1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/coproc.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Authors: Rusty Russell <rusty@rustcorp.com.au> 9 * Christoffer Dall <c.dall@virtualopensystems.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/bsearch.h> 14 #include <linux/kvm_host.h> 15 #include <linux/mm.h> 16 #include <linux/printk.h> 17 #include <linux/uaccess.h> 18 19 #include <asm/cacheflush.h> 20 #include <asm/cputype.h> 21 #include <asm/debug-monitors.h> 22 #include <asm/esr.h> 23 #include <asm/kvm_arm.h> 24 #include <asm/kvm_emulate.h> 25 #include <asm/kvm_hyp.h> 26 #include <asm/kvm_mmu.h> 27 #include <asm/perf_event.h> 28 #include <asm/sysreg.h> 29 30 #include <trace/events/kvm.h> 31 32 #include "sys_regs.h" 33 34 #include "trace.h" 35 36 /* 37 * For AArch32, we only take care of what is being trapped. Anything 38 * that has to do with init and userspace access has to go via the 39 * 64bit interface. 40 */ 41 42 static u64 sys_reg_to_index(const struct sys_reg_desc *reg); 43 44 static bool read_from_write_only(struct kvm_vcpu *vcpu, 45 struct sys_reg_params *params, 46 const struct sys_reg_desc *r) 47 { 48 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); 49 print_sys_reg_instr(params); 50 kvm_inject_undefined(vcpu); 51 return false; 52 } 53 54 static bool write_to_read_only(struct kvm_vcpu *vcpu, 55 struct sys_reg_params *params, 56 const struct sys_reg_desc *r) 57 { 58 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); 59 print_sys_reg_instr(params); 60 kvm_inject_undefined(vcpu); 61 return false; 62 } 63 64 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) 65 { 66 u64 val = 0x8badf00d8badf00d; 67 68 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && 69 __vcpu_read_sys_reg_from_cpu(reg, &val)) 70 return val; 71 72 return __vcpu_sys_reg(vcpu, reg); 73 } 74 75 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) 76 { 77 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && 78 __vcpu_write_sys_reg_to_cpu(val, reg)) 79 return; 80 81 __vcpu_sys_reg(vcpu, reg) = val; 82 } 83 84 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ 85 static u32 cache_levels; 86 87 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 88 #define CSSELR_MAX 14 89 90 /* Which cache CCSIDR represents depends on CSSELR value. */ 91 static u32 get_ccsidr(u32 csselr) 92 { 93 u32 ccsidr; 94 95 /* Make sure noone else changes CSSELR during this! */ 96 local_irq_disable(); 97 write_sysreg(csselr, csselr_el1); 98 isb(); 99 ccsidr = read_sysreg(ccsidr_el1); 100 local_irq_enable(); 101 102 return ccsidr; 103 } 104 105 /* 106 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 107 */ 108 static bool access_dcsw(struct kvm_vcpu *vcpu, 109 struct sys_reg_params *p, 110 const struct sys_reg_desc *r) 111 { 112 if (!p->is_write) 113 return read_from_write_only(vcpu, p, r); 114 115 /* 116 * Only track S/W ops if we don't have FWB. It still indicates 117 * that the guest is a bit broken (S/W operations should only 118 * be done by firmware, knowing that there is only a single 119 * CPU left in the system, and certainly not from non-secure 120 * software). 121 */ 122 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) 123 kvm_set_way_flush(vcpu); 124 125 return true; 126 } 127 128 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) 129 { 130 switch (r->aarch32_map) { 131 case AA32_LO: 132 *mask = GENMASK_ULL(31, 0); 133 *shift = 0; 134 break; 135 case AA32_HI: 136 *mask = GENMASK_ULL(63, 32); 137 *shift = 32; 138 break; 139 default: 140 *mask = GENMASK_ULL(63, 0); 141 *shift = 0; 142 break; 143 } 144 } 145 146 /* 147 * Generic accessor for VM registers. Only called as long as HCR_TVM 148 * is set. If the guest enables the MMU, we stop trapping the VM 149 * sys_regs and leave it in complete control of the caches. 150 */ 151 static bool access_vm_reg(struct kvm_vcpu *vcpu, 152 struct sys_reg_params *p, 153 const struct sys_reg_desc *r) 154 { 155 bool was_enabled = vcpu_has_cache_enabled(vcpu); 156 u64 val, mask, shift; 157 158 BUG_ON(!p->is_write); 159 160 get_access_mask(r, &mask, &shift); 161 162 if (~mask) { 163 val = vcpu_read_sys_reg(vcpu, r->reg); 164 val &= ~mask; 165 } else { 166 val = 0; 167 } 168 169 val |= (p->regval & (mask >> shift)) << shift; 170 vcpu_write_sys_reg(vcpu, val, r->reg); 171 172 kvm_toggle_cache(vcpu, was_enabled); 173 return true; 174 } 175 176 static bool access_actlr(struct kvm_vcpu *vcpu, 177 struct sys_reg_params *p, 178 const struct sys_reg_desc *r) 179 { 180 u64 mask, shift; 181 182 if (p->is_write) 183 return ignore_write(vcpu, p); 184 185 get_access_mask(r, &mask, &shift); 186 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; 187 188 return true; 189 } 190 191 /* 192 * Trap handler for the GICv3 SGI generation system register. 193 * Forward the request to the VGIC emulation. 194 * The cp15_64 code makes sure this automatically works 195 * for both AArch64 and AArch32 accesses. 196 */ 197 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 198 struct sys_reg_params *p, 199 const struct sys_reg_desc *r) 200 { 201 bool g1; 202 203 if (!p->is_write) 204 return read_from_write_only(vcpu, p, r); 205 206 /* 207 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates 208 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, 209 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively 210 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure 211 * group. 212 */ 213 if (p->Op0 == 0) { /* AArch32 */ 214 switch (p->Op1) { 215 default: /* Keep GCC quiet */ 216 case 0: /* ICC_SGI1R */ 217 g1 = true; 218 break; 219 case 1: /* ICC_ASGI1R */ 220 case 2: /* ICC_SGI0R */ 221 g1 = false; 222 break; 223 } 224 } else { /* AArch64 */ 225 switch (p->Op2) { 226 default: /* Keep GCC quiet */ 227 case 5: /* ICC_SGI1R_EL1 */ 228 g1 = true; 229 break; 230 case 6: /* ICC_ASGI1R_EL1 */ 231 case 7: /* ICC_SGI0R_EL1 */ 232 g1 = false; 233 break; 234 } 235 } 236 237 vgic_v3_dispatch_sgi(vcpu, p->regval, g1); 238 239 return true; 240 } 241 242 static bool access_gic_sre(struct kvm_vcpu *vcpu, 243 struct sys_reg_params *p, 244 const struct sys_reg_desc *r) 245 { 246 if (p->is_write) 247 return ignore_write(vcpu, p); 248 249 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; 250 return true; 251 } 252 253 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 254 struct sys_reg_params *p, 255 const struct sys_reg_desc *r) 256 { 257 if (p->is_write) 258 return ignore_write(vcpu, p); 259 else 260 return read_zero(vcpu, p); 261 } 262 263 /* 264 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the 265 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 266 * system, these registers should UNDEF. LORID_EL1 being a RO register, we 267 * treat it separately. 268 */ 269 static bool trap_loregion(struct kvm_vcpu *vcpu, 270 struct sys_reg_params *p, 271 const struct sys_reg_desc *r) 272 { 273 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 274 u32 sr = reg_to_encoding(r); 275 276 if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) { 277 kvm_inject_undefined(vcpu); 278 return false; 279 } 280 281 if (p->is_write && sr == SYS_LORID_EL1) 282 return write_to_read_only(vcpu, p, r); 283 284 return trap_raz_wi(vcpu, p, r); 285 } 286 287 static bool trap_oslar_el1(struct kvm_vcpu *vcpu, 288 struct sys_reg_params *p, 289 const struct sys_reg_desc *r) 290 { 291 u64 oslsr; 292 293 if (!p->is_write) 294 return read_from_write_only(vcpu, p, r); 295 296 /* Forward the OSLK bit to OSLSR */ 297 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK; 298 if (p->regval & SYS_OSLAR_OSLK) 299 oslsr |= SYS_OSLSR_OSLK; 300 301 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; 302 return true; 303 } 304 305 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 306 struct sys_reg_params *p, 307 const struct sys_reg_desc *r) 308 { 309 if (p->is_write) 310 return write_to_read_only(vcpu, p, r); 311 312 p->regval = __vcpu_sys_reg(vcpu, r->reg); 313 return true; 314 } 315 316 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 317 u64 val) 318 { 319 /* 320 * The only modifiable bit is the OSLK bit. Refuse the write if 321 * userspace attempts to change any other bit in the register. 322 */ 323 if ((val ^ rd->val) & ~SYS_OSLSR_OSLK) 324 return -EINVAL; 325 326 __vcpu_sys_reg(vcpu, rd->reg) = val; 327 return 0; 328 } 329 330 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 331 struct sys_reg_params *p, 332 const struct sys_reg_desc *r) 333 { 334 if (p->is_write) { 335 return ignore_write(vcpu, p); 336 } else { 337 p->regval = read_sysreg(dbgauthstatus_el1); 338 return true; 339 } 340 } 341 342 /* 343 * We want to avoid world-switching all the DBG registers all the 344 * time: 345 * 346 * - If we've touched any debug register, it is likely that we're 347 * going to touch more of them. It then makes sense to disable the 348 * traps and start doing the save/restore dance 349 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 350 * then mandatory to save/restore the registers, as the guest 351 * depends on them. 352 * 353 * For this, we use a DIRTY bit, indicating the guest has modified the 354 * debug registers, used as follow: 355 * 356 * On guest entry: 357 * - If the dirty bit is set (because we're coming back from trapping), 358 * disable the traps, save host registers, restore guest registers. 359 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 360 * set the dirty bit, disable the traps, save host registers, 361 * restore guest registers. 362 * - Otherwise, enable the traps 363 * 364 * On guest exit: 365 * - If the dirty bit is set, save guest registers, restore host 366 * registers and clear the dirty bit. This ensure that the host can 367 * now use the debug registers. 368 */ 369 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 370 struct sys_reg_params *p, 371 const struct sys_reg_desc *r) 372 { 373 if (p->is_write) { 374 vcpu_write_sys_reg(vcpu, p->regval, r->reg); 375 vcpu_set_flag(vcpu, DEBUG_DIRTY); 376 } else { 377 p->regval = vcpu_read_sys_reg(vcpu, r->reg); 378 } 379 380 trace_trap_reg(__func__, r->reg, p->is_write, p->regval); 381 382 return true; 383 } 384 385 /* 386 * reg_to_dbg/dbg_to_reg 387 * 388 * A 32 bit write to a debug register leave top bits alone 389 * A 32 bit read from a debug register only returns the bottom bits 390 * 391 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code 392 * switches between host and guest values in future. 393 */ 394 static void reg_to_dbg(struct kvm_vcpu *vcpu, 395 struct sys_reg_params *p, 396 const struct sys_reg_desc *rd, 397 u64 *dbg_reg) 398 { 399 u64 mask, shift, val; 400 401 get_access_mask(rd, &mask, &shift); 402 403 val = *dbg_reg; 404 val &= ~mask; 405 val |= (p->regval & (mask >> shift)) << shift; 406 *dbg_reg = val; 407 408 vcpu_set_flag(vcpu, DEBUG_DIRTY); 409 } 410 411 static void dbg_to_reg(struct kvm_vcpu *vcpu, 412 struct sys_reg_params *p, 413 const struct sys_reg_desc *rd, 414 u64 *dbg_reg) 415 { 416 u64 mask, shift; 417 418 get_access_mask(rd, &mask, &shift); 419 p->regval = (*dbg_reg & mask) >> shift; 420 } 421 422 static bool trap_bvr(struct kvm_vcpu *vcpu, 423 struct sys_reg_params *p, 424 const struct sys_reg_desc *rd) 425 { 426 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 427 428 if (p->is_write) 429 reg_to_dbg(vcpu, p, rd, dbg_reg); 430 else 431 dbg_to_reg(vcpu, p, rd, dbg_reg); 432 433 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 434 435 return true; 436 } 437 438 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 439 u64 val) 440 { 441 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; 442 return 0; 443 } 444 445 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 446 u64 *val) 447 { 448 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 449 return 0; 450 } 451 452 static void reset_bvr(struct kvm_vcpu *vcpu, 453 const struct sys_reg_desc *rd) 454 { 455 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; 456 } 457 458 static bool trap_bcr(struct kvm_vcpu *vcpu, 459 struct sys_reg_params *p, 460 const struct sys_reg_desc *rd) 461 { 462 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 463 464 if (p->is_write) 465 reg_to_dbg(vcpu, p, rd, dbg_reg); 466 else 467 dbg_to_reg(vcpu, p, rd, dbg_reg); 468 469 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 470 471 return true; 472 } 473 474 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 475 u64 val) 476 { 477 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; 478 return 0; 479 } 480 481 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 482 u64 *val) 483 { 484 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 485 return 0; 486 } 487 488 static void reset_bcr(struct kvm_vcpu *vcpu, 489 const struct sys_reg_desc *rd) 490 { 491 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; 492 } 493 494 static bool trap_wvr(struct kvm_vcpu *vcpu, 495 struct sys_reg_params *p, 496 const struct sys_reg_desc *rd) 497 { 498 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 499 500 if (p->is_write) 501 reg_to_dbg(vcpu, p, rd, dbg_reg); 502 else 503 dbg_to_reg(vcpu, p, rd, dbg_reg); 504 505 trace_trap_reg(__func__, rd->CRm, p->is_write, 506 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); 507 508 return true; 509 } 510 511 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 512 u64 val) 513 { 514 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; 515 return 0; 516 } 517 518 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 519 u64 *val) 520 { 521 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 522 return 0; 523 } 524 525 static void reset_wvr(struct kvm_vcpu *vcpu, 526 const struct sys_reg_desc *rd) 527 { 528 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; 529 } 530 531 static bool trap_wcr(struct kvm_vcpu *vcpu, 532 struct sys_reg_params *p, 533 const struct sys_reg_desc *rd) 534 { 535 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 536 537 if (p->is_write) 538 reg_to_dbg(vcpu, p, rd, dbg_reg); 539 else 540 dbg_to_reg(vcpu, p, rd, dbg_reg); 541 542 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 543 544 return true; 545 } 546 547 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 548 u64 val) 549 { 550 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; 551 return 0; 552 } 553 554 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 555 u64 *val) 556 { 557 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 558 return 0; 559 } 560 561 static void reset_wcr(struct kvm_vcpu *vcpu, 562 const struct sys_reg_desc *rd) 563 { 564 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; 565 } 566 567 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 568 { 569 u64 amair = read_sysreg(amair_el1); 570 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); 571 } 572 573 static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 574 { 575 u64 actlr = read_sysreg(actlr_el1); 576 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); 577 } 578 579 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 580 { 581 u64 mpidr; 582 583 /* 584 * Map the vcpu_id into the first three affinity level fields of 585 * the MPIDR. We limit the number of VCPUs in level 0 due to a 586 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 587 * of the GICv3 to be able to address each CPU directly when 588 * sending IPIs. 589 */ 590 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 591 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 592 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 593 vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); 594 } 595 596 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, 597 const struct sys_reg_desc *r) 598 { 599 if (kvm_vcpu_has_pmu(vcpu)) 600 return 0; 601 602 return REG_HIDDEN; 603 } 604 605 static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 606 { 607 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); 608 609 /* No PMU available, any PMU reg may UNDEF... */ 610 if (!kvm_arm_support_pmu_v3()) 611 return; 612 613 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; 614 n &= ARMV8_PMU_PMCR_N_MASK; 615 if (n) 616 mask |= GENMASK(n - 1, 0); 617 618 reset_unknown(vcpu, r); 619 __vcpu_sys_reg(vcpu, r->reg) &= mask; 620 } 621 622 static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 623 { 624 reset_unknown(vcpu, r); 625 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); 626 } 627 628 static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 629 { 630 reset_unknown(vcpu, r); 631 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; 632 } 633 634 static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 635 { 636 reset_unknown(vcpu, r); 637 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; 638 } 639 640 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 641 { 642 u64 pmcr, val; 643 644 /* No PMU available, PMCR_EL0 may UNDEF... */ 645 if (!kvm_arm_support_pmu_v3()) 646 return; 647 648 pmcr = read_sysreg(pmcr_el0); 649 /* 650 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN 651 * except PMCR.E resetting to zero. 652 */ 653 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) 654 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); 655 if (!system_supports_32bit_el0()) 656 val |= ARMV8_PMU_PMCR_LC; 657 __vcpu_sys_reg(vcpu, r->reg) = val; 658 } 659 660 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) 661 { 662 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); 663 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); 664 665 if (!enabled) 666 kvm_inject_undefined(vcpu); 667 668 return !enabled; 669 } 670 671 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) 672 { 673 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); 674 } 675 676 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) 677 { 678 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); 679 } 680 681 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) 682 { 683 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); 684 } 685 686 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) 687 { 688 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); 689 } 690 691 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 692 const struct sys_reg_desc *r) 693 { 694 u64 val; 695 696 if (pmu_access_el0_disabled(vcpu)) 697 return false; 698 699 if (p->is_write) { 700 /* Only update writeable bits of PMCR */ 701 val = __vcpu_sys_reg(vcpu, PMCR_EL0); 702 val &= ~ARMV8_PMU_PMCR_MASK; 703 val |= p->regval & ARMV8_PMU_PMCR_MASK; 704 if (!system_supports_32bit_el0()) 705 val |= ARMV8_PMU_PMCR_LC; 706 __vcpu_sys_reg(vcpu, PMCR_EL0) = val; 707 kvm_pmu_handle_pmcr(vcpu, val); 708 kvm_vcpu_pmu_restore_guest(vcpu); 709 } else { 710 /* PMCR.P & PMCR.C are RAZ */ 711 val = __vcpu_sys_reg(vcpu, PMCR_EL0) 712 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); 713 p->regval = val; 714 } 715 716 return true; 717 } 718 719 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 720 const struct sys_reg_desc *r) 721 { 722 if (pmu_access_event_counter_el0_disabled(vcpu)) 723 return false; 724 725 if (p->is_write) 726 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; 727 else 728 /* return PMSELR.SEL field */ 729 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) 730 & ARMV8_PMU_COUNTER_MASK; 731 732 return true; 733 } 734 735 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 736 const struct sys_reg_desc *r) 737 { 738 u64 pmceid, mask, shift; 739 740 BUG_ON(p->is_write); 741 742 if (pmu_access_el0_disabled(vcpu)) 743 return false; 744 745 get_access_mask(r, &mask, &shift); 746 747 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); 748 pmceid &= mask; 749 pmceid >>= shift; 750 751 p->regval = pmceid; 752 753 return true; 754 } 755 756 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) 757 { 758 u64 pmcr, val; 759 760 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); 761 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; 762 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { 763 kvm_inject_undefined(vcpu); 764 return false; 765 } 766 767 return true; 768 } 769 770 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, 771 struct sys_reg_params *p, 772 const struct sys_reg_desc *r) 773 { 774 u64 idx = ~0UL; 775 776 if (r->CRn == 9 && r->CRm == 13) { 777 if (r->Op2 == 2) { 778 /* PMXEVCNTR_EL0 */ 779 if (pmu_access_event_counter_el0_disabled(vcpu)) 780 return false; 781 782 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) 783 & ARMV8_PMU_COUNTER_MASK; 784 } else if (r->Op2 == 0) { 785 /* PMCCNTR_EL0 */ 786 if (pmu_access_cycle_counter_el0_disabled(vcpu)) 787 return false; 788 789 idx = ARMV8_PMU_CYCLE_IDX; 790 } 791 } else if (r->CRn == 0 && r->CRm == 9) { 792 /* PMCCNTR */ 793 if (pmu_access_event_counter_el0_disabled(vcpu)) 794 return false; 795 796 idx = ARMV8_PMU_CYCLE_IDX; 797 } else if (r->CRn == 14 && (r->CRm & 12) == 8) { 798 /* PMEVCNTRn_EL0 */ 799 if (pmu_access_event_counter_el0_disabled(vcpu)) 800 return false; 801 802 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 803 } 804 805 /* Catch any decoding mistake */ 806 WARN_ON(idx == ~0UL); 807 808 if (!pmu_counter_idx_valid(vcpu, idx)) 809 return false; 810 811 if (p->is_write) { 812 if (pmu_access_el0_disabled(vcpu)) 813 return false; 814 815 kvm_pmu_set_counter_value(vcpu, idx, p->regval); 816 } else { 817 p->regval = kvm_pmu_get_counter_value(vcpu, idx); 818 } 819 820 return true; 821 } 822 823 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 824 const struct sys_reg_desc *r) 825 { 826 u64 idx, reg; 827 828 if (pmu_access_el0_disabled(vcpu)) 829 return false; 830 831 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { 832 /* PMXEVTYPER_EL0 */ 833 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; 834 reg = PMEVTYPER0_EL0 + idx; 835 } else if (r->CRn == 14 && (r->CRm & 12) == 12) { 836 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 837 if (idx == ARMV8_PMU_CYCLE_IDX) 838 reg = PMCCFILTR_EL0; 839 else 840 /* PMEVTYPERn_EL0 */ 841 reg = PMEVTYPER0_EL0 + idx; 842 } else { 843 BUG(); 844 } 845 846 if (!pmu_counter_idx_valid(vcpu, idx)) 847 return false; 848 849 if (p->is_write) { 850 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); 851 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; 852 kvm_vcpu_pmu_restore_guest(vcpu); 853 } else { 854 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; 855 } 856 857 return true; 858 } 859 860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 861 const struct sys_reg_desc *r) 862 { 863 u64 val, mask; 864 865 if (pmu_access_el0_disabled(vcpu)) 866 return false; 867 868 mask = kvm_pmu_valid_counter_mask(vcpu); 869 if (p->is_write) { 870 val = p->regval & mask; 871 if (r->Op2 & 0x1) { 872 /* accessing PMCNTENSET_EL0 */ 873 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; 874 kvm_pmu_enable_counter_mask(vcpu, val); 875 kvm_vcpu_pmu_restore_guest(vcpu); 876 } else { 877 /* accessing PMCNTENCLR_EL0 */ 878 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; 879 kvm_pmu_disable_counter_mask(vcpu, val); 880 } 881 } else { 882 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); 883 } 884 885 return true; 886 } 887 888 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 889 const struct sys_reg_desc *r) 890 { 891 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 892 893 if (check_pmu_access_disabled(vcpu, 0)) 894 return false; 895 896 if (p->is_write) { 897 u64 val = p->regval & mask; 898 899 if (r->Op2 & 0x1) 900 /* accessing PMINTENSET_EL1 */ 901 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; 902 else 903 /* accessing PMINTENCLR_EL1 */ 904 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; 905 } else { 906 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); 907 } 908 909 return true; 910 } 911 912 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 913 const struct sys_reg_desc *r) 914 { 915 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 916 917 if (pmu_access_el0_disabled(vcpu)) 918 return false; 919 920 if (p->is_write) { 921 if (r->CRm & 0x2) 922 /* accessing PMOVSSET_EL0 */ 923 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); 924 else 925 /* accessing PMOVSCLR_EL0 */ 926 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); 927 } else { 928 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); 929 } 930 931 return true; 932 } 933 934 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 935 const struct sys_reg_desc *r) 936 { 937 u64 mask; 938 939 if (!p->is_write) 940 return read_from_write_only(vcpu, p, r); 941 942 if (pmu_write_swinc_el0_disabled(vcpu)) 943 return false; 944 945 mask = kvm_pmu_valid_counter_mask(vcpu); 946 kvm_pmu_software_increment(vcpu, p->regval & mask); 947 return true; 948 } 949 950 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 951 const struct sys_reg_desc *r) 952 { 953 if (p->is_write) { 954 if (!vcpu_mode_priv(vcpu)) { 955 kvm_inject_undefined(vcpu); 956 return false; 957 } 958 959 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = 960 p->regval & ARMV8_PMU_USERENR_MASK; 961 } else { 962 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) 963 & ARMV8_PMU_USERENR_MASK; 964 } 965 966 return true; 967 } 968 969 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 970 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 971 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ 972 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ 973 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ 974 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ 975 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ 976 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ 977 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ 978 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } 979 980 #define PMU_SYS_REG(r) \ 981 SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility 982 983 /* Macro to expand the PMEVCNTRn_EL0 register */ 984 #define PMU_PMEVCNTR_EL0(n) \ 985 { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \ 986 .reset = reset_pmevcntr, \ 987 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } 988 989 /* Macro to expand the PMEVTYPERn_EL0 register */ 990 #define PMU_PMEVTYPER_EL0(n) \ 991 { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \ 992 .reset = reset_pmevtyper, \ 993 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } 994 995 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 996 const struct sys_reg_desc *r) 997 { 998 kvm_inject_undefined(vcpu); 999 1000 return false; 1001 } 1002 1003 /* Macro to expand the AMU counter and type registers*/ 1004 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } 1005 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } 1006 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } 1007 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } 1008 1009 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, 1010 const struct sys_reg_desc *rd) 1011 { 1012 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; 1013 } 1014 1015 /* 1016 * If we land here on a PtrAuth access, that is because we didn't 1017 * fixup the access on exit by allowing the PtrAuth sysregs. The only 1018 * way this happens is when the guest does not have PtrAuth support 1019 * enabled. 1020 */ 1021 #define __PTRAUTH_KEY(k) \ 1022 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ 1023 .visibility = ptrauth_visibility} 1024 1025 #define PTRAUTH_KEY(k) \ 1026 __PTRAUTH_KEY(k ## KEYLO_EL1), \ 1027 __PTRAUTH_KEY(k ## KEYHI_EL1) 1028 1029 static bool access_arch_timer(struct kvm_vcpu *vcpu, 1030 struct sys_reg_params *p, 1031 const struct sys_reg_desc *r) 1032 { 1033 enum kvm_arch_timers tmr; 1034 enum kvm_arch_timer_regs treg; 1035 u64 reg = reg_to_encoding(r); 1036 1037 switch (reg) { 1038 case SYS_CNTP_TVAL_EL0: 1039 case SYS_AARCH32_CNTP_TVAL: 1040 tmr = TIMER_PTIMER; 1041 treg = TIMER_REG_TVAL; 1042 break; 1043 case SYS_CNTP_CTL_EL0: 1044 case SYS_AARCH32_CNTP_CTL: 1045 tmr = TIMER_PTIMER; 1046 treg = TIMER_REG_CTL; 1047 break; 1048 case SYS_CNTP_CVAL_EL0: 1049 case SYS_AARCH32_CNTP_CVAL: 1050 tmr = TIMER_PTIMER; 1051 treg = TIMER_REG_CVAL; 1052 break; 1053 default: 1054 BUG(); 1055 } 1056 1057 if (p->is_write) 1058 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); 1059 else 1060 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); 1061 1062 return true; 1063 } 1064 1065 /* Read a sanitised cpufeature ID register by sys_reg_desc */ 1066 static u64 read_id_reg(const struct kvm_vcpu *vcpu, 1067 struct sys_reg_desc const *r, bool raz) 1068 { 1069 u32 id = reg_to_encoding(r); 1070 u64 val; 1071 1072 if (raz) 1073 return 0; 1074 1075 val = read_sanitised_ftr_reg(id); 1076 1077 switch (id) { 1078 case SYS_ID_AA64PFR0_EL1: 1079 if (!vcpu_has_sve(vcpu)) 1080 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_SVE); 1081 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_AMU); 1082 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2); 1083 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2); 1084 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3); 1085 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3); 1086 if (kvm_vgic_global_state.type == VGIC_V3) { 1087 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_GIC); 1088 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_GIC), 1); 1089 } 1090 break; 1091 case SYS_ID_AA64PFR1_EL1: 1092 if (!kvm_has_mte(vcpu->kvm)) 1093 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_MTE); 1094 1095 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_SME); 1096 break; 1097 case SYS_ID_AA64ISAR1_EL1: 1098 if (!vcpu_has_ptrauth(vcpu)) 1099 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | 1100 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | 1101 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | 1102 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); 1103 break; 1104 case SYS_ID_AA64ISAR2_EL1: 1105 if (!vcpu_has_ptrauth(vcpu)) 1106 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | 1107 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); 1108 if (!cpus_have_final_cap(ARM64_HAS_WFXT)) 1109 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); 1110 break; 1111 case SYS_ID_AA64DFR0_EL1: 1112 /* Limit debug to ARMv8.0 */ 1113 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER); 1114 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_DEBUGVER), 6); 1115 /* Limit guests to PMUv3 for ARMv8.4 */ 1116 val = cpuid_feature_cap_perfmon_field(val, 1117 ID_AA64DFR0_PMUVER_SHIFT, 1118 kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_PMUVER_8_4 : 0); 1119 /* Hide SPE from guests */ 1120 val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_PMSVER); 1121 break; 1122 case SYS_ID_DFR0_EL1: 1123 /* Limit guests to PMUv3 for ARMv8.4 */ 1124 val = cpuid_feature_cap_perfmon_field(val, 1125 ID_DFR0_PERFMON_SHIFT, 1126 kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0); 1127 break; 1128 } 1129 1130 return val; 1131 } 1132 1133 static unsigned int id_visibility(const struct kvm_vcpu *vcpu, 1134 const struct sys_reg_desc *r) 1135 { 1136 u32 id = reg_to_encoding(r); 1137 1138 switch (id) { 1139 case SYS_ID_AA64ZFR0_EL1: 1140 if (!vcpu_has_sve(vcpu)) 1141 return REG_RAZ; 1142 break; 1143 } 1144 1145 return 0; 1146 } 1147 1148 /* cpufeature ID register access trap handlers */ 1149 1150 static bool __access_id_reg(struct kvm_vcpu *vcpu, 1151 struct sys_reg_params *p, 1152 const struct sys_reg_desc *r, 1153 bool raz) 1154 { 1155 if (p->is_write) 1156 return write_to_read_only(vcpu, p, r); 1157 1158 p->regval = read_id_reg(vcpu, r, raz); 1159 return true; 1160 } 1161 1162 static bool access_id_reg(struct kvm_vcpu *vcpu, 1163 struct sys_reg_params *p, 1164 const struct sys_reg_desc *r) 1165 { 1166 bool raz = sysreg_visible_as_raz(vcpu, r); 1167 1168 return __access_id_reg(vcpu, p, r, raz); 1169 } 1170 1171 static bool access_raz_id_reg(struct kvm_vcpu *vcpu, 1172 struct sys_reg_params *p, 1173 const struct sys_reg_desc *r) 1174 { 1175 return __access_id_reg(vcpu, p, r, true); 1176 } 1177 1178 /* Visibility overrides for SVE-specific control registers */ 1179 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, 1180 const struct sys_reg_desc *rd) 1181 { 1182 if (vcpu_has_sve(vcpu)) 1183 return 0; 1184 1185 return REG_HIDDEN; 1186 } 1187 1188 static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, 1189 const struct sys_reg_desc *rd, 1190 u64 val) 1191 { 1192 u8 csv2, csv3; 1193 1194 /* 1195 * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as 1196 * it doesn't promise more than what is actually provided (the 1197 * guest could otherwise be covered in ectoplasmic residue). 1198 */ 1199 csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV2_SHIFT); 1200 if (csv2 > 1 || 1201 (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) 1202 return -EINVAL; 1203 1204 /* Same thing for CSV3 */ 1205 csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_CSV3_SHIFT); 1206 if (csv3 > 1 || 1207 (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) 1208 return -EINVAL; 1209 1210 /* We can only differ with CSV[23], and anything else is an error */ 1211 val ^= read_id_reg(vcpu, rd, false); 1212 val &= ~((0xFUL << ID_AA64PFR0_CSV2_SHIFT) | 1213 (0xFUL << ID_AA64PFR0_CSV3_SHIFT)); 1214 if (val) 1215 return -EINVAL; 1216 1217 vcpu->kvm->arch.pfr0_csv2 = csv2; 1218 vcpu->kvm->arch.pfr0_csv3 = csv3; 1219 1220 return 0; 1221 } 1222 1223 /* 1224 * cpufeature ID register user accessors 1225 * 1226 * For now, these registers are immutable for userspace, so no values 1227 * are stored, and for set_id_reg() we don't allow the effective value 1228 * to be changed. 1229 */ 1230 static int __get_id_reg(const struct kvm_vcpu *vcpu, 1231 const struct sys_reg_desc *rd, u64 *val, 1232 bool raz) 1233 { 1234 *val = read_id_reg(vcpu, rd, raz); 1235 return 0; 1236 } 1237 1238 static int __set_id_reg(const struct kvm_vcpu *vcpu, 1239 const struct sys_reg_desc *rd, u64 val, 1240 bool raz) 1241 { 1242 /* This is what we mean by invariant: you can't change it. */ 1243 if (val != read_id_reg(vcpu, rd, raz)) 1244 return -EINVAL; 1245 1246 return 0; 1247 } 1248 1249 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1250 u64 *val) 1251 { 1252 bool raz = sysreg_visible_as_raz(vcpu, rd); 1253 1254 return __get_id_reg(vcpu, rd, val, raz); 1255 } 1256 1257 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1258 u64 val) 1259 { 1260 bool raz = sysreg_visible_as_raz(vcpu, rd); 1261 1262 return __set_id_reg(vcpu, rd, val, raz); 1263 } 1264 1265 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1266 u64 val) 1267 { 1268 return __set_id_reg(vcpu, rd, val, true); 1269 } 1270 1271 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1272 u64 *val) 1273 { 1274 *val = 0; 1275 return 0; 1276 } 1277 1278 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1279 u64 val) 1280 { 1281 return 0; 1282 } 1283 1284 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1285 const struct sys_reg_desc *r) 1286 { 1287 if (p->is_write) 1288 return write_to_read_only(vcpu, p, r); 1289 1290 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); 1291 return true; 1292 } 1293 1294 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1295 const struct sys_reg_desc *r) 1296 { 1297 if (p->is_write) 1298 return write_to_read_only(vcpu, p, r); 1299 1300 p->regval = read_sysreg(clidr_el1); 1301 return true; 1302 } 1303 1304 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1305 const struct sys_reg_desc *r) 1306 { 1307 int reg = r->reg; 1308 1309 if (p->is_write) 1310 vcpu_write_sys_reg(vcpu, p->regval, reg); 1311 else 1312 p->regval = vcpu_read_sys_reg(vcpu, reg); 1313 return true; 1314 } 1315 1316 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1317 const struct sys_reg_desc *r) 1318 { 1319 u32 csselr; 1320 1321 if (p->is_write) 1322 return write_to_read_only(vcpu, p, r); 1323 1324 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); 1325 p->regval = get_ccsidr(csselr); 1326 1327 /* 1328 * Guests should not be doing cache operations by set/way at all, and 1329 * for this reason, we trap them and attempt to infer the intent, so 1330 * that we can flush the entire guest's address space at the appropriate 1331 * time. 1332 * To prevent this trapping from causing performance problems, let's 1333 * expose the geometry of all data and unified caches (which are 1334 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way. 1335 * [If guests should attempt to infer aliasing properties from the 1336 * geometry (which is not permitted by the architecture), they would 1337 * only do so for virtually indexed caches.] 1338 */ 1339 if (!(csselr & 1)) // data or unified cache 1340 p->regval &= ~GENMASK(27, 3); 1341 return true; 1342 } 1343 1344 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, 1345 const struct sys_reg_desc *rd) 1346 { 1347 if (kvm_has_mte(vcpu->kvm)) 1348 return 0; 1349 1350 return REG_HIDDEN; 1351 } 1352 1353 #define MTE_REG(name) { \ 1354 SYS_DESC(SYS_##name), \ 1355 .access = undef_access, \ 1356 .reset = reset_unknown, \ 1357 .reg = name, \ 1358 .visibility = mte_visibility, \ 1359 } 1360 1361 /* sys_reg_desc initialiser for known cpufeature ID registers */ 1362 #define ID_SANITISED(name) { \ 1363 SYS_DESC(SYS_##name), \ 1364 .access = access_id_reg, \ 1365 .get_user = get_id_reg, \ 1366 .set_user = set_id_reg, \ 1367 .visibility = id_visibility, \ 1368 } 1369 1370 /* 1371 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID 1372 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 1373 * (1 <= crm < 8, 0 <= Op2 < 8). 1374 */ 1375 #define ID_UNALLOCATED(crm, op2) { \ 1376 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ 1377 .access = access_raz_id_reg, \ 1378 .get_user = get_raz_reg, \ 1379 .set_user = set_raz_id_reg, \ 1380 } 1381 1382 /* 1383 * sys_reg_desc initialiser for known ID registers that we hide from guests. 1384 * For now, these are exposed just like unallocated ID regs: they appear 1385 * RAZ for the guest. 1386 */ 1387 #define ID_HIDDEN(name) { \ 1388 SYS_DESC(SYS_##name), \ 1389 .access = access_raz_id_reg, \ 1390 .get_user = get_raz_reg, \ 1391 .set_user = set_raz_id_reg, \ 1392 } 1393 1394 /* 1395 * Architected system registers. 1396 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 1397 * 1398 * Debug handling: We do trap most, if not all debug related system 1399 * registers. The implementation is good enough to ensure that a guest 1400 * can use these with minimal performance degradation. The drawback is 1401 * that we don't implement any of the external debug architecture. 1402 * This should be revisited if we ever encounter a more demanding 1403 * guest... 1404 */ 1405 static const struct sys_reg_desc sys_reg_descs[] = { 1406 { SYS_DESC(SYS_DC_ISW), access_dcsw }, 1407 { SYS_DESC(SYS_DC_CSW), access_dcsw }, 1408 { SYS_DESC(SYS_DC_CISW), access_dcsw }, 1409 1410 DBG_BCR_BVR_WCR_WVR_EL1(0), 1411 DBG_BCR_BVR_WCR_WVR_EL1(1), 1412 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 1413 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 1414 DBG_BCR_BVR_WCR_WVR_EL1(2), 1415 DBG_BCR_BVR_WCR_WVR_EL1(3), 1416 DBG_BCR_BVR_WCR_WVR_EL1(4), 1417 DBG_BCR_BVR_WCR_WVR_EL1(5), 1418 DBG_BCR_BVR_WCR_WVR_EL1(6), 1419 DBG_BCR_BVR_WCR_WVR_EL1(7), 1420 DBG_BCR_BVR_WCR_WVR_EL1(8), 1421 DBG_BCR_BVR_WCR_WVR_EL1(9), 1422 DBG_BCR_BVR_WCR_WVR_EL1(10), 1423 DBG_BCR_BVR_WCR_WVR_EL1(11), 1424 DBG_BCR_BVR_WCR_WVR_EL1(12), 1425 DBG_BCR_BVR_WCR_WVR_EL1(13), 1426 DBG_BCR_BVR_WCR_WVR_EL1(14), 1427 DBG_BCR_BVR_WCR_WVR_EL1(15), 1428 1429 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, 1430 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, 1431 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, 1432 SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, 1433 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, 1434 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, 1435 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, 1436 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, 1437 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, 1438 1439 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, 1440 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, 1441 // DBGDTR[TR]X_EL0 share the same encoding 1442 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, 1443 1444 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, 1445 1446 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, 1447 1448 /* 1449 * ID regs: all ID_SANITISED() entries here must have corresponding 1450 * entries in arm64_ftr_regs[]. 1451 */ 1452 1453 /* AArch64 mappings of the AArch32 ID registers */ 1454 /* CRm=1 */ 1455 ID_SANITISED(ID_PFR0_EL1), 1456 ID_SANITISED(ID_PFR1_EL1), 1457 ID_SANITISED(ID_DFR0_EL1), 1458 ID_HIDDEN(ID_AFR0_EL1), 1459 ID_SANITISED(ID_MMFR0_EL1), 1460 ID_SANITISED(ID_MMFR1_EL1), 1461 ID_SANITISED(ID_MMFR2_EL1), 1462 ID_SANITISED(ID_MMFR3_EL1), 1463 1464 /* CRm=2 */ 1465 ID_SANITISED(ID_ISAR0_EL1), 1466 ID_SANITISED(ID_ISAR1_EL1), 1467 ID_SANITISED(ID_ISAR2_EL1), 1468 ID_SANITISED(ID_ISAR3_EL1), 1469 ID_SANITISED(ID_ISAR4_EL1), 1470 ID_SANITISED(ID_ISAR5_EL1), 1471 ID_SANITISED(ID_MMFR4_EL1), 1472 ID_SANITISED(ID_ISAR6_EL1), 1473 1474 /* CRm=3 */ 1475 ID_SANITISED(MVFR0_EL1), 1476 ID_SANITISED(MVFR1_EL1), 1477 ID_SANITISED(MVFR2_EL1), 1478 ID_UNALLOCATED(3,3), 1479 ID_SANITISED(ID_PFR2_EL1), 1480 ID_HIDDEN(ID_DFR1_EL1), 1481 ID_SANITISED(ID_MMFR5_EL1), 1482 ID_UNALLOCATED(3,7), 1483 1484 /* AArch64 ID registers */ 1485 /* CRm=4 */ 1486 { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, 1487 .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, 1488 ID_SANITISED(ID_AA64PFR1_EL1), 1489 ID_UNALLOCATED(4,2), 1490 ID_UNALLOCATED(4,3), 1491 ID_SANITISED(ID_AA64ZFR0_EL1), 1492 ID_HIDDEN(ID_AA64SMFR0_EL1), 1493 ID_UNALLOCATED(4,6), 1494 ID_UNALLOCATED(4,7), 1495 1496 /* CRm=5 */ 1497 ID_SANITISED(ID_AA64DFR0_EL1), 1498 ID_SANITISED(ID_AA64DFR1_EL1), 1499 ID_UNALLOCATED(5,2), 1500 ID_UNALLOCATED(5,3), 1501 ID_HIDDEN(ID_AA64AFR0_EL1), 1502 ID_HIDDEN(ID_AA64AFR1_EL1), 1503 ID_UNALLOCATED(5,6), 1504 ID_UNALLOCATED(5,7), 1505 1506 /* CRm=6 */ 1507 ID_SANITISED(ID_AA64ISAR0_EL1), 1508 ID_SANITISED(ID_AA64ISAR1_EL1), 1509 ID_SANITISED(ID_AA64ISAR2_EL1), 1510 ID_UNALLOCATED(6,3), 1511 ID_UNALLOCATED(6,4), 1512 ID_UNALLOCATED(6,5), 1513 ID_UNALLOCATED(6,6), 1514 ID_UNALLOCATED(6,7), 1515 1516 /* CRm=7 */ 1517 ID_SANITISED(ID_AA64MMFR0_EL1), 1518 ID_SANITISED(ID_AA64MMFR1_EL1), 1519 ID_SANITISED(ID_AA64MMFR2_EL1), 1520 ID_UNALLOCATED(7,3), 1521 ID_UNALLOCATED(7,4), 1522 ID_UNALLOCATED(7,5), 1523 ID_UNALLOCATED(7,6), 1524 ID_UNALLOCATED(7,7), 1525 1526 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 1527 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, 1528 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, 1529 1530 MTE_REG(RGSR_EL1), 1531 MTE_REG(GCR_EL1), 1532 1533 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, 1534 { SYS_DESC(SYS_TRFCR_EL1), undef_access }, 1535 { SYS_DESC(SYS_SMPRI_EL1), undef_access }, 1536 { SYS_DESC(SYS_SMCR_EL1), undef_access }, 1537 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, 1538 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, 1539 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, 1540 1541 PTRAUTH_KEY(APIA), 1542 PTRAUTH_KEY(APIB), 1543 PTRAUTH_KEY(APDA), 1544 PTRAUTH_KEY(APDB), 1545 PTRAUTH_KEY(APGA), 1546 1547 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, 1548 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, 1549 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, 1550 1551 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, 1552 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, 1553 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, 1554 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, 1555 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, 1556 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, 1557 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, 1558 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, 1559 1560 MTE_REG(TFSR_EL1), 1561 MTE_REG(TFSRE0_EL1), 1562 1563 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, 1564 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, 1565 1566 { SYS_DESC(SYS_PMSCR_EL1), undef_access }, 1567 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, 1568 { SYS_DESC(SYS_PMSICR_EL1), undef_access }, 1569 { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, 1570 { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, 1571 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, 1572 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, 1573 { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, 1574 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, 1575 { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, 1576 { SYS_DESC(SYS_PMBSR_EL1), undef_access }, 1577 /* PMBIDR_EL1 is not trapped */ 1578 1579 { PMU_SYS_REG(SYS_PMINTENSET_EL1), 1580 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1581 { PMU_SYS_REG(SYS_PMINTENCLR_EL1), 1582 .access = access_pminten, .reg = PMINTENSET_EL1 }, 1583 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, 1584 1585 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, 1586 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 1587 1588 { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, 1589 { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, 1590 { SYS_DESC(SYS_LORN_EL1), trap_loregion }, 1591 { SYS_DESC(SYS_LORC_EL1), trap_loregion }, 1592 { SYS_DESC(SYS_LORID_EL1), trap_loregion }, 1593 1594 { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, 1595 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, 1596 1597 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, 1598 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, 1599 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, 1600 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, 1601 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, 1602 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, 1603 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, 1604 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, 1605 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, 1606 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, 1607 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, 1608 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, 1609 1610 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 1611 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, 1612 1613 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, 1614 1615 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, 1616 1617 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, 1618 { SYS_DESC(SYS_CLIDR_EL1), access_clidr }, 1619 { SYS_DESC(SYS_SMIDR_EL1), undef_access }, 1620 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, 1621 { SYS_DESC(SYS_CTR_EL0), access_ctr }, 1622 { SYS_DESC(SYS_SVCR), undef_access }, 1623 1624 { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr, 1625 .reset = reset_pmcr, .reg = PMCR_EL0 }, 1626 { PMU_SYS_REG(SYS_PMCNTENSET_EL0), 1627 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1628 { PMU_SYS_REG(SYS_PMCNTENCLR_EL0), 1629 .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, 1630 { PMU_SYS_REG(SYS_PMOVSCLR_EL0), 1631 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1632 /* 1633 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was 1634 * previously (and pointlessly) advertised in the past... 1635 */ 1636 { PMU_SYS_REG(SYS_PMSWINC_EL0), 1637 .get_user = get_raz_reg, .set_user = set_wi_reg, 1638 .access = access_pmswinc, .reset = NULL }, 1639 { PMU_SYS_REG(SYS_PMSELR_EL0), 1640 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, 1641 { PMU_SYS_REG(SYS_PMCEID0_EL0), 1642 .access = access_pmceid, .reset = NULL }, 1643 { PMU_SYS_REG(SYS_PMCEID1_EL0), 1644 .access = access_pmceid, .reset = NULL }, 1645 { PMU_SYS_REG(SYS_PMCCNTR_EL0), 1646 .access = access_pmu_evcntr, .reset = reset_unknown, .reg = PMCCNTR_EL0 }, 1647 { PMU_SYS_REG(SYS_PMXEVTYPER_EL0), 1648 .access = access_pmu_evtyper, .reset = NULL }, 1649 { PMU_SYS_REG(SYS_PMXEVCNTR_EL0), 1650 .access = access_pmu_evcntr, .reset = NULL }, 1651 /* 1652 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero 1653 * in 32bit mode. Here we choose to reset it as zero for consistency. 1654 */ 1655 { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr, 1656 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, 1657 { PMU_SYS_REG(SYS_PMOVSSET_EL0), 1658 .access = access_pmovs, .reg = PMOVSSET_EL0 }, 1659 1660 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, 1661 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, 1662 { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, 1663 1664 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, 1665 1666 { SYS_DESC(SYS_AMCR_EL0), undef_access }, 1667 { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, 1668 { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, 1669 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, 1670 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, 1671 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, 1672 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, 1673 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, 1674 AMU_AMEVCNTR0_EL0(0), 1675 AMU_AMEVCNTR0_EL0(1), 1676 AMU_AMEVCNTR0_EL0(2), 1677 AMU_AMEVCNTR0_EL0(3), 1678 AMU_AMEVCNTR0_EL0(4), 1679 AMU_AMEVCNTR0_EL0(5), 1680 AMU_AMEVCNTR0_EL0(6), 1681 AMU_AMEVCNTR0_EL0(7), 1682 AMU_AMEVCNTR0_EL0(8), 1683 AMU_AMEVCNTR0_EL0(9), 1684 AMU_AMEVCNTR0_EL0(10), 1685 AMU_AMEVCNTR0_EL0(11), 1686 AMU_AMEVCNTR0_EL0(12), 1687 AMU_AMEVCNTR0_EL0(13), 1688 AMU_AMEVCNTR0_EL0(14), 1689 AMU_AMEVCNTR0_EL0(15), 1690 AMU_AMEVTYPER0_EL0(0), 1691 AMU_AMEVTYPER0_EL0(1), 1692 AMU_AMEVTYPER0_EL0(2), 1693 AMU_AMEVTYPER0_EL0(3), 1694 AMU_AMEVTYPER0_EL0(4), 1695 AMU_AMEVTYPER0_EL0(5), 1696 AMU_AMEVTYPER0_EL0(6), 1697 AMU_AMEVTYPER0_EL0(7), 1698 AMU_AMEVTYPER0_EL0(8), 1699 AMU_AMEVTYPER0_EL0(9), 1700 AMU_AMEVTYPER0_EL0(10), 1701 AMU_AMEVTYPER0_EL0(11), 1702 AMU_AMEVTYPER0_EL0(12), 1703 AMU_AMEVTYPER0_EL0(13), 1704 AMU_AMEVTYPER0_EL0(14), 1705 AMU_AMEVTYPER0_EL0(15), 1706 AMU_AMEVCNTR1_EL0(0), 1707 AMU_AMEVCNTR1_EL0(1), 1708 AMU_AMEVCNTR1_EL0(2), 1709 AMU_AMEVCNTR1_EL0(3), 1710 AMU_AMEVCNTR1_EL0(4), 1711 AMU_AMEVCNTR1_EL0(5), 1712 AMU_AMEVCNTR1_EL0(6), 1713 AMU_AMEVCNTR1_EL0(7), 1714 AMU_AMEVCNTR1_EL0(8), 1715 AMU_AMEVCNTR1_EL0(9), 1716 AMU_AMEVCNTR1_EL0(10), 1717 AMU_AMEVCNTR1_EL0(11), 1718 AMU_AMEVCNTR1_EL0(12), 1719 AMU_AMEVCNTR1_EL0(13), 1720 AMU_AMEVCNTR1_EL0(14), 1721 AMU_AMEVCNTR1_EL0(15), 1722 AMU_AMEVTYPER1_EL0(0), 1723 AMU_AMEVTYPER1_EL0(1), 1724 AMU_AMEVTYPER1_EL0(2), 1725 AMU_AMEVTYPER1_EL0(3), 1726 AMU_AMEVTYPER1_EL0(4), 1727 AMU_AMEVTYPER1_EL0(5), 1728 AMU_AMEVTYPER1_EL0(6), 1729 AMU_AMEVTYPER1_EL0(7), 1730 AMU_AMEVTYPER1_EL0(8), 1731 AMU_AMEVTYPER1_EL0(9), 1732 AMU_AMEVTYPER1_EL0(10), 1733 AMU_AMEVTYPER1_EL0(11), 1734 AMU_AMEVTYPER1_EL0(12), 1735 AMU_AMEVTYPER1_EL0(13), 1736 AMU_AMEVTYPER1_EL0(14), 1737 AMU_AMEVTYPER1_EL0(15), 1738 1739 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, 1740 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, 1741 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, 1742 1743 /* PMEVCNTRn_EL0 */ 1744 PMU_PMEVCNTR_EL0(0), 1745 PMU_PMEVCNTR_EL0(1), 1746 PMU_PMEVCNTR_EL0(2), 1747 PMU_PMEVCNTR_EL0(3), 1748 PMU_PMEVCNTR_EL0(4), 1749 PMU_PMEVCNTR_EL0(5), 1750 PMU_PMEVCNTR_EL0(6), 1751 PMU_PMEVCNTR_EL0(7), 1752 PMU_PMEVCNTR_EL0(8), 1753 PMU_PMEVCNTR_EL0(9), 1754 PMU_PMEVCNTR_EL0(10), 1755 PMU_PMEVCNTR_EL0(11), 1756 PMU_PMEVCNTR_EL0(12), 1757 PMU_PMEVCNTR_EL0(13), 1758 PMU_PMEVCNTR_EL0(14), 1759 PMU_PMEVCNTR_EL0(15), 1760 PMU_PMEVCNTR_EL0(16), 1761 PMU_PMEVCNTR_EL0(17), 1762 PMU_PMEVCNTR_EL0(18), 1763 PMU_PMEVCNTR_EL0(19), 1764 PMU_PMEVCNTR_EL0(20), 1765 PMU_PMEVCNTR_EL0(21), 1766 PMU_PMEVCNTR_EL0(22), 1767 PMU_PMEVCNTR_EL0(23), 1768 PMU_PMEVCNTR_EL0(24), 1769 PMU_PMEVCNTR_EL0(25), 1770 PMU_PMEVCNTR_EL0(26), 1771 PMU_PMEVCNTR_EL0(27), 1772 PMU_PMEVCNTR_EL0(28), 1773 PMU_PMEVCNTR_EL0(29), 1774 PMU_PMEVCNTR_EL0(30), 1775 /* PMEVTYPERn_EL0 */ 1776 PMU_PMEVTYPER_EL0(0), 1777 PMU_PMEVTYPER_EL0(1), 1778 PMU_PMEVTYPER_EL0(2), 1779 PMU_PMEVTYPER_EL0(3), 1780 PMU_PMEVTYPER_EL0(4), 1781 PMU_PMEVTYPER_EL0(5), 1782 PMU_PMEVTYPER_EL0(6), 1783 PMU_PMEVTYPER_EL0(7), 1784 PMU_PMEVTYPER_EL0(8), 1785 PMU_PMEVTYPER_EL0(9), 1786 PMU_PMEVTYPER_EL0(10), 1787 PMU_PMEVTYPER_EL0(11), 1788 PMU_PMEVTYPER_EL0(12), 1789 PMU_PMEVTYPER_EL0(13), 1790 PMU_PMEVTYPER_EL0(14), 1791 PMU_PMEVTYPER_EL0(15), 1792 PMU_PMEVTYPER_EL0(16), 1793 PMU_PMEVTYPER_EL0(17), 1794 PMU_PMEVTYPER_EL0(18), 1795 PMU_PMEVTYPER_EL0(19), 1796 PMU_PMEVTYPER_EL0(20), 1797 PMU_PMEVTYPER_EL0(21), 1798 PMU_PMEVTYPER_EL0(22), 1799 PMU_PMEVTYPER_EL0(23), 1800 PMU_PMEVTYPER_EL0(24), 1801 PMU_PMEVTYPER_EL0(25), 1802 PMU_PMEVTYPER_EL0(26), 1803 PMU_PMEVTYPER_EL0(27), 1804 PMU_PMEVTYPER_EL0(28), 1805 PMU_PMEVTYPER_EL0(29), 1806 PMU_PMEVTYPER_EL0(30), 1807 /* 1808 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero 1809 * in 32bit mode. Here we choose to reset it as zero for consistency. 1810 */ 1811 { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper, 1812 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, 1813 1814 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, 1815 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, 1816 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, 1817 }; 1818 1819 static bool trap_dbgdidr(struct kvm_vcpu *vcpu, 1820 struct sys_reg_params *p, 1821 const struct sys_reg_desc *r) 1822 { 1823 if (p->is_write) { 1824 return ignore_write(vcpu, p); 1825 } else { 1826 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); 1827 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1828 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT); 1829 1830 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) | 1831 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) | 1832 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20) 1833 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); 1834 return true; 1835 } 1836 } 1837 1838 /* 1839 * AArch32 debug register mappings 1840 * 1841 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 1842 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 1843 * 1844 * None of the other registers share their location, so treat them as 1845 * if they were 64bit. 1846 */ 1847 #define DBG_BCR_BVR_WCR_WVR(n) \ 1848 /* DBGBVRn */ \ 1849 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 1850 /* DBGBCRn */ \ 1851 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 1852 /* DBGWVRn */ \ 1853 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 1854 /* DBGWCRn */ \ 1855 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 1856 1857 #define DBGBXVR(n) \ 1858 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } 1859 1860 /* 1861 * Trapped cp14 registers. We generally ignore most of the external 1862 * debug, on the principle that they don't really make sense to a 1863 * guest. Revisit this one day, would this principle change. 1864 */ 1865 static const struct sys_reg_desc cp14_regs[] = { 1866 /* DBGDIDR */ 1867 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, 1868 /* DBGDTRRXext */ 1869 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 1870 1871 DBG_BCR_BVR_WCR_WVR(0), 1872 /* DBGDSCRint */ 1873 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 1874 DBG_BCR_BVR_WCR_WVR(1), 1875 /* DBGDCCINT */ 1876 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, 1877 /* DBGDSCRext */ 1878 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, 1879 DBG_BCR_BVR_WCR_WVR(2), 1880 /* DBGDTR[RT]Xint */ 1881 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 1882 /* DBGDTR[RT]Xext */ 1883 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 1884 DBG_BCR_BVR_WCR_WVR(3), 1885 DBG_BCR_BVR_WCR_WVR(4), 1886 DBG_BCR_BVR_WCR_WVR(5), 1887 /* DBGWFAR */ 1888 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 1889 /* DBGOSECCR */ 1890 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 1891 DBG_BCR_BVR_WCR_WVR(6), 1892 /* DBGVCR */ 1893 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, 1894 DBG_BCR_BVR_WCR_WVR(7), 1895 DBG_BCR_BVR_WCR_WVR(8), 1896 DBG_BCR_BVR_WCR_WVR(9), 1897 DBG_BCR_BVR_WCR_WVR(10), 1898 DBG_BCR_BVR_WCR_WVR(11), 1899 DBG_BCR_BVR_WCR_WVR(12), 1900 DBG_BCR_BVR_WCR_WVR(13), 1901 DBG_BCR_BVR_WCR_WVR(14), 1902 DBG_BCR_BVR_WCR_WVR(15), 1903 1904 /* DBGDRAR (32bit) */ 1905 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 1906 1907 DBGBXVR(0), 1908 /* DBGOSLAR */ 1909 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, 1910 DBGBXVR(1), 1911 /* DBGOSLSR */ 1912 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, 1913 DBGBXVR(2), 1914 DBGBXVR(3), 1915 /* DBGOSDLR */ 1916 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 1917 DBGBXVR(4), 1918 /* DBGPRCR */ 1919 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 1920 DBGBXVR(5), 1921 DBGBXVR(6), 1922 DBGBXVR(7), 1923 DBGBXVR(8), 1924 DBGBXVR(9), 1925 DBGBXVR(10), 1926 DBGBXVR(11), 1927 DBGBXVR(12), 1928 DBGBXVR(13), 1929 DBGBXVR(14), 1930 DBGBXVR(15), 1931 1932 /* DBGDSAR (32bit) */ 1933 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 1934 1935 /* DBGDEVID2 */ 1936 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 1937 /* DBGDEVID1 */ 1938 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 1939 /* DBGDEVID */ 1940 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 1941 /* DBGCLAIMSET */ 1942 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 1943 /* DBGCLAIMCLR */ 1944 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 1945 /* DBGAUTHSTATUS */ 1946 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 1947 }; 1948 1949 /* Trapped cp14 64bit registers */ 1950 static const struct sys_reg_desc cp14_64_regs[] = { 1951 /* DBGDRAR (64bit) */ 1952 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 1953 1954 /* DBGDSAR (64bit) */ 1955 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 1956 }; 1957 1958 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ 1959 AA32(_map), \ 1960 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ 1961 .visibility = pmu_visibility 1962 1963 /* Macro to expand the PMEVCNTRn register */ 1964 #define PMU_PMEVCNTR(n) \ 1965 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 1966 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 1967 .access = access_pmu_evcntr } 1968 1969 /* Macro to expand the PMEVTYPERn register */ 1970 #define PMU_PMEVTYPER(n) \ 1971 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 1972 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 1973 .access = access_pmu_evtyper } 1974 /* 1975 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 1976 * depending on the way they are accessed (as a 32bit or a 64bit 1977 * register). 1978 */ 1979 static const struct sys_reg_desc cp15_regs[] = { 1980 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, 1981 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, 1982 /* ACTLR */ 1983 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, 1984 /* ACTLR2 */ 1985 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, 1986 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 1987 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, 1988 /* TTBCR */ 1989 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, 1990 /* TTBCR2 */ 1991 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, 1992 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, 1993 /* DFSR */ 1994 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, 1995 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, 1996 /* ADFSR */ 1997 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, 1998 /* AIFSR */ 1999 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, 2000 /* DFAR */ 2001 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, 2002 /* IFAR */ 2003 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, 2004 2005 /* 2006 * DC{C,I,CI}SW operations: 2007 */ 2008 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 2009 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 2010 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 2011 2012 /* PMU */ 2013 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, 2014 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, 2015 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, 2016 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, 2017 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, 2018 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, 2019 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, 2020 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, 2021 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, 2022 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, 2023 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, 2024 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, 2025 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, 2026 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, 2027 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, 2028 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, 2029 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, 2030 /* PMMIR */ 2031 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, 2032 2033 /* PRRR/MAIR0 */ 2034 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, 2035 /* NMRR/MAIR1 */ 2036 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, 2037 /* AMAIR0 */ 2038 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, 2039 /* AMAIR1 */ 2040 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, 2041 2042 /* ICC_SRE */ 2043 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, 2044 2045 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, 2046 2047 /* Arch Tmers */ 2048 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, 2049 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, 2050 2051 /* PMEVCNTRn */ 2052 PMU_PMEVCNTR(0), 2053 PMU_PMEVCNTR(1), 2054 PMU_PMEVCNTR(2), 2055 PMU_PMEVCNTR(3), 2056 PMU_PMEVCNTR(4), 2057 PMU_PMEVCNTR(5), 2058 PMU_PMEVCNTR(6), 2059 PMU_PMEVCNTR(7), 2060 PMU_PMEVCNTR(8), 2061 PMU_PMEVCNTR(9), 2062 PMU_PMEVCNTR(10), 2063 PMU_PMEVCNTR(11), 2064 PMU_PMEVCNTR(12), 2065 PMU_PMEVCNTR(13), 2066 PMU_PMEVCNTR(14), 2067 PMU_PMEVCNTR(15), 2068 PMU_PMEVCNTR(16), 2069 PMU_PMEVCNTR(17), 2070 PMU_PMEVCNTR(18), 2071 PMU_PMEVCNTR(19), 2072 PMU_PMEVCNTR(20), 2073 PMU_PMEVCNTR(21), 2074 PMU_PMEVCNTR(22), 2075 PMU_PMEVCNTR(23), 2076 PMU_PMEVCNTR(24), 2077 PMU_PMEVCNTR(25), 2078 PMU_PMEVCNTR(26), 2079 PMU_PMEVCNTR(27), 2080 PMU_PMEVCNTR(28), 2081 PMU_PMEVCNTR(29), 2082 PMU_PMEVCNTR(30), 2083 /* PMEVTYPERn */ 2084 PMU_PMEVTYPER(0), 2085 PMU_PMEVTYPER(1), 2086 PMU_PMEVTYPER(2), 2087 PMU_PMEVTYPER(3), 2088 PMU_PMEVTYPER(4), 2089 PMU_PMEVTYPER(5), 2090 PMU_PMEVTYPER(6), 2091 PMU_PMEVTYPER(7), 2092 PMU_PMEVTYPER(8), 2093 PMU_PMEVTYPER(9), 2094 PMU_PMEVTYPER(10), 2095 PMU_PMEVTYPER(11), 2096 PMU_PMEVTYPER(12), 2097 PMU_PMEVTYPER(13), 2098 PMU_PMEVTYPER(14), 2099 PMU_PMEVTYPER(15), 2100 PMU_PMEVTYPER(16), 2101 PMU_PMEVTYPER(17), 2102 PMU_PMEVTYPER(18), 2103 PMU_PMEVTYPER(19), 2104 PMU_PMEVTYPER(20), 2105 PMU_PMEVTYPER(21), 2106 PMU_PMEVTYPER(22), 2107 PMU_PMEVTYPER(23), 2108 PMU_PMEVTYPER(24), 2109 PMU_PMEVTYPER(25), 2110 PMU_PMEVTYPER(26), 2111 PMU_PMEVTYPER(27), 2112 PMU_PMEVTYPER(28), 2113 PMU_PMEVTYPER(29), 2114 PMU_PMEVTYPER(30), 2115 /* PMCCFILTR */ 2116 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, 2117 2118 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, 2119 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, 2120 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, 2121 }; 2122 2123 static const struct sys_reg_desc cp15_64_regs[] = { 2124 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2125 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, 2126 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ 2127 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, 2128 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ 2129 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ 2130 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, 2131 }; 2132 2133 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, 2134 bool is_32) 2135 { 2136 unsigned int i; 2137 2138 for (i = 0; i < n; i++) { 2139 if (!is_32 && table[i].reg && !table[i].reset) { 2140 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); 2141 return false; 2142 } 2143 2144 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 2145 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); 2146 return false; 2147 } 2148 } 2149 2150 return true; 2151 } 2152 2153 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) 2154 { 2155 kvm_inject_undefined(vcpu); 2156 return 1; 2157 } 2158 2159 static void perform_access(struct kvm_vcpu *vcpu, 2160 struct sys_reg_params *params, 2161 const struct sys_reg_desc *r) 2162 { 2163 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); 2164 2165 /* Check for regs disabled by runtime config */ 2166 if (sysreg_hidden(vcpu, r)) { 2167 kvm_inject_undefined(vcpu); 2168 return; 2169 } 2170 2171 /* 2172 * Not having an accessor means that we have configured a trap 2173 * that we don't know how to handle. This certainly qualifies 2174 * as a gross bug that should be fixed right away. 2175 */ 2176 BUG_ON(!r->access); 2177 2178 /* Skip instruction if instructed so */ 2179 if (likely(r->access(vcpu, params, r))) 2180 kvm_incr_pc(vcpu); 2181 } 2182 2183 /* 2184 * emulate_cp -- tries to match a sys_reg access in a handling table, and 2185 * call the corresponding trap handler. 2186 * 2187 * @params: pointer to the descriptor of the access 2188 * @table: array of trap descriptors 2189 * @num: size of the trap descriptor array 2190 * 2191 * Return true if the access has been handled, false if not. 2192 */ 2193 static bool emulate_cp(struct kvm_vcpu *vcpu, 2194 struct sys_reg_params *params, 2195 const struct sys_reg_desc *table, 2196 size_t num) 2197 { 2198 const struct sys_reg_desc *r; 2199 2200 if (!table) 2201 return false; /* Not handled */ 2202 2203 r = find_reg(params, table, num); 2204 2205 if (r) { 2206 perform_access(vcpu, params, r); 2207 return true; 2208 } 2209 2210 /* Not handled */ 2211 return false; 2212 } 2213 2214 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 2215 struct sys_reg_params *params) 2216 { 2217 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 2218 int cp = -1; 2219 2220 switch (esr_ec) { 2221 case ESR_ELx_EC_CP15_32: 2222 case ESR_ELx_EC_CP15_64: 2223 cp = 15; 2224 break; 2225 case ESR_ELx_EC_CP14_MR: 2226 case ESR_ELx_EC_CP14_64: 2227 cp = 14; 2228 break; 2229 default: 2230 WARN_ON(1); 2231 } 2232 2233 print_sys_reg_msg(params, 2234 "Unsupported guest CP%d access at: %08lx [%08lx]\n", 2235 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2236 kvm_inject_undefined(vcpu); 2237 } 2238 2239 /** 2240 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access 2241 * @vcpu: The VCPU pointer 2242 * @run: The kvm_run struct 2243 */ 2244 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 2245 const struct sys_reg_desc *global, 2246 size_t nr_global) 2247 { 2248 struct sys_reg_params params; 2249 u64 esr = kvm_vcpu_get_esr(vcpu); 2250 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2251 int Rt2 = (esr >> 10) & 0x1f; 2252 2253 params.CRm = (esr >> 1) & 0xf; 2254 params.is_write = ((esr & 1) == 0); 2255 2256 params.Op0 = 0; 2257 params.Op1 = (esr >> 16) & 0xf; 2258 params.Op2 = 0; 2259 params.CRn = 0; 2260 2261 /* 2262 * Make a 64-bit value out of Rt and Rt2. As we use the same trap 2263 * backends between AArch32 and AArch64, we get away with it. 2264 */ 2265 if (params.is_write) { 2266 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; 2267 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; 2268 } 2269 2270 /* 2271 * If the table contains a handler, handle the 2272 * potential register operation in the case of a read and return 2273 * with success. 2274 */ 2275 if (emulate_cp(vcpu, ¶ms, global, nr_global)) { 2276 /* Split up the value between registers for the read side */ 2277 if (!params.is_write) { 2278 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); 2279 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); 2280 } 2281 2282 return 1; 2283 } 2284 2285 unhandled_cp_access(vcpu, ¶ms); 2286 return 1; 2287 } 2288 2289 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); 2290 2291 /* 2292 * The CP10 ID registers are architecturally mapped to AArch64 feature 2293 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses 2294 * from AArch32. 2295 */ 2296 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) 2297 { 2298 u8 reg_id = (esr >> 10) & 0xf; 2299 bool valid; 2300 2301 params->is_write = ((esr & 1) == 0); 2302 params->Op0 = 3; 2303 params->Op1 = 0; 2304 params->CRn = 0; 2305 params->CRm = 3; 2306 2307 /* CP10 ID registers are read-only */ 2308 valid = !params->is_write; 2309 2310 switch (reg_id) { 2311 /* MVFR0 */ 2312 case 0b0111: 2313 params->Op2 = 0; 2314 break; 2315 /* MVFR1 */ 2316 case 0b0110: 2317 params->Op2 = 1; 2318 break; 2319 /* MVFR2 */ 2320 case 0b0101: 2321 params->Op2 = 2; 2322 break; 2323 default: 2324 valid = false; 2325 } 2326 2327 if (valid) 2328 return true; 2329 2330 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", 2331 params->is_write ? "write" : "read", reg_id); 2332 return false; 2333 } 2334 2335 /** 2336 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and 2337 * VFP Register' from AArch32. 2338 * @vcpu: The vCPU pointer 2339 * 2340 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. 2341 * Work out the correct AArch64 system register encoding and reroute to the 2342 * AArch64 system register emulation. 2343 */ 2344 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) 2345 { 2346 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2347 u64 esr = kvm_vcpu_get_esr(vcpu); 2348 struct sys_reg_params params; 2349 2350 /* UNDEF on any unhandled register access */ 2351 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { 2352 kvm_inject_undefined(vcpu); 2353 return 1; 2354 } 2355 2356 if (emulate_sys_reg(vcpu, ¶ms)) 2357 vcpu_set_reg(vcpu, Rt, params.regval); 2358 2359 return 1; 2360 } 2361 2362 /** 2363 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where 2364 * CRn=0, which corresponds to the AArch32 feature 2365 * registers. 2366 * @vcpu: the vCPU pointer 2367 * @params: the system register access parameters. 2368 * 2369 * Our cp15 system register tables do not enumerate the AArch32 feature 2370 * registers. Conveniently, our AArch64 table does, and the AArch32 system 2371 * register encoding can be trivially remapped into the AArch64 for the feature 2372 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. 2373 * 2374 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit 2375 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this 2376 * range are either UNKNOWN or RES0. Rerouting remains architectural as we 2377 * treat undefined registers in this range as RAZ. 2378 */ 2379 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, 2380 struct sys_reg_params *params) 2381 { 2382 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2383 2384 /* Treat impossible writes to RO registers as UNDEFINED */ 2385 if (params->is_write) { 2386 unhandled_cp_access(vcpu, params); 2387 return 1; 2388 } 2389 2390 params->Op0 = 3; 2391 2392 /* 2393 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. 2394 * Avoid conflicting with future expansion of AArch64 feature registers 2395 * and simply treat them as RAZ here. 2396 */ 2397 if (params->CRm > 3) 2398 params->regval = 0; 2399 else if (!emulate_sys_reg(vcpu, params)) 2400 return 1; 2401 2402 vcpu_set_reg(vcpu, Rt, params->regval); 2403 return 1; 2404 } 2405 2406 /** 2407 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access 2408 * @vcpu: The VCPU pointer 2409 * @run: The kvm_run struct 2410 */ 2411 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 2412 struct sys_reg_params *params, 2413 const struct sys_reg_desc *global, 2414 size_t nr_global) 2415 { 2416 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2417 2418 params->regval = vcpu_get_reg(vcpu, Rt); 2419 2420 if (emulate_cp(vcpu, params, global, nr_global)) { 2421 if (!params->is_write) 2422 vcpu_set_reg(vcpu, Rt, params->regval); 2423 return 1; 2424 } 2425 2426 unhandled_cp_access(vcpu, params); 2427 return 1; 2428 } 2429 2430 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) 2431 { 2432 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); 2433 } 2434 2435 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) 2436 { 2437 struct sys_reg_params params; 2438 2439 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 2440 2441 /* 2442 * Certain AArch32 ID registers are handled by rerouting to the AArch64 2443 * system register table. Registers in the ID range where CRm=0 are 2444 * excluded from this scheme as they do not trivially map into AArch64 2445 * system register encodings. 2446 */ 2447 if (params.Op1 == 0 && params.CRn == 0 && params.CRm) 2448 return kvm_emulate_cp15_id_reg(vcpu, ¶ms); 2449 2450 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); 2451 } 2452 2453 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) 2454 { 2455 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); 2456 } 2457 2458 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) 2459 { 2460 struct sys_reg_params params; 2461 2462 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 2463 2464 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); 2465 } 2466 2467 static bool is_imp_def_sys_reg(struct sys_reg_params *params) 2468 { 2469 // See ARM DDI 0487E.a, section D12.3.2 2470 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; 2471 } 2472 2473 /** 2474 * emulate_sys_reg - Emulate a guest access to an AArch64 system register 2475 * @vcpu: The VCPU pointer 2476 * @params: Decoded system register parameters 2477 * 2478 * Return: true if the system register access was successful, false otherwise. 2479 */ 2480 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, 2481 struct sys_reg_params *params) 2482 { 2483 const struct sys_reg_desc *r; 2484 2485 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2486 2487 if (likely(r)) { 2488 perform_access(vcpu, params, r); 2489 return true; 2490 } 2491 2492 if (is_imp_def_sys_reg(params)) { 2493 kvm_inject_undefined(vcpu); 2494 } else { 2495 print_sys_reg_msg(params, 2496 "Unsupported guest sys_reg access at: %lx [%08lx]\n", 2497 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 2498 kvm_inject_undefined(vcpu); 2499 } 2500 return false; 2501 } 2502 2503 /** 2504 * kvm_reset_sys_regs - sets system registers to reset value 2505 * @vcpu: The VCPU pointer 2506 * 2507 * This function finds the right table above and sets the registers on the 2508 * virtual CPU struct to their architecturally defined reset values. 2509 */ 2510 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 2511 { 2512 unsigned long i; 2513 2514 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) 2515 if (sys_reg_descs[i].reset) 2516 sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); 2517 } 2518 2519 /** 2520 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access 2521 * @vcpu: The VCPU pointer 2522 */ 2523 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) 2524 { 2525 struct sys_reg_params params; 2526 unsigned long esr = kvm_vcpu_get_esr(vcpu); 2527 int Rt = kvm_vcpu_sys_get_rt(vcpu); 2528 2529 trace_kvm_handle_sys_reg(esr); 2530 2531 params = esr_sys64_to_params(esr); 2532 params.regval = vcpu_get_reg(vcpu, Rt); 2533 2534 if (!emulate_sys_reg(vcpu, ¶ms)) 2535 return 1; 2536 2537 if (!params.is_write) 2538 vcpu_set_reg(vcpu, Rt, params.regval); 2539 return 1; 2540 } 2541 2542 /****************************************************************************** 2543 * Userspace API 2544 *****************************************************************************/ 2545 2546 static bool index_to_params(u64 id, struct sys_reg_params *params) 2547 { 2548 switch (id & KVM_REG_SIZE_MASK) { 2549 case KVM_REG_SIZE_U64: 2550 /* Any unused index bits means it's not valid. */ 2551 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 2552 | KVM_REG_ARM_COPROC_MASK 2553 | KVM_REG_ARM64_SYSREG_OP0_MASK 2554 | KVM_REG_ARM64_SYSREG_OP1_MASK 2555 | KVM_REG_ARM64_SYSREG_CRN_MASK 2556 | KVM_REG_ARM64_SYSREG_CRM_MASK 2557 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 2558 return false; 2559 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 2560 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 2561 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 2562 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 2563 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 2564 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 2565 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 2566 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 2567 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 2568 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 2569 return true; 2570 default: 2571 return false; 2572 } 2573 } 2574 2575 const struct sys_reg_desc *get_reg_by_id(u64 id, 2576 const struct sys_reg_desc table[], 2577 unsigned int num) 2578 { 2579 struct sys_reg_params params; 2580 2581 if (!index_to_params(id, ¶ms)) 2582 return NULL; 2583 2584 return find_reg(¶ms, table, num); 2585 } 2586 2587 /* Decode an index value, and find the sys_reg_desc entry. */ 2588 static const struct sys_reg_desc * 2589 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, 2590 const struct sys_reg_desc table[], unsigned int num) 2591 2592 { 2593 const struct sys_reg_desc *r; 2594 2595 /* We only do sys_reg for now. */ 2596 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 2597 return NULL; 2598 2599 r = get_reg_by_id(id, table, num); 2600 2601 /* Not saved in the sys_reg array and not otherwise accessible? */ 2602 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) 2603 r = NULL; 2604 2605 return r; 2606 } 2607 2608 /* 2609 * These are the invariant sys_reg registers: we let the guest see the 2610 * host versions of these, so they're part of the guest state. 2611 * 2612 * A future CPU may provide a mechanism to present different values to 2613 * the guest, or a future kvm may trap them. 2614 */ 2615 2616 #define FUNCTION_INVARIANT(reg) \ 2617 static void get_##reg(struct kvm_vcpu *v, \ 2618 const struct sys_reg_desc *r) \ 2619 { \ 2620 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ 2621 } 2622 2623 FUNCTION_INVARIANT(midr_el1) 2624 FUNCTION_INVARIANT(revidr_el1) 2625 FUNCTION_INVARIANT(clidr_el1) 2626 FUNCTION_INVARIANT(aidr_el1) 2627 2628 static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) 2629 { 2630 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); 2631 } 2632 2633 /* ->val is filled in by kvm_sys_reg_table_init() */ 2634 static struct sys_reg_desc invariant_sys_regs[] = { 2635 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, 2636 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, 2637 { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, 2638 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, 2639 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, 2640 }; 2641 2642 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) 2643 { 2644 const struct sys_reg_desc *r; 2645 2646 r = get_reg_by_id(id, invariant_sys_regs, 2647 ARRAY_SIZE(invariant_sys_regs)); 2648 if (!r) 2649 return -ENOENT; 2650 2651 return put_user(r->val, uaddr); 2652 } 2653 2654 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) 2655 { 2656 const struct sys_reg_desc *r; 2657 u64 val; 2658 2659 r = get_reg_by_id(id, invariant_sys_regs, 2660 ARRAY_SIZE(invariant_sys_regs)); 2661 if (!r) 2662 return -ENOENT; 2663 2664 if (get_user(val, uaddr)) 2665 return -EFAULT; 2666 2667 /* This is what we mean by invariant: you can't change it. */ 2668 if (r->val != val) 2669 return -EINVAL; 2670 2671 return 0; 2672 } 2673 2674 static bool is_valid_cache(u32 val) 2675 { 2676 u32 level, ctype; 2677 2678 if (val >= CSSELR_MAX) 2679 return false; 2680 2681 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ 2682 level = (val >> 1); 2683 ctype = (cache_levels >> (level * 3)) & 7; 2684 2685 switch (ctype) { 2686 case 0: /* No cache */ 2687 return false; 2688 case 1: /* Instruction cache only */ 2689 return (val & 1); 2690 case 2: /* Data cache only */ 2691 case 4: /* Unified cache */ 2692 return !(val & 1); 2693 case 3: /* Separate instruction and data caches */ 2694 return true; 2695 default: /* Reserved: we can't know instruction or data. */ 2696 return false; 2697 } 2698 } 2699 2700 static int demux_c15_get(u64 id, void __user *uaddr) 2701 { 2702 u32 val; 2703 u32 __user *uval = uaddr; 2704 2705 /* Fail if we have unknown bits set. */ 2706 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2707 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2708 return -ENOENT; 2709 2710 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2711 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2712 if (KVM_REG_SIZE(id) != 4) 2713 return -ENOENT; 2714 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2715 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2716 if (!is_valid_cache(val)) 2717 return -ENOENT; 2718 2719 return put_user(get_ccsidr(val), uval); 2720 default: 2721 return -ENOENT; 2722 } 2723 } 2724 2725 static int demux_c15_set(u64 id, void __user *uaddr) 2726 { 2727 u32 val, newval; 2728 u32 __user *uval = uaddr; 2729 2730 /* Fail if we have unknown bits set. */ 2731 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 2732 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 2733 return -ENOENT; 2734 2735 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 2736 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 2737 if (KVM_REG_SIZE(id) != 4) 2738 return -ENOENT; 2739 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 2740 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 2741 if (!is_valid_cache(val)) 2742 return -ENOENT; 2743 2744 if (get_user(newval, uval)) 2745 return -EFAULT; 2746 2747 /* This is also invariant: you can't change it. */ 2748 if (newval != get_ccsidr(val)) 2749 return -EINVAL; 2750 return 0; 2751 default: 2752 return -ENOENT; 2753 } 2754 } 2755 2756 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 2757 const struct sys_reg_desc table[], unsigned int num) 2758 { 2759 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 2760 const struct sys_reg_desc *r; 2761 u64 val; 2762 int ret; 2763 2764 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 2765 if (!r) 2766 return -ENOENT; 2767 2768 if (r->get_user) { 2769 ret = (r->get_user)(vcpu, r, &val); 2770 } else { 2771 val = __vcpu_sys_reg(vcpu, r->reg); 2772 ret = 0; 2773 } 2774 2775 if (!ret) 2776 ret = put_user(val, uaddr); 2777 2778 return ret; 2779 } 2780 2781 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2782 { 2783 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2784 int err; 2785 2786 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2787 return demux_c15_get(reg->id, uaddr); 2788 2789 err = get_invariant_sys_reg(reg->id, uaddr); 2790 if (err != -ENOENT) 2791 return err; 2792 2793 return kvm_sys_reg_get_user(vcpu, reg, 2794 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2795 } 2796 2797 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 2798 const struct sys_reg_desc table[], unsigned int num) 2799 { 2800 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 2801 const struct sys_reg_desc *r; 2802 u64 val; 2803 int ret; 2804 2805 if (get_user(val, uaddr)) 2806 return -EFAULT; 2807 2808 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 2809 if (!r) 2810 return -ENOENT; 2811 2812 if (r->set_user) { 2813 ret = (r->set_user)(vcpu, r, val); 2814 } else { 2815 __vcpu_sys_reg(vcpu, r->reg) = val; 2816 ret = 0; 2817 } 2818 2819 return ret; 2820 } 2821 2822 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 2823 { 2824 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 2825 int err; 2826 2827 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 2828 return demux_c15_set(reg->id, uaddr); 2829 2830 err = set_invariant_sys_reg(reg->id, uaddr); 2831 if (err != -ENOENT) 2832 return err; 2833 2834 return kvm_sys_reg_set_user(vcpu, reg, 2835 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 2836 } 2837 2838 static unsigned int num_demux_regs(void) 2839 { 2840 unsigned int i, count = 0; 2841 2842 for (i = 0; i < CSSELR_MAX; i++) 2843 if (is_valid_cache(i)) 2844 count++; 2845 2846 return count; 2847 } 2848 2849 static int write_demux_regids(u64 __user *uindices) 2850 { 2851 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 2852 unsigned int i; 2853 2854 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 2855 for (i = 0; i < CSSELR_MAX; i++) { 2856 if (!is_valid_cache(i)) 2857 continue; 2858 if (put_user(val | i, uindices)) 2859 return -EFAULT; 2860 uindices++; 2861 } 2862 return 0; 2863 } 2864 2865 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 2866 { 2867 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 2868 KVM_REG_ARM64_SYSREG | 2869 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 2870 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 2871 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 2872 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 2873 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 2874 } 2875 2876 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 2877 { 2878 if (!*uind) 2879 return true; 2880 2881 if (put_user(sys_reg_to_index(reg), *uind)) 2882 return false; 2883 2884 (*uind)++; 2885 return true; 2886 } 2887 2888 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, 2889 const struct sys_reg_desc *rd, 2890 u64 __user **uind, 2891 unsigned int *total) 2892 { 2893 /* 2894 * Ignore registers we trap but don't save, 2895 * and for which no custom user accessor is provided. 2896 */ 2897 if (!(rd->reg || rd->get_user)) 2898 return 0; 2899 2900 if (sysreg_hidden(vcpu, rd)) 2901 return 0; 2902 2903 if (!copy_reg_to_user(rd, uind)) 2904 return -EFAULT; 2905 2906 (*total)++; 2907 return 0; 2908 } 2909 2910 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 2911 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 2912 { 2913 const struct sys_reg_desc *i2, *end2; 2914 unsigned int total = 0; 2915 int err; 2916 2917 i2 = sys_reg_descs; 2918 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 2919 2920 while (i2 != end2) { 2921 err = walk_one_sys_reg(vcpu, i2++, &uind, &total); 2922 if (err) 2923 return err; 2924 } 2925 return total; 2926 } 2927 2928 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 2929 { 2930 return ARRAY_SIZE(invariant_sys_regs) 2931 + num_demux_regs() 2932 + walk_sys_regs(vcpu, (u64 __user *)NULL); 2933 } 2934 2935 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 2936 { 2937 unsigned int i; 2938 int err; 2939 2940 /* Then give them all the invariant registers' indices. */ 2941 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 2942 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 2943 return -EFAULT; 2944 uindices++; 2945 } 2946 2947 err = walk_sys_regs(vcpu, uindices); 2948 if (err < 0) 2949 return err; 2950 uindices += err; 2951 2952 return write_demux_regids(uindices); 2953 } 2954 2955 int kvm_sys_reg_table_init(void) 2956 { 2957 bool valid = true; 2958 unsigned int i; 2959 struct sys_reg_desc clidr; 2960 2961 /* Make sure tables are unique and in order. */ 2962 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); 2963 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); 2964 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); 2965 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); 2966 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); 2967 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); 2968 2969 if (!valid) 2970 return -EINVAL; 2971 2972 /* We abuse the reset function to overwrite the table itself. */ 2973 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 2974 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 2975 2976 /* 2977 * CLIDR format is awkward, so clean it up. See ARM B4.1.20: 2978 * 2979 * If software reads the Cache Type fields from Ctype1 2980 * upwards, once it has seen a value of 0b000, no caches 2981 * exist at further-out levels of the hierarchy. So, for 2982 * example, if Ctype3 is the first Cache Type field with a 2983 * value of 0b000, the values of Ctype4 to Ctype7 must be 2984 * ignored. 2985 */ 2986 get_clidr_el1(NULL, &clidr); /* Ugly... */ 2987 cache_levels = clidr.val; 2988 for (i = 0; i < 7; i++) 2989 if (((cache_levels >> (i*3)) & 7) == 0) 2990 break; 2991 /* Clear all higher bits. */ 2992 cache_levels &= (1 << (i*3))-1; 2993 2994 return 0; 2995 } 2996