xref: /linux/arch/arm64/kvm/sys_regs.c (revision 3f374d7972c48bc0824bdabb8f94fe82e54fd07d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/kvm_host.h>
15 #include <linux/mm.h>
16 #include <linux/printk.h>
17 #include <linux/uaccess.h>
18 
19 #include <asm/cacheflush.h>
20 #include <asm/cputype.h>
21 #include <asm/debug-monitors.h>
22 #include <asm/esr.h>
23 #include <asm/kvm_arm.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_hyp.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/perf_event.h>
28 #include <asm/sysreg.h>
29 
30 #include <trace/events/kvm.h>
31 
32 #include "sys_regs.h"
33 
34 #include "trace.h"
35 
36 /*
37  * All of this file is extremely similar to the ARM coproc.c, but the
38  * types are different. My gut feeling is that it should be pretty
39  * easy to merge, but that would be an ABI breakage -- again. VFP
40  * would also need to be abstracted.
41  *
42  * For AArch32, we only take care of what is being trapped. Anything
43  * that has to do with init and userspace access has to go via the
44  * 64bit interface.
45  */
46 
47 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
48 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
49 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
50 
51 static bool read_from_write_only(struct kvm_vcpu *vcpu,
52 				 struct sys_reg_params *params,
53 				 const struct sys_reg_desc *r)
54 {
55 	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
56 	print_sys_reg_instr(params);
57 	kvm_inject_undefined(vcpu);
58 	return false;
59 }
60 
61 static bool write_to_read_only(struct kvm_vcpu *vcpu,
62 			       struct sys_reg_params *params,
63 			       const struct sys_reg_desc *r)
64 {
65 	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
66 	print_sys_reg_instr(params);
67 	kvm_inject_undefined(vcpu);
68 	return false;
69 }
70 
71 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
72 {
73 	u64 val = 0x8badf00d8badf00d;
74 
75 	if (vcpu->arch.sysregs_loaded_on_cpu &&
76 	    __vcpu_read_sys_reg_from_cpu(reg, &val))
77 		return val;
78 
79 	return __vcpu_sys_reg(vcpu, reg);
80 }
81 
82 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
83 {
84 	if (vcpu->arch.sysregs_loaded_on_cpu &&
85 	    __vcpu_write_sys_reg_to_cpu(val, reg))
86 		return;
87 
88 	 __vcpu_sys_reg(vcpu, reg) = val;
89 }
90 
91 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
92 static u32 cache_levels;
93 
94 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
95 #define CSSELR_MAX 14
96 
97 /* Which cache CCSIDR represents depends on CSSELR value. */
98 static u32 get_ccsidr(u32 csselr)
99 {
100 	u32 ccsidr;
101 
102 	/* Make sure noone else changes CSSELR during this! */
103 	local_irq_disable();
104 	write_sysreg(csselr, csselr_el1);
105 	isb();
106 	ccsidr = read_sysreg(ccsidr_el1);
107 	local_irq_enable();
108 
109 	return ccsidr;
110 }
111 
112 /*
113  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
114  */
115 static bool access_dcsw(struct kvm_vcpu *vcpu,
116 			struct sys_reg_params *p,
117 			const struct sys_reg_desc *r)
118 {
119 	if (!p->is_write)
120 		return read_from_write_only(vcpu, p, r);
121 
122 	/*
123 	 * Only track S/W ops if we don't have FWB. It still indicates
124 	 * that the guest is a bit broken (S/W operations should only
125 	 * be done by firmware, knowing that there is only a single
126 	 * CPU left in the system, and certainly not from non-secure
127 	 * software).
128 	 */
129 	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
130 		kvm_set_way_flush(vcpu);
131 
132 	return true;
133 }
134 
135 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
136 {
137 	switch (r->aarch32_map) {
138 	case AA32_LO:
139 		*mask = GENMASK_ULL(31, 0);
140 		*shift = 0;
141 		break;
142 	case AA32_HI:
143 		*mask = GENMASK_ULL(63, 32);
144 		*shift = 32;
145 		break;
146 	default:
147 		*mask = GENMASK_ULL(63, 0);
148 		*shift = 0;
149 		break;
150 	}
151 }
152 
153 /*
154  * Generic accessor for VM registers. Only called as long as HCR_TVM
155  * is set. If the guest enables the MMU, we stop trapping the VM
156  * sys_regs and leave it in complete control of the caches.
157  */
158 static bool access_vm_reg(struct kvm_vcpu *vcpu,
159 			  struct sys_reg_params *p,
160 			  const struct sys_reg_desc *r)
161 {
162 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
163 	u64 val, mask, shift;
164 
165 	BUG_ON(!p->is_write);
166 
167 	get_access_mask(r, &mask, &shift);
168 
169 	if (~mask) {
170 		val = vcpu_read_sys_reg(vcpu, r->reg);
171 		val &= ~mask;
172 	} else {
173 		val = 0;
174 	}
175 
176 	val |= (p->regval & (mask >> shift)) << shift;
177 	vcpu_write_sys_reg(vcpu, val, r->reg);
178 
179 	kvm_toggle_cache(vcpu, was_enabled);
180 	return true;
181 }
182 
183 static bool access_actlr(struct kvm_vcpu *vcpu,
184 			 struct sys_reg_params *p,
185 			 const struct sys_reg_desc *r)
186 {
187 	u64 mask, shift;
188 
189 	if (p->is_write)
190 		return ignore_write(vcpu, p);
191 
192 	get_access_mask(r, &mask, &shift);
193 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
194 
195 	return true;
196 }
197 
198 /*
199  * Trap handler for the GICv3 SGI generation system register.
200  * Forward the request to the VGIC emulation.
201  * The cp15_64 code makes sure this automatically works
202  * for both AArch64 and AArch32 accesses.
203  */
204 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
205 			   struct sys_reg_params *p,
206 			   const struct sys_reg_desc *r)
207 {
208 	bool g1;
209 
210 	if (!p->is_write)
211 		return read_from_write_only(vcpu, p, r);
212 
213 	/*
214 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
215 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
216 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
217 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
218 	 * group.
219 	 */
220 	if (p->Op0 == 0) {		/* AArch32 */
221 		switch (p->Op1) {
222 		default:		/* Keep GCC quiet */
223 		case 0:			/* ICC_SGI1R */
224 			g1 = true;
225 			break;
226 		case 1:			/* ICC_ASGI1R */
227 		case 2:			/* ICC_SGI0R */
228 			g1 = false;
229 			break;
230 		}
231 	} else {			/* AArch64 */
232 		switch (p->Op2) {
233 		default:		/* Keep GCC quiet */
234 		case 5:			/* ICC_SGI1R_EL1 */
235 			g1 = true;
236 			break;
237 		case 6:			/* ICC_ASGI1R_EL1 */
238 		case 7:			/* ICC_SGI0R_EL1 */
239 			g1 = false;
240 			break;
241 		}
242 	}
243 
244 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
245 
246 	return true;
247 }
248 
249 static bool access_gic_sre(struct kvm_vcpu *vcpu,
250 			   struct sys_reg_params *p,
251 			   const struct sys_reg_desc *r)
252 {
253 	if (p->is_write)
254 		return ignore_write(vcpu, p);
255 
256 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
257 	return true;
258 }
259 
260 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
261 			struct sys_reg_params *p,
262 			const struct sys_reg_desc *r)
263 {
264 	if (p->is_write)
265 		return ignore_write(vcpu, p);
266 	else
267 		return read_zero(vcpu, p);
268 }
269 
270 /*
271  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
272  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
273  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
274  * treat it separately.
275  */
276 static bool trap_loregion(struct kvm_vcpu *vcpu,
277 			  struct sys_reg_params *p,
278 			  const struct sys_reg_desc *r)
279 {
280 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
281 	u32 sr = reg_to_encoding(r);
282 
283 	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
284 		kvm_inject_undefined(vcpu);
285 		return false;
286 	}
287 
288 	if (p->is_write && sr == SYS_LORID_EL1)
289 		return write_to_read_only(vcpu, p, r);
290 
291 	return trap_raz_wi(vcpu, p, r);
292 }
293 
294 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
295 			   struct sys_reg_params *p,
296 			   const struct sys_reg_desc *r)
297 {
298 	u64 oslsr;
299 
300 	if (!p->is_write)
301 		return read_from_write_only(vcpu, p, r);
302 
303 	/* Forward the OSLK bit to OSLSR */
304 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
305 	if (p->regval & SYS_OSLAR_OSLK)
306 		oslsr |= SYS_OSLSR_OSLK;
307 
308 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
309 	return true;
310 }
311 
312 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
313 			   struct sys_reg_params *p,
314 			   const struct sys_reg_desc *r)
315 {
316 	if (p->is_write)
317 		return write_to_read_only(vcpu, p, r);
318 
319 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
320 	return true;
321 }
322 
323 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 			 const struct kvm_one_reg *reg, void __user *uaddr)
325 {
326 	u64 id = sys_reg_to_index(rd);
327 	u64 val;
328 	int err;
329 
330 	err = reg_from_user(&val, uaddr, id);
331 	if (err)
332 		return err;
333 
334 	/*
335 	 * The only modifiable bit is the OSLK bit. Refuse the write if
336 	 * userspace attempts to change any other bit in the register.
337 	 */
338 	if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
339 		return -EINVAL;
340 
341 	__vcpu_sys_reg(vcpu, rd->reg) = val;
342 	return 0;
343 }
344 
345 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
346 				   struct sys_reg_params *p,
347 				   const struct sys_reg_desc *r)
348 {
349 	if (p->is_write) {
350 		return ignore_write(vcpu, p);
351 	} else {
352 		p->regval = read_sysreg(dbgauthstatus_el1);
353 		return true;
354 	}
355 }
356 
357 /*
358  * We want to avoid world-switching all the DBG registers all the
359  * time:
360  *
361  * - If we've touched any debug register, it is likely that we're
362  *   going to touch more of them. It then makes sense to disable the
363  *   traps and start doing the save/restore dance
364  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
365  *   then mandatory to save/restore the registers, as the guest
366  *   depends on them.
367  *
368  * For this, we use a DIRTY bit, indicating the guest has modified the
369  * debug registers, used as follow:
370  *
371  * On guest entry:
372  * - If the dirty bit is set (because we're coming back from trapping),
373  *   disable the traps, save host registers, restore guest registers.
374  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
375  *   set the dirty bit, disable the traps, save host registers,
376  *   restore guest registers.
377  * - Otherwise, enable the traps
378  *
379  * On guest exit:
380  * - If the dirty bit is set, save guest registers, restore host
381  *   registers and clear the dirty bit. This ensure that the host can
382  *   now use the debug registers.
383  */
384 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
385 			    struct sys_reg_params *p,
386 			    const struct sys_reg_desc *r)
387 {
388 	if (p->is_write) {
389 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
390 		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
391 	} else {
392 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
393 	}
394 
395 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
396 
397 	return true;
398 }
399 
400 /*
401  * reg_to_dbg/dbg_to_reg
402  *
403  * A 32 bit write to a debug register leave top bits alone
404  * A 32 bit read from a debug register only returns the bottom bits
405  *
406  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
407  * hyp.S code switches between host and guest values in future.
408  */
409 static void reg_to_dbg(struct kvm_vcpu *vcpu,
410 		       struct sys_reg_params *p,
411 		       const struct sys_reg_desc *rd,
412 		       u64 *dbg_reg)
413 {
414 	u64 mask, shift, val;
415 
416 	get_access_mask(rd, &mask, &shift);
417 
418 	val = *dbg_reg;
419 	val &= ~mask;
420 	val |= (p->regval & (mask >> shift)) << shift;
421 	*dbg_reg = val;
422 
423 	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
424 }
425 
426 static void dbg_to_reg(struct kvm_vcpu *vcpu,
427 		       struct sys_reg_params *p,
428 		       const struct sys_reg_desc *rd,
429 		       u64 *dbg_reg)
430 {
431 	u64 mask, shift;
432 
433 	get_access_mask(rd, &mask, &shift);
434 	p->regval = (*dbg_reg & mask) >> shift;
435 }
436 
437 static bool trap_bvr(struct kvm_vcpu *vcpu,
438 		     struct sys_reg_params *p,
439 		     const struct sys_reg_desc *rd)
440 {
441 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
442 
443 	if (p->is_write)
444 		reg_to_dbg(vcpu, p, rd, dbg_reg);
445 	else
446 		dbg_to_reg(vcpu, p, rd, dbg_reg);
447 
448 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
449 
450 	return true;
451 }
452 
453 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
454 		const struct kvm_one_reg *reg, void __user *uaddr)
455 {
456 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
457 
458 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
459 		return -EFAULT;
460 	return 0;
461 }
462 
463 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
464 	const struct kvm_one_reg *reg, void __user *uaddr)
465 {
466 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
467 
468 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
469 		return -EFAULT;
470 	return 0;
471 }
472 
473 static void reset_bvr(struct kvm_vcpu *vcpu,
474 		      const struct sys_reg_desc *rd)
475 {
476 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
477 }
478 
479 static bool trap_bcr(struct kvm_vcpu *vcpu,
480 		     struct sys_reg_params *p,
481 		     const struct sys_reg_desc *rd)
482 {
483 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
484 
485 	if (p->is_write)
486 		reg_to_dbg(vcpu, p, rd, dbg_reg);
487 	else
488 		dbg_to_reg(vcpu, p, rd, dbg_reg);
489 
490 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
491 
492 	return true;
493 }
494 
495 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
496 		const struct kvm_one_reg *reg, void __user *uaddr)
497 {
498 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
499 
500 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
501 		return -EFAULT;
502 
503 	return 0;
504 }
505 
506 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
507 	const struct kvm_one_reg *reg, void __user *uaddr)
508 {
509 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
510 
511 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
512 		return -EFAULT;
513 	return 0;
514 }
515 
516 static void reset_bcr(struct kvm_vcpu *vcpu,
517 		      const struct sys_reg_desc *rd)
518 {
519 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
520 }
521 
522 static bool trap_wvr(struct kvm_vcpu *vcpu,
523 		     struct sys_reg_params *p,
524 		     const struct sys_reg_desc *rd)
525 {
526 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
527 
528 	if (p->is_write)
529 		reg_to_dbg(vcpu, p, rd, dbg_reg);
530 	else
531 		dbg_to_reg(vcpu, p, rd, dbg_reg);
532 
533 	trace_trap_reg(__func__, rd->CRm, p->is_write,
534 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
535 
536 	return true;
537 }
538 
539 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
540 		const struct kvm_one_reg *reg, void __user *uaddr)
541 {
542 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
543 
544 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
545 		return -EFAULT;
546 	return 0;
547 }
548 
549 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
550 	const struct kvm_one_reg *reg, void __user *uaddr)
551 {
552 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
553 
554 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
555 		return -EFAULT;
556 	return 0;
557 }
558 
559 static void reset_wvr(struct kvm_vcpu *vcpu,
560 		      const struct sys_reg_desc *rd)
561 {
562 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
563 }
564 
565 static bool trap_wcr(struct kvm_vcpu *vcpu,
566 		     struct sys_reg_params *p,
567 		     const struct sys_reg_desc *rd)
568 {
569 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
570 
571 	if (p->is_write)
572 		reg_to_dbg(vcpu, p, rd, dbg_reg);
573 	else
574 		dbg_to_reg(vcpu, p, rd, dbg_reg);
575 
576 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577 
578 	return true;
579 }
580 
581 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 		const struct kvm_one_reg *reg, void __user *uaddr)
583 {
584 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
585 
586 	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
587 		return -EFAULT;
588 	return 0;
589 }
590 
591 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
592 	const struct kvm_one_reg *reg, void __user *uaddr)
593 {
594 	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
595 
596 	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
597 		return -EFAULT;
598 	return 0;
599 }
600 
601 static void reset_wcr(struct kvm_vcpu *vcpu,
602 		      const struct sys_reg_desc *rd)
603 {
604 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
605 }
606 
607 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
608 {
609 	u64 amair = read_sysreg(amair_el1);
610 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
611 }
612 
613 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
614 {
615 	u64 actlr = read_sysreg(actlr_el1);
616 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
617 }
618 
619 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
620 {
621 	u64 mpidr;
622 
623 	/*
624 	 * Map the vcpu_id into the first three affinity level fields of
625 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
626 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
627 	 * of the GICv3 to be able to address each CPU directly when
628 	 * sending IPIs.
629 	 */
630 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
631 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
632 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
633 	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
634 }
635 
636 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
637 				   const struct sys_reg_desc *r)
638 {
639 	if (kvm_vcpu_has_pmu(vcpu))
640 		return 0;
641 
642 	return REG_HIDDEN;
643 }
644 
645 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
646 {
647 	u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
648 
649 	/* No PMU available, any PMU reg may UNDEF... */
650 	if (!kvm_arm_support_pmu_v3())
651 		return;
652 
653 	n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
654 	n &= ARMV8_PMU_PMCR_N_MASK;
655 	if (n)
656 		mask |= GENMASK(n - 1, 0);
657 
658 	reset_unknown(vcpu, r);
659 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
660 }
661 
662 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
663 {
664 	reset_unknown(vcpu, r);
665 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
666 }
667 
668 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
669 {
670 	reset_unknown(vcpu, r);
671 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
672 }
673 
674 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
675 {
676 	reset_unknown(vcpu, r);
677 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
678 }
679 
680 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
681 {
682 	u64 pmcr, val;
683 
684 	/* No PMU available, PMCR_EL0 may UNDEF... */
685 	if (!kvm_arm_support_pmu_v3())
686 		return;
687 
688 	pmcr = read_sysreg(pmcr_el0);
689 	/*
690 	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
691 	 * except PMCR.E resetting to zero.
692 	 */
693 	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
694 	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
695 	if (!system_supports_32bit_el0())
696 		val |= ARMV8_PMU_PMCR_LC;
697 	__vcpu_sys_reg(vcpu, r->reg) = val;
698 }
699 
700 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
701 {
702 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
703 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
704 
705 	if (!enabled)
706 		kvm_inject_undefined(vcpu);
707 
708 	return !enabled;
709 }
710 
711 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
712 {
713 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
714 }
715 
716 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
717 {
718 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
719 }
720 
721 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
722 {
723 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
724 }
725 
726 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
727 {
728 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
729 }
730 
731 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
732 			const struct sys_reg_desc *r)
733 {
734 	u64 val;
735 
736 	if (pmu_access_el0_disabled(vcpu))
737 		return false;
738 
739 	if (p->is_write) {
740 		/* Only update writeable bits of PMCR */
741 		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
742 		val &= ~ARMV8_PMU_PMCR_MASK;
743 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
744 		if (!system_supports_32bit_el0())
745 			val |= ARMV8_PMU_PMCR_LC;
746 		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
747 		kvm_pmu_handle_pmcr(vcpu, val);
748 		kvm_vcpu_pmu_restore_guest(vcpu);
749 	} else {
750 		/* PMCR.P & PMCR.C are RAZ */
751 		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
752 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
753 		p->regval = val;
754 	}
755 
756 	return true;
757 }
758 
759 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
760 			  const struct sys_reg_desc *r)
761 {
762 	if (pmu_access_event_counter_el0_disabled(vcpu))
763 		return false;
764 
765 	if (p->is_write)
766 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
767 	else
768 		/* return PMSELR.SEL field */
769 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
770 			    & ARMV8_PMU_COUNTER_MASK;
771 
772 	return true;
773 }
774 
775 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
776 			  const struct sys_reg_desc *r)
777 {
778 	u64 pmceid, mask, shift;
779 
780 	BUG_ON(p->is_write);
781 
782 	if (pmu_access_el0_disabled(vcpu))
783 		return false;
784 
785 	get_access_mask(r, &mask, &shift);
786 
787 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
788 	pmceid &= mask;
789 	pmceid >>= shift;
790 
791 	p->regval = pmceid;
792 
793 	return true;
794 }
795 
796 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
797 {
798 	u64 pmcr, val;
799 
800 	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
801 	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
802 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
803 		kvm_inject_undefined(vcpu);
804 		return false;
805 	}
806 
807 	return true;
808 }
809 
810 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
811 			      struct sys_reg_params *p,
812 			      const struct sys_reg_desc *r)
813 {
814 	u64 idx = ~0UL;
815 
816 	if (r->CRn == 9 && r->CRm == 13) {
817 		if (r->Op2 == 2) {
818 			/* PMXEVCNTR_EL0 */
819 			if (pmu_access_event_counter_el0_disabled(vcpu))
820 				return false;
821 
822 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
823 			      & ARMV8_PMU_COUNTER_MASK;
824 		} else if (r->Op2 == 0) {
825 			/* PMCCNTR_EL0 */
826 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
827 				return false;
828 
829 			idx = ARMV8_PMU_CYCLE_IDX;
830 		}
831 	} else if (r->CRn == 0 && r->CRm == 9) {
832 		/* PMCCNTR */
833 		if (pmu_access_event_counter_el0_disabled(vcpu))
834 			return false;
835 
836 		idx = ARMV8_PMU_CYCLE_IDX;
837 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
838 		/* PMEVCNTRn_EL0 */
839 		if (pmu_access_event_counter_el0_disabled(vcpu))
840 			return false;
841 
842 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
843 	}
844 
845 	/* Catch any decoding mistake */
846 	WARN_ON(idx == ~0UL);
847 
848 	if (!pmu_counter_idx_valid(vcpu, idx))
849 		return false;
850 
851 	if (p->is_write) {
852 		if (pmu_access_el0_disabled(vcpu))
853 			return false;
854 
855 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
856 	} else {
857 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
858 	}
859 
860 	return true;
861 }
862 
863 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
864 			       const struct sys_reg_desc *r)
865 {
866 	u64 idx, reg;
867 
868 	if (pmu_access_el0_disabled(vcpu))
869 		return false;
870 
871 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
872 		/* PMXEVTYPER_EL0 */
873 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
874 		reg = PMEVTYPER0_EL0 + idx;
875 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
876 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
877 		if (idx == ARMV8_PMU_CYCLE_IDX)
878 			reg = PMCCFILTR_EL0;
879 		else
880 			/* PMEVTYPERn_EL0 */
881 			reg = PMEVTYPER0_EL0 + idx;
882 	} else {
883 		BUG();
884 	}
885 
886 	if (!pmu_counter_idx_valid(vcpu, idx))
887 		return false;
888 
889 	if (p->is_write) {
890 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
891 		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
892 		kvm_vcpu_pmu_restore_guest(vcpu);
893 	} else {
894 		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
895 	}
896 
897 	return true;
898 }
899 
900 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
901 			   const struct sys_reg_desc *r)
902 {
903 	u64 val, mask;
904 
905 	if (pmu_access_el0_disabled(vcpu))
906 		return false;
907 
908 	mask = kvm_pmu_valid_counter_mask(vcpu);
909 	if (p->is_write) {
910 		val = p->regval & mask;
911 		if (r->Op2 & 0x1) {
912 			/* accessing PMCNTENSET_EL0 */
913 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
914 			kvm_pmu_enable_counter_mask(vcpu, val);
915 			kvm_vcpu_pmu_restore_guest(vcpu);
916 		} else {
917 			/* accessing PMCNTENCLR_EL0 */
918 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
919 			kvm_pmu_disable_counter_mask(vcpu, val);
920 		}
921 	} else {
922 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
923 	}
924 
925 	return true;
926 }
927 
928 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
929 			   const struct sys_reg_desc *r)
930 {
931 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
932 
933 	if (check_pmu_access_disabled(vcpu, 0))
934 		return false;
935 
936 	if (p->is_write) {
937 		u64 val = p->regval & mask;
938 
939 		if (r->Op2 & 0x1)
940 			/* accessing PMINTENSET_EL1 */
941 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
942 		else
943 			/* accessing PMINTENCLR_EL1 */
944 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
945 	} else {
946 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
947 	}
948 
949 	return true;
950 }
951 
952 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
953 			 const struct sys_reg_desc *r)
954 {
955 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
956 
957 	if (pmu_access_el0_disabled(vcpu))
958 		return false;
959 
960 	if (p->is_write) {
961 		if (r->CRm & 0x2)
962 			/* accessing PMOVSSET_EL0 */
963 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
964 		else
965 			/* accessing PMOVSCLR_EL0 */
966 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
967 	} else {
968 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
969 	}
970 
971 	return true;
972 }
973 
974 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
975 			   const struct sys_reg_desc *r)
976 {
977 	u64 mask;
978 
979 	if (!p->is_write)
980 		return read_from_write_only(vcpu, p, r);
981 
982 	if (pmu_write_swinc_el0_disabled(vcpu))
983 		return false;
984 
985 	mask = kvm_pmu_valid_counter_mask(vcpu);
986 	kvm_pmu_software_increment(vcpu, p->regval & mask);
987 	return true;
988 }
989 
990 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
991 			     const struct sys_reg_desc *r)
992 {
993 	if (p->is_write) {
994 		if (!vcpu_mode_priv(vcpu)) {
995 			kvm_inject_undefined(vcpu);
996 			return false;
997 		}
998 
999 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1000 			       p->regval & ARMV8_PMU_USERENR_MASK;
1001 	} else {
1002 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1003 			    & ARMV8_PMU_USERENR_MASK;
1004 	}
1005 
1006 	return true;
1007 }
1008 
1009 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1010 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1011 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1012 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1013 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1014 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1015 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1016 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1017 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1018 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1019 
1020 #define PMU_SYS_REG(r)						\
1021 	SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
1022 
1023 /* Macro to expand the PMEVCNTRn_EL0 register */
1024 #define PMU_PMEVCNTR_EL0(n)						\
1025 	{ PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)),				\
1026 	  .reset = reset_pmevcntr,					\
1027 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1028 
1029 /* Macro to expand the PMEVTYPERn_EL0 register */
1030 #define PMU_PMEVTYPER_EL0(n)						\
1031 	{ PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)),				\
1032 	  .reset = reset_pmevtyper,					\
1033 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1034 
1035 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1036 			 const struct sys_reg_desc *r)
1037 {
1038 	kvm_inject_undefined(vcpu);
1039 
1040 	return false;
1041 }
1042 
1043 /* Macro to expand the AMU counter and type registers*/
1044 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1045 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1046 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1047 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1048 
1049 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1050 			const struct sys_reg_desc *rd)
1051 {
1052 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1053 }
1054 
1055 /*
1056  * If we land here on a PtrAuth access, that is because we didn't
1057  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1058  * way this happens is when the guest does not have PtrAuth support
1059  * enabled.
1060  */
1061 #define __PTRAUTH_KEY(k)						\
1062 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1063 	.visibility = ptrauth_visibility}
1064 
1065 #define PTRAUTH_KEY(k)							\
1066 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1067 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1068 
1069 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1070 			      struct sys_reg_params *p,
1071 			      const struct sys_reg_desc *r)
1072 {
1073 	enum kvm_arch_timers tmr;
1074 	enum kvm_arch_timer_regs treg;
1075 	u64 reg = reg_to_encoding(r);
1076 
1077 	switch (reg) {
1078 	case SYS_CNTP_TVAL_EL0:
1079 	case SYS_AARCH32_CNTP_TVAL:
1080 		tmr = TIMER_PTIMER;
1081 		treg = TIMER_REG_TVAL;
1082 		break;
1083 	case SYS_CNTP_CTL_EL0:
1084 	case SYS_AARCH32_CNTP_CTL:
1085 		tmr = TIMER_PTIMER;
1086 		treg = TIMER_REG_CTL;
1087 		break;
1088 	case SYS_CNTP_CVAL_EL0:
1089 	case SYS_AARCH32_CNTP_CVAL:
1090 		tmr = TIMER_PTIMER;
1091 		treg = TIMER_REG_CVAL;
1092 		break;
1093 	default:
1094 		BUG();
1095 	}
1096 
1097 	if (p->is_write)
1098 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1099 	else
1100 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1101 
1102 	return true;
1103 }
1104 
1105 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1106 static u64 read_id_reg(const struct kvm_vcpu *vcpu,
1107 		struct sys_reg_desc const *r, bool raz)
1108 {
1109 	u32 id = reg_to_encoding(r);
1110 	u64 val;
1111 
1112 	if (raz)
1113 		return 0;
1114 
1115 	val = read_sanitised_ftr_reg(id);
1116 
1117 	switch (id) {
1118 	case SYS_ID_AA64PFR0_EL1:
1119 		if (!vcpu_has_sve(vcpu))
1120 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE);
1121 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU);
1122 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2);
1123 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
1124 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3);
1125 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
1126 		if (irqchip_in_kernel(vcpu->kvm) &&
1127 		    vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
1128 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC);
1129 			val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1);
1130 		}
1131 		break;
1132 	case SYS_ID_AA64PFR1_EL1:
1133 		if (!kvm_has_mte(vcpu->kvm))
1134 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE);
1135 
1136 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME);
1137 		break;
1138 	case SYS_ID_AA64ISAR1_EL1:
1139 		if (!vcpu_has_ptrauth(vcpu))
1140 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_APA) |
1141 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_API) |
1142 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPA) |
1143 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_GPI));
1144 		break;
1145 	case SYS_ID_AA64ISAR2_EL1:
1146 		if (!vcpu_has_ptrauth(vcpu))
1147 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_APA3) |
1148 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_GPA3));
1149 		break;
1150 	case SYS_ID_AA64DFR0_EL1:
1151 		/* Limit debug to ARMv8.0 */
1152 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER);
1153 		val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6);
1154 		/* Limit guests to PMUv3 for ARMv8.4 */
1155 		val = cpuid_feature_cap_perfmon_field(val,
1156 						      ID_AA64DFR0_PMUVER_SHIFT,
1157 						      kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0);
1158 		/* Hide SPE from guests */
1159 		val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER);
1160 		break;
1161 	case SYS_ID_DFR0_EL1:
1162 		/* Limit guests to PMUv3 for ARMv8.4 */
1163 		val = cpuid_feature_cap_perfmon_field(val,
1164 						      ID_DFR0_PERFMON_SHIFT,
1165 						      kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
1166 		break;
1167 	}
1168 
1169 	return val;
1170 }
1171 
1172 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1173 				  const struct sys_reg_desc *r)
1174 {
1175 	u32 id = reg_to_encoding(r);
1176 
1177 	switch (id) {
1178 	case SYS_ID_AA64ZFR0_EL1:
1179 		if (!vcpu_has_sve(vcpu))
1180 			return REG_RAZ;
1181 		break;
1182 	}
1183 
1184 	return 0;
1185 }
1186 
1187 /* cpufeature ID register access trap handlers */
1188 
1189 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1190 			    struct sys_reg_params *p,
1191 			    const struct sys_reg_desc *r,
1192 			    bool raz)
1193 {
1194 	if (p->is_write)
1195 		return write_to_read_only(vcpu, p, r);
1196 
1197 	p->regval = read_id_reg(vcpu, r, raz);
1198 	return true;
1199 }
1200 
1201 static bool access_id_reg(struct kvm_vcpu *vcpu,
1202 			  struct sys_reg_params *p,
1203 			  const struct sys_reg_desc *r)
1204 {
1205 	bool raz = sysreg_visible_as_raz(vcpu, r);
1206 
1207 	return __access_id_reg(vcpu, p, r, raz);
1208 }
1209 
1210 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1211 			      struct sys_reg_params *p,
1212 			      const struct sys_reg_desc *r)
1213 {
1214 	return __access_id_reg(vcpu, p, r, true);
1215 }
1216 
1217 /* Visibility overrides for SVE-specific control registers */
1218 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1219 				   const struct sys_reg_desc *rd)
1220 {
1221 	if (vcpu_has_sve(vcpu))
1222 		return 0;
1223 
1224 	return REG_HIDDEN;
1225 }
1226 
1227 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1228 			       const struct sys_reg_desc *rd,
1229 			       const struct kvm_one_reg *reg, void __user *uaddr)
1230 {
1231 	const u64 id = sys_reg_to_index(rd);
1232 	u8 csv2, csv3;
1233 	int err;
1234 	u64 val;
1235 
1236 	err = reg_from_user(&val, uaddr, id);
1237 	if (err)
1238 		return err;
1239 
1240 	/*
1241 	 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
1242 	 * it doesn't promise more than what is actually provided (the
1243 	 * guest could otherwise be covered in ectoplasmic residue).
1244 	 */
1245 	csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT);
1246 	if (csv2 > 1 ||
1247 	    (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
1248 		return -EINVAL;
1249 
1250 	/* Same thing for CSV3 */
1251 	csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT);
1252 	if (csv3 > 1 ||
1253 	    (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
1254 		return -EINVAL;
1255 
1256 	/* We can only differ with CSV[23], and anything else is an error */
1257 	val ^= read_id_reg(vcpu, rd, false);
1258 	val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) |
1259 		 (0xFUL << ID_AA64PFR0_CSV3_SHIFT));
1260 	if (val)
1261 		return -EINVAL;
1262 
1263 	vcpu->kvm->arch.pfr0_csv2 = csv2;
1264 	vcpu->kvm->arch.pfr0_csv3 = csv3 ;
1265 
1266 	return 0;
1267 }
1268 
1269 /*
1270  * cpufeature ID register user accessors
1271  *
1272  * For now, these registers are immutable for userspace, so no values
1273  * are stored, and for set_id_reg() we don't allow the effective value
1274  * to be changed.
1275  */
1276 static int __get_id_reg(const struct kvm_vcpu *vcpu,
1277 			const struct sys_reg_desc *rd, void __user *uaddr,
1278 			bool raz)
1279 {
1280 	const u64 id = sys_reg_to_index(rd);
1281 	const u64 val = read_id_reg(vcpu, rd, raz);
1282 
1283 	return reg_to_user(uaddr, &val, id);
1284 }
1285 
1286 static int __set_id_reg(const struct kvm_vcpu *vcpu,
1287 			const struct sys_reg_desc *rd, void __user *uaddr,
1288 			bool raz)
1289 {
1290 	const u64 id = sys_reg_to_index(rd);
1291 	int err;
1292 	u64 val;
1293 
1294 	err = reg_from_user(&val, uaddr, id);
1295 	if (err)
1296 		return err;
1297 
1298 	/* This is what we mean by invariant: you can't change it. */
1299 	if (val != read_id_reg(vcpu, rd, raz))
1300 		return -EINVAL;
1301 
1302 	return 0;
1303 }
1304 
1305 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1306 		      const struct kvm_one_reg *reg, void __user *uaddr)
1307 {
1308 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1309 
1310 	return __get_id_reg(vcpu, rd, uaddr, raz);
1311 }
1312 
1313 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1314 		      const struct kvm_one_reg *reg, void __user *uaddr)
1315 {
1316 	bool raz = sysreg_visible_as_raz(vcpu, rd);
1317 
1318 	return __set_id_reg(vcpu, rd, uaddr, raz);
1319 }
1320 
1321 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1322 			  const struct kvm_one_reg *reg, void __user *uaddr)
1323 {
1324 	return __set_id_reg(vcpu, rd, uaddr, true);
1325 }
1326 
1327 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1328 		       const struct kvm_one_reg *reg, void __user *uaddr)
1329 {
1330 	const u64 id = sys_reg_to_index(rd);
1331 	const u64 val = 0;
1332 
1333 	return reg_to_user(uaddr, &val, id);
1334 }
1335 
1336 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1337 		      const struct kvm_one_reg *reg, void __user *uaddr)
1338 {
1339 	int err;
1340 	u64 val;
1341 
1342 	/* Perform the access even if we are going to ignore the value */
1343 	err = reg_from_user(&val, uaddr, sys_reg_to_index(rd));
1344 	if (err)
1345 		return err;
1346 
1347 	return 0;
1348 }
1349 
1350 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1351 		       const struct sys_reg_desc *r)
1352 {
1353 	if (p->is_write)
1354 		return write_to_read_only(vcpu, p, r);
1355 
1356 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1357 	return true;
1358 }
1359 
1360 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1361 			 const struct sys_reg_desc *r)
1362 {
1363 	if (p->is_write)
1364 		return write_to_read_only(vcpu, p, r);
1365 
1366 	p->regval = read_sysreg(clidr_el1);
1367 	return true;
1368 }
1369 
1370 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1371 			  const struct sys_reg_desc *r)
1372 {
1373 	int reg = r->reg;
1374 
1375 	if (p->is_write)
1376 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1377 	else
1378 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1379 	return true;
1380 }
1381 
1382 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1383 			  const struct sys_reg_desc *r)
1384 {
1385 	u32 csselr;
1386 
1387 	if (p->is_write)
1388 		return write_to_read_only(vcpu, p, r);
1389 
1390 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1391 	p->regval = get_ccsidr(csselr);
1392 
1393 	/*
1394 	 * Guests should not be doing cache operations by set/way at all, and
1395 	 * for this reason, we trap them and attempt to infer the intent, so
1396 	 * that we can flush the entire guest's address space at the appropriate
1397 	 * time.
1398 	 * To prevent this trapping from causing performance problems, let's
1399 	 * expose the geometry of all data and unified caches (which are
1400 	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
1401 	 * [If guests should attempt to infer aliasing properties from the
1402 	 * geometry (which is not permitted by the architecture), they would
1403 	 * only do so for virtually indexed caches.]
1404 	 */
1405 	if (!(csselr & 1)) // data or unified cache
1406 		p->regval &= ~GENMASK(27, 3);
1407 	return true;
1408 }
1409 
1410 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1411 				   const struct sys_reg_desc *rd)
1412 {
1413 	if (kvm_has_mte(vcpu->kvm))
1414 		return 0;
1415 
1416 	return REG_HIDDEN;
1417 }
1418 
1419 #define MTE_REG(name) {				\
1420 	SYS_DESC(SYS_##name),			\
1421 	.access = undef_access,			\
1422 	.reset = reset_unknown,			\
1423 	.reg = name,				\
1424 	.visibility = mte_visibility,		\
1425 }
1426 
1427 /* sys_reg_desc initialiser for known cpufeature ID registers */
1428 #define ID_SANITISED(name) {			\
1429 	SYS_DESC(SYS_##name),			\
1430 	.access	= access_id_reg,		\
1431 	.get_user = get_id_reg,			\
1432 	.set_user = set_id_reg,			\
1433 	.visibility = id_visibility,		\
1434 }
1435 
1436 /*
1437  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1438  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1439  * (1 <= crm < 8, 0 <= Op2 < 8).
1440  */
1441 #define ID_UNALLOCATED(crm, op2) {			\
1442 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
1443 	.access = access_raz_id_reg,			\
1444 	.get_user = get_raz_reg,			\
1445 	.set_user = set_raz_id_reg,			\
1446 }
1447 
1448 /*
1449  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1450  * For now, these are exposed just like unallocated ID regs: they appear
1451  * RAZ for the guest.
1452  */
1453 #define ID_HIDDEN(name) {			\
1454 	SYS_DESC(SYS_##name),			\
1455 	.access = access_raz_id_reg,		\
1456 	.get_user = get_raz_reg,		\
1457 	.set_user = set_raz_id_reg,		\
1458 }
1459 
1460 /*
1461  * Architected system registers.
1462  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1463  *
1464  * Debug handling: We do trap most, if not all debug related system
1465  * registers. The implementation is good enough to ensure that a guest
1466  * can use these with minimal performance degradation. The drawback is
1467  * that we don't implement any of the external debug architecture.
1468  * This should be revisited if we ever encounter a more demanding
1469  * guest...
1470  */
1471 static const struct sys_reg_desc sys_reg_descs[] = {
1472 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
1473 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
1474 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
1475 
1476 	DBG_BCR_BVR_WCR_WVR_EL1(0),
1477 	DBG_BCR_BVR_WCR_WVR_EL1(1),
1478 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1479 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1480 	DBG_BCR_BVR_WCR_WVR_EL1(2),
1481 	DBG_BCR_BVR_WCR_WVR_EL1(3),
1482 	DBG_BCR_BVR_WCR_WVR_EL1(4),
1483 	DBG_BCR_BVR_WCR_WVR_EL1(5),
1484 	DBG_BCR_BVR_WCR_WVR_EL1(6),
1485 	DBG_BCR_BVR_WCR_WVR_EL1(7),
1486 	DBG_BCR_BVR_WCR_WVR_EL1(8),
1487 	DBG_BCR_BVR_WCR_WVR_EL1(9),
1488 	DBG_BCR_BVR_WCR_WVR_EL1(10),
1489 	DBG_BCR_BVR_WCR_WVR_EL1(11),
1490 	DBG_BCR_BVR_WCR_WVR_EL1(12),
1491 	DBG_BCR_BVR_WCR_WVR_EL1(13),
1492 	DBG_BCR_BVR_WCR_WVR_EL1(14),
1493 	DBG_BCR_BVR_WCR_WVR_EL1(15),
1494 
1495 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1496 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1497 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1498 		SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1499 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1500 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1501 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1502 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1503 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1504 
1505 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1506 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1507 	// DBGDTR[TR]X_EL0 share the same encoding
1508 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1509 
1510 	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1511 
1512 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1513 
1514 	/*
1515 	 * ID regs: all ID_SANITISED() entries here must have corresponding
1516 	 * entries in arm64_ftr_regs[].
1517 	 */
1518 
1519 	/* AArch64 mappings of the AArch32 ID registers */
1520 	/* CRm=1 */
1521 	ID_SANITISED(ID_PFR0_EL1),
1522 	ID_SANITISED(ID_PFR1_EL1),
1523 	ID_SANITISED(ID_DFR0_EL1),
1524 	ID_HIDDEN(ID_AFR0_EL1),
1525 	ID_SANITISED(ID_MMFR0_EL1),
1526 	ID_SANITISED(ID_MMFR1_EL1),
1527 	ID_SANITISED(ID_MMFR2_EL1),
1528 	ID_SANITISED(ID_MMFR3_EL1),
1529 
1530 	/* CRm=2 */
1531 	ID_SANITISED(ID_ISAR0_EL1),
1532 	ID_SANITISED(ID_ISAR1_EL1),
1533 	ID_SANITISED(ID_ISAR2_EL1),
1534 	ID_SANITISED(ID_ISAR3_EL1),
1535 	ID_SANITISED(ID_ISAR4_EL1),
1536 	ID_SANITISED(ID_ISAR5_EL1),
1537 	ID_SANITISED(ID_MMFR4_EL1),
1538 	ID_SANITISED(ID_ISAR6_EL1),
1539 
1540 	/* CRm=3 */
1541 	ID_SANITISED(MVFR0_EL1),
1542 	ID_SANITISED(MVFR1_EL1),
1543 	ID_SANITISED(MVFR2_EL1),
1544 	ID_UNALLOCATED(3,3),
1545 	ID_SANITISED(ID_PFR2_EL1),
1546 	ID_HIDDEN(ID_DFR1_EL1),
1547 	ID_SANITISED(ID_MMFR5_EL1),
1548 	ID_UNALLOCATED(3,7),
1549 
1550 	/* AArch64 ID registers */
1551 	/* CRm=4 */
1552 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
1553 	  .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
1554 	ID_SANITISED(ID_AA64PFR1_EL1),
1555 	ID_UNALLOCATED(4,2),
1556 	ID_UNALLOCATED(4,3),
1557 	ID_SANITISED(ID_AA64ZFR0_EL1),
1558 	ID_HIDDEN(ID_AA64SMFR0_EL1),
1559 	ID_UNALLOCATED(4,6),
1560 	ID_UNALLOCATED(4,7),
1561 
1562 	/* CRm=5 */
1563 	ID_SANITISED(ID_AA64DFR0_EL1),
1564 	ID_SANITISED(ID_AA64DFR1_EL1),
1565 	ID_UNALLOCATED(5,2),
1566 	ID_UNALLOCATED(5,3),
1567 	ID_HIDDEN(ID_AA64AFR0_EL1),
1568 	ID_HIDDEN(ID_AA64AFR1_EL1),
1569 	ID_UNALLOCATED(5,6),
1570 	ID_UNALLOCATED(5,7),
1571 
1572 	/* CRm=6 */
1573 	ID_SANITISED(ID_AA64ISAR0_EL1),
1574 	ID_SANITISED(ID_AA64ISAR1_EL1),
1575 	ID_SANITISED(ID_AA64ISAR2_EL1),
1576 	ID_UNALLOCATED(6,3),
1577 	ID_UNALLOCATED(6,4),
1578 	ID_UNALLOCATED(6,5),
1579 	ID_UNALLOCATED(6,6),
1580 	ID_UNALLOCATED(6,7),
1581 
1582 	/* CRm=7 */
1583 	ID_SANITISED(ID_AA64MMFR0_EL1),
1584 	ID_SANITISED(ID_AA64MMFR1_EL1),
1585 	ID_SANITISED(ID_AA64MMFR2_EL1),
1586 	ID_UNALLOCATED(7,3),
1587 	ID_UNALLOCATED(7,4),
1588 	ID_UNALLOCATED(7,5),
1589 	ID_UNALLOCATED(7,6),
1590 	ID_UNALLOCATED(7,7),
1591 
1592 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1593 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
1594 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1595 
1596 	MTE_REG(RGSR_EL1),
1597 	MTE_REG(GCR_EL1),
1598 
1599 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
1600 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
1601 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
1602 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
1603 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1604 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1605 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1606 
1607 	PTRAUTH_KEY(APIA),
1608 	PTRAUTH_KEY(APIB),
1609 	PTRAUTH_KEY(APDA),
1610 	PTRAUTH_KEY(APDB),
1611 	PTRAUTH_KEY(APGA),
1612 
1613 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1614 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1615 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1616 
1617 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1618 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1619 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1620 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1621 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1622 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1623 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1624 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1625 
1626 	MTE_REG(TFSR_EL1),
1627 	MTE_REG(TFSRE0_EL1),
1628 
1629 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1630 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1631 
1632 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
1633 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
1634 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
1635 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
1636 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
1637 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
1638 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
1639 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
1640 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
1641 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
1642 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
1643 	/* PMBIDR_EL1 is not trapped */
1644 
1645 	{ PMU_SYS_REG(SYS_PMINTENSET_EL1),
1646 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1647 	{ PMU_SYS_REG(SYS_PMINTENCLR_EL1),
1648 	  .access = access_pminten, .reg = PMINTENSET_EL1 },
1649 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
1650 
1651 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1652 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1653 
1654 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1655 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1656 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
1657 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
1658 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
1659 
1660 	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1661 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1662 
1663 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1664 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1665 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1666 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1667 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1668 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1669 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1670 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1671 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1672 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1673 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1674 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1675 
1676 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1677 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1678 
1679 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
1680 
1681 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1682 
1683 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
1684 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
1685 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
1686 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
1687 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
1688 	{ SYS_DESC(SYS_SVCR_EL0), undef_access },
1689 
1690 	{ PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
1691 	  .reset = reset_pmcr, .reg = PMCR_EL0 },
1692 	{ PMU_SYS_REG(SYS_PMCNTENSET_EL0),
1693 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1694 	{ PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
1695 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
1696 	{ PMU_SYS_REG(SYS_PMOVSCLR_EL0),
1697 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1698 	/*
1699 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
1700 	 * previously (and pointlessly) advertised in the past...
1701 	 */
1702 	{ PMU_SYS_REG(SYS_PMSWINC_EL0),
1703 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
1704 	  .access = access_pmswinc, .reset = NULL },
1705 	{ PMU_SYS_REG(SYS_PMSELR_EL0),
1706 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
1707 	{ PMU_SYS_REG(SYS_PMCEID0_EL0),
1708 	  .access = access_pmceid, .reset = NULL },
1709 	{ PMU_SYS_REG(SYS_PMCEID1_EL0),
1710 	  .access = access_pmceid, .reset = NULL },
1711 	{ PMU_SYS_REG(SYS_PMCCNTR_EL0),
1712 	  .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 },
1713 	{ PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
1714 	  .access = access_pmu_evtyper, .reset = NULL },
1715 	{ PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
1716 	  .access = access_pmu_evcntr, .reset = NULL },
1717 	/*
1718 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1719 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1720 	 */
1721 	{ PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
1722 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
1723 	{ PMU_SYS_REG(SYS_PMOVSSET_EL0),
1724 	  .access = access_pmovs, .reg = PMOVSSET_EL0 },
1725 
1726 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1727 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1728 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
1729 
1730 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
1731 
1732 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
1733 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
1734 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
1735 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
1736 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
1737 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
1738 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
1739 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
1740 	AMU_AMEVCNTR0_EL0(0),
1741 	AMU_AMEVCNTR0_EL0(1),
1742 	AMU_AMEVCNTR0_EL0(2),
1743 	AMU_AMEVCNTR0_EL0(3),
1744 	AMU_AMEVCNTR0_EL0(4),
1745 	AMU_AMEVCNTR0_EL0(5),
1746 	AMU_AMEVCNTR0_EL0(6),
1747 	AMU_AMEVCNTR0_EL0(7),
1748 	AMU_AMEVCNTR0_EL0(8),
1749 	AMU_AMEVCNTR0_EL0(9),
1750 	AMU_AMEVCNTR0_EL0(10),
1751 	AMU_AMEVCNTR0_EL0(11),
1752 	AMU_AMEVCNTR0_EL0(12),
1753 	AMU_AMEVCNTR0_EL0(13),
1754 	AMU_AMEVCNTR0_EL0(14),
1755 	AMU_AMEVCNTR0_EL0(15),
1756 	AMU_AMEVTYPER0_EL0(0),
1757 	AMU_AMEVTYPER0_EL0(1),
1758 	AMU_AMEVTYPER0_EL0(2),
1759 	AMU_AMEVTYPER0_EL0(3),
1760 	AMU_AMEVTYPER0_EL0(4),
1761 	AMU_AMEVTYPER0_EL0(5),
1762 	AMU_AMEVTYPER0_EL0(6),
1763 	AMU_AMEVTYPER0_EL0(7),
1764 	AMU_AMEVTYPER0_EL0(8),
1765 	AMU_AMEVTYPER0_EL0(9),
1766 	AMU_AMEVTYPER0_EL0(10),
1767 	AMU_AMEVTYPER0_EL0(11),
1768 	AMU_AMEVTYPER0_EL0(12),
1769 	AMU_AMEVTYPER0_EL0(13),
1770 	AMU_AMEVTYPER0_EL0(14),
1771 	AMU_AMEVTYPER0_EL0(15),
1772 	AMU_AMEVCNTR1_EL0(0),
1773 	AMU_AMEVCNTR1_EL0(1),
1774 	AMU_AMEVCNTR1_EL0(2),
1775 	AMU_AMEVCNTR1_EL0(3),
1776 	AMU_AMEVCNTR1_EL0(4),
1777 	AMU_AMEVCNTR1_EL0(5),
1778 	AMU_AMEVCNTR1_EL0(6),
1779 	AMU_AMEVCNTR1_EL0(7),
1780 	AMU_AMEVCNTR1_EL0(8),
1781 	AMU_AMEVCNTR1_EL0(9),
1782 	AMU_AMEVCNTR1_EL0(10),
1783 	AMU_AMEVCNTR1_EL0(11),
1784 	AMU_AMEVCNTR1_EL0(12),
1785 	AMU_AMEVCNTR1_EL0(13),
1786 	AMU_AMEVCNTR1_EL0(14),
1787 	AMU_AMEVCNTR1_EL0(15),
1788 	AMU_AMEVTYPER1_EL0(0),
1789 	AMU_AMEVTYPER1_EL0(1),
1790 	AMU_AMEVTYPER1_EL0(2),
1791 	AMU_AMEVTYPER1_EL0(3),
1792 	AMU_AMEVTYPER1_EL0(4),
1793 	AMU_AMEVTYPER1_EL0(5),
1794 	AMU_AMEVTYPER1_EL0(6),
1795 	AMU_AMEVTYPER1_EL0(7),
1796 	AMU_AMEVTYPER1_EL0(8),
1797 	AMU_AMEVTYPER1_EL0(9),
1798 	AMU_AMEVTYPER1_EL0(10),
1799 	AMU_AMEVTYPER1_EL0(11),
1800 	AMU_AMEVTYPER1_EL0(12),
1801 	AMU_AMEVTYPER1_EL0(13),
1802 	AMU_AMEVTYPER1_EL0(14),
1803 	AMU_AMEVTYPER1_EL0(15),
1804 
1805 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
1806 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
1807 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
1808 
1809 	/* PMEVCNTRn_EL0 */
1810 	PMU_PMEVCNTR_EL0(0),
1811 	PMU_PMEVCNTR_EL0(1),
1812 	PMU_PMEVCNTR_EL0(2),
1813 	PMU_PMEVCNTR_EL0(3),
1814 	PMU_PMEVCNTR_EL0(4),
1815 	PMU_PMEVCNTR_EL0(5),
1816 	PMU_PMEVCNTR_EL0(6),
1817 	PMU_PMEVCNTR_EL0(7),
1818 	PMU_PMEVCNTR_EL0(8),
1819 	PMU_PMEVCNTR_EL0(9),
1820 	PMU_PMEVCNTR_EL0(10),
1821 	PMU_PMEVCNTR_EL0(11),
1822 	PMU_PMEVCNTR_EL0(12),
1823 	PMU_PMEVCNTR_EL0(13),
1824 	PMU_PMEVCNTR_EL0(14),
1825 	PMU_PMEVCNTR_EL0(15),
1826 	PMU_PMEVCNTR_EL0(16),
1827 	PMU_PMEVCNTR_EL0(17),
1828 	PMU_PMEVCNTR_EL0(18),
1829 	PMU_PMEVCNTR_EL0(19),
1830 	PMU_PMEVCNTR_EL0(20),
1831 	PMU_PMEVCNTR_EL0(21),
1832 	PMU_PMEVCNTR_EL0(22),
1833 	PMU_PMEVCNTR_EL0(23),
1834 	PMU_PMEVCNTR_EL0(24),
1835 	PMU_PMEVCNTR_EL0(25),
1836 	PMU_PMEVCNTR_EL0(26),
1837 	PMU_PMEVCNTR_EL0(27),
1838 	PMU_PMEVCNTR_EL0(28),
1839 	PMU_PMEVCNTR_EL0(29),
1840 	PMU_PMEVCNTR_EL0(30),
1841 	/* PMEVTYPERn_EL0 */
1842 	PMU_PMEVTYPER_EL0(0),
1843 	PMU_PMEVTYPER_EL0(1),
1844 	PMU_PMEVTYPER_EL0(2),
1845 	PMU_PMEVTYPER_EL0(3),
1846 	PMU_PMEVTYPER_EL0(4),
1847 	PMU_PMEVTYPER_EL0(5),
1848 	PMU_PMEVTYPER_EL0(6),
1849 	PMU_PMEVTYPER_EL0(7),
1850 	PMU_PMEVTYPER_EL0(8),
1851 	PMU_PMEVTYPER_EL0(9),
1852 	PMU_PMEVTYPER_EL0(10),
1853 	PMU_PMEVTYPER_EL0(11),
1854 	PMU_PMEVTYPER_EL0(12),
1855 	PMU_PMEVTYPER_EL0(13),
1856 	PMU_PMEVTYPER_EL0(14),
1857 	PMU_PMEVTYPER_EL0(15),
1858 	PMU_PMEVTYPER_EL0(16),
1859 	PMU_PMEVTYPER_EL0(17),
1860 	PMU_PMEVTYPER_EL0(18),
1861 	PMU_PMEVTYPER_EL0(19),
1862 	PMU_PMEVTYPER_EL0(20),
1863 	PMU_PMEVTYPER_EL0(21),
1864 	PMU_PMEVTYPER_EL0(22),
1865 	PMU_PMEVTYPER_EL0(23),
1866 	PMU_PMEVTYPER_EL0(24),
1867 	PMU_PMEVTYPER_EL0(25),
1868 	PMU_PMEVTYPER_EL0(26),
1869 	PMU_PMEVTYPER_EL0(27),
1870 	PMU_PMEVTYPER_EL0(28),
1871 	PMU_PMEVTYPER_EL0(29),
1872 	PMU_PMEVTYPER_EL0(30),
1873 	/*
1874 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1875 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
1876 	 */
1877 	{ PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
1878 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
1879 
1880 	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1881 	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1882 	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1883 };
1884 
1885 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
1886 			struct sys_reg_params *p,
1887 			const struct sys_reg_desc *r)
1888 {
1889 	if (p->is_write) {
1890 		return ignore_write(vcpu, p);
1891 	} else {
1892 		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1893 		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1894 		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1895 
1896 		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1897 			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1898 			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1899 			     | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
1900 		return true;
1901 	}
1902 }
1903 
1904 /*
1905  * AArch32 debug register mappings
1906  *
1907  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1908  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1909  *
1910  * None of the other registers share their location, so treat them as
1911  * if they were 64bit.
1912  */
1913 #define DBG_BCR_BVR_WCR_WVR(n)						      \
1914 	/* DBGBVRn */							      \
1915 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1916 	/* DBGBCRn */							      \
1917 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
1918 	/* DBGWVRn */							      \
1919 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
1920 	/* DBGWCRn */							      \
1921 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1922 
1923 #define DBGBXVR(n)							      \
1924 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
1925 
1926 /*
1927  * Trapped cp14 registers. We generally ignore most of the external
1928  * debug, on the principle that they don't really make sense to a
1929  * guest. Revisit this one day, would this principle change.
1930  */
1931 static const struct sys_reg_desc cp14_regs[] = {
1932 	/* DBGDIDR */
1933 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
1934 	/* DBGDTRRXext */
1935 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1936 
1937 	DBG_BCR_BVR_WCR_WVR(0),
1938 	/* DBGDSCRint */
1939 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1940 	DBG_BCR_BVR_WCR_WVR(1),
1941 	/* DBGDCCINT */
1942 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
1943 	/* DBGDSCRext */
1944 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
1945 	DBG_BCR_BVR_WCR_WVR(2),
1946 	/* DBGDTR[RT]Xint */
1947 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1948 	/* DBGDTR[RT]Xext */
1949 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1950 	DBG_BCR_BVR_WCR_WVR(3),
1951 	DBG_BCR_BVR_WCR_WVR(4),
1952 	DBG_BCR_BVR_WCR_WVR(5),
1953 	/* DBGWFAR */
1954 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1955 	/* DBGOSECCR */
1956 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1957 	DBG_BCR_BVR_WCR_WVR(6),
1958 	/* DBGVCR */
1959 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
1960 	DBG_BCR_BVR_WCR_WVR(7),
1961 	DBG_BCR_BVR_WCR_WVR(8),
1962 	DBG_BCR_BVR_WCR_WVR(9),
1963 	DBG_BCR_BVR_WCR_WVR(10),
1964 	DBG_BCR_BVR_WCR_WVR(11),
1965 	DBG_BCR_BVR_WCR_WVR(12),
1966 	DBG_BCR_BVR_WCR_WVR(13),
1967 	DBG_BCR_BVR_WCR_WVR(14),
1968 	DBG_BCR_BVR_WCR_WVR(15),
1969 
1970 	/* DBGDRAR (32bit) */
1971 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1972 
1973 	DBGBXVR(0),
1974 	/* DBGOSLAR */
1975 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
1976 	DBGBXVR(1),
1977 	/* DBGOSLSR */
1978 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
1979 	DBGBXVR(2),
1980 	DBGBXVR(3),
1981 	/* DBGOSDLR */
1982 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1983 	DBGBXVR(4),
1984 	/* DBGPRCR */
1985 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1986 	DBGBXVR(5),
1987 	DBGBXVR(6),
1988 	DBGBXVR(7),
1989 	DBGBXVR(8),
1990 	DBGBXVR(9),
1991 	DBGBXVR(10),
1992 	DBGBXVR(11),
1993 	DBGBXVR(12),
1994 	DBGBXVR(13),
1995 	DBGBXVR(14),
1996 	DBGBXVR(15),
1997 
1998 	/* DBGDSAR (32bit) */
1999 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2000 
2001 	/* DBGDEVID2 */
2002 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2003 	/* DBGDEVID1 */
2004 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2005 	/* DBGDEVID */
2006 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2007 	/* DBGCLAIMSET */
2008 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2009 	/* DBGCLAIMCLR */
2010 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2011 	/* DBGAUTHSTATUS */
2012 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2013 };
2014 
2015 /* Trapped cp14 64bit registers */
2016 static const struct sys_reg_desc cp14_64_regs[] = {
2017 	/* DBGDRAR (64bit) */
2018 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2019 
2020 	/* DBGDSAR (64bit) */
2021 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2022 };
2023 
2024 /* Macro to expand the PMEVCNTRn register */
2025 #define PMU_PMEVCNTR(n)							\
2026 	/* PMEVCNTRn */							\
2027 	{ Op1(0), CRn(0b1110),						\
2028 	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2029 	  access_pmu_evcntr }
2030 
2031 /* Macro to expand the PMEVTYPERn register */
2032 #define PMU_PMEVTYPER(n)						\
2033 	/* PMEVTYPERn */						\
2034 	{ Op1(0), CRn(0b1110),						\
2035 	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
2036 	  access_pmu_evtyper }
2037 
2038 /*
2039  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2040  * depending on the way they are accessed (as a 32bit or a 64bit
2041  * register).
2042  */
2043 static const struct sys_reg_desc cp15_regs[] = {
2044 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2045 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2046 	/* ACTLR */
2047 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2048 	/* ACTLR2 */
2049 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2050 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2051 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2052 	/* TTBCR */
2053 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2054 	/* TTBCR2 */
2055 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2056 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2057 	/* DFSR */
2058 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2059 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2060 	/* ADFSR */
2061 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2062 	/* AIFSR */
2063 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2064 	/* DFAR */
2065 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2066 	/* IFAR */
2067 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2068 
2069 	/*
2070 	 * DC{C,I,CI}SW operations:
2071 	 */
2072 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2073 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2074 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2075 
2076 	/* PMU */
2077 	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
2078 	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
2079 	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
2080 	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
2081 	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
2082 	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
2083 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
2084 	{ AA32(LO), Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
2085 	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
2086 	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
2087 	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
2088 	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
2089 	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
2090 	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
2091 	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
2092 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 4), access_pmceid },
2093 	{ AA32(HI), Op1( 0), CRn( 9), CRm(14), Op2( 5), access_pmceid },
2094 	/* PMMIR */
2095 	{ Op1( 0), CRn( 9), CRm(14), Op2( 6), trap_raz_wi },
2096 
2097 	/* PRRR/MAIR0 */
2098 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2099 	/* NMRR/MAIR1 */
2100 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2101 	/* AMAIR0 */
2102 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2103 	/* AMAIR1 */
2104 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2105 
2106 	/* ICC_SRE */
2107 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2108 
2109 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2110 
2111 	/* Arch Tmers */
2112 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2113 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2114 
2115 	/* PMEVCNTRn */
2116 	PMU_PMEVCNTR(0),
2117 	PMU_PMEVCNTR(1),
2118 	PMU_PMEVCNTR(2),
2119 	PMU_PMEVCNTR(3),
2120 	PMU_PMEVCNTR(4),
2121 	PMU_PMEVCNTR(5),
2122 	PMU_PMEVCNTR(6),
2123 	PMU_PMEVCNTR(7),
2124 	PMU_PMEVCNTR(8),
2125 	PMU_PMEVCNTR(9),
2126 	PMU_PMEVCNTR(10),
2127 	PMU_PMEVCNTR(11),
2128 	PMU_PMEVCNTR(12),
2129 	PMU_PMEVCNTR(13),
2130 	PMU_PMEVCNTR(14),
2131 	PMU_PMEVCNTR(15),
2132 	PMU_PMEVCNTR(16),
2133 	PMU_PMEVCNTR(17),
2134 	PMU_PMEVCNTR(18),
2135 	PMU_PMEVCNTR(19),
2136 	PMU_PMEVCNTR(20),
2137 	PMU_PMEVCNTR(21),
2138 	PMU_PMEVCNTR(22),
2139 	PMU_PMEVCNTR(23),
2140 	PMU_PMEVCNTR(24),
2141 	PMU_PMEVCNTR(25),
2142 	PMU_PMEVCNTR(26),
2143 	PMU_PMEVCNTR(27),
2144 	PMU_PMEVCNTR(28),
2145 	PMU_PMEVCNTR(29),
2146 	PMU_PMEVCNTR(30),
2147 	/* PMEVTYPERn */
2148 	PMU_PMEVTYPER(0),
2149 	PMU_PMEVTYPER(1),
2150 	PMU_PMEVTYPER(2),
2151 	PMU_PMEVTYPER(3),
2152 	PMU_PMEVTYPER(4),
2153 	PMU_PMEVTYPER(5),
2154 	PMU_PMEVTYPER(6),
2155 	PMU_PMEVTYPER(7),
2156 	PMU_PMEVTYPER(8),
2157 	PMU_PMEVTYPER(9),
2158 	PMU_PMEVTYPER(10),
2159 	PMU_PMEVTYPER(11),
2160 	PMU_PMEVTYPER(12),
2161 	PMU_PMEVTYPER(13),
2162 	PMU_PMEVTYPER(14),
2163 	PMU_PMEVTYPER(15),
2164 	PMU_PMEVTYPER(16),
2165 	PMU_PMEVTYPER(17),
2166 	PMU_PMEVTYPER(18),
2167 	PMU_PMEVTYPER(19),
2168 	PMU_PMEVTYPER(20),
2169 	PMU_PMEVTYPER(21),
2170 	PMU_PMEVTYPER(22),
2171 	PMU_PMEVTYPER(23),
2172 	PMU_PMEVTYPER(24),
2173 	PMU_PMEVTYPER(25),
2174 	PMU_PMEVTYPER(26),
2175 	PMU_PMEVTYPER(27),
2176 	PMU_PMEVTYPER(28),
2177 	PMU_PMEVTYPER(29),
2178 	PMU_PMEVTYPER(30),
2179 	/* PMCCFILTR */
2180 	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
2181 
2182 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2183 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2184 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2185 };
2186 
2187 static const struct sys_reg_desc cp15_64_regs[] = {
2188 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2189 	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
2190 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2191 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2192 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2193 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2194 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
2195 };
2196 
2197 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2198 			      bool is_32)
2199 {
2200 	unsigned int i;
2201 
2202 	for (i = 0; i < n; i++) {
2203 		if (!is_32 && table[i].reg && !table[i].reset) {
2204 			kvm_err("sys_reg table %p entry %d has lacks reset\n",
2205 				table, i);
2206 			return 1;
2207 		}
2208 
2209 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2210 			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2211 			return 1;
2212 		}
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2219 {
2220 	kvm_inject_undefined(vcpu);
2221 	return 1;
2222 }
2223 
2224 static void perform_access(struct kvm_vcpu *vcpu,
2225 			   struct sys_reg_params *params,
2226 			   const struct sys_reg_desc *r)
2227 {
2228 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2229 
2230 	/* Check for regs disabled by runtime config */
2231 	if (sysreg_hidden(vcpu, r)) {
2232 		kvm_inject_undefined(vcpu);
2233 		return;
2234 	}
2235 
2236 	/*
2237 	 * Not having an accessor means that we have configured a trap
2238 	 * that we don't know how to handle. This certainly qualifies
2239 	 * as a gross bug that should be fixed right away.
2240 	 */
2241 	BUG_ON(!r->access);
2242 
2243 	/* Skip instruction if instructed so */
2244 	if (likely(r->access(vcpu, params, r)))
2245 		kvm_incr_pc(vcpu);
2246 }
2247 
2248 /*
2249  * emulate_cp --  tries to match a sys_reg access in a handling table, and
2250  *                call the corresponding trap handler.
2251  *
2252  * @params: pointer to the descriptor of the access
2253  * @table: array of trap descriptors
2254  * @num: size of the trap descriptor array
2255  *
2256  * Return 0 if the access has been handled, and -1 if not.
2257  */
2258 static int emulate_cp(struct kvm_vcpu *vcpu,
2259 		      struct sys_reg_params *params,
2260 		      const struct sys_reg_desc *table,
2261 		      size_t num)
2262 {
2263 	const struct sys_reg_desc *r;
2264 
2265 	if (!table)
2266 		return -1;	/* Not handled */
2267 
2268 	r = find_reg(params, table, num);
2269 
2270 	if (r) {
2271 		perform_access(vcpu, params, r);
2272 		return 0;
2273 	}
2274 
2275 	/* Not handled */
2276 	return -1;
2277 }
2278 
2279 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2280 				struct sys_reg_params *params)
2281 {
2282 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2283 	int cp = -1;
2284 
2285 	switch (esr_ec) {
2286 	case ESR_ELx_EC_CP15_32:
2287 	case ESR_ELx_EC_CP15_64:
2288 		cp = 15;
2289 		break;
2290 	case ESR_ELx_EC_CP14_MR:
2291 	case ESR_ELx_EC_CP14_64:
2292 		cp = 14;
2293 		break;
2294 	default:
2295 		WARN_ON(1);
2296 	}
2297 
2298 	print_sys_reg_msg(params,
2299 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2300 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2301 	kvm_inject_undefined(vcpu);
2302 }
2303 
2304 /**
2305  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2306  * @vcpu: The VCPU pointer
2307  * @run:  The kvm_run struct
2308  */
2309 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2310 			    const struct sys_reg_desc *global,
2311 			    size_t nr_global)
2312 {
2313 	struct sys_reg_params params;
2314 	u32 esr = kvm_vcpu_get_esr(vcpu);
2315 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2316 	int Rt2 = (esr >> 10) & 0x1f;
2317 
2318 	params.CRm = (esr >> 1) & 0xf;
2319 	params.is_write = ((esr & 1) == 0);
2320 
2321 	params.Op0 = 0;
2322 	params.Op1 = (esr >> 16) & 0xf;
2323 	params.Op2 = 0;
2324 	params.CRn = 0;
2325 
2326 	/*
2327 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2328 	 * backends between AArch32 and AArch64, we get away with it.
2329 	 */
2330 	if (params.is_write) {
2331 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2332 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2333 	}
2334 
2335 	/*
2336 	 * If the table contains a handler, handle the
2337 	 * potential register operation in the case of a read and return
2338 	 * with success.
2339 	 */
2340 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2341 		/* Split up the value between registers for the read side */
2342 		if (!params.is_write) {
2343 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2344 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2345 		}
2346 
2347 		return 1;
2348 	}
2349 
2350 	unhandled_cp_access(vcpu, &params);
2351 	return 1;
2352 }
2353 
2354 /**
2355  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2356  * @vcpu: The VCPU pointer
2357  * @run:  The kvm_run struct
2358  */
2359 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2360 			    const struct sys_reg_desc *global,
2361 			    size_t nr_global)
2362 {
2363 	struct sys_reg_params params;
2364 	u32 esr = kvm_vcpu_get_esr(vcpu);
2365 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2366 
2367 	params.CRm = (esr >> 1) & 0xf;
2368 	params.regval = vcpu_get_reg(vcpu, Rt);
2369 	params.is_write = ((esr & 1) == 0);
2370 	params.CRn = (esr >> 10) & 0xf;
2371 	params.Op0 = 0;
2372 	params.Op1 = (esr >> 14) & 0x7;
2373 	params.Op2 = (esr >> 17) & 0x7;
2374 
2375 	if (!emulate_cp(vcpu, &params, global, nr_global)) {
2376 		if (!params.is_write)
2377 			vcpu_set_reg(vcpu, Rt, params.regval);
2378 		return 1;
2379 	}
2380 
2381 	unhandled_cp_access(vcpu, &params);
2382 	return 1;
2383 }
2384 
2385 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
2386 {
2387 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
2388 }
2389 
2390 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
2391 {
2392 	return kvm_handle_cp_32(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
2393 }
2394 
2395 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
2396 {
2397 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
2398 }
2399 
2400 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
2401 {
2402 	return kvm_handle_cp_32(vcpu, cp14_regs, ARRAY_SIZE(cp14_regs));
2403 }
2404 
2405 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
2406 {
2407 	// See ARM DDI 0487E.a, section D12.3.2
2408 	return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
2409 }
2410 
2411 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2412 			   struct sys_reg_params *params)
2413 {
2414 	const struct sys_reg_desc *r;
2415 
2416 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2417 
2418 	if (likely(r)) {
2419 		perform_access(vcpu, params, r);
2420 	} else if (is_imp_def_sys_reg(params)) {
2421 		kvm_inject_undefined(vcpu);
2422 	} else {
2423 		print_sys_reg_msg(params,
2424 				  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
2425 				  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2426 		kvm_inject_undefined(vcpu);
2427 	}
2428 	return 1;
2429 }
2430 
2431 /**
2432  * kvm_reset_sys_regs - sets system registers to reset value
2433  * @vcpu: The VCPU pointer
2434  *
2435  * This function finds the right table above and sets the registers on the
2436  * virtual CPU struct to their architecturally defined reset values.
2437  */
2438 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2439 {
2440 	unsigned long i;
2441 
2442 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
2443 		if (sys_reg_descs[i].reset)
2444 			sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
2445 }
2446 
2447 /**
2448  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2449  * @vcpu: The VCPU pointer
2450  */
2451 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
2452 {
2453 	struct sys_reg_params params;
2454 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
2455 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
2456 	int ret;
2457 
2458 	trace_kvm_handle_sys_reg(esr);
2459 
2460 	params = esr_sys64_to_params(esr);
2461 	params.regval = vcpu_get_reg(vcpu, Rt);
2462 
2463 	ret = emulate_sys_reg(vcpu, &params);
2464 
2465 	if (!params.is_write)
2466 		vcpu_set_reg(vcpu, Rt, params.regval);
2467 	return ret;
2468 }
2469 
2470 /******************************************************************************
2471  * Userspace API
2472  *****************************************************************************/
2473 
2474 static bool index_to_params(u64 id, struct sys_reg_params *params)
2475 {
2476 	switch (id & KVM_REG_SIZE_MASK) {
2477 	case KVM_REG_SIZE_U64:
2478 		/* Any unused index bits means it's not valid. */
2479 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2480 			      | KVM_REG_ARM_COPROC_MASK
2481 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
2482 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
2483 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
2484 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
2485 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
2486 			return false;
2487 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2488 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2489 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2490 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2491 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2492 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2493 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2494 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2495 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2496 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2497 		return true;
2498 	default:
2499 		return false;
2500 	}
2501 }
2502 
2503 const struct sys_reg_desc *find_reg_by_id(u64 id,
2504 					  struct sys_reg_params *params,
2505 					  const struct sys_reg_desc table[],
2506 					  unsigned int num)
2507 {
2508 	if (!index_to_params(id, params))
2509 		return NULL;
2510 
2511 	return find_reg(params, table, num);
2512 }
2513 
2514 /* Decode an index value, and find the sys_reg_desc entry. */
2515 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2516 						    u64 id)
2517 {
2518 	const struct sys_reg_desc *r;
2519 	struct sys_reg_params params;
2520 
2521 	/* We only do sys_reg for now. */
2522 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2523 		return NULL;
2524 
2525 	if (!index_to_params(id, &params))
2526 		return NULL;
2527 
2528 	r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2529 
2530 	/* Not saved in the sys_reg array and not otherwise accessible? */
2531 	if (r && !(r->reg || r->get_user))
2532 		r = NULL;
2533 
2534 	return r;
2535 }
2536 
2537 /*
2538  * These are the invariant sys_reg registers: we let the guest see the
2539  * host versions of these, so they're part of the guest state.
2540  *
2541  * A future CPU may provide a mechanism to present different values to
2542  * the guest, or a future kvm may trap them.
2543  */
2544 
2545 #define FUNCTION_INVARIANT(reg)						\
2546 	static void get_##reg(struct kvm_vcpu *v,			\
2547 			      const struct sys_reg_desc *r)		\
2548 	{								\
2549 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
2550 	}
2551 
2552 FUNCTION_INVARIANT(midr_el1)
2553 FUNCTION_INVARIANT(revidr_el1)
2554 FUNCTION_INVARIANT(clidr_el1)
2555 FUNCTION_INVARIANT(aidr_el1)
2556 
2557 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
2558 {
2559 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
2560 }
2561 
2562 /* ->val is filled in by kvm_sys_reg_table_init() */
2563 static struct sys_reg_desc invariant_sys_regs[] = {
2564 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2565 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2566 	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2567 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2568 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2569 };
2570 
2571 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2572 {
2573 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2574 		return -EFAULT;
2575 	return 0;
2576 }
2577 
2578 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2579 {
2580 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2581 		return -EFAULT;
2582 	return 0;
2583 }
2584 
2585 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2586 {
2587 	struct sys_reg_params params;
2588 	const struct sys_reg_desc *r;
2589 
2590 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2591 			   ARRAY_SIZE(invariant_sys_regs));
2592 	if (!r)
2593 		return -ENOENT;
2594 
2595 	return reg_to_user(uaddr, &r->val, id);
2596 }
2597 
2598 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2599 {
2600 	struct sys_reg_params params;
2601 	const struct sys_reg_desc *r;
2602 	int err;
2603 	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2604 
2605 	r = find_reg_by_id(id, &params, invariant_sys_regs,
2606 			   ARRAY_SIZE(invariant_sys_regs));
2607 	if (!r)
2608 		return -ENOENT;
2609 
2610 	err = reg_from_user(&val, uaddr, id);
2611 	if (err)
2612 		return err;
2613 
2614 	/* This is what we mean by invariant: you can't change it. */
2615 	if (r->val != val)
2616 		return -EINVAL;
2617 
2618 	return 0;
2619 }
2620 
2621 static bool is_valid_cache(u32 val)
2622 {
2623 	u32 level, ctype;
2624 
2625 	if (val >= CSSELR_MAX)
2626 		return false;
2627 
2628 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2629 	level = (val >> 1);
2630 	ctype = (cache_levels >> (level * 3)) & 7;
2631 
2632 	switch (ctype) {
2633 	case 0: /* No cache */
2634 		return false;
2635 	case 1: /* Instruction cache only */
2636 		return (val & 1);
2637 	case 2: /* Data cache only */
2638 	case 4: /* Unified cache */
2639 		return !(val & 1);
2640 	case 3: /* Separate instruction and data caches */
2641 		return true;
2642 	default: /* Reserved: we can't know instruction or data. */
2643 		return false;
2644 	}
2645 }
2646 
2647 static int demux_c15_get(u64 id, void __user *uaddr)
2648 {
2649 	u32 val;
2650 	u32 __user *uval = uaddr;
2651 
2652 	/* Fail if we have unknown bits set. */
2653 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2654 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2655 		return -ENOENT;
2656 
2657 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2658 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2659 		if (KVM_REG_SIZE(id) != 4)
2660 			return -ENOENT;
2661 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2662 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2663 		if (!is_valid_cache(val))
2664 			return -ENOENT;
2665 
2666 		return put_user(get_ccsidr(val), uval);
2667 	default:
2668 		return -ENOENT;
2669 	}
2670 }
2671 
2672 static int demux_c15_set(u64 id, void __user *uaddr)
2673 {
2674 	u32 val, newval;
2675 	u32 __user *uval = uaddr;
2676 
2677 	/* Fail if we have unknown bits set. */
2678 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2679 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2680 		return -ENOENT;
2681 
2682 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2683 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2684 		if (KVM_REG_SIZE(id) != 4)
2685 			return -ENOENT;
2686 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2687 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2688 		if (!is_valid_cache(val))
2689 			return -ENOENT;
2690 
2691 		if (get_user(newval, uval))
2692 			return -EFAULT;
2693 
2694 		/* This is also invariant: you can't change it. */
2695 		if (newval != get_ccsidr(val))
2696 			return -EINVAL;
2697 		return 0;
2698 	default:
2699 		return -ENOENT;
2700 	}
2701 }
2702 
2703 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2704 {
2705 	const struct sys_reg_desc *r;
2706 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2707 
2708 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2709 		return demux_c15_get(reg->id, uaddr);
2710 
2711 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2712 		return -ENOENT;
2713 
2714 	r = index_to_sys_reg_desc(vcpu, reg->id);
2715 	if (!r)
2716 		return get_invariant_sys_reg(reg->id, uaddr);
2717 
2718 	/* Check for regs disabled by runtime config */
2719 	if (sysreg_hidden(vcpu, r))
2720 		return -ENOENT;
2721 
2722 	if (r->get_user)
2723 		return (r->get_user)(vcpu, r, reg, uaddr);
2724 
2725 	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2726 }
2727 
2728 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2729 {
2730 	const struct sys_reg_desc *r;
2731 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2732 
2733 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2734 		return demux_c15_set(reg->id, uaddr);
2735 
2736 	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2737 		return -ENOENT;
2738 
2739 	r = index_to_sys_reg_desc(vcpu, reg->id);
2740 	if (!r)
2741 		return set_invariant_sys_reg(reg->id, uaddr);
2742 
2743 	/* Check for regs disabled by runtime config */
2744 	if (sysreg_hidden(vcpu, r))
2745 		return -ENOENT;
2746 
2747 	if (r->set_user)
2748 		return (r->set_user)(vcpu, r, reg, uaddr);
2749 
2750 	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2751 }
2752 
2753 static unsigned int num_demux_regs(void)
2754 {
2755 	unsigned int i, count = 0;
2756 
2757 	for (i = 0; i < CSSELR_MAX; i++)
2758 		if (is_valid_cache(i))
2759 			count++;
2760 
2761 	return count;
2762 }
2763 
2764 static int write_demux_regids(u64 __user *uindices)
2765 {
2766 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2767 	unsigned int i;
2768 
2769 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2770 	for (i = 0; i < CSSELR_MAX; i++) {
2771 		if (!is_valid_cache(i))
2772 			continue;
2773 		if (put_user(val | i, uindices))
2774 			return -EFAULT;
2775 		uindices++;
2776 	}
2777 	return 0;
2778 }
2779 
2780 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2781 {
2782 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2783 		KVM_REG_ARM64_SYSREG |
2784 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2785 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2786 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2787 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2788 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2789 }
2790 
2791 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2792 {
2793 	if (!*uind)
2794 		return true;
2795 
2796 	if (put_user(sys_reg_to_index(reg), *uind))
2797 		return false;
2798 
2799 	(*uind)++;
2800 	return true;
2801 }
2802 
2803 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
2804 			    const struct sys_reg_desc *rd,
2805 			    u64 __user **uind,
2806 			    unsigned int *total)
2807 {
2808 	/*
2809 	 * Ignore registers we trap but don't save,
2810 	 * and for which no custom user accessor is provided.
2811 	 */
2812 	if (!(rd->reg || rd->get_user))
2813 		return 0;
2814 
2815 	if (sysreg_hidden(vcpu, rd))
2816 		return 0;
2817 
2818 	if (!copy_reg_to_user(rd, uind))
2819 		return -EFAULT;
2820 
2821 	(*total)++;
2822 	return 0;
2823 }
2824 
2825 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2826 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2827 {
2828 	const struct sys_reg_desc *i2, *end2;
2829 	unsigned int total = 0;
2830 	int err;
2831 
2832 	i2 = sys_reg_descs;
2833 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2834 
2835 	while (i2 != end2) {
2836 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
2837 		if (err)
2838 			return err;
2839 	}
2840 	return total;
2841 }
2842 
2843 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2844 {
2845 	return ARRAY_SIZE(invariant_sys_regs)
2846 		+ num_demux_regs()
2847 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
2848 }
2849 
2850 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2851 {
2852 	unsigned int i;
2853 	int err;
2854 
2855 	/* Then give them all the invariant registers' indices. */
2856 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2857 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2858 			return -EFAULT;
2859 		uindices++;
2860 	}
2861 
2862 	err = walk_sys_regs(vcpu, uindices);
2863 	if (err < 0)
2864 		return err;
2865 	uindices += err;
2866 
2867 	return write_demux_regids(uindices);
2868 }
2869 
2870 void kvm_sys_reg_table_init(void)
2871 {
2872 	unsigned int i;
2873 	struct sys_reg_desc clidr;
2874 
2875 	/* Make sure tables are unique and in order. */
2876 	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false));
2877 	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true));
2878 	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true));
2879 	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true));
2880 	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true));
2881 	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false));
2882 
2883 	/* We abuse the reset function to overwrite the table itself. */
2884 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2885 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2886 
2887 	/*
2888 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2889 	 *
2890 	 *   If software reads the Cache Type fields from Ctype1
2891 	 *   upwards, once it has seen a value of 0b000, no caches
2892 	 *   exist at further-out levels of the hierarchy. So, for
2893 	 *   example, if Ctype3 is the first Cache Type field with a
2894 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
2895 	 *   ignored.
2896 	 */
2897 	get_clidr_el1(NULL, &clidr); /* Ugly... */
2898 	cache_levels = clidr.val;
2899 	for (i = 0; i < 7; i++)
2900 		if (((cache_levels >> (i*3)) & 7) == 0)
2901 			break;
2902 	/* Clear all higher bits. */
2903 	cache_levels &= (1 << (i*3))-1;
2904 }
2905