 396 const struct sys_reg_desc *rd, 397 u64 *dbg_reg) 398 { 399 u64 mask, shift, val; 400 401 get_access_mask(rd, &mask, &shift); 402 403 val = *dbg_reg; 404 val &= ~mask; 405 val |= (p->regval & (mask >> shift)) << shift; 406 *dbg_reg = val; 407 408 vcpu_set_flag(vcpu, DEBUG_DIRTY); 409 } 410 411 static void dbg_to_reg(struct kvm_vcpu *vcpu, 412 struct sys_reg_params *p, 413 const struct sys_reg_desc *rd, 414 u64 *dbg_reg) 415 { 416 u64 mask, shift; 417 418 get_access_mask(rd, &mask, &shift); 419 p->regval = (*dbg_reg & mask) >> shift; 420 } 421 422 static bool trap_bvr(struct kvm_vcpu *vcpu, 423 struct sys_reg_params *p, 424 const struct sys_reg_desc *rd) 425 { 426 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 427 428 if (p->is_write) 429 reg_to_dbg(vcpu, p, rd, dbg_reg); 430 else 431 dbg_to_reg(vcpu, p, rd, dbg_reg); 432 433 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 434 435 return true; 436 } 437 438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 439 u64 val) 440 { 441 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; 442 return 0; 443 } 444 445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 446 u64 *val) 447 { 448 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 449 return 0; 450 } 451 452 static void reset_bvr(struct kvm_vcpu *vcpu, 453 const struct sys_reg_desc *rd) 454 { 455 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; 456 } 457 458 static bool trap_bcr(struct kvm_vcpu *vcpu, 459 struct sys_reg_params *p, 460 const struct sys_reg_desc *rd) 461 { 462 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 463 464 if (p->is_write) 465 reg_to_dbg(vcpu, p, rd, dbg_reg); 466 else 467 dbg_to_reg(vcpu, p, rd, dbg_reg); 468 469 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 470 471 return true; 472 } 473 474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 475 u64 val) 476 { 477 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; 478 return 0; 479 } 480 481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 482 u64 *val) 483 { 484 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 485 return 0; 486 } 487 488 static void reset_bcr(struct kvm_vcpu *vcpu, 489 const struct sys_reg_desc *rd) 490 { 491 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; 492 } 493 494 static bool trap_wvr(struct kvm_vcpu *vcpu, 495 struct sys_reg_params *p, 496 const struct sys_reg_desc *rd) 497 { 498 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 499 500 if (p->is_write) 501 reg_to_dbg(vcpu, p, rd, dbg_reg); 502 else 503 dbg_to_reg(vcpu, p, rd, dbg_reg); 504 505 trace_trap_reg(__func__, rd->CRm, p->is_write, 506 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); 507 508 return true; 509 } 510 511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 512 u64 val) 513 { 514 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; 515 return 0; 516 } 517 518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 519 u64 *val) 520 { 521 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 522 return 0; 523 } 524 525 static void reset_wvr(struct kvm_vcpu *vcpu, 526 const struct sys_reg_desc *rd) 527 { 528 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; 529 } 530 531 static bool trap_wcr(struct kvm_vcpu *vcpu, 532 struct sys_reg_params *p, 533 const struct sys_reg_desc *rd) 534 { 535 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 536 537 if (p->is_write) 538 reg_to_dbg(vcpu, p, rd, dbg_reg); 539 else 540 dbg_to_reg(vcpu, p, rd, dbg_reg); 541 542 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 543 544 return true; 545 } 546 547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 548 u64 val) 549 { 550 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; 551 return 0; 552 } 553 554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 555 u64 *val) 556 { 557 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 558 return 0; 559 } 560 561 static void reset_wcr(struct kvm_vcpu *vcpu, 562 const struct sys_reg_desc *rd) 563 { 564 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; 565 } 566 567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 568 { 569 u64 amair = read_sysreg(amair_el1); 570 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); 571 } 572 573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 574 { 575 u64 actlr = read_sysreg(actlr_el1); 576 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); 577 } 578 579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 580 { 581 u64 mpidr; 582 583 /* 584 * Map the vcpu_id into the first three affinity level fields of 585 * the MPIDR. We limit the number of VCPUs in level 0 due to a 586 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 587 * of the GICv3 to be able to address each CPU directly when 588 * sending IPIs. 589 */ 590 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 591 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 592 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 593 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); 594 } 595 596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, 597 const struct sys_reg_desc *r) 598 { 599 if (kvm_vcpu_has_pmu(vcpu)) 600 return 0; 601 602 return REG_HIDDEN; 603 } 604 605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 606 { 607 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); 608 609 /* No PMU available, any PMU reg may UNDEF... */ 610 if (!kvm_arm_support_pmu_v3()) 611 return; 612 613 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; 614 n &= ARMV8_PMU_PMCR_N_MASK; 615 if (n) 616 mask |= GENMASK(n - 1, 0); 617 618 reset_unknown(vcpu, r); 619 __vcpu_sys_reg(vcpu, r->reg) &= mask; 620 } 621 622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 623 { 624 reset_unknown(vcpu, r); 625 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); 626 } 627 628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 629 { 630 reset_unknown(vcpu, r); 631 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; 632 } 633 634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 635 { 636 reset_unknown(vcpu, r); 637 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; 638 } 639 640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 641 { 642 u64 pmcr; 643 644 /* No PMU available, PMCR_EL0 may UNDEF... */ 645 if (!kvm_arm_support_pmu_v3()) 646 return; 647 648 /* Only preserve PMCR_EL0.N, and reset the rest to 0 */ 649 pmcr = read_sysreg(pmcr_el0) & ARMV8_PMU_PMCR_N_MASK; 650 if (!kvm_supports_32bit_el0()) 651 pmcr |= ARMV8_PMU_PMCR_LC; 652 653 __vcpu_sys_reg(vcpu, r->reg) = pmcr; 654 } 655 656 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) 657 { 658 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); 659 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); 660 661 if (!enabled) 662 kvm_inject_undefined(vcpu); 663 664 return !enabled; 665 } 666 667 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) 668 { 669 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); 670 } 671 672 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) 673 { 674 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); 675 } 676 677 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) 678 { 679 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); 680 } 681 682 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) 683 { 684 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); 685 } 686 687 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 688 const struct sys_reg_desc *r) 689 { 690 u64 val; 691 692 if (pmu_access_el0_disabled(vcpu)) 693 return false; 694 695 if (p->is_write) { 696 /* 697 * Only update writeable bits of PMCR (continuing into 698 * kvm_pmu_handle_pmcr() as well) 699 */ 700 val = __vcpu_sys_reg(vcpu, PMCR_EL0); 701 val &= ~ARMV8_PMU_PMCR_MASK; 702 val |= p->regval & ARMV8_PMU_PMCR_MASK; 703 if (!kvm_supports_32bit_el0()) 704 val |= ARMV8_PMU_PMCR_LC; 705 kvm_pmu_handle_pmcr(vcpu, val); 706 kvm_vcpu_pmu_restore_guest(vcpu); 707 } else { 708 /* PMCR.P & PMCR.C are RAZ */ 709 val = __vcpu_sys_reg(vcpu, PMCR_EL0) 710 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); 711 p->regval = val; 712 } 713 714 return true; 715 } 716 717 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 718 const struct sys_reg_desc *r) 719 { 720 if (pmu_access_event_counter_el0_disabled(vcpu)) 721 return false; 722 723 if (p->is_write) 724 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; 725 else 726 /* return PMSELR.SEL field */ 727 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) 728 & ARMV8_PMU_COUNTER_MASK; 729 730 return true; 731 } 732 733 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 734 const struct sys_reg_desc *r) 735 { 736 u64 pmceid, mask, shift; 737 738 BUG_ON(p->is_write); 739 740 if (pmu_access_el0_disabled(vcpu)) 741 return false; 742 743 get_access_mask(r, &mask, &shift); 744 745 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); 746 pmceid &= mask; 747 pmceid >>= shift; 748 749 p->regval = pmceid; 750 751 return true; 752 } 753 754 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) 755 { 756 u64 pmcr, val; 757 758 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); 759 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; 760 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { 761 kvm_inject_undefined(vcpu); 762 return false; 763 } 764 765 return true; 766 } 767 768 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, 769 struct sys_reg_params *p, 770 const struct sys_reg_desc *r) 771 { 772 u64 idx = ~0UL; 773 774 if (r->CRn == 9 && r->CRm == 13) { 775 if (r->Op2 == 2) { 776 /* PMXEVCNTR_EL0 */ 777 if (pmu_access_event_counter_el0_disabled(vcpu)) 778 return false; 779 780 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) 781 & ARMV8_PMU_COUNTER_MASK; 782 } else if (r->Op2 == 0) { 783 /* PMCCNTR_EL0 */ 784 if (pmu_access_cycle_counter_el0_disabled(vcpu)) 785 return false; 786 787 idx = ARMV8_PMU_CYCLE_IDX; 788 } 789 } else if (r->CRn == 0 && r->CRm == 9) { 790 /* PMCCNTR */ 791 if (pmu_access_event_counter_el0_disabled(vcpu)) 792 return false; 793 794 idx = ARMV8_PMU_CYCLE_IDX; 795 } else if (r->CRn == 14 && (r->CRm & 12) == 8) { 796 /* PMEVCNTRn_EL0 */ 797 if (pmu_access_event_counter_el0_disabled(vcpu)) 798 return false; 799 800 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 801 } 802 803 /* Catch any decoding mistake */ 804 WARN_ON(idx == ~0UL); 805 806 if (!pmu_counter_idx_valid(vcpu, idx)) 807 return false; 808 809 if (p->is_write) { 810 if (pmu_access_el0_disabled(vcpu)) 811 return false; 812 813 kvm_pmu_set_counter_value(vcpu, idx, p->regval); 814 } else { 815 p->regval = kvm_pmu_get_counter_value(vcpu, idx); 816 } 817 818 return true; 819 } 820 821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 822 const struct sys_reg_desc *r) 823 { 824 u64 idx, reg; 825 826 if (pmu_access_el0_disabled(vcpu)) 827 return false; 828 829 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { 830 /* PMXEVTYPER_EL0 */ 831 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; 832 reg = PMEVTYPER0_EL0 + idx; 833 } else if (r->CRn == 14 && (r->CRm & 12) == 12) { 834 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 835 if (idx == ARMV8_PMU_CYCLE_IDX) 836 reg = PMCCFILTR_EL0; 837 else 838 /* PMEVTYPERn_EL0 */ 839 reg = PMEVTYPER0_EL0 + idx; 840 } else { 841 BUG(); 842 } 843 844 if (!pmu_counter_idx_valid(vcpu, idx)) 845 return false; 846 847 if (p->is_write) { 848 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); 849 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; 850 kvm_vcpu_pmu_restore_guest(vcpu); 851 } else { 852 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; 853 } 854 855 return true; 856 } 857 858 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 859 const struct sys_reg_desc *r) 860 { 861 u64 val, mask; 862 863 if (pmu_access_el0_disabled(vcpu)) 864 return false; 865 866 mask = kvm_pmu_valid_counter_mask(vcpu); 867 if (p->is_write) { 868 val = p->regval & mask; 869 if (r->Op2 & 0x1) { 870 /* accessing PMCNTENSET_EL0 */ 871 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; 872 kvm_pmu_enable_counter_mask(vcpu, val); 873 kvm_vcpu_pmu_restore_guest(vcpu); 874 } else { 875 /* accessing PMCNTENCLR_EL0 */ 876 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; 877 kvm_pmu_disable_counter_mask(vcpu, val); 878 } 879 } else { 880 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); 881 } 882 883 return true; 884 } 885 886 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 887 const struct sys_reg_desc *r) 888 { 889 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 890 891 if (check_pmu_access_disabled(vcpu, 0)) 892 return false; 893 894 if (p->is_write) { 895 u64 val = p->regval & mask; 896 897 if (r->Op2 & 0x1) 898 /* accessing PMINTENSET_EL1 */ 899 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; 900 else 901 /* accessing PMINTENCLR_EL1 */ 902 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; 903 } else { 904 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); 905 } 906 907 return true; 908 } 909 910 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 911 const struct sys_reg_desc *r) 912 { 913 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 914 915 if (pmu_access_el0_disabled(vcpu)) 916 return false; 917 918 if (p->is_write) { 919 if (r->CRm & 0x2) 920 /* accessing PMOVSSET_EL0 */ 921 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); 922 else 923 /* accessing PMOVSCLR_EL0 */ 924 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); 925 } else { 926 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); 927 } 928 929 return true; 930 } 931 932 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 933 const struct sys_reg_desc *r) 934 { 935 u64 mask; 936 937 if (!p->is_write) 938 return read_from_write_only(vcpu, p, r); 939 940 if (pmu_write_swinc_el0_disabled(vcpu)) 941 return false; 942 943 mask = kvm_pmu_valid_counter_mask(vcpu); 944 kvm_pmu_software_increment(vcpu, p->regval & mask); 945 return true; 946 } 947 948 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 949 const struct sys_reg_desc *r) 950 { 951 if (p->is_write) { 952 if (!vcpu_mode_priv(vcpu)) { 953 kvm_inject_undefined(vcpu); 954 return false; 955 } 956 957 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = 958 p->regval & ARMV8_PMU_USERENR_MASK; 959 } else { 960 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) 961 & ARMV8_PMU_USERENR_MASK; 962 } 963 964 return true; 965 } 966 967 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 968 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 969 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ 970 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ 971 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ 972 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ 973 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ 974 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ 975 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ 976 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } 977 978 #define PMU_SYS_REG(r) \ 979 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility 980 981 /* Macro to expand the PMEVCNTRn_EL0 register */ 982 #define PMU_PMEVCNTR_EL0(n) \ 983 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \ 984 .reset = reset_pmevcntr, \ 985 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } 986 987 /* Macro to expand the PMEVTYPERn_EL0 register */ 988 #define PMU_PMEVTYPER_EL0(n) \ 989 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \ 990 .reset = reset_pmevtyper, \ 991 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } 992 993 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 994 const struct sys_reg_desc *r) 995 { 996 kvm_inject_undefined(vcpu); 997 998 return false; 999 } 1000 1001 /* Macro to expand the AMU counter and type registers*/ 1002 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } 1003 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } 1004 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } 1005 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } 1006 1007 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, 1008 const struct sys_reg_desc *rd) 1009 { 1010 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; 1011 } 1012 1013 /* 1014 * If we land here on a PtrAuth access, that is because we didn't 1015 * fixup the access on exit by allowing the PtrAuth sysregs. The only 1016 * way this happens is when the guest does not have PtrAuth support 1017 * enabled. 1018 */ 1019 #define __PTRAUTH_KEY(k) \ 1020 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ 1021 .visibility = ptrauth_visibility} 1022 1023 #define PTRAUTH_KEY(k) \ 1024 __PTRAUTH_KEY(k ## KEYLO_EL1), \ 1025 __PTRAUTH_KEY(k ## KEYHI_EL1) 1026 1027 static bool access_arch_timer(struct kvm_vcpu *vcpu, 1028 struct sys_reg_params *p, 1029 const struct sys_reg_desc *r) 1030 { 1031 enum kvm_arch_timers tmr; 1032 enum kvm_arch_timer_regs treg; 1033 u64 reg = reg_to_encoding(r); 1034 1035 switch (reg) { 1036 case SYS_CNTP_TVAL_EL0: 1037 case SYS_AARCH32_CNTP_TVAL: 1038 tmr = TIMER_PTIMER; 1039 treg = TIMER_REG_TVAL; 1040 break; 1041 case SYS_CNTP_CTL_EL0: 1042 case SYS_AARCH32_CNTP_CTL: 1043 tmr = TIMER_PTIMER; 1044 treg = TIMER_REG_CTL; 1045 break; 1046 case SYS_CNTP_CVAL_EL0: 1047 case SYS_AARCH32_CNTP_CVAL: 1048 tmr = TIMER_PTIMER; 1049 treg = TIMER_REG_CVAL; 1050 break; 1051 default: 1052 BUG(); 1053 } 1054 1055 if (p->is_write) 1056 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); 1057 else 1058 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); 1059 1060 return true; 1061 } 1062 1063 static u8 vcpu_pmuver(const struct kvm_vcpu *vcpu) 1064 { 1065 if (kvm_vcpu_has_pmu(vcpu)) 1066 return vcpu->kvm->arch.dfr0_pmuver.imp; 1067 1068 return vcpu->kvm->arch.dfr0_pmuver.unimp; 1069 } 1070 1071 static u8 perfmon_to_pmuver(u8 perfmon) 1072 { 1073 switch (perfmon) { 1074 case ID_DFR0_EL1_PerfMon_PMUv3: 1075 return ID_AA64DFR0_EL1_PMUVer_IMP; 1076 case ID_DFR0_EL1_PerfMon_IMPDEF: 1077 return ID_AA64DFR0_EL1_PMUVer_IMP_DEF; 1078 default: 1079 /* Anything ARMv8.1+ and NI have the same value. For now. */ 1080 return perfmon; 1081 } 1082 } 1083 1084 static u8 pmuver_to_perfmon(u8 pmuver) 1085 { 1086 switch (pmuver) { 1087 case ID_AA64DFR0_EL1_PMUVer_IMP: 1088 return ID_DFR0_EL1_PerfMon_PMUv3; 1089 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: 1090 return ID_DFR0_EL1_PerfMon_IMPDEF; 1091 default: 1092 /* Anything ARMv8.1+ and NI have the same value. For now. */ 1093 return pmuver; 1094 } 1095 } 1096 1097 /* Read a sanitised cpufeature ID register by sys_reg_desc */ 1098 static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r) 1099 { 1100 u32 id = reg_to_encoding(r); 1101 u64 val; 1102 1103 if (sysreg_visible_as_raz(vcpu, r)) 1104 return 0; 1105 1106 val = read_sanitised_ftr_reg(id); 1107 1108 switch (id) { 1109 case SYS_ID_AA64PFR0_EL1: 1110 if (!vcpu_has_sve(vcpu)) 1111 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE); 1112 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU); 1113 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2); 1114 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2); 1115 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3); 1116 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3); 1117 if (kvm_vgic_global_state.type == VGIC_V3) { 1118 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC); 1119 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1); 1120 } 1121 break; 1122 case SYS_ID_AA64PFR1_EL1: 1123 if (!kvm_has_mte(vcpu->kvm)) 1124 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); 1125 1126 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); 1127 break; 1128 case SYS_ID_AA64ISAR1_EL1: 1129 if (!vcpu_has_ptrauth(vcpu)) 1130 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | 1131 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | 1132 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | 1133 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); 1134 break; 1135 case SYS_ID_AA64ISAR2_EL1: 1136 if (!vcpu_has_ptrauth(vcpu)) 1137 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | 1138 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); 1139 if (!cpus_have_final_cap(ARM64_HAS_WFXT)) 1140 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); 1141 break; 1142 case SYS_ID_AA64DFR0_EL1: 1143 /* Limit debug to ARMv8.0 */ 1144 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer); 1145 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6); 1146 /* Set PMUver to the required version */ 1147 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer); 1148 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), 1149 vcpu_pmuver(vcpu)); 1150 /* Hide SPE from guests */ 1151 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer); 1152 break; 1153 case SYS_ID_DFR0_EL1: 1154 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon); 1155 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), 1156 pmuver_to_perfmon(vcpu_pmuver(vcpu))); 1157 break; 1158 } 1159 1160 return val; 1161 } 1162 1163 static unsigned int id_visibility(const struct kvm_vcpu *vcpu, 1164 const struct sys_reg_desc *r) 1165 { 1166 u32 id = reg_to_encoding(r); 1167 1168 switch (id) { 1169 case SYS_ID_AA64ZFR0_EL1: 1170 if (!vcpu_has_sve(vcpu)) 1171 return REG_RAZ; 1172 break; 1173 } 1174 1175 return 0; 1176 } 1177 1178 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, 1179 const struct sys_reg_desc *r) 1180 { 1181 /* 1182 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any 1183 * EL. Promote to RAZ/WI in order to guarantee consistency between 1184 * systems. 1185 */ 1186 if (!kvm_supports_32bit_el0()) 1187 return REG_RAZ | REG_USER_WI; 1188 1189 return id_visibility(vcpu, r); 1190 } 1191 1192 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, 1193 const struct sys_reg_desc *r) 1194 { 1195 return REG_RAZ; 1196 } 1197 1198 /* cpufeature ID register access trap handlers */ 1199 1200 static bool access_id_reg(struct kvm_vcpu *vcpu, 1201 struct sys_reg_params *p, 1202 const struct sys_reg_desc *r) 1203 { 1204 if (p->is_write) 1205 return write_to_read_only(vcpu, p, r); 1206 1207 p->regval = read_id_reg(vcpu, r); 1208 return true; 1209 } 1210 1211 /* Visibility overrides for SVE-specific control registers */ 1212 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, 1213 const struct sys_reg_desc *rd) 1214 { 1215 if (vcpu_has_sve(vcpu)) 1216 return 0; 1217 1218 return REG_HIDDEN; 1219 } 1220 1221 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, 1222 const struct sys_reg_desc *rd, 1223 u64 val) 1224 { 1225 u8 csv2, csv3; 1226 1227 /* 1228 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as 1229 * it doesn't promise more than what is actually provided (the 1230 * guest could otherwise be covered in ectoplasmic residue). 1231 */ 1232 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT); 1233 if (csv2 > 1 || 1234 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) 1235 return -EINVAL; 1236 1237 /* Same thing for CSV3 */ 1238 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT); 1239 if (csv3 > 1 || 1240 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) 1241 return -EINVAL; 1242 1243 /* We can only differ with CSV[23], and anything else is an error */ 1244 val ^= read_id_reg(vcpu, rd); 1245 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | 1246 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); 1247 if (val) 1248 return -EINVAL; 1249 1250 vcpu->kvm->arch.pfr0_csv2 = csv2; 1251 vcpu->kvm->arch.pfr0_csv3 = csv3; 1252 1253 return 0; 1254 } 1255 1256 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, 1257 const struct sys_reg_desc *rd, 1258 u64 val) 1259 { 1260 u8 pmuver, host_pmuver; 1261 bool valid_pmu; 1262 1263 host_pmuver = kvm_arm_pmu_get_pmuver_limit(); 1264 1265 /* 1266 * Allow AA64DFR0_EL1.PMUver to be set from userspace as long 1267 * as it doesn't promise more than what the HW gives us. We 1268 * allow an IMPDEF PMU though, only if no PMU is supported 1269 * (KVM backward compatibility handling). 1270 */ 1271 pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), val); 1272 if ((pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF && pmuver > host_pmuver)) 1273 return -EINVAL; 1274 1275 valid_pmu = (pmuver != 0 && pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF); 1276 1277 /* Make sure view register and PMU support do match */ 1278 if (kvm_vcpu_has_pmu(vcpu) != valid_pmu) 1279 return -EINVAL; 1280 1281 /* We can only differ with PMUver, and anything else is an error */ 1282 val ^= read_id_reg(vcpu, rd); 1283 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer); 1284 if (val) 1285 return -EINVAL; 1286 1287 if (valid_pmu) 1288 vcpu->kvm->arch.dfr0_pmuver.imp = pmuver; 1289 else 1290 vcpu->kvm->arch.dfr0_pmuver.unimp = pmuver; 1291 1292 return 0; 1293 } 1294 1295 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, 1296 const struct sys_reg_desc *rd, 1297 u64 val) 1298 { 1299 u8 perfmon, host_perfmon; 1300 bool valid_pmu; 1301 1302 host_perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); 1303 1304 /* 1305 * Allow DFR0_EL1.PerfMon to be set from userspace as long as 1306 * it doesn't promise more than what the HW gives us on the 1307 * AArch64 side (as everything is emulated with that), and 1308 * that this is a PMUv3. 1309 */ 1310 perfmon = FIELD_GET(ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon), val); 1311 if ((perfmon != ID_DFR0_EL1_PerfMon_IMPDEF && perfmon > host_perfmon) || 1312 (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)) 1313 return -EINVAL; 1314 1315 valid_pmu = (perfmon != 0 && perfmon != ID_DFR0_EL1_PerfMon_IMPDEF); 1316 1317 /* Make sure view register and PMU support do match */ 1318 if (kvm_vcpu_has_pmu(vcpu) != valid_pmu) 1319 return -EINVAL; 1320 1321 /* We can only differ with PerfMon, and anything else is an error */ 1322 val ^= read_id_reg(vcpu, rd); 1323 val &= ~ARM64_FEATURE_MASK(ID_DFR0_EL1_PerfMon); 1324 if (val) 1325 return -EINVAL; 1326 1327 if (valid_pmu) 1328 vcpu->kvm->arch.dfr0_pmuver.imp = perfmon_to_pmuver(perfmon); 1329 else 1330 vcpu->kvm->arch.dfr0_pmuver.unimp = perfmon_to_pmuver(perfmon); 1331 1332 return 0; 1333 } 1334 1335 /* 1336 * cpufeature ID register user accessors 1337 * 1338 * For now, these registers are immutable for userspace, so no values 1339 * are stored, and for set_id_reg() we don't allow the effective value 1340 * to be changed. 1341 */ 1342 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1343 u64 *val) 1344 { 1345 *val = read_id_reg(vcpu, rd); 1346 return 0; 1347 } 1348 1349 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1350 u64 val) 1351 { 1352 /* This is what we mean by invariant: you can't change it. */ 1353 if (val != read_id_reg(vcpu, rd)) 1354 return -EINVAL; 1355 1356 return 0; 1357 } 1358 1359 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1360 u64 *val) 1361 { 1362 *val = 0; 1363 return 0; 1364 } 1365 1366 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1367 u64 val) 1368 { 1369 return 0; 1370 } 1371 1372 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1373 const struct sys_reg_desc *r) 1374 { 1375 if (p->is_write) 1376 return write_to_read_only(vcpu, p, r); 1377 1378 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); 1379 return true; 1380 } 1381 1382 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1383 const struct sys_reg_desc *r) 1384 { 1385 if (p->is_write) 1386 return write_to_read_only(vcpu, p, r); 1387 1388 p->regval = read_sysreg(clidr_el1); 1389 return true; 1390 } 1391 1392 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1393 const struct sys_reg_desc *r) 1394 { 1395 int reg = r->reg; 1396 1397 if (p->is_write) 1398 vcpu_write_sys_reg(vcpu, p->regval, reg); 1399 else 1400 p->regval = vcpu_read_sys_reg(vcpu, reg); 1401 return true; 1402 } 1403 1404 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1405 const struct sys_reg_desc *r) 1406 { 1407 u32 csselr; 1408 1409 if (p->is_write) 1410 return write_to_read_only(vcpu, p, r); 1411 1412 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); 1413 p->regval = get_ccsidr(csselr); 1414 1415 /* 1416 * Guests should not be doing cache operations by set/way at all, and 1417 * for this reason, we trap them and attempt to infer the intent, so 1418 * that we can flush the entire guest's address space at the appropriate 1419 * time. 1420 * To prevent this trapping from causing performance problems, let's 1421 * expose the geometry of all data and unified caches (which are 1422 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way. 1423 * [If guests should attempt to infer aliasing properties from the 1424 * geometry (which is not permitted by the architecture), they would 1425 * only do so for virtually indexed caches.] 1426 */ 1427 if (!(csselr & 1)) // data or unified cache 1428 p->regval &= ~GENMASK(27, 3); 1429 return true; 1430 } 1431 1432 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, 1433 const struct sys_reg_desc *rd) 1434 { 1435 if (kvm_has_mte(vcpu->kvm)) 1436 return 0; 1437 1438 return REG_HIDDEN; 1439 } 1440 1441 #define MTE_REG(name) { \ 1442 SYS_DESC(SYS_##name), \ 1443 .access = undef_access, \ 1444 .reset = reset_unknown, \ 1445 .reg = name, \ 1446 .visibility = mte_visibility, \ 1447 } 1448 1449 /* sys_reg_desc initialiser for known cpufeature ID registers */ 1450 #define ID_SANITISED(name) { \ 1451 SYS_DESC(SYS_##name), \ 1452 .access = access_id_reg, \ 1453 .get_user = get_id_reg, \ 1454 .set_user = set_id_reg, \ 1455 .visibility = id_visibility, \ 1456 } 1457 1458 /* sys_reg_desc initialiser for known cpufeature ID registers */ 1459 #define AA32_ID_SANITISED(name) { \ 1460 SYS_DESC(SYS_##name), \ 1461 .access = access_id_reg, \ 1462 .get_user = get_id_reg, \ 1463 .set_user = set_id_reg, \ 1464 .visibility = aa32_id_visibility, \ 1465 } 1466 1467 /* 1468 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID 1469 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 1470 * (1 <= crm < 8, 0 <= Op2 < 8). 1471 */ 1472 #define ID_UNALLOCATED(crm, op2) { \ 1473 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ 1474 .access = access_id_reg, \ 1475 .get_user = get_id_reg, \ 1476 .set_user = set_id_reg, \ 1477 .visibility = raz_visibility \ 1478 } 1479 1480 /* 1481 * sys_reg_desc initialiser for known ID registers that we hide from guests. 1482 * For now, these are exposed just like unallocated ID regs: they appear 1483 * RAZ for the guest. 1484 */ 1485 #define ID_HIDDEN(name) { \ 1486 SYS_DESC(SYS_##name), \ 1487 .access = access_id_reg, \ 1488 .get_user = get_id_reg, \ 1489 .set_user = set_id_reg, \ 1490 .visibility = raz_visibility, \ 1491 } 1492 1493 /* 1494 * Architected system registers. 1495 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 1496 * 1497 * Debug handling: We do trap most, if not all debug related system 1498 * registers. The implementation is good enough to ensure that a guest 1499 * can use these with minimal performance degradation. The drawback is 1500 * that we don't implement any of the external debug architecture. 1501 * This should be revisited if we ever encounter a more demanding 1502 * guest... 1503 */ 1504 static const struct sys_reg_desc sys_reg_descs[] = { 1505 { SYS_DESC(SYS_DC_ISW), access_dcsw }, 1506 { SYS_DESC(SYS_DC_CSW), access_dcsw }, 1507 { SYS_DESC(SYS_DC_CISW), access_dcsw }, 1508 1509 DBG_BCR_BVR_WCR_WVR_EL1(0), 1510 DBG_BCR_BVR_WCR_WVR_EL1(1), 1511 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 1512 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 1513 DBG_BCR_BVR_WCR_WVR_EL1(2), 1514 DBG_BCR_BVR_WCR_WVR_EL1(3), 1515 DBG_BCR_BVR_WCR_WVR_EL1(4), 1516 DBG_BCR_BVR_WCR_WVR_EL1(5), 1517 DBG_BCR_BVR_WCR_WVR_EL1(6), 1518 DBG_BCR_BVR_WCR_WVR_EL1(7), 1519 DBG_BCR_BVR_WCR_WVR_EL1(8), 1520 DBG_BCR_BVR_WCR_WVR_EL1(9), 1521 DBG_BCR_BVR_WCR_WVR_EL1(10), 1522 DBG_BCR_BVR_WCR_WVR_EL1(11), 1523 DBG_BCR_BVR_WCR_WVR_EL1(12), 1524 DBG_BCR_BVR_WCR_WVR_EL1(13), 1525 DBG_BCR_BVR_WCR_WVR_EL1(14), 1526 DBG_BCR_BVR_WCR_WVR_EL1(15), 1527 1528 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, 1529 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, 1530 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, 1531 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, 1532 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, 1533 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, 1534 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, 1535 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, 1536 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, 1537 1538 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, 1539 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, 1540 // DBGDTR[TR]X_EL0 share the same encoding 1541 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, 1542 1543 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, 1544 1545 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, 1546 1547 /* 1548 * ID regs: all ID_SANITISED() entries here must have corresponding 1549 * entries in arm64_ftr_regs[]. 1550 */ 1551 1552 /* AArch64 mappings of the AArch32 ID registers */ 1553 /* CRm=1 */ 1554 AA32_ID_SANITISED(ID_PFR0_EL1), 1555 AA32_ID_SANITISED(ID_PFR1_EL1), 1556 { SYS_DESC(SYS_ID_DFR0_EL1), .access = access_id_reg, 1557 .get_user = get_id_reg, .set_user = set_id_dfr0_el1, 1558 .visibility = aa32_id_visibility, }, 1559 ID_HIDDEN(ID_AFR0_EL1), 1560 AA32_ID_SANITISED(ID_MMFR0_EL1), 1561 AA32_ID_SANITISED(ID_MMFR1_EL1), 1562 AA32_ID_SANITISED(ID_MMFR2_EL1), 1563 AA32_ID_SANITISED(ID_MMFR3_EL1), 1564 1565 /* CRm=2 */ 1566 AA32_ID_SANITISED(ID_ISAR0_EL1), 1567 AA32_ID_SANITISED(ID_ISAR1_EL1), 1568 AA32_ID_SANITISED(ID_ISAR2_EL1), 1569 AA32_ID_SANITISED(ID_ISAR3_EL1), 1570 AA32_ID_SANITISED(ID_ISAR4_EL1), 1571 AA32_ID_SANITISED(ID_ISAR5_EL1), 1572 AA32_ID_SANITISED(ID_MMFR4_EL1), 1573 AA32_ID_SANITISED(ID_ISAR6_EL1), 1574 1575 /* CRm=3 */ 1576 AA32_ID_SANITISED(MVFR0_EL1), 1577 AA32_ID_SANITISED(MVFR1_EL1), 1578 AA32_ID_SANITISED(MVFR2_EL1), 1579 ID_UNALLOCATED(3,3), 1580 AA32_ID_SANITISED(ID_PFR2_EL1), 1581 ID_HIDDEN(ID_DFR1_EL1), 1582 AA32_ID_SANITISED(ID_MMFR5_EL1), 1583 ID_UNALLOCATED(3,7), 1584 1585 /* AArch64 ID registers */ 1586 /* CRm=4 */ 1587 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, 1588 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, 1589 ID_SANITISED(ID_AA64PFR1_EL1), 1590 ID_UNALLOCATED(4,2), 1591 ID_UNALLOCATED(4,3), 1592 ID_SANITISED(ID_AA64ZFR0_EL1), 1593 ID_HIDDEN(ID_AA64SMFR0_EL1), 1594 ID_UNALLOCATED(4,6), 1595 ID_UNALLOCATED(4,7), 1596 1597 /* CRm=5 */ 1598 { SYS_DESC(SYS_ID_AA64DFR0_EL1), .access = access_id_reg, 1599 .get_user = get_id_reg, .set_user = set_id_aa64dfr0_el1, }, 1600 ID_SANITISED(ID_AA64DFR1_EL1), 1601 ID_UNALLOCATED(5,2), 1602 ID_UNALLOCATED(5,3), 1603 ID_HIDDEN(ID_AA64AFR0_EL1), 1604 ID_HIDDEN(ID_AA64AFR1_EL1), 1605 ID_UNALLOCATED(5,6), 1606 ID_UNALLOCATED(5,7), 1607 1608 /* CRm=6 */ 1609 ID_SANITISED(ID_AA64ISAR0_EL1), 1610 ID_SANITISED(ID_AA64ISAR1_EL1), 1611 ID_SANITISED(ID_AA64ISAR2_EL1), 1612 ID_UNALLOCATED(6,3), 1613 ID_UNALLOCATED(6,4), 1614 ID_UNALLOCATED(6,5), 1615 ID_UNALLOCATED(6,6), 1616 ID_UNALLOCATED(6,7), 1617 1618 /* CRm=7 */ 1619 ID_SANITISED(ID_AA64MMFR0_EL1), 1620 ID_SANITISED(ID_AA64MMFR1_EL1), 1621 ID_SANITISED(ID_AA64MMFR2_EL1), 1622 ID_UNALLOCATED(7,3), 1623 ID_UNALLOCATED(7,4), 1624 ID_UNALLOCATED(7,5), 1625 ID_UNALLOCATED(7,6), 1626 ID_UNALLOCATED(7,7), 1627 1628 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 1629 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, 1630 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, 1631 1632 MTE_REG(RGSR_EL1), 1633 MTE_REG(GCR_EL1), 1634 1635 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, 1636 { SYS_DESC(SYS_TRFCR_EL1), undef_access }, 1637 { SYS_DESC(SYS_SMPRI_EL1), undef_access }, 1638 { SYS_DESC(SYS_SMCR_EL1), undef_access }, 1639 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, 1640 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, 1641 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, 1642 1643 PTRAUTH_KEY(APIA), 1644 PTRAUTH_KEY(APIB), 1645 PTRAUTH_KEY(APDA), 1646 PTRAUTH_KEY(APDB), 1647 PTRAUTH_KEY(APGA), 1648 1649 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, 1650 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, 1651 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, 1652 1653 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, 1654 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, 1655 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, 1656 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, 1657 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, 1658 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, 1659 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, 1660 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, 1661 1662 MTE_REG(TFSR_EL1), 1663 MTE_REG(TFSRE0_EL1), 1664 1665 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, 1666 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, 1667 1668 { SYS_DESC(SYS_PMSCR_EL1), undef_access }, 1669 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, 1670 { SYS_DESC(SYS_PMSICR_EL1), undef_access }, 1671 { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, 1672 { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, 1673 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, 1674 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, 1675 { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, 1676 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, 1677 { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, 1678 { SYS_DESC(SYS_PMBSR_EL1), undef_access }, 1679 /* PMBIDR_EL1 is not trapped */ 1680 1681 { PMU_SYS_REG(SYS_PMINTENSET_EL1), 1682 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1683 { PMU_SYS_REG(SYS_PMINTENCLR_EL1), 1684 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1685 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, 1686 1687 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, 1688 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 1689 1690 { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, 1691 { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, 1692 { SYS_DESC(SYS_LORN_EL1), trap_loregion }, 1693 { SYS_DESC(SYS_LORC_EL1), trap_loregion }, 1694 { SYS_DESC(SYS_LORID_EL1), trap_loregion }, 1695 1696 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, 1697 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, 1698 1699 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, 1700 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, 1701 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, 1702 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, 1703 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, 1704 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, 1705 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, 1706 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, 1707 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, 1708 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, 1709 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, 1710 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, 1711 1712 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 1713 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, 1714 1715 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, 1716 1717 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, 1718 1719 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, 1720 { SYS_DESC(SYS_CLIDR_EL1), access_clidr }, 1721 { SYS_DESC(SYS_SMIDR_EL1), undef_access }, 1722 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, 1723 { SYS_DESC(SYS_CTR_EL0), access_ctr }, 1724 { SYS_DESC(SYS_SVCR), undef_access }, 1725 1726 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr, 1727 .reset = reset_pmcr, .reg = PMCR_EL0 }, 1728 { PMU_SYS_REG(SYS_PMCNTENSET_EL0), 1729 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1730 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0), 1731 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1732 { PMU_SYS_REG(SYS_PMOVSCLR_EL0), 1733 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1734 /* 1735 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was 1736 * previously (and pointlessly) advertised in the past... 1737 */ 1738 { PMU_SYS_REG(SYS_PMSWINC_EL0), 1739 .get_user = get_raz_reg, .set_user = set_wi_reg, 1740 .access = access_pmswinc, .reset = NULL }, 1741 { PMU_SYS_REG(SYS_PMSELR_EL0), 1742 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, 1743 { PMU_SYS_REG(SYS_PMCEID0_EL0), 1744 .access = access_pmceid, .reset = NULL }, 1745 { PMU_SYS_REG(SYS_PMCEID1_EL0), 1746 .access = access_pmceid, .reset = NULL }, 1747 { PMU_SYS_REG(SYS_PMCCNTR_EL0), 1748 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 }, 1749 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0), 1750 .access = access_pmu_evtyper, .reset = NULL }, 1751 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0), 1752 .access = access_pmu_evcntr, .reset = NULL }, 1753 /* 1754 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero 1755 * in 32bit mode. Here we choose to reset it as zero for consistency. 1756 */ 1757 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr, 1758 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, 1759 { PMU_SYS_REG(SYS_PMOVSSET_EL0), 1760 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1761 1762 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, 1763 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, 1764 { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, 1765 1766 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, 1767 1768 { SYS_DESC(SYS_AMCR_EL0), undef_access }, 1769 { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, 1770 { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, 1771 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, 1772 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, 1773 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, 1774 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, 1775 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, 1776 AMU_AMEVCNTR0_EL0(0), 1777 AMU_AMEVCNTR0_EL0(1), 1778 AMU_AMEVCNTR0_EL0(2), 1779 AMU_AMEVCNTR0_EL0(3), 1780 AMU_AMEVCNTR0_EL0(4), 1781 AMU_AMEVCNTR0_EL0(5), 1782 AMU_AMEVCNTR0_EL0(6), 1783 AMU_AMEVCNTR0_EL0(7), 1784 AMU_AMEVCNTR0_EL0(8), 1785 AMU_AMEVCNTR0_EL0(9), 1786 AMU_AMEVCNTR0_EL0(10), 1787 AMU_AMEVCNTR0_EL0(11), 1788 AMU_AMEVCNTR0_EL0(12), 1789 AMU_AMEVCNTR0_EL0(13), 1790 AMU_AMEVCNTR0_EL0(14), 1791 AMU_AMEVCNTR0_EL0(15), 1792 AMU_AMEVTYPER0_EL0(0), 1793 AMU_AMEVTYPER0_EL0(1), 1794 AMU_AMEVTYPER0_EL0(2), 1795 AMU_AMEVTYPER0_EL0(3), 1796 AMU_AMEVTYPER0_EL0(4), 1797 AMU_AMEVTYPER0_EL0(5), 1798 AMU_AMEVTYPER0_EL0(6), 1799 AMU_AMEVTYPER0_EL0(7), 1800 AMU_AMEVTYPER0_EL0(8), 1801 AMU_AMEVTYPER0_EL0(9), 1802 AMU_AMEVTYPER0_EL0(10), 1803 AMU_AMEVTYPER0_EL0(11), 1804 AMU_AMEVTYPER0_EL0(12), 1805 AMU_AMEVTYPER0_EL0(13), 1806 AMU_AMEVTYPER0_EL0(14), 1807 AMU_AMEVTYPER0_EL0(15), 1808 AMU_AMEVCNTR1_EL0(0), 1809 AMU_AMEVCNTR1_EL0(1), 1810 AMU_AMEVCNTR1_EL0(2), 1811 AMU_AMEVCNTR1_EL0(3), 1812 AMU_AMEVCNTR1_EL0(4), 1813 AMU_AMEVCNTR1_EL0(5), 1814 AMU_AMEVCNTR1_EL0(6), 1815 AMU_AMEVCNTR1_EL0(7), 1816 AMU_AMEVCNTR1_EL0(8), 1817 AMU_AMEVCNTR1_EL0(9), 1818 AMU_AMEVCNTR1_EL0(10), 1819 AMU_AMEVCNTR1_EL0(11), 1820 AMU_AMEVCNTR1_EL0(12), 1821 AMU_AMEVCNTR1_EL0(13), 1822 AMU_AMEVCNTR1_EL0(14), 1823 AMU_AMEVCNTR1_EL0(15), 1824 AMU_AMEVTYPER1_EL0(0), 1825 AMU_AMEVTYPER1_EL0(1), 1826 AMU_AMEVTYPER1_EL0(2), 1827 AMU_AMEVTYPER1_EL0(3), 1828 AMU_AMEVTYPER1_EL0(4), 1829 AMU_AMEVTYPER1_EL0(5), 1830 AMU_AMEVTYPER1_EL0(6), 1831 AMU_AMEVTYPER1_EL0(7), 1832 AMU_AMEVTYPER1_EL0(8), 1833 AMU_AMEVTYPER1_EL0(9), 1834 AMU_AMEVTYPER1_EL0(10), 1835 AMU_AMEVTYPER1_EL0(11), 1836 AMU_AMEVTYPER1_EL0(12), 1837 AMU_AMEVTYPER1_EL0(13), 1838 AMU_AMEVTYPER1_EL0(14), 1839 AMU_AMEVTYPER1_EL0(15), 1840 1841 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, 1842 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, 1843 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, 1844 1845 /* PMEVCNTRn_EL0 */ 1846 PMU_PMEVCNTR_EL0(0), 1847 PMU_PMEVCNTR_EL0(1), 1848 PMU_PMEVCNTR_EL0(2), 1849 PMU_PMEVCNTR_EL0(3), 1850 PMU_PMEVCNTR_EL0(4), 1851 PMU_PMEVCNTR_EL0(5), 1852 PMU_PMEVCNTR_EL0(6), 1853 PMU_PMEVCNTR_EL0(7), 1854 PMU_PMEVCNTR_EL0(8), 1855 PMU_PMEVCNTR_EL0(9), 1856 PMU_PMEVCNTR_EL0(10), 1857 PMU_PMEVCNTR_EL0(11), 1858 PMU_PMEVCNTR_EL0(12), 1859 PMU_PMEVCNTR_EL0(13), 1860 PMU_PMEVCNTR_EL0(14), 1861 PMU_PMEVCNTR_EL0(15), 1862 PMU_PMEVCNTR_EL0(16), 1863 PMU_PMEVCNTR_EL0(17), 1864 PMU_PMEVCNTR_EL0(18), 1865 PMU_PMEVCNTR_EL0(19), 1866 PMU_PMEVCNTR_EL0(20), 1867 PMU_PMEVCNTR_EL0(21), 1868 PMU_PMEVCNTR_EL0(22), 1869 PMU_PMEVCNTR_EL0(23), 1870 PMU_PMEVCNTR_EL0(24), 1871 PMU_PMEVCNTR_EL0(25), 1872 PMU_PMEVCNTR_EL0(26), 1873 PMU_PMEVCNTR_EL0(27), 1874 PMU_PMEVCNTR_EL0(28), 1875 PMU_PMEVCNTR_EL0(29), 1876 PMU_PMEVCNTR_EL0(30), 1877 /* PMEVTYPERn_EL0 */ 1878 PMU_PMEVTYPER_EL0(0), 1879 PMU_PMEVTYPER_EL0(1), 1880 PMU_PMEVTYPER_EL0(2), 1881 PMU_PMEVTYPER_EL0(3), 1882 PMU_PMEVTYPER_EL0(4), 1883 PMU_PMEVTYPER_EL0(5), 1884 PMU_PMEVTYPER_EL0(6), 1885 PMU_PMEVTYPER_EL0(7), 1886 PMU_PMEVTYPER_EL0(8), 1887 PMU_PMEVTYPER_EL0(9), 1888 PMU_PMEVTYPER_EL0(10), 1889 PMU_PMEVTYPER_EL0(11), 1890 PMU_PMEVTYPER_EL0(12), 1891 PMU_PMEVTYPER_EL0(13), 1892 PMU_PMEVTYPER_EL0(14), 1893 PMU_PMEVTYPER_EL0(15), 1894 PMU_PMEVTYPER_EL0(16), 1895 PMU_PMEVTYPER_EL0(17), 1896 PMU_PMEVTYPER_EL0(18), 1897 PMU_PMEVTYPER_EL0(19), 1898 PMU_PMEVTYPER_EL0(20), 1899 PMU_PMEVTYPER_EL0(21), 1900 PMU_PMEVTYPER_EL0(22), 1901 PMU_PMEVTYPER_EL0(23), 1902 PMU_PMEVTYPER_EL0(24), 1903 PMU_PMEVTYPER_EL0(25), 1904 PMU_PMEVTYPER_EL0(26), 1905 PMU_PMEVTYPER_EL0(27), 1906 PMU_PMEVTYPER_EL0(28), 1907 PMU_PMEVTYPER_EL0(29), 1908 PMU_PMEVTYPER_EL0(30), 1909 /* 1910 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero 1911 * in 32bit mode. Here we choose to reset it as zero for consistency. 1912 */ 1913 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper, 1914 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, 1915 1916 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, 1917 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, 1918 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, 1919 }; 1920 1921 static bool trap_dbgdidr(struct kvm_vcpu *vcpu, 1922 struct sys_reg_params *p, 1923 const struct sys_reg_desc *r) 1924 { 1925 if (p->is_write) { 1926 return ignore_write(vcpu, p); 1927 } else { 1928 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); 1929 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1930 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT); 1931 1932 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) | 1933 (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) | 1934 (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20) 1935 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); 1936 return true; 1937 } 1938 } 1939 1940 /* 1941 * AArch32 debug register mappings 1942 * 1943 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 1944 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 1945 * 1946 * None of the other registers share their location, so treat them as 1947 * if they were 64bit. 1948 */ 1949 #define DBG_BCR_BVR_WCR_WVR(n) \ 1950 /* DBGBVRn */ \ 1951 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 1952 /* DBGBCRn */ \ 1953 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 1954 /* DBGWVRn */ \ 1955 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 1956 /* DBGWCRn */ \ 1957 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 1958 1959 #define DBGBXVR(n) \ 1960 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } 1961 1962 /* 1963 * Trapped cp14 registers. We generally ignore most of the external 1964 * debug, on the principle that they don't really make sense to a 1965 * guest. Revisit this one day, would this principle change. 1966 */ 1967 static const struct sys_reg_desc cp14_regs[] = { 1968 /* DBGDIDR */ 1969 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, 1970 /* DBGDTRRXext */ 1971 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 1972 1973 DBG_BCR_BVR_WCR_WVR(0), 1974 /* DBGDSCRint */ 1975 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 1976 DBG_BCR_BVR_WCR_WVR(1), 1977 /* DBGDCCINT */ 1978 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, 1979 /* DBGDSCRext */ 1980 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, 1981 DBG_BCR_BVR_WCR_WVR(2), 1982 /* DBGDTR[RT]Xint */ 1983 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 1984 /* DBGDTR[RT]Xext */ 1985 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 1986 DBG_BCR_BVR_WCR_WVR(3), 1987 DBG_BCR_BVR_WCR_WVR(4), 1988 DBG_BCR_BVR_WCR_WVR(5), 1989 /* DBGWFAR */ 1990 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 1991 /* DBGOSECCR */ 1992 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 1993 DBG_BCR_BVR_WCR_WVR(6), 1994 /* DBGVCR */ 1995 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, 1996 DBG_BCR_BVR_WCR_WVR(7), 1997 DBG_BCR_BVR_WCR_WVR(8), 1998 DBG_BCR_BVR_WCR_WVR(9), 1999 DBG_BCR_BVR_WCR_WVR(10), 2000 DBG_BCR_BVR_WCR_WVR(11), 2001 DBG_BCR_BVR_WCR_WVR(12), 2002 DBG_BCR_BVR_WCR_WVR(13), 2003 DBG_BCR_BVR_WCR_WVR(14), 2004 DBG_BCR_BVR_WCR_WVR(15), 2005 2006 /* DBGDRAR (32bit) */ 2007 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 2008 2009 DBGBXVR(0), 2010 /* DBGOSLAR */ 2011 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, 2012 DBGBXVR(1), 2013 /* DBGOSLSR */ 2014 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, 2015 DBGBXVR(2), 2016 DBGBXVR(3), 2017 /* DBGOSDLR */ 2018 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 2019 DBGBXVR(4), 2020 /* DBGPRCR */ 2021 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 2022 DBGBXVR(5), 2023 DBGBXVR(6), 2024 DBGBXVR(7), 2025 DBGBXVR(8), 2026 DBGBXVR(9), 2027 DBGBXVR(10), 2028 DBGBXVR(11), 2029 DBGBXVR(12), 2030 DBGBXVR(13), 2031 DBGBXVR(14), 2032 DBGBXVR(15), 2033 2034 /* DBGDSAR (32bit) */ 2035 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 2036 2037 /* DBGDEVID2 */ 2038 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 2039 /* DBGDEVID1 */ 2040 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 2041 /* DBGDEVID */ 2042 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 2043 /* DBGCLAIMSET */ 2044 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 2045 /* DBGCLAIMCLR */ 2046 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 2047 /* DBGAUTHSTATUS */ 2048 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 2049 }; 2050 2051 /* Trapped cp14 64bit registers */ 2052 static const struct sys_reg_desc cp14_64_regs[] = { 2053 /* DBGDRAR (64bit) */ 2054 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 2055 2056 /* DBGDSAR (64bit) */ 2057 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 2058 }; 2059 2060 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ 2061 AA32(_map), \ 2062 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ 2063 .visibility = pmu_visibility 2064 2065 /* Macro to expand the PMEVCNTRn register */ 2066 #define PMU_PMEVCNTR(n) \ 2067 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2068 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2069 .access = access_pmu_evcntr } 2070 2071 /* Macro to expand the PMEVTYPERn register */ 2072 #define PMU_PMEVTYPER(n) \ 2073 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2074 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2075 .access = access_pmu_evtyper } 2076 /* 2077 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 2078 * depending on the way they are accessed (as a 32bit or a 64bit 2079 * register). 2080 */ 2081 static const struct sys_reg_desc cp15_regs[] = { 2082 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, 2083 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, 2084 /* ACTLR */ 2085 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, 2086 /* ACTLR2 */ 2087 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, 2088 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2089 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, 2090 /* TTBCR */ 2091 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, 2092 /* TTBCR2 */ 2093 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, 2094 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, 2095 /* DFSR */ 2096 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, 2097 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, 2098 /* ADFSR */ 2099 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, 2100 /* AIFSR */ 2101 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, 2102 /* DFAR */ 2103 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, 2104 /* IFAR */ 2105 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, 2106 2107 /* 2108 * DC{C,I,CI}SW operations: 2109 */ 2110 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 2111 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 2112 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 2113 2114 /* PMU */ 2115 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, 2116 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, 2117 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, 2118 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, 2119 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, 2120 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, 2121 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, 2122 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, 2123 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, 2124 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, 2125 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, 2126 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, 2127 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, 2128 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, 2129 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, 2130 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, 2131 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, 2132 /* PMMIR */ 2133 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, 2134 2135 /* PRRR/MAIR0 */ 2136 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, 2137 /* NMRR/MAIR1 */ 2138 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, 2139 /* AMAIR0 */ 2140 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, 2141 /* AMAIR1 */ 2142 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, 2143 2144 /* ICC_SRE */ 2145 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, 2146 2147 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, 2148 2149 /* Arch Tmers */ 2150 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, 2151 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, 2152 2153 /* PMEVCNTRn */ 2154 PMU_PMEVCNTR(0), 2155 PMU_PMEVCNTR(1), 2156 PMU_PMEVCNTR(2), 2157 PMU_PMEVCNTR(3), 2158 PMU_PMEVCNTR(4), 2159 PMU_PMEVCNTR(5), 2160 PMU_PMEVCNTR(6), 2161 PMU_PMEVCNTR(7), 2162 PMU_PMEVCNTR(8), 2163 PMU_PMEVCNTR(9), 2164 PMU_PMEVCNTR(10), 2165 PMU_PMEVCNTR(11), 2166 PMU_PMEVCNTR(12), 2167 PMU_PMEVCNTR(13), 2168 PMU_PMEVCNTR(14), 2169 PMU_PMEVCNTR(15), 2170 PMU_PMEVCNTR(16), 2171 PMU_PMEVCNTR(17), 2172 PMU_PMEVCNTR(18), 2173 PMU_PMEVCNTR(19), 2174 PMU_PMEVCNTR(20), 2175 PMU_PMEVCNTR(21), 2176 PMU_PMEVCNTR(22), 2177 PMU_PMEVCNTR(23), 2178 PMU_PMEVCNTR(24), 2179 PMU_PMEVCNTR(25), 2180 PMU_PMEVCNTR(26), 2181 PMU_PMEVCNTR(27), 2182 PMU_PMEVCNTR(28), 2183 PMU_PMEVCNTR(29), 2184 PMU_PMEVCNTR(30), 2185 /* PMEVTYPERn */ 2186 PMU_PMEVTYPER(0), 2187 PMU_PMEVTYPER(1), 2188 PMU_PMEVTYPER(2), 2189 PMU_PMEVTYPER(3), 2190 PMU_PMEVTYPER(4), 2191 PMU_PMEVTYPER(5), 2192 PMU_PMEVTYPER(6), 2193 PMU_PMEVTYPER(7), 2194 PMU_PMEVTYPER(8), 2195 PMU_PMEVTYPER(9), 2196 PMU_PMEVTYPER(10), 2197 PMU_PMEVTYPER(11), 2198 PMU_PMEVTYPER(12), 2199 PMU_PMEVTYPER(13), 2200 PMU_PMEVTYPER(14), 2201 PMU_PMEVTYPER(15), 2202 PMU_PMEVTYPER(16), 2203 PMU_PMEVTYPER(17), 2204 PMU_PMEVTYPER(18), 2205 PMU_PMEVTYPER(19), 2206 PMU_PMEVTYPER(20), 2207 PMU_PMEVTYPER(21), 2208 PMU_PMEVTYPER(22), 2209 PMU_PMEVTYPER(23), 2210 PMU_PMEVTYPER(24), 2211 PMU_PMEVTYPER(25), 2212 PMU_PMEVTYPER(26), 2213 PMU_PMEVTYPER(27), 2214 PMU_PMEVTYPER(28), 2215 PMU_PMEVTYPER(29), 2216 PMU_PMEVTYPER(30), 2217 /* PMCCFILTR */ 2218 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, 2219 2220 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, 2221 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, 2222 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, 2223 }; 2224 2225 static const struct sys_reg_desc cp15_64_regs[] = { 2226 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2227 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, 2228 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ 2229 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, 2230 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ 2231 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ 2232 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, 2233 }; 2234 2235 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, 2236 bool is_32) 2237 { 2238 unsigned int i; 2239 2240 for (i = 0; i < n; i++) { 2241 if (!is_32 && table[i].reg && !table[i].reset) { 2242 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); 2243 return false; 2244 } 2245 2246 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 2247 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); 2248 return false; 2249 } 2250 } 2251 2252 return true; 2253 } 2254 2255 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) 2256 { 2257 kvm_inject_undefined(vcpu); 2258 return 1; 2259 } 2260 2261 static void perform_access(struct kvm_vcpu *vcpu, 2262 struct sys_reg_params *params, 2263 const struct sys_reg_desc *r) 2264 { 2265 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); 2266 2267 /* Check for regs disabled by runtime config */ 2268 if (sysreg_hidden(vcpu, r)) { 2269 kvm_inject_undefined(vcpu); 2270 return; 2271 } 2272 2273 /* 2274 * Not having an accessor means that we have configured a trap 2275 * that we don't know how to handle. This certainly qualifies 2276 * as a gross bug that should be fixed right away. 2277 */ 2278 BUG_ON(!r->access); 2279 2280 /* Skip instruction if instructed so */ 2281 if (likely(r->access(vcpu, params, r))) 2282 kvm_incr_pc(vcpu); 2283 } 2284 2285 /* 2286 * emulate_cp -- tries to match a sys_reg access in a handling table, and 2287 * call the corresponding trap handler. 2288 * 2289 * @params: pointer to the descriptor of the access 2290 * @table: array of trap descriptors 2291 * @num: size of the trap descriptor array 2292 * 2293 * Return true if the access has been handled, false if not. 2294 */ 2295 static bool emulate_cp(struct kvm_vcpu *vcpu, 2296 struct sys_reg_params *params, 2297 const struct sys_reg_desc *table, 2298 size_t num) 2299 { 2300 const struct sys_reg_desc *r; 2301 2302 if (!table) 2303 return false; /* Not handled */ 2304 2305 r = find_reg(params, table, num); 2306 2307 if (r) { 2308 perform_access(vcpu, params, r); 2309 return true; 2310 } 2311 2312 /* Not handled */ 2313 return false; 2314 } 2315 2316 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 2317 struct sys_reg_params *params) 2318 { 2319 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 2320 int cp = -1; 2321 2322 switch (esr_ec) { 2323 case ESR_ELx_EC_CP15_32: 2324 case ESR_ELx_EC_CP15_64: 2325 cp = 15; 2326 break; 2327 case ESR_ELx_EC_CP14_MR: 2328 case ESR_ELx_EC_CP14_64: 2329 cp = 14; 2330 break; 2331 default: 2332 WARN_ON(1); 2333 } 2334 2335 print_sys_reg_msg(params, 2336 "Unsupported guest CP%d access at: %08lx [%08lx]\n", 2337 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2338 kvm_inject_undefined(vcpu); 2339 } 2340 2341 /** 2342 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access 2343 * @vcpu: The VCPU pointer 2344 * @run: The kvm_run struct 2345 */ 2346 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 2347 const struct sys_reg_desc *global, 2348 size_t nr_global) 2349 { 2350 struct sys_reg_params params; 2351 u64 esr = kvm_vcpu_get_esr(vcpu); 2352 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2353 int Rt2 = (esr >> 10) & 0x1f; 2354 2355 params.CRm = (esr >> 1) & 0xf; 2356 params.is_write = ((esr & 1) == 0); 2357 2358 params.Op0 = 0; 2359 params.Op1 = (esr >> 16) & 0xf; 2360 params.Op2 = 0; 2361 params.CRn = 0; 2362 2363 /* 2364 * Make a 64-bit value out of Rt and Rt2. As we use the same trap 2365 * backends between AArch32 and AArch64, we get away with it. 2366 */ 2367 if (params.is_write) { 2368 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; 2369 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; 2370 } 2371 2372 /* 2373 * If the table contains a handler, handle the 2374 * potential register operation in the case of a read and return 2375 * with success. 2376 */ 2377 if (emulate_cp(vcpu, ¶ms, global, nr_global)) { 2378 /* Split up the value between registers for the read side */ 2379 if (!params.is_write) { 2380 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); 2381 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); 2382 } 2383 2384 return 1; 2385 } 2386 2387 unhandled_cp_access(vcpu, ¶ms); 2388 return 1; 2389 } 2390 2391 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); 2392 2393 /* 2394 * The CP10 ID registers are architecturally mapped to AArch64 feature 2395 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses 2396 * from AArch32. 2397 */ 2398 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) 2399 { 2400 u8 reg_id = (esr >> 10) & 0xf; 2401 bool valid; 2402 2403 params->is_write = ((esr & 1) == 0); 2404 params->Op0 = 3; 2405 params->Op1 = 0; 2406 params->CRn = 0; 2407 params->CRm = 3; 2408 2409 /* CP10 ID registers are read-only */ 2410 valid = !params->is_write; 2411 2412 switch (reg_id) { 2413 /* MVFR0 */ 2414 case 0b0111: 2415 params->Op2 = 0; 2416 break; 2417 /* MVFR1 */ 2418 case 0b0110: 2419 params->Op2 = 1; 2420 break; 2421 /* MVFR2 */ 2422 case 0b0101: 2423 params->Op2 = 2; 2424 break; 2425 default: 2426 valid = false; 2427 } 2428 2429 if (valid) 2430 return true; 2431 2432 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", 2433 params->is_write ? "write" : "read", reg_id); 2434 return false; 2435 } 2436 2437 /** 2438 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and 2439 * VFP Register' from AArch32. 2440 * @vcpu: The vCPU pointer 2441 * 2442 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. 2443 * Work out the correct AArch64 system register encoding and reroute to the 2444 * AArch64 system register emulation. 2445 */ 2446 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) 2447 { 2448 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2449 u64 esr = kvm_vcpu_get_esr(vcpu); 2450 struct sys_reg_params params; 2451 2452 /* UNDEF on any unhandled register access */ 2453 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { 2454 kvm_inject_undefined(vcpu); 2455 return 1; 2456 } 2457 2458 if (emulate_sys_reg(vcpu, ¶ms)) 2459 vcpu_set_reg(vcpu, Rt, params.regval); 2460 2461 return 1; 2462 } 2463 2464 /** 2465 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where 2466 * CRn=0, which corresponds to the AArch32 feature 2467 * registers. 2468 * @vcpu: the vCPU pointer 2469 * @params: the system register access parameters. 2470 * 2471 * Our cp15 system register tables do not enumerate the AArch32 feature 2472 * registers. Conveniently, our AArch64 table does, and the AArch32 system 2473 * register encoding can be trivially remapped into the AArch64 for the feature 2474 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. 2475 * 2476 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit 2477 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this 2478 * range are either UNKNOWN or RES0. Rerouting remains architectural as we 2479 * treat undefined registers in this range as RAZ. 2480 */ 2481 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, 2482 struct sys_reg_params *params) 2483 { 2484 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2485 2486 /* Treat impossible writes to RO registers as UNDEFINED */ 2487 if (params->is_write) { 2488 unhandled_cp_access(vcpu, params); 2489 return 1; 2490 } 2491 2492 params->Op0 = 3; 2493 2494 /* 2495 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. 2496 * Avoid conflicting with future expansion of AArch64 feature registers 2497 * and simply treat them as RAZ here. 2498 */ 2499 if (params->CRm > 3) 2500 params->regval = 0; 2501 else if (!emulate_sys_reg(vcpu, params)) 2502 return 1; 2503 2504 vcpu_set_reg(vcpu, Rt, params->regval); 2505 return 1; 2506 } 2507 2508 /** 2509 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access 2510 * @vcpu: The VCPU pointer 2511 * @run: The kvm_run struct 2512 */ 2513 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 2514 struct sys_reg_params *params, 2515 const struct sys_reg_desc *global, 2516 size_t nr_global) 2517 { 2518 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2519 2520 params->regval = vcpu_get_reg(vcpu, Rt); 2521 2522 if (emulate_cp(vcpu, params, global, nr_global)) { 2523 if (!params->is_write) 2524 vcpu_set_reg(vcpu, Rt, params->regval); 2525 return 1; 2526 } 2527 2528 unhandled_cp_access(vcpu, params); 2529 return 1; 2530 } 2531 2532 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) 2533 { 2534 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); 2535 } 2536 2537 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) 2538 { 2539 struct sys_reg_params params; 2540 2541 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 2542 2543 /* 2544 * Certain AArch32 ID registers are handled by rerouting to the AArch64 2545 * system register table. Registers in the ID range where CRm=0 are 2546 * excluded from this scheme as they do not trivially map into AArch64 2547 * system register encodings. 2548 */ 2549 if (params.Op1 == 0 && params.CRn == 0 && params.CRm) 2550 return kvm_emulate_cp15_id_reg(vcpu, ¶ms); 2551 2552 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); 2553 } 2554 2555 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) 2556 { 2557 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); 2558 } 2559 2560 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) 2561 { 2562 struct sys_reg_params params; 2563 2564 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 2565 2566 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); 2567 } 2568 2569 static bool is_imp_def_sys_reg(struct sys_reg_params *params) 2570 { 2571 // See ARM DDI 0487E.a, section D12.3.2 2572 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; 2573 } 2574 2575 /** 2576 * emulate_sys_reg - Emulate a guest access to an AArch64 system register 2577 * @vcpu: The VCPU pointer 2578 * @params: Decoded system register parameters 2579 * 2580 * Return: true if the system register access was successful, false otherwise. 2581 */ 2582 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, 2583 struct sys_reg_params *params) 2584 { 2585 const struct sys_reg_desc *r; 2586 2587 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2588 2589 if (likely(r)) { 2590 perform_access(vcpu, params, r); 2591 return true; 2592 } 2593 2594 if (is_imp_def_sys_reg(params)) { 2595 kvm_inject_undefined(vcpu); 2596 } else { 2597 print_sys_reg_msg(params, 2598 "Unsupported guest sys_reg access at: %lx [%08lx]\n", 2599 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2600 kvm_inject_undefined(vcpu); 2601 } 2602 return false; 2603 } 2604 2605 /** 2606 * kvm_reset_sys_regs - sets system registers to reset value 2607 * @vcpu: The VCPU pointer 2608 * 2609 * This function finds the right table above and sets the registers on the 2610 * virtual CPU struct to their architecturally defined reset values. 2611 */ 2612 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 2613 { 2614 unsigned long i; 2615 2616 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) 2617 if (sys_reg_descs[i].reset) 2618 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); 2619 } 2620 2621 /** 2622 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access 2623 * @vcpu: The VCPU pointer 2624 */ 2625 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) 2626 { 2627 struct sys_reg_params params; 2628 unsigned long esr = kvm_vcpu_get_esr(vcpu); 2629 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2630 2631 trace_kvm_handle_sys_reg(esr); 2632 2633 params = esr_sys64_to_params(esr); 2634 params.regval = vcpu_get_reg(vcpu, Rt); 2635 2636 if (!emulate_sys_reg(vcpu, ¶ms)) 2637 return 1; 2638 2639 if (!params.is_write) 2640 vcpu_set_reg(vcpu, Rt, params.regval); 2641 return 1; 2642 } 2643 2644 /****************************************************************************** 2645 * Userspace API 2646 *****************************************************************************/ 2647 2648 static bool index_to_params(u64 id, struct sys_reg_params *params) 2649 { 2650 switch (id & KVM_REG_SIZE_MASK) { 2651 case KVM_REG_SIZE_U64: 2652 /* Any unused index bits means it's not valid. */ 2653 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 2654 | KVM_REG_ARM_COPROC_MASK 2655 | KVM_REG_ARM64_SYSREG_OP0_MASK 2656 | KVM_REG_ARM64_SYSREG_OP1_MASK 2657 | KVM_REG_ARM64_SYSREG_CRN_MASK 2658 | KVM_REG_ARM64_SYSREG_CRM_MASK 2659 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 2660 return false; 2661 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 2662 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 2663 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 2664 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 2665 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 2666 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 2667 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 2668 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 2669 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 2670 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 2671 return true; 2672 default: 2673 return false; 2674 } 2675 } 2676 2677 const struct sys_reg_desc *get_reg_by_id(u64 id, 2678 const struct sys_reg_desc table[], 2679 unsigned int num) 2680 { 2681 struct sys_reg_params params; 2682 2683 if (!index_to_params(id, ¶ms)) 2684 return NULL; 2685 2686 return find_reg(¶ms, table, num); 2687 } 2688 2689 /* Decode an index value, and find the sys_reg_desc entry. */ 2690 static const struct sys_reg_desc * 2691 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, 2692 const struct sys_reg_desc table[], unsigned int num) 2693 2694 { 2695 const struct sys_reg_desc *r; 2696 2697 /* We only do sys_reg for now. */ 2698 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 2699 return NULL; 2700 2701 r = get_reg_by_id(id, table, num); 2702 2703 /* Not saved in the sys_reg array and not otherwise accessible? */ 2704 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) 2705 r = NULL; 2706 2707 return r; 2708 } 2709 2710 /* 2711 * These are the invariant sys_reg registers: we let the guest see the 2712 * host versions of these, so they're part of the guest state. 2713 * 2714 * A future CPU may provide a mechanism to present different values to 2715 * the guest, or a future kvm may trap them. 2716 */ 2717 2718 #define FUNCTION_INVARIANT(reg) \ 2719 static void get_##reg(struct kvm_vcpu *v, \ 2720 const struct sys_reg_desc *r) \ 2721 { \ 2722 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ 2723 } 2724 2725 FUNCTION_INVARIANT(midr_el1) 2726 FUNCTION_INVARIANT(revidr_el1) 2727 FUNCTION_INVARIANT(clidr_el1) 2728 FUNCTION_INVARIANT(aidr_el1) 2729 2730 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) 2731 { 2732 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); 2733 } 2734 2735 /* ->val is filled in by kvm_sys_reg_table_init() */ 2736 static struct sys_reg_desc invariant_sys_regs[] = { 2737 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, 2738 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, 2739 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, 2740 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, 2741 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, 2742 }; 2743 2744 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) 2745 { 2746 const struct sys_reg_desc *r; 2747 2748 r = get_reg_by_id(id, invariant_sys_regs, 2749 ARRAY_SIZE(invariant_sys_regs)); 2750 if (!r) 2751 return -ENOENT; 2752 2753 return put_user(r->val, uaddr); 2754 } 2755 2756 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) 2757 { 2758 const struct sys_reg_desc *r; 2759 u64 val; 2760 2761 r = get_reg_by_id(id, invariant_sys_regs, 2762 ARRAY_SIZE(invariant_sys_regs)); 2763 if (!r) 2764 return -ENOENT; 2765 2766 if (get_user(val, uaddr)) 2767 return -EFAULT; 2768 2769 /* This is what we mean by invariant: you can't change it. */ 2770 if (r->val != val) 2771 return -EINVAL; 2772 2773 return 0; 2774 } 2775 2776 static bool is_valid_cache(u32 val) 2777 { 2778 u32 level, ctype; 2779 2780 if (val >= CSSELR_MAX) 2781 return false; 2782 2783 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ 2784 level = (val >> 1); 2785 ctype = (cache_levels >> (level * 3)) & 7; 2786 2787 switch (ctype) { 2788 case 0: /* No cache */ 2789 return false; 2790 case 1: /* Instruction cache only */ 2791 return (val & 1); 2792 case 2: /* Data cache only */ 2793 case 4: /* Unified cache */ 2794 return !(val & 1); 2795 case 3: /* Separate instruction and data caches */ 2796 return true; 2797 default: /* Reserved: we can't know instruction or data. */ 2798 return false; 2799 } 2800 } 2801 2802 static int demux_c15_get(u64 id, void __user *uaddr) 2803 { 2804 u32 val; 2805 u32 __user *uval = uaddr; 2806 2807 /* Fail if we have unknown bits set. */ 2808 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2809 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2810 return -ENOENT; 2811 2812 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2813 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2814 if (KVM_REG_SIZE(id) != 4) 2815 return -ENOENT; 2816 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2817 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2818 if (!is_valid_cache(val)) 2819 return -ENOENT; 2820 2821 return put_user(get_ccsidr(val), uval); 2822 default: 2823 return -ENOENT; 2824 } 2825 } 2826 2827 static int demux_c15_set(u64 id, void __user *uaddr) 2828 { 2829 u32 val, newval; 2830 u32 __user *uval = uaddr; 2831 2832 /* Fail if we have unknown bits set. */ 2833 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2834 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2835 return -ENOENT; 2836 2837 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2838 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2839 if (KVM_REG_SIZE(id) != 4) 2840 return -ENOENT; 2841 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2842 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2843 if (!is_valid_cache(val)) 2844 return -ENOENT; 2845 2846 if (get_user(newval, uval)) 2847 return -EFAULT; 2848 2849 /* This is also invariant: you can't change it. */ 2850 if (newval != get_ccsidr(val)) 2851 return -EINVAL; 2852 return 0; 2853 default: 2854 return -ENOENT; 2855 } 2856 } 2857 2858 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 2859 const struct sys_reg_desc table[], unsigned int num) 2860 { 2861 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 2862 const struct sys_reg_desc *r; 2863 u64 val; 2864 int ret; 2865 2866 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 2867 if (!r) 2868 return -ENOENT; 2869 2870 if (r->get_user) { 2871 ret = (r->get_user)(vcpu, r, &val); 2872 } else { 2873 val = __vcpu_sys_reg(vcpu, r->reg); 2874 ret = 0; 2875 } 2876 2877 if (!ret) 2878 ret = put_user(val, uaddr); 2879 2880 return ret; 2881 } 2882 2883 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2884 { 2885 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2886 int err; 2887 2888 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2889 return demux_c15_get(reg->id, uaddr); 2890 2891 err = get_invariant_sys_reg(reg->id, uaddr); 2892 if (err != -ENOENT) 2893 return err; 2894 2895 return kvm_sys_reg_get_user(vcpu, reg, 2896 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2897 } 2898 2899 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 2900 const struct sys_reg_desc table[], unsigned int num) 2901 { 2902 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 2903 const struct sys_reg_desc *r; 2904 u64 val; 2905 int ret; 2906 2907 if (get_user(val, uaddr)) 2908 return -EFAULT; 2909 2910 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 2911 if (!r) 2912 return -ENOENT; 2913 2914 if (sysreg_user_write_ignore(vcpu, r)) 2915 return 0; 2916 2917 if (r->set_user) { 2918 ret = (r->set_user)(vcpu, r, val); 2919 } else { 2920 __vcpu_sys_reg(vcpu, r->reg) = val; 2921 ret = 0; 2922 } 2923 2924 return ret; 2925 } 2926 2927 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2928 { 2929 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2930 int err; 2931 2932 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2933 return demux_c15_set(reg->id, uaddr); 2934 2935 err = set_invariant_sys_reg(reg->id, uaddr); 2936 if (err != -ENOENT) 2937 return err; 2938 2939 return kvm_sys_reg_set_user(vcpu, reg, 2940 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2941 } 2942 2943 static unsigned int num_demux_regs(void) 2944 { 2945 unsigned int i, count = 0; 2946 2947 for (i = 0; i < CSSELR_MAX; i++) 2948 if (is_valid_cache(i)) 2949 count++; 2950 2951 return count; 2952 } 2953 2954 static int write_demux_regids(u64 __user *uindices) 2955 { 2956 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 2957 unsigned int i; 2958 2959 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 2960 for (i = 0; i < CSSELR_MAX; i++) { 2961 if (!is_valid_cache(i)) 2962 continue; 2963 if (put_user(val | i, uindices)) 2964 return -EFAULT; 2965 uindices++; 2966 } 2967 return 0; 2968 } 2969 2970 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 2971 { 2972 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 2973 KVM_REG_ARM64_SYSREG | 2974 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 2975 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 2976 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 2977 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 2978 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 2979 } 2980 2981 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 2982 { 2983 if (!*uind) 2984 return true; 2985 2986 if (put_user(sys_reg_to_index(reg), *uind)) 2987 return false; 2988 2989 (*uind)++; 2990 return true; 2991 } 2992 2993 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, 2994 const struct sys_reg_desc *rd, 2995 u64 __user **uind, 2996 unsigned int *total) 2997 { 2998 /* 2999 * Ignore registers we trap but don't save, 3000 * and for which no custom user accessor is provided. 3001 */ 3002 if (!(rd->reg || rd->get_user)) 3003 return 0; 3004 3005 if (sysreg_hidden(vcpu, rd)) 3006 return 0; 3007 3008 if (!copy_reg_to_user(rd, uind)) 3009 return -EFAULT; 3010 3011 (*total)++; 3012 return 0; 3013 } 3014 3015 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 3016 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 3017 { 3018 const struct sys_reg_desc *i2, *end2; 3019 unsigned int total = 0; 3020 int err; 3021 3022 i2 = sys_reg_descs; 3023 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 3024 3025 while (i2 != end2) { 3026 err = walk_one_sys_reg(vcpu, i2++, &uind, &total); 3027 if (err) 3028 return err; 3029 } 3030 return total; 3031 } 3032 3033 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 3034 { 3035 return ARRAY_SIZE(invariant_sys_regs) 3036 + num_demux_regs() 3037 + walk_sys_regs(vcpu, (u64 __user *)NULL); 3038 } 3039 3040 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 3041 { 3042 unsigned int i; 3043 int err; 3044 3045 /* Then give them all the invariant registers' indices. */ 3046 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 3047 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 3048 return -EFAULT; 3049 uindices++; 3050 } 3051 3052 err = walk_sys_regs(vcpu, uindices); 3053 if (err < 0) 3054 return err; 3055 uindices += err; 3056 3057 return write_demux_regids(uindices); 3058 } 3059 3060 int kvm_sys_reg_table_init(void) 3061 { 3062 bool valid = true; 3063 unsigned int i; 3064 struct sys_reg_desc clidr; 3065 3066 /* Make sure tables are unique and in order. */ 3067 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); 3068 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); 3069 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); 3070 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); 3071 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); 3072 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); 3073 3074 if (!valid) 3075 return -EINVAL; 3076 3077 /* We abuse the reset function to overwrite the table itself. */ 3078 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 3079 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 3080 3081 /* 3082 * CLIDR format is awkward, so clean it up. See ARM B4.1.20: 3083 * 3084 * If software reads the Cache Type fields from Ctype1 3085 * upwards, once it has seen a value of 0b000, no caches 3086 * exist at further-out levels of the hierarchy. So, for 3087 * example, if Ctype3 is the first Cache Type field with a 3088 * value of 0b000, the values of Ctype4 to Ctype7 must be 3089 * ignored. 3090 */ 3091 get_clidr_el1(NULL, &clidr); /* Ugly... */ 3092 cache_levels = clidr.val; 3093 for (i = 0; i < 7; i++) 3094 if (((cache_levels >> (i*3)) & 7) == 0) 3095 break; 3096 /* Clear all higher bits. */ 3097 cache_levels &= (1 << (i*3))-1; 3098 3099 return 0; 3100 } 3101