1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/coproc.c: 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Authors: Rusty Russell <rusty@rustcorp.com.au> 9 * Christoffer Dall <c.dall@virtualopensystems.com> 10 */ 11 12 #include <linux/bitfield.h> 13 #include <linux/bsearch.h> 14 #include <linux/cacheinfo.h> 15 #include <linux/debugfs.h> 16 #include <linux/kvm_host.h> 17 #include <linux/mm.h> 18 #include <linux/printk.h> 19 #include <linux/uaccess.h> 20 21 #include <asm/cacheflush.h> 22 #include <asm/cputype.h> 23 #include <asm/debug-monitors.h> 24 #include <asm/esr.h> 25 #include <asm/kvm_arm.h> 26 #include <asm/kvm_emulate.h> 27 #include <asm/kvm_hyp.h> 28 #include <asm/kvm_mmu.h> 29 #include <asm/kvm_nested.h> 30 #include <asm/perf_event.h> 31 #include <asm/sysreg.h> 32 33 #include <trace/events/kvm.h> 34 35 #include "sys_regs.h" 36 37 #include "trace.h" 38 39 /* 40 * For AArch32, we only take care of what is being trapped. Anything 41 * that has to do with init and userspace access has to go via the 42 * 64bit interface. 43 */ 44 45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg); 46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 47 u64 val); 48 49 static bool bad_trap(struct kvm_vcpu *vcpu, 50 struct sys_reg_params *params, 51 const struct sys_reg_desc *r, 52 const char *msg) 53 { 54 WARN_ONCE(1, "Unexpected %s\n", msg); 55 print_sys_reg_instr(params); 56 kvm_inject_undefined(vcpu); 57 return false; 58 } 59 60 static bool read_from_write_only(struct kvm_vcpu *vcpu, 61 struct sys_reg_params *params, 62 const struct sys_reg_desc *r) 63 { 64 return bad_trap(vcpu, params, r, 65 "sys_reg read to write-only register"); 66 } 67 68 static bool write_to_read_only(struct kvm_vcpu *vcpu, 69 struct sys_reg_params *params, 70 const struct sys_reg_desc *r) 71 { 72 return bad_trap(vcpu, params, r, 73 "sys_reg write to read-only register"); 74 } 75 76 #define PURE_EL2_SYSREG(el2) \ 77 case el2: { \ 78 *el1r = el2; \ 79 return true; \ 80 } 81 82 #define MAPPED_EL2_SYSREG(el2, el1, fn) \ 83 case el2: { \ 84 *xlate = fn; \ 85 *el1r = el1; \ 86 return true; \ 87 } 88 89 static bool get_el2_to_el1_mapping(unsigned int reg, 90 unsigned int *el1r, u64 (**xlate)(u64)) 91 { 92 switch (reg) { 93 PURE_EL2_SYSREG( VPIDR_EL2 ); 94 PURE_EL2_SYSREG( VMPIDR_EL2 ); 95 PURE_EL2_SYSREG( ACTLR_EL2 ); 96 PURE_EL2_SYSREG( HCR_EL2 ); 97 PURE_EL2_SYSREG( MDCR_EL2 ); 98 PURE_EL2_SYSREG( HSTR_EL2 ); 99 PURE_EL2_SYSREG( HACR_EL2 ); 100 PURE_EL2_SYSREG( VTTBR_EL2 ); 101 PURE_EL2_SYSREG( VTCR_EL2 ); 102 PURE_EL2_SYSREG( RVBAR_EL2 ); 103 PURE_EL2_SYSREG( TPIDR_EL2 ); 104 PURE_EL2_SYSREG( HPFAR_EL2 ); 105 PURE_EL2_SYSREG( CNTHCTL_EL2 ); 106 MAPPED_EL2_SYSREG(SCTLR_EL2, SCTLR_EL1, 107 translate_sctlr_el2_to_sctlr_el1 ); 108 MAPPED_EL2_SYSREG(CPTR_EL2, CPACR_EL1, 109 translate_cptr_el2_to_cpacr_el1 ); 110 MAPPED_EL2_SYSREG(TTBR0_EL2, TTBR0_EL1, 111 translate_ttbr0_el2_to_ttbr0_el1 ); 112 MAPPED_EL2_SYSREG(TTBR1_EL2, TTBR1_EL1, NULL ); 113 MAPPED_EL2_SYSREG(TCR_EL2, TCR_EL1, 114 translate_tcr_el2_to_tcr_el1 ); 115 MAPPED_EL2_SYSREG(VBAR_EL2, VBAR_EL1, NULL ); 116 MAPPED_EL2_SYSREG(AFSR0_EL2, AFSR0_EL1, NULL ); 117 MAPPED_EL2_SYSREG(AFSR1_EL2, AFSR1_EL1, NULL ); 118 MAPPED_EL2_SYSREG(ESR_EL2, ESR_EL1, NULL ); 119 MAPPED_EL2_SYSREG(FAR_EL2, FAR_EL1, NULL ); 120 MAPPED_EL2_SYSREG(MAIR_EL2, MAIR_EL1, NULL ); 121 MAPPED_EL2_SYSREG(AMAIR_EL2, AMAIR_EL1, NULL ); 122 MAPPED_EL2_SYSREG(ELR_EL2, ELR_EL1, NULL ); 123 MAPPED_EL2_SYSREG(SPSR_EL2, SPSR_EL1, NULL ); 124 MAPPED_EL2_SYSREG(ZCR_EL2, ZCR_EL1, NULL ); 125 default: 126 return false; 127 } 128 } 129 130 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) 131 { 132 u64 val = 0x8badf00d8badf00d; 133 u64 (*xlate)(u64) = NULL; 134 unsigned int el1r; 135 136 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) 137 goto memory_read; 138 139 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { 140 if (!is_hyp_ctxt(vcpu)) 141 goto memory_read; 142 143 /* 144 * If this register does not have an EL1 counterpart, 145 * then read the stored EL2 version. 146 */ 147 if (reg == el1r) 148 goto memory_read; 149 150 /* 151 * If we have a non-VHE guest and that the sysreg 152 * requires translation to be used at EL1, use the 153 * in-memory copy instead. 154 */ 155 if (!vcpu_el2_e2h_is_set(vcpu) && xlate) 156 goto memory_read; 157 158 /* Get the current version of the EL1 counterpart. */ 159 WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val)); 160 return val; 161 } 162 163 /* EL1 register can't be on the CPU if the guest is in vEL2. */ 164 if (unlikely(is_hyp_ctxt(vcpu))) 165 goto memory_read; 166 167 if (__vcpu_read_sys_reg_from_cpu(reg, &val)) 168 return val; 169 170 memory_read: 171 return __vcpu_sys_reg(vcpu, reg); 172 } 173 174 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) 175 { 176 u64 (*xlate)(u64) = NULL; 177 unsigned int el1r; 178 179 if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU)) 180 goto memory_write; 181 182 if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) { 183 if (!is_hyp_ctxt(vcpu)) 184 goto memory_write; 185 186 /* 187 * Always store a copy of the write to memory to avoid having 188 * to reverse-translate virtual EL2 system registers for a 189 * non-VHE guest hypervisor. 190 */ 191 __vcpu_sys_reg(vcpu, reg) = val; 192 193 /* No EL1 counterpart? We're done here.? */ 194 if (reg == el1r) 195 return; 196 197 if (!vcpu_el2_e2h_is_set(vcpu) && xlate) 198 val = xlate(val); 199 200 /* Redirect this to the EL1 version of the register. */ 201 WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r)); 202 return; 203 } 204 205 /* EL1 register can't be on the CPU if the guest is in vEL2. */ 206 if (unlikely(is_hyp_ctxt(vcpu))) 207 goto memory_write; 208 209 if (__vcpu_write_sys_reg_to_cpu(val, reg)) 210 return; 211 212 memory_write: 213 __vcpu_sys_reg(vcpu, reg) = val; 214 } 215 216 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ 217 #define CSSELR_MAX 14 218 219 /* 220 * Returns the minimum line size for the selected cache, expressed as 221 * Log2(bytes). 222 */ 223 static u8 get_min_cache_line_size(bool icache) 224 { 225 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0); 226 u8 field; 227 228 if (icache) 229 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr); 230 else 231 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr); 232 233 /* 234 * Cache line size is represented as Log2(words) in CTR_EL0. 235 * Log2(bytes) can be derived with the following: 236 * 237 * Log2(words) + 2 = Log2(bytes / 4) + 2 238 * = Log2(bytes) - 2 + 2 239 * = Log2(bytes) 240 */ 241 return field + 2; 242 } 243 244 /* Which cache CCSIDR represents depends on CSSELR value. */ 245 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr) 246 { 247 u8 line_size; 248 249 if (vcpu->arch.ccsidr) 250 return vcpu->arch.ccsidr[csselr]; 251 252 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD); 253 254 /* 255 * Fabricate a CCSIDR value as the overriding value does not exist. 256 * The real CCSIDR value will not be used as it can vary by the 257 * physical CPU which the vcpu currently resides in. 258 * 259 * The line size is determined with get_min_cache_line_size(), which 260 * should be valid for all CPUs even if they have different cache 261 * configuration. 262 * 263 * The associativity bits are cleared, meaning the geometry of all data 264 * and unified caches (which are guaranteed to be PIPT and thus 265 * non-aliasing) are 1 set and 1 way. 266 * Guests should not be doing cache operations by set/way at all, and 267 * for this reason, we trap them and attempt to infer the intent, so 268 * that we can flush the entire guest's address space at the appropriate 269 * time. The exposed geometry minimizes the number of the traps. 270 * [If guests should attempt to infer aliasing properties from the 271 * geometry (which is not permitted by the architecture), they would 272 * only do so for virtually indexed caches.] 273 * 274 * We don't check if the cache level exists as it is allowed to return 275 * an UNKNOWN value if not. 276 */ 277 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4); 278 } 279 280 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val) 281 { 282 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4; 283 u32 *ccsidr = vcpu->arch.ccsidr; 284 u32 i; 285 286 if ((val & CCSIDR_EL1_RES0) || 287 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD)) 288 return -EINVAL; 289 290 if (!ccsidr) { 291 if (val == get_ccsidr(vcpu, csselr)) 292 return 0; 293 294 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT); 295 if (!ccsidr) 296 return -ENOMEM; 297 298 for (i = 0; i < CSSELR_MAX; i++) 299 ccsidr[i] = get_ccsidr(vcpu, i); 300 301 vcpu->arch.ccsidr = ccsidr; 302 } 303 304 ccsidr[csselr] = val; 305 306 return 0; 307 } 308 309 static bool access_rw(struct kvm_vcpu *vcpu, 310 struct sys_reg_params *p, 311 const struct sys_reg_desc *r) 312 { 313 if (p->is_write) 314 vcpu_write_sys_reg(vcpu, p->regval, r->reg); 315 else 316 p->regval = vcpu_read_sys_reg(vcpu, r->reg); 317 318 return true; 319 } 320 321 /* 322 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). 323 */ 324 static bool access_dcsw(struct kvm_vcpu *vcpu, 325 struct sys_reg_params *p, 326 const struct sys_reg_desc *r) 327 { 328 if (!p->is_write) 329 return read_from_write_only(vcpu, p, r); 330 331 /* 332 * Only track S/W ops if we don't have FWB. It still indicates 333 * that the guest is a bit broken (S/W operations should only 334 * be done by firmware, knowing that there is only a single 335 * CPU left in the system, and certainly not from non-secure 336 * software). 337 */ 338 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) 339 kvm_set_way_flush(vcpu); 340 341 return true; 342 } 343 344 static bool access_dcgsw(struct kvm_vcpu *vcpu, 345 struct sys_reg_params *p, 346 const struct sys_reg_desc *r) 347 { 348 if (!kvm_has_mte(vcpu->kvm)) { 349 kvm_inject_undefined(vcpu); 350 return false; 351 } 352 353 /* Treat MTE S/W ops as we treat the classic ones: with contempt */ 354 return access_dcsw(vcpu, p, r); 355 } 356 357 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) 358 { 359 switch (r->aarch32_map) { 360 case AA32_LO: 361 *mask = GENMASK_ULL(31, 0); 362 *shift = 0; 363 break; 364 case AA32_HI: 365 *mask = GENMASK_ULL(63, 32); 366 *shift = 32; 367 break; 368 default: 369 *mask = GENMASK_ULL(63, 0); 370 *shift = 0; 371 break; 372 } 373 } 374 375 /* 376 * Generic accessor for VM registers. Only called as long as HCR_TVM 377 * is set. If the guest enables the MMU, we stop trapping the VM 378 * sys_regs and leave it in complete control of the caches. 379 */ 380 static bool access_vm_reg(struct kvm_vcpu *vcpu, 381 struct sys_reg_params *p, 382 const struct sys_reg_desc *r) 383 { 384 bool was_enabled = vcpu_has_cache_enabled(vcpu); 385 u64 val, mask, shift; 386 387 BUG_ON(!p->is_write); 388 389 get_access_mask(r, &mask, &shift); 390 391 if (~mask) { 392 val = vcpu_read_sys_reg(vcpu, r->reg); 393 val &= ~mask; 394 } else { 395 val = 0; 396 } 397 398 val |= (p->regval & (mask >> shift)) << shift; 399 vcpu_write_sys_reg(vcpu, val, r->reg); 400 401 kvm_toggle_cache(vcpu, was_enabled); 402 return true; 403 } 404 405 static bool access_actlr(struct kvm_vcpu *vcpu, 406 struct sys_reg_params *p, 407 const struct sys_reg_desc *r) 408 { 409 u64 mask, shift; 410 411 if (p->is_write) 412 return ignore_write(vcpu, p); 413 414 get_access_mask(r, &mask, &shift); 415 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; 416 417 return true; 418 } 419 420 /* 421 * Trap handler for the GICv3 SGI generation system register. 422 * Forward the request to the VGIC emulation. 423 * The cp15_64 code makes sure this automatically works 424 * for both AArch64 and AArch32 accesses. 425 */ 426 static bool access_gic_sgi(struct kvm_vcpu *vcpu, 427 struct sys_reg_params *p, 428 const struct sys_reg_desc *r) 429 { 430 bool g1; 431 432 if (!p->is_write) 433 return read_from_write_only(vcpu, p, r); 434 435 /* 436 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates 437 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, 438 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively 439 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure 440 * group. 441 */ 442 if (p->Op0 == 0) { /* AArch32 */ 443 switch (p->Op1) { 444 default: /* Keep GCC quiet */ 445 case 0: /* ICC_SGI1R */ 446 g1 = true; 447 break; 448 case 1: /* ICC_ASGI1R */ 449 case 2: /* ICC_SGI0R */ 450 g1 = false; 451 break; 452 } 453 } else { /* AArch64 */ 454 switch (p->Op2) { 455 default: /* Keep GCC quiet */ 456 case 5: /* ICC_SGI1R_EL1 */ 457 g1 = true; 458 break; 459 case 6: /* ICC_ASGI1R_EL1 */ 460 case 7: /* ICC_SGI0R_EL1 */ 461 g1 = false; 462 break; 463 } 464 } 465 466 vgic_v3_dispatch_sgi(vcpu, p->regval, g1); 467 468 return true; 469 } 470 471 static bool access_gic_sre(struct kvm_vcpu *vcpu, 472 struct sys_reg_params *p, 473 const struct sys_reg_desc *r) 474 { 475 if (p->is_write) 476 return ignore_write(vcpu, p); 477 478 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; 479 return true; 480 } 481 482 static bool trap_raz_wi(struct kvm_vcpu *vcpu, 483 struct sys_reg_params *p, 484 const struct sys_reg_desc *r) 485 { 486 if (p->is_write) 487 return ignore_write(vcpu, p); 488 else 489 return read_zero(vcpu, p); 490 } 491 492 static bool trap_undef(struct kvm_vcpu *vcpu, 493 struct sys_reg_params *p, 494 const struct sys_reg_desc *r) 495 { 496 kvm_inject_undefined(vcpu); 497 return false; 498 } 499 500 /* 501 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the 502 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 503 * system, these registers should UNDEF. LORID_EL1 being a RO register, we 504 * treat it separately. 505 */ 506 static bool trap_loregion(struct kvm_vcpu *vcpu, 507 struct sys_reg_params *p, 508 const struct sys_reg_desc *r) 509 { 510 u32 sr = reg_to_encoding(r); 511 512 if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) { 513 kvm_inject_undefined(vcpu); 514 return false; 515 } 516 517 if (p->is_write && sr == SYS_LORID_EL1) 518 return write_to_read_only(vcpu, p, r); 519 520 return trap_raz_wi(vcpu, p, r); 521 } 522 523 static bool trap_oslar_el1(struct kvm_vcpu *vcpu, 524 struct sys_reg_params *p, 525 const struct sys_reg_desc *r) 526 { 527 u64 oslsr; 528 529 if (!p->is_write) 530 return read_from_write_only(vcpu, p, r); 531 532 /* Forward the OSLK bit to OSLSR */ 533 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK; 534 if (p->regval & OSLAR_EL1_OSLK) 535 oslsr |= OSLSR_EL1_OSLK; 536 537 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; 538 return true; 539 } 540 541 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, 542 struct sys_reg_params *p, 543 const struct sys_reg_desc *r) 544 { 545 if (p->is_write) 546 return write_to_read_only(vcpu, p, r); 547 548 p->regval = __vcpu_sys_reg(vcpu, r->reg); 549 return true; 550 } 551 552 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 553 u64 val) 554 { 555 /* 556 * The only modifiable bit is the OSLK bit. Refuse the write if 557 * userspace attempts to change any other bit in the register. 558 */ 559 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK) 560 return -EINVAL; 561 562 __vcpu_sys_reg(vcpu, rd->reg) = val; 563 return 0; 564 } 565 566 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, 567 struct sys_reg_params *p, 568 const struct sys_reg_desc *r) 569 { 570 if (p->is_write) { 571 return ignore_write(vcpu, p); 572 } else { 573 p->regval = read_sysreg(dbgauthstatus_el1); 574 return true; 575 } 576 } 577 578 /* 579 * We want to avoid world-switching all the DBG registers all the 580 * time: 581 * 582 * - If we've touched any debug register, it is likely that we're 583 * going to touch more of them. It then makes sense to disable the 584 * traps and start doing the save/restore dance 585 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is 586 * then mandatory to save/restore the registers, as the guest 587 * depends on them. 588 * 589 * For this, we use a DIRTY bit, indicating the guest has modified the 590 * debug registers, used as follow: 591 * 592 * On guest entry: 593 * - If the dirty bit is set (because we're coming back from trapping), 594 * disable the traps, save host registers, restore guest registers. 595 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), 596 * set the dirty bit, disable the traps, save host registers, 597 * restore guest registers. 598 * - Otherwise, enable the traps 599 * 600 * On guest exit: 601 * - If the dirty bit is set, save guest registers, restore host 602 * registers and clear the dirty bit. This ensure that the host can 603 * now use the debug registers. 604 */ 605 static bool trap_debug_regs(struct kvm_vcpu *vcpu, 606 struct sys_reg_params *p, 607 const struct sys_reg_desc *r) 608 { 609 access_rw(vcpu, p, r); 610 if (p->is_write) 611 vcpu_set_flag(vcpu, DEBUG_DIRTY); 612 613 trace_trap_reg(__func__, r->reg, p->is_write, p->regval); 614 615 return true; 616 } 617 618 /* 619 * reg_to_dbg/dbg_to_reg 620 * 621 * A 32 bit write to a debug register leave top bits alone 622 * A 32 bit read from a debug register only returns the bottom bits 623 * 624 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code 625 * switches between host and guest values in future. 626 */ 627 static void reg_to_dbg(struct kvm_vcpu *vcpu, 628 struct sys_reg_params *p, 629 const struct sys_reg_desc *rd, 630 u64 *dbg_reg) 631 { 632 u64 mask, shift, val; 633 634 get_access_mask(rd, &mask, &shift); 635 636 val = *dbg_reg; 637 val &= ~mask; 638 val |= (p->regval & (mask >> shift)) << shift; 639 *dbg_reg = val; 640 641 vcpu_set_flag(vcpu, DEBUG_DIRTY); 642 } 643 644 static void dbg_to_reg(struct kvm_vcpu *vcpu, 645 struct sys_reg_params *p, 646 const struct sys_reg_desc *rd, 647 u64 *dbg_reg) 648 { 649 u64 mask, shift; 650 651 get_access_mask(rd, &mask, &shift); 652 p->regval = (*dbg_reg & mask) >> shift; 653 } 654 655 static bool trap_bvr(struct kvm_vcpu *vcpu, 656 struct sys_reg_params *p, 657 const struct sys_reg_desc *rd) 658 { 659 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 660 661 if (p->is_write) 662 reg_to_dbg(vcpu, p, rd, dbg_reg); 663 else 664 dbg_to_reg(vcpu, p, rd, dbg_reg); 665 666 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 667 668 return true; 669 } 670 671 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 672 u64 val) 673 { 674 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; 675 return 0; 676 } 677 678 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 679 u64 *val) 680 { 681 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; 682 return 0; 683 } 684 685 static u64 reset_bvr(struct kvm_vcpu *vcpu, 686 const struct sys_reg_desc *rd) 687 { 688 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; 689 return rd->val; 690 } 691 692 static bool trap_bcr(struct kvm_vcpu *vcpu, 693 struct sys_reg_params *p, 694 const struct sys_reg_desc *rd) 695 { 696 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 697 698 if (p->is_write) 699 reg_to_dbg(vcpu, p, rd, dbg_reg); 700 else 701 dbg_to_reg(vcpu, p, rd, dbg_reg); 702 703 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 704 705 return true; 706 } 707 708 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 709 u64 val) 710 { 711 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; 712 return 0; 713 } 714 715 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 716 u64 *val) 717 { 718 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; 719 return 0; 720 } 721 722 static u64 reset_bcr(struct kvm_vcpu *vcpu, 723 const struct sys_reg_desc *rd) 724 { 725 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; 726 return rd->val; 727 } 728 729 static bool trap_wvr(struct kvm_vcpu *vcpu, 730 struct sys_reg_params *p, 731 const struct sys_reg_desc *rd) 732 { 733 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 734 735 if (p->is_write) 736 reg_to_dbg(vcpu, p, rd, dbg_reg); 737 else 738 dbg_to_reg(vcpu, p, rd, dbg_reg); 739 740 trace_trap_reg(__func__, rd->CRm, p->is_write, 741 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); 742 743 return true; 744 } 745 746 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 747 u64 val) 748 { 749 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; 750 return 0; 751 } 752 753 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 754 u64 *val) 755 { 756 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; 757 return 0; 758 } 759 760 static u64 reset_wvr(struct kvm_vcpu *vcpu, 761 const struct sys_reg_desc *rd) 762 { 763 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; 764 return rd->val; 765 } 766 767 static bool trap_wcr(struct kvm_vcpu *vcpu, 768 struct sys_reg_params *p, 769 const struct sys_reg_desc *rd) 770 { 771 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 772 773 if (p->is_write) 774 reg_to_dbg(vcpu, p, rd, dbg_reg); 775 else 776 dbg_to_reg(vcpu, p, rd, dbg_reg); 777 778 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); 779 780 return true; 781 } 782 783 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 784 u64 val) 785 { 786 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; 787 return 0; 788 } 789 790 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 791 u64 *val) 792 { 793 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; 794 return 0; 795 } 796 797 static u64 reset_wcr(struct kvm_vcpu *vcpu, 798 const struct sys_reg_desc *rd) 799 { 800 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; 801 return rd->val; 802 } 803 804 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 805 { 806 u64 amair = read_sysreg(amair_el1); 807 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); 808 return amair; 809 } 810 811 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 812 { 813 u64 actlr = read_sysreg(actlr_el1); 814 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); 815 return actlr; 816 } 817 818 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 819 { 820 u64 mpidr; 821 822 /* 823 * Map the vcpu_id into the first three affinity level fields of 824 * the MPIDR. We limit the number of VCPUs in level 0 due to a 825 * limitation to 16 CPUs in that level in the ICC_SGIxR registers 826 * of the GICv3 to be able to address each CPU directly when 827 * sending IPIs. 828 */ 829 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); 830 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); 831 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); 832 mpidr |= (1ULL << 31); 833 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1); 834 835 return mpidr; 836 } 837 838 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, 839 const struct sys_reg_desc *r) 840 { 841 if (kvm_vcpu_has_pmu(vcpu)) 842 return 0; 843 844 return REG_HIDDEN; 845 } 846 847 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 848 { 849 u64 mask = BIT(ARMV8_PMU_CYCLE_IDX); 850 u8 n = vcpu->kvm->arch.pmcr_n; 851 852 if (n) 853 mask |= GENMASK(n - 1, 0); 854 855 reset_unknown(vcpu, r); 856 __vcpu_sys_reg(vcpu, r->reg) &= mask; 857 858 return __vcpu_sys_reg(vcpu, r->reg); 859 } 860 861 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 862 { 863 reset_unknown(vcpu, r); 864 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); 865 866 return __vcpu_sys_reg(vcpu, r->reg); 867 } 868 869 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 870 { 871 /* This thing will UNDEF, who cares about the reset value? */ 872 if (!kvm_vcpu_has_pmu(vcpu)) 873 return 0; 874 875 reset_unknown(vcpu, r); 876 __vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm); 877 878 return __vcpu_sys_reg(vcpu, r->reg); 879 } 880 881 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 882 { 883 reset_unknown(vcpu, r); 884 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; 885 886 return __vcpu_sys_reg(vcpu, r->reg); 887 } 888 889 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 890 { 891 u64 pmcr = 0; 892 893 if (!kvm_supports_32bit_el0()) 894 pmcr |= ARMV8_PMU_PMCR_LC; 895 896 /* 897 * The value of PMCR.N field is included when the 898 * vCPU register is read via kvm_vcpu_read_pmcr(). 899 */ 900 __vcpu_sys_reg(vcpu, r->reg) = pmcr; 901 902 return __vcpu_sys_reg(vcpu, r->reg); 903 } 904 905 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) 906 { 907 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); 908 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); 909 910 if (!enabled) 911 kvm_inject_undefined(vcpu); 912 913 return !enabled; 914 } 915 916 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) 917 { 918 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); 919 } 920 921 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) 922 { 923 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); 924 } 925 926 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) 927 { 928 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); 929 } 930 931 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) 932 { 933 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); 934 } 935 936 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 937 const struct sys_reg_desc *r) 938 { 939 u64 val; 940 941 if (pmu_access_el0_disabled(vcpu)) 942 return false; 943 944 if (p->is_write) { 945 /* 946 * Only update writeable bits of PMCR (continuing into 947 * kvm_pmu_handle_pmcr() as well) 948 */ 949 val = kvm_vcpu_read_pmcr(vcpu); 950 val &= ~ARMV8_PMU_PMCR_MASK; 951 val |= p->regval & ARMV8_PMU_PMCR_MASK; 952 if (!kvm_supports_32bit_el0()) 953 val |= ARMV8_PMU_PMCR_LC; 954 kvm_pmu_handle_pmcr(vcpu, val); 955 } else { 956 /* PMCR.P & PMCR.C are RAZ */ 957 val = kvm_vcpu_read_pmcr(vcpu) 958 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); 959 p->regval = val; 960 } 961 962 return true; 963 } 964 965 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 966 const struct sys_reg_desc *r) 967 { 968 if (pmu_access_event_counter_el0_disabled(vcpu)) 969 return false; 970 971 if (p->is_write) 972 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; 973 else 974 /* return PMSELR.SEL field */ 975 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) 976 & ARMV8_PMU_COUNTER_MASK; 977 978 return true; 979 } 980 981 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 982 const struct sys_reg_desc *r) 983 { 984 u64 pmceid, mask, shift; 985 986 BUG_ON(p->is_write); 987 988 if (pmu_access_el0_disabled(vcpu)) 989 return false; 990 991 get_access_mask(r, &mask, &shift); 992 993 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); 994 pmceid &= mask; 995 pmceid >>= shift; 996 997 p->regval = pmceid; 998 999 return true; 1000 } 1001 1002 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) 1003 { 1004 u64 pmcr, val; 1005 1006 pmcr = kvm_vcpu_read_pmcr(vcpu); 1007 val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr); 1008 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { 1009 kvm_inject_undefined(vcpu); 1010 return false; 1011 } 1012 1013 return true; 1014 } 1015 1016 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1017 u64 *val) 1018 { 1019 u64 idx; 1020 1021 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) 1022 /* PMCCNTR_EL0 */ 1023 idx = ARMV8_PMU_CYCLE_IDX; 1024 else 1025 /* PMEVCNTRn_EL0 */ 1026 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1027 1028 *val = kvm_pmu_get_counter_value(vcpu, idx); 1029 return 0; 1030 } 1031 1032 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, 1033 struct sys_reg_params *p, 1034 const struct sys_reg_desc *r) 1035 { 1036 u64 idx = ~0UL; 1037 1038 if (r->CRn == 9 && r->CRm == 13) { 1039 if (r->Op2 == 2) { 1040 /* PMXEVCNTR_EL0 */ 1041 if (pmu_access_event_counter_el0_disabled(vcpu)) 1042 return false; 1043 1044 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) 1045 & ARMV8_PMU_COUNTER_MASK; 1046 } else if (r->Op2 == 0) { 1047 /* PMCCNTR_EL0 */ 1048 if (pmu_access_cycle_counter_el0_disabled(vcpu)) 1049 return false; 1050 1051 idx = ARMV8_PMU_CYCLE_IDX; 1052 } 1053 } else if (r->CRn == 0 && r->CRm == 9) { 1054 /* PMCCNTR */ 1055 if (pmu_access_event_counter_el0_disabled(vcpu)) 1056 return false; 1057 1058 idx = ARMV8_PMU_CYCLE_IDX; 1059 } else if (r->CRn == 14 && (r->CRm & 12) == 8) { 1060 /* PMEVCNTRn_EL0 */ 1061 if (pmu_access_event_counter_el0_disabled(vcpu)) 1062 return false; 1063 1064 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1065 } 1066 1067 /* Catch any decoding mistake */ 1068 WARN_ON(idx == ~0UL); 1069 1070 if (!pmu_counter_idx_valid(vcpu, idx)) 1071 return false; 1072 1073 if (p->is_write) { 1074 if (pmu_access_el0_disabled(vcpu)) 1075 return false; 1076 1077 kvm_pmu_set_counter_value(vcpu, idx, p->regval); 1078 } else { 1079 p->regval = kvm_pmu_get_counter_value(vcpu, idx); 1080 } 1081 1082 return true; 1083 } 1084 1085 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1086 const struct sys_reg_desc *r) 1087 { 1088 u64 idx, reg; 1089 1090 if (pmu_access_el0_disabled(vcpu)) 1091 return false; 1092 1093 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { 1094 /* PMXEVTYPER_EL0 */ 1095 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; 1096 reg = PMEVTYPER0_EL0 + idx; 1097 } else if (r->CRn == 14 && (r->CRm & 12) == 12) { 1098 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); 1099 if (idx == ARMV8_PMU_CYCLE_IDX) 1100 reg = PMCCFILTR_EL0; 1101 else 1102 /* PMEVTYPERn_EL0 */ 1103 reg = PMEVTYPER0_EL0 + idx; 1104 } else { 1105 BUG(); 1106 } 1107 1108 if (!pmu_counter_idx_valid(vcpu, idx)) 1109 return false; 1110 1111 if (p->is_write) { 1112 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); 1113 kvm_vcpu_pmu_restore_guest(vcpu); 1114 } else { 1115 p->regval = __vcpu_sys_reg(vcpu, reg); 1116 } 1117 1118 return true; 1119 } 1120 1121 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val) 1122 { 1123 bool set; 1124 1125 val &= kvm_pmu_valid_counter_mask(vcpu); 1126 1127 switch (r->reg) { 1128 case PMOVSSET_EL0: 1129 /* CRm[1] being set indicates a SET register, and CLR otherwise */ 1130 set = r->CRm & 2; 1131 break; 1132 default: 1133 /* Op2[0] being set indicates a SET register, and CLR otherwise */ 1134 set = r->Op2 & 1; 1135 break; 1136 } 1137 1138 if (set) 1139 __vcpu_sys_reg(vcpu, r->reg) |= val; 1140 else 1141 __vcpu_sys_reg(vcpu, r->reg) &= ~val; 1142 1143 return 0; 1144 } 1145 1146 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val) 1147 { 1148 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1149 1150 *val = __vcpu_sys_reg(vcpu, r->reg) & mask; 1151 return 0; 1152 } 1153 1154 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1155 const struct sys_reg_desc *r) 1156 { 1157 u64 val, mask; 1158 1159 if (pmu_access_el0_disabled(vcpu)) 1160 return false; 1161 1162 mask = kvm_pmu_valid_counter_mask(vcpu); 1163 if (p->is_write) { 1164 val = p->regval & mask; 1165 if (r->Op2 & 0x1) { 1166 /* accessing PMCNTENSET_EL0 */ 1167 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; 1168 kvm_pmu_enable_counter_mask(vcpu, val); 1169 kvm_vcpu_pmu_restore_guest(vcpu); 1170 } else { 1171 /* accessing PMCNTENCLR_EL0 */ 1172 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; 1173 kvm_pmu_disable_counter_mask(vcpu, val); 1174 } 1175 } else { 1176 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); 1177 } 1178 1179 return true; 1180 } 1181 1182 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1183 const struct sys_reg_desc *r) 1184 { 1185 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1186 1187 if (check_pmu_access_disabled(vcpu, 0)) 1188 return false; 1189 1190 if (p->is_write) { 1191 u64 val = p->regval & mask; 1192 1193 if (r->Op2 & 0x1) 1194 /* accessing PMINTENSET_EL1 */ 1195 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; 1196 else 1197 /* accessing PMINTENCLR_EL1 */ 1198 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; 1199 } else { 1200 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); 1201 } 1202 1203 return true; 1204 } 1205 1206 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1207 const struct sys_reg_desc *r) 1208 { 1209 u64 mask = kvm_pmu_valid_counter_mask(vcpu); 1210 1211 if (pmu_access_el0_disabled(vcpu)) 1212 return false; 1213 1214 if (p->is_write) { 1215 if (r->CRm & 0x2) 1216 /* accessing PMOVSSET_EL0 */ 1217 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); 1218 else 1219 /* accessing PMOVSCLR_EL0 */ 1220 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); 1221 } else { 1222 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); 1223 } 1224 1225 return true; 1226 } 1227 1228 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1229 const struct sys_reg_desc *r) 1230 { 1231 u64 mask; 1232 1233 if (!p->is_write) 1234 return read_from_write_only(vcpu, p, r); 1235 1236 if (pmu_write_swinc_el0_disabled(vcpu)) 1237 return false; 1238 1239 mask = kvm_pmu_valid_counter_mask(vcpu); 1240 kvm_pmu_software_increment(vcpu, p->regval & mask); 1241 return true; 1242 } 1243 1244 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1245 const struct sys_reg_desc *r) 1246 { 1247 if (p->is_write) { 1248 if (!vcpu_mode_priv(vcpu)) { 1249 kvm_inject_undefined(vcpu); 1250 return false; 1251 } 1252 1253 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = 1254 p->regval & ARMV8_PMU_USERENR_MASK; 1255 } else { 1256 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) 1257 & ARMV8_PMU_USERENR_MASK; 1258 } 1259 1260 return true; 1261 } 1262 1263 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1264 u64 *val) 1265 { 1266 *val = kvm_vcpu_read_pmcr(vcpu); 1267 return 0; 1268 } 1269 1270 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, 1271 u64 val) 1272 { 1273 u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val); 1274 struct kvm *kvm = vcpu->kvm; 1275 1276 mutex_lock(&kvm->arch.config_lock); 1277 1278 /* 1279 * The vCPU can't have more counters than the PMU hardware 1280 * implements. Ignore this error to maintain compatibility 1281 * with the existing KVM behavior. 1282 */ 1283 if (!kvm_vm_has_ran_once(kvm) && 1284 new_n <= kvm_arm_pmu_get_max_counters(kvm)) 1285 kvm->arch.pmcr_n = new_n; 1286 1287 mutex_unlock(&kvm->arch.config_lock); 1288 1289 /* 1290 * Ignore writes to RES0 bits, read only bits that are cleared on 1291 * vCPU reset, and writable bits that KVM doesn't support yet. 1292 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace) 1293 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU. 1294 * But, we leave the bit as it is here, as the vCPU's PMUver might 1295 * be changed later (NOTE: the bit will be cleared on first vCPU run 1296 * if necessary). 1297 */ 1298 val &= ARMV8_PMU_PMCR_MASK; 1299 1300 /* The LC bit is RES1 when AArch32 is not supported */ 1301 if (!kvm_supports_32bit_el0()) 1302 val |= ARMV8_PMU_PMCR_LC; 1303 1304 __vcpu_sys_reg(vcpu, r->reg) = val; 1305 return 0; 1306 } 1307 1308 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ 1309 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \ 1310 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ 1311 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ 1312 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ 1313 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ 1314 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ 1315 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ 1316 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ 1317 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } 1318 1319 #define PMU_SYS_REG(name) \ 1320 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \ 1321 .visibility = pmu_visibility 1322 1323 /* Macro to expand the PMEVCNTRn_EL0 register */ 1324 #define PMU_PMEVCNTR_EL0(n) \ 1325 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \ 1326 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ 1327 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } 1328 1329 /* Macro to expand the PMEVTYPERn_EL0 register */ 1330 #define PMU_PMEVTYPER_EL0(n) \ 1331 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \ 1332 .reset = reset_pmevtyper, \ 1333 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } 1334 1335 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1336 const struct sys_reg_desc *r) 1337 { 1338 kvm_inject_undefined(vcpu); 1339 1340 return false; 1341 } 1342 1343 /* Macro to expand the AMU counter and type registers*/ 1344 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } 1345 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } 1346 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } 1347 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } 1348 1349 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, 1350 const struct sys_reg_desc *rd) 1351 { 1352 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; 1353 } 1354 1355 /* 1356 * If we land here on a PtrAuth access, that is because we didn't 1357 * fixup the access on exit by allowing the PtrAuth sysregs. The only 1358 * way this happens is when the guest does not have PtrAuth support 1359 * enabled. 1360 */ 1361 #define __PTRAUTH_KEY(k) \ 1362 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ 1363 .visibility = ptrauth_visibility} 1364 1365 #define PTRAUTH_KEY(k) \ 1366 __PTRAUTH_KEY(k ## KEYLO_EL1), \ 1367 __PTRAUTH_KEY(k ## KEYHI_EL1) 1368 1369 static bool access_arch_timer(struct kvm_vcpu *vcpu, 1370 struct sys_reg_params *p, 1371 const struct sys_reg_desc *r) 1372 { 1373 enum kvm_arch_timers tmr; 1374 enum kvm_arch_timer_regs treg; 1375 u64 reg = reg_to_encoding(r); 1376 1377 switch (reg) { 1378 case SYS_CNTP_TVAL_EL0: 1379 case SYS_AARCH32_CNTP_TVAL: 1380 tmr = TIMER_PTIMER; 1381 treg = TIMER_REG_TVAL; 1382 break; 1383 case SYS_CNTP_CTL_EL0: 1384 case SYS_AARCH32_CNTP_CTL: 1385 tmr = TIMER_PTIMER; 1386 treg = TIMER_REG_CTL; 1387 break; 1388 case SYS_CNTP_CVAL_EL0: 1389 case SYS_AARCH32_CNTP_CVAL: 1390 tmr = TIMER_PTIMER; 1391 treg = TIMER_REG_CVAL; 1392 break; 1393 case SYS_CNTPCT_EL0: 1394 case SYS_CNTPCTSS_EL0: 1395 case SYS_AARCH32_CNTPCT: 1396 tmr = TIMER_PTIMER; 1397 treg = TIMER_REG_CNT; 1398 break; 1399 default: 1400 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register"); 1401 kvm_inject_undefined(vcpu); 1402 return false; 1403 } 1404 1405 if (p->is_write) 1406 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); 1407 else 1408 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); 1409 1410 return true; 1411 } 1412 1413 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp, 1414 s64 new, s64 cur) 1415 { 1416 struct arm64_ftr_bits kvm_ftr = *ftrp; 1417 1418 /* Some features have different safe value type in KVM than host features */ 1419 switch (id) { 1420 case SYS_ID_AA64DFR0_EL1: 1421 switch (kvm_ftr.shift) { 1422 case ID_AA64DFR0_EL1_PMUVer_SHIFT: 1423 kvm_ftr.type = FTR_LOWER_SAFE; 1424 break; 1425 case ID_AA64DFR0_EL1_DebugVer_SHIFT: 1426 kvm_ftr.type = FTR_LOWER_SAFE; 1427 break; 1428 } 1429 break; 1430 case SYS_ID_DFR0_EL1: 1431 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT) 1432 kvm_ftr.type = FTR_LOWER_SAFE; 1433 break; 1434 } 1435 1436 return arm64_ftr_safe_value(&kvm_ftr, new, cur); 1437 } 1438 1439 /* 1440 * arm64_check_features() - Check if a feature register value constitutes 1441 * a subset of features indicated by the idreg's KVM sanitised limit. 1442 * 1443 * This function will check if each feature field of @val is the "safe" value 1444 * against idreg's KVM sanitised limit return from reset() callback. 1445 * If a field value in @val is the same as the one in limit, it is always 1446 * considered the safe value regardless For register fields that are not in 1447 * writable, only the value in limit is considered the safe value. 1448 * 1449 * Return: 0 if all the fields are safe. Otherwise, return negative errno. 1450 */ 1451 static int arm64_check_features(struct kvm_vcpu *vcpu, 1452 const struct sys_reg_desc *rd, 1453 u64 val) 1454 { 1455 const struct arm64_ftr_reg *ftr_reg; 1456 const struct arm64_ftr_bits *ftrp = NULL; 1457 u32 id = reg_to_encoding(rd); 1458 u64 writable_mask = rd->val; 1459 u64 limit = rd->reset(vcpu, rd); 1460 u64 mask = 0; 1461 1462 /* 1463 * Hidden and unallocated ID registers may not have a corresponding 1464 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the 1465 * only safe value is 0. 1466 */ 1467 if (sysreg_visible_as_raz(vcpu, rd)) 1468 return val ? -E2BIG : 0; 1469 1470 ftr_reg = get_arm64_ftr_reg(id); 1471 if (!ftr_reg) 1472 return -EINVAL; 1473 1474 ftrp = ftr_reg->ftr_bits; 1475 1476 for (; ftrp && ftrp->width; ftrp++) { 1477 s64 f_val, f_lim, safe_val; 1478 u64 ftr_mask; 1479 1480 ftr_mask = arm64_ftr_mask(ftrp); 1481 if ((ftr_mask & writable_mask) != ftr_mask) 1482 continue; 1483 1484 f_val = arm64_ftr_value(ftrp, val); 1485 f_lim = arm64_ftr_value(ftrp, limit); 1486 mask |= ftr_mask; 1487 1488 if (f_val == f_lim) 1489 safe_val = f_val; 1490 else 1491 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim); 1492 1493 if (safe_val != f_val) 1494 return -E2BIG; 1495 } 1496 1497 /* For fields that are not writable, values in limit are the safe values. */ 1498 if ((val & ~mask) != (limit & ~mask)) 1499 return -E2BIG; 1500 1501 return 0; 1502 } 1503 1504 static u8 pmuver_to_perfmon(u8 pmuver) 1505 { 1506 switch (pmuver) { 1507 case ID_AA64DFR0_EL1_PMUVer_IMP: 1508 return ID_DFR0_EL1_PerfMon_PMUv3; 1509 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF: 1510 return ID_DFR0_EL1_PerfMon_IMPDEF; 1511 default: 1512 /* Anything ARMv8.1+ and NI have the same value. For now. */ 1513 return pmuver; 1514 } 1515 } 1516 1517 /* Read a sanitised cpufeature ID register by sys_reg_desc */ 1518 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu, 1519 const struct sys_reg_desc *r) 1520 { 1521 u32 id = reg_to_encoding(r); 1522 u64 val; 1523 1524 if (sysreg_visible_as_raz(vcpu, r)) 1525 return 0; 1526 1527 val = read_sanitised_ftr_reg(id); 1528 1529 switch (id) { 1530 case SYS_ID_AA64PFR1_EL1: 1531 if (!kvm_has_mte(vcpu->kvm)) 1532 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); 1533 1534 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); 1535 break; 1536 case SYS_ID_AA64ISAR1_EL1: 1537 if (!vcpu_has_ptrauth(vcpu)) 1538 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | 1539 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | 1540 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | 1541 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); 1542 break; 1543 case SYS_ID_AA64ISAR2_EL1: 1544 if (!vcpu_has_ptrauth(vcpu)) 1545 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | 1546 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); 1547 if (!cpus_have_final_cap(ARM64_HAS_WFXT)) 1548 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); 1549 break; 1550 case SYS_ID_AA64MMFR2_EL1: 1551 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK; 1552 break; 1553 case SYS_ID_MMFR4_EL1: 1554 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX); 1555 break; 1556 } 1557 1558 return val; 1559 } 1560 1561 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu, 1562 const struct sys_reg_desc *r) 1563 { 1564 return __kvm_read_sanitised_id_reg(vcpu, r); 1565 } 1566 1567 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 1568 { 1569 return IDREG(vcpu->kvm, reg_to_encoding(r)); 1570 } 1571 1572 static bool is_feature_id_reg(u32 encoding) 1573 { 1574 return (sys_reg_Op0(encoding) == 3 && 1575 (sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) && 1576 sys_reg_CRn(encoding) == 0 && 1577 sys_reg_CRm(encoding) <= 7); 1578 } 1579 1580 /* 1581 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is 1582 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID 1583 * registers KVM maintains on a per-VM basis. 1584 */ 1585 static inline bool is_vm_ftr_id_reg(u32 id) 1586 { 1587 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && 1588 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && 1589 sys_reg_CRm(id) < 8); 1590 } 1591 1592 static inline bool is_vcpu_ftr_id_reg(u32 id) 1593 { 1594 return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id); 1595 } 1596 1597 static inline bool is_aa32_id_reg(u32 id) 1598 { 1599 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 && 1600 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 && 1601 sys_reg_CRm(id) <= 3); 1602 } 1603 1604 static unsigned int id_visibility(const struct kvm_vcpu *vcpu, 1605 const struct sys_reg_desc *r) 1606 { 1607 u32 id = reg_to_encoding(r); 1608 1609 switch (id) { 1610 case SYS_ID_AA64ZFR0_EL1: 1611 if (!vcpu_has_sve(vcpu)) 1612 return REG_RAZ; 1613 break; 1614 } 1615 1616 return 0; 1617 } 1618 1619 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, 1620 const struct sys_reg_desc *r) 1621 { 1622 /* 1623 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any 1624 * EL. Promote to RAZ/WI in order to guarantee consistency between 1625 * systems. 1626 */ 1627 if (!kvm_supports_32bit_el0()) 1628 return REG_RAZ | REG_USER_WI; 1629 1630 return id_visibility(vcpu, r); 1631 } 1632 1633 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, 1634 const struct sys_reg_desc *r) 1635 { 1636 return REG_RAZ; 1637 } 1638 1639 /* cpufeature ID register access trap handlers */ 1640 1641 static bool access_id_reg(struct kvm_vcpu *vcpu, 1642 struct sys_reg_params *p, 1643 const struct sys_reg_desc *r) 1644 { 1645 if (p->is_write) 1646 return write_to_read_only(vcpu, p, r); 1647 1648 p->regval = read_id_reg(vcpu, r); 1649 1650 return true; 1651 } 1652 1653 /* Visibility overrides for SVE-specific control registers */ 1654 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, 1655 const struct sys_reg_desc *rd) 1656 { 1657 if (vcpu_has_sve(vcpu)) 1658 return 0; 1659 1660 return REG_HIDDEN; 1661 } 1662 1663 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, 1664 const struct sys_reg_desc *rd) 1665 { 1666 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); 1667 1668 if (!vcpu_has_sve(vcpu)) 1669 val &= ~ID_AA64PFR0_EL1_SVE_MASK; 1670 1671 /* 1672 * The default is to expose CSV2 == 1 if the HW isn't affected. 1673 * Although this is a per-CPU feature, we make it global because 1674 * asymmetric systems are just a nuisance. 1675 * 1676 * Userspace can override this as long as it doesn't promise 1677 * the impossible. 1678 */ 1679 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) { 1680 val &= ~ID_AA64PFR0_EL1_CSV2_MASK; 1681 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP); 1682 } 1683 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) { 1684 val &= ~ID_AA64PFR0_EL1_CSV3_MASK; 1685 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP); 1686 } 1687 1688 if (kvm_vgic_global_state.type == VGIC_V3) { 1689 val &= ~ID_AA64PFR0_EL1_GIC_MASK; 1690 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP); 1691 } 1692 1693 val &= ~ID_AA64PFR0_EL1_AMU_MASK; 1694 1695 return val; 1696 } 1697 1698 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit) \ 1699 ({ \ 1700 u64 __f_val = FIELD_GET(reg##_##field##_MASK, val); \ 1701 (val) &= ~reg##_##field##_MASK; \ 1702 (val) |= FIELD_PREP(reg##_##field##_MASK, \ 1703 min(__f_val, \ 1704 (u64)SYS_FIELD_VALUE(reg, field, limit))); \ 1705 (val); \ 1706 }) 1707 1708 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, 1709 const struct sys_reg_desc *rd) 1710 { 1711 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); 1712 1713 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8); 1714 1715 /* 1716 * Only initialize the PMU version if the vCPU was configured with one. 1717 */ 1718 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; 1719 if (kvm_vcpu_has_pmu(vcpu)) 1720 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer, 1721 kvm_arm_pmu_get_pmuver_limit()); 1722 1723 /* Hide SPE from guests */ 1724 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK; 1725 1726 return val; 1727 } 1728 1729 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu, 1730 const struct sys_reg_desc *rd, 1731 u64 val) 1732 { 1733 u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val); 1734 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val); 1735 1736 /* 1737 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the 1738 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously 1739 * exposed an IMP_DEF PMU to userspace and the guest on systems w/ 1740 * non-architectural PMUs. Of course, PMUv3 is the only game in town for 1741 * PMU virtualization, so the IMP_DEF value was rather user-hostile. 1742 * 1743 * At minimum, we're on the hook to allow values that were given to 1744 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value 1745 * with a more sensible NI. The value of an ID register changing under 1746 * the nose of the guest is unfortunate, but is certainly no more 1747 * surprising than an ill-guided PMU driver poking at impdef system 1748 * registers that end in an UNDEF... 1749 */ 1750 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF) 1751 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK; 1752 1753 /* 1754 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a 1755 * nonzero minimum safe value. 1756 */ 1757 if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP) 1758 return -EINVAL; 1759 1760 return set_id_reg(vcpu, rd, val); 1761 } 1762 1763 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu, 1764 const struct sys_reg_desc *rd) 1765 { 1766 u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit()); 1767 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1); 1768 1769 val &= ~ID_DFR0_EL1_PerfMon_MASK; 1770 if (kvm_vcpu_has_pmu(vcpu)) 1771 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon); 1772 1773 val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8); 1774 1775 return val; 1776 } 1777 1778 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu, 1779 const struct sys_reg_desc *rd, 1780 u64 val) 1781 { 1782 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val); 1783 u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val); 1784 1785 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) { 1786 val &= ~ID_DFR0_EL1_PerfMon_MASK; 1787 perfmon = 0; 1788 } 1789 1790 /* 1791 * Allow DFR0_EL1.PerfMon to be set from userspace as long as 1792 * it doesn't promise more than what the HW gives us on the 1793 * AArch64 side (as everything is emulated with that), and 1794 * that this is a PMUv3. 1795 */ 1796 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3) 1797 return -EINVAL; 1798 1799 if (copdbg < ID_DFR0_EL1_CopDbg_Armv8) 1800 return -EINVAL; 1801 1802 return set_id_reg(vcpu, rd, val); 1803 } 1804 1805 /* 1806 * cpufeature ID register user accessors 1807 * 1808 * For now, these registers are immutable for userspace, so no values 1809 * are stored, and for set_id_reg() we don't allow the effective value 1810 * to be changed. 1811 */ 1812 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1813 u64 *val) 1814 { 1815 /* 1816 * Avoid locking if the VM has already started, as the ID registers are 1817 * guaranteed to be invariant at that point. 1818 */ 1819 if (kvm_vm_has_ran_once(vcpu->kvm)) { 1820 *val = read_id_reg(vcpu, rd); 1821 return 0; 1822 } 1823 1824 mutex_lock(&vcpu->kvm->arch.config_lock); 1825 *val = read_id_reg(vcpu, rd); 1826 mutex_unlock(&vcpu->kvm->arch.config_lock); 1827 1828 return 0; 1829 } 1830 1831 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1832 u64 val) 1833 { 1834 u32 id = reg_to_encoding(rd); 1835 int ret; 1836 1837 mutex_lock(&vcpu->kvm->arch.config_lock); 1838 1839 /* 1840 * Once the VM has started the ID registers are immutable. Reject any 1841 * write that does not match the final register value. 1842 */ 1843 if (kvm_vm_has_ran_once(vcpu->kvm)) { 1844 if (val != read_id_reg(vcpu, rd)) 1845 ret = -EBUSY; 1846 else 1847 ret = 0; 1848 1849 mutex_unlock(&vcpu->kvm->arch.config_lock); 1850 return ret; 1851 } 1852 1853 ret = arm64_check_features(vcpu, rd, val); 1854 if (!ret) 1855 IDREG(vcpu->kvm, id) = val; 1856 1857 mutex_unlock(&vcpu->kvm->arch.config_lock); 1858 1859 /* 1860 * arm64_check_features() returns -E2BIG to indicate the register's 1861 * feature set is a superset of the maximally-allowed register value. 1862 * While it would be nice to precisely describe this to userspace, the 1863 * existing UAPI for KVM_SET_ONE_REG has it that invalid register 1864 * writes return -EINVAL. 1865 */ 1866 if (ret == -E2BIG) 1867 ret = -EINVAL; 1868 return ret; 1869 } 1870 1871 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1872 u64 *val) 1873 { 1874 *val = 0; 1875 return 0; 1876 } 1877 1878 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1879 u64 val) 1880 { 1881 return 0; 1882 } 1883 1884 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1885 const struct sys_reg_desc *r) 1886 { 1887 if (p->is_write) 1888 return write_to_read_only(vcpu, p, r); 1889 1890 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); 1891 return true; 1892 } 1893 1894 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1895 const struct sys_reg_desc *r) 1896 { 1897 if (p->is_write) 1898 return write_to_read_only(vcpu, p, r); 1899 1900 p->regval = __vcpu_sys_reg(vcpu, r->reg); 1901 return true; 1902 } 1903 1904 /* 1905 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary 1906 * by the physical CPU which the vcpu currently resides in. 1907 */ 1908 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 1909 { 1910 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); 1911 u64 clidr; 1912 u8 loc; 1913 1914 if ((ctr_el0 & CTR_EL0_IDC)) { 1915 /* 1916 * Data cache clean to the PoU is not required so LoUU and LoUIS 1917 * will not be set and a unified cache, which will be marked as 1918 * LoC, will be added. 1919 * 1920 * If not DIC, let the unified cache L2 so that an instruction 1921 * cache can be added as L1 later. 1922 */ 1923 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2; 1924 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc); 1925 } else { 1926 /* 1927 * Data cache clean to the PoU is required so let L1 have a data 1928 * cache and mark it as LoUU and LoUIS. As L1 has a data cache, 1929 * it can be marked as LoC too. 1930 */ 1931 loc = 1; 1932 clidr = 1 << CLIDR_LOUU_SHIFT; 1933 clidr |= 1 << CLIDR_LOUIS_SHIFT; 1934 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1); 1935 } 1936 1937 /* 1938 * Instruction cache invalidation to the PoU is required so let L1 have 1939 * an instruction cache. If L1 already has a data cache, it will be 1940 * CACHE_TYPE_SEPARATE. 1941 */ 1942 if (!(ctr_el0 & CTR_EL0_DIC)) 1943 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1); 1944 1945 clidr |= loc << CLIDR_LOC_SHIFT; 1946 1947 /* 1948 * Add tag cache unified to data cache. Allocation tags and data are 1949 * unified in a cache line so that it looks valid even if there is only 1950 * one cache line. 1951 */ 1952 if (kvm_has_mte(vcpu->kvm)) 1953 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc); 1954 1955 __vcpu_sys_reg(vcpu, r->reg) = clidr; 1956 1957 return __vcpu_sys_reg(vcpu, r->reg); 1958 } 1959 1960 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, 1961 u64 val) 1962 { 1963 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0); 1964 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val)); 1965 1966 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc)) 1967 return -EINVAL; 1968 1969 __vcpu_sys_reg(vcpu, rd->reg) = val; 1970 1971 return 0; 1972 } 1973 1974 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1975 const struct sys_reg_desc *r) 1976 { 1977 int reg = r->reg; 1978 1979 if (p->is_write) 1980 vcpu_write_sys_reg(vcpu, p->regval, reg); 1981 else 1982 p->regval = vcpu_read_sys_reg(vcpu, reg); 1983 return true; 1984 } 1985 1986 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, 1987 const struct sys_reg_desc *r) 1988 { 1989 u32 csselr; 1990 1991 if (p->is_write) 1992 return write_to_read_only(vcpu, p, r); 1993 1994 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); 1995 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD; 1996 if (csselr < CSSELR_MAX) 1997 p->regval = get_ccsidr(vcpu, csselr); 1998 1999 return true; 2000 } 2001 2002 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, 2003 const struct sys_reg_desc *rd) 2004 { 2005 if (kvm_has_mte(vcpu->kvm)) 2006 return 0; 2007 2008 return REG_HIDDEN; 2009 } 2010 2011 #define MTE_REG(name) { \ 2012 SYS_DESC(SYS_##name), \ 2013 .access = undef_access, \ 2014 .reset = reset_unknown, \ 2015 .reg = name, \ 2016 .visibility = mte_visibility, \ 2017 } 2018 2019 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu, 2020 const struct sys_reg_desc *rd) 2021 { 2022 if (vcpu_has_nv(vcpu)) 2023 return 0; 2024 2025 return REG_HIDDEN; 2026 } 2027 2028 static bool bad_vncr_trap(struct kvm_vcpu *vcpu, 2029 struct sys_reg_params *p, 2030 const struct sys_reg_desc *r) 2031 { 2032 /* 2033 * We really shouldn't be here, and this is likely the result 2034 * of a misconfigured trap, as this register should target the 2035 * VNCR page, and nothing else. 2036 */ 2037 return bad_trap(vcpu, p, r, 2038 "trap of VNCR-backed register"); 2039 } 2040 2041 static bool bad_redir_trap(struct kvm_vcpu *vcpu, 2042 struct sys_reg_params *p, 2043 const struct sys_reg_desc *r) 2044 { 2045 /* 2046 * We really shouldn't be here, and this is likely the result 2047 * of a misconfigured trap, as this register should target the 2048 * corresponding EL1, and nothing else. 2049 */ 2050 return bad_trap(vcpu, p, r, 2051 "trap of EL2 register redirected to EL1"); 2052 } 2053 2054 #define EL2_REG(name, acc, rst, v) { \ 2055 SYS_DESC(SYS_##name), \ 2056 .access = acc, \ 2057 .reset = rst, \ 2058 .reg = name, \ 2059 .visibility = el2_visibility, \ 2060 .val = v, \ 2061 } 2062 2063 #define EL2_REG_VNCR(name, rst, v) EL2_REG(name, bad_vncr_trap, rst, v) 2064 #define EL2_REG_REDIR(name, rst, v) EL2_REG(name, bad_redir_trap, rst, v) 2065 2066 /* 2067 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when 2068 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of 2069 * handling traps. Given that, they are always hidden from userspace. 2070 */ 2071 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu, 2072 const struct sys_reg_desc *rd) 2073 { 2074 return REG_HIDDEN_USER; 2075 } 2076 2077 #define EL12_REG(name, acc, rst, v) { \ 2078 SYS_DESC(SYS_##name##_EL12), \ 2079 .access = acc, \ 2080 .reset = rst, \ 2081 .reg = name##_EL1, \ 2082 .val = v, \ 2083 .visibility = hidden_user_visibility, \ 2084 } 2085 2086 /* 2087 * Since reset() callback and field val are not used for idregs, they will be 2088 * used for specific purposes for idregs. 2089 * The reset() would return KVM sanitised register value. The value would be the 2090 * same as the host kernel sanitised value if there is no KVM sanitisation. 2091 * The val would be used as a mask indicating writable fields for the idreg. 2092 * Only bits with 1 are writable from userspace. This mask might not be 2093 * necessary in the future whenever all ID registers are enabled as writable 2094 * from userspace. 2095 */ 2096 2097 #define ID_DESC(name) \ 2098 SYS_DESC(SYS_##name), \ 2099 .access = access_id_reg, \ 2100 .get_user = get_id_reg \ 2101 2102 /* sys_reg_desc initialiser for known cpufeature ID registers */ 2103 #define ID_SANITISED(name) { \ 2104 ID_DESC(name), \ 2105 .set_user = set_id_reg, \ 2106 .visibility = id_visibility, \ 2107 .reset = kvm_read_sanitised_id_reg, \ 2108 .val = 0, \ 2109 } 2110 2111 /* sys_reg_desc initialiser for known cpufeature ID registers */ 2112 #define AA32_ID_SANITISED(name) { \ 2113 ID_DESC(name), \ 2114 .set_user = set_id_reg, \ 2115 .visibility = aa32_id_visibility, \ 2116 .reset = kvm_read_sanitised_id_reg, \ 2117 .val = 0, \ 2118 } 2119 2120 /* sys_reg_desc initialiser for writable ID registers */ 2121 #define ID_WRITABLE(name, mask) { \ 2122 ID_DESC(name), \ 2123 .set_user = set_id_reg, \ 2124 .visibility = id_visibility, \ 2125 .reset = kvm_read_sanitised_id_reg, \ 2126 .val = mask, \ 2127 } 2128 2129 /* 2130 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID 2131 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 2132 * (1 <= crm < 8, 0 <= Op2 < 8). 2133 */ 2134 #define ID_UNALLOCATED(crm, op2) { \ 2135 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ 2136 .access = access_id_reg, \ 2137 .get_user = get_id_reg, \ 2138 .set_user = set_id_reg, \ 2139 .visibility = raz_visibility, \ 2140 .reset = kvm_read_sanitised_id_reg, \ 2141 .val = 0, \ 2142 } 2143 2144 /* 2145 * sys_reg_desc initialiser for known ID registers that we hide from guests. 2146 * For now, these are exposed just like unallocated ID regs: they appear 2147 * RAZ for the guest. 2148 */ 2149 #define ID_HIDDEN(name) { \ 2150 ID_DESC(name), \ 2151 .set_user = set_id_reg, \ 2152 .visibility = raz_visibility, \ 2153 .reset = kvm_read_sanitised_id_reg, \ 2154 .val = 0, \ 2155 } 2156 2157 static bool access_sp_el1(struct kvm_vcpu *vcpu, 2158 struct sys_reg_params *p, 2159 const struct sys_reg_desc *r) 2160 { 2161 if (p->is_write) 2162 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval; 2163 else 2164 p->regval = __vcpu_sys_reg(vcpu, SP_EL1); 2165 2166 return true; 2167 } 2168 2169 static bool access_elr(struct kvm_vcpu *vcpu, 2170 struct sys_reg_params *p, 2171 const struct sys_reg_desc *r) 2172 { 2173 if (p->is_write) 2174 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1); 2175 else 2176 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1); 2177 2178 return true; 2179 } 2180 2181 static bool access_spsr(struct kvm_vcpu *vcpu, 2182 struct sys_reg_params *p, 2183 const struct sys_reg_desc *r) 2184 { 2185 if (p->is_write) 2186 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval; 2187 else 2188 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1); 2189 2190 return true; 2191 } 2192 2193 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) 2194 { 2195 u64 val = r->val; 2196 2197 if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) 2198 val |= HCR_E2H; 2199 2200 return __vcpu_sys_reg(vcpu, r->reg) = val; 2201 } 2202 2203 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu, 2204 const struct sys_reg_desc *rd) 2205 { 2206 unsigned int r; 2207 2208 r = el2_visibility(vcpu, rd); 2209 if (r) 2210 return r; 2211 2212 return sve_visibility(vcpu, rd); 2213 } 2214 2215 static bool access_zcr_el2(struct kvm_vcpu *vcpu, 2216 struct sys_reg_params *p, 2217 const struct sys_reg_desc *r) 2218 { 2219 unsigned int vq; 2220 2221 if (guest_hyp_sve_traps_enabled(vcpu)) { 2222 kvm_inject_nested_sve_trap(vcpu); 2223 return true; 2224 } 2225 2226 if (!p->is_write) { 2227 p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2); 2228 return true; 2229 } 2230 2231 vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1; 2232 vq = min(vq, vcpu_sve_max_vq(vcpu)); 2233 vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2); 2234 return true; 2235 } 2236 2237 /* 2238 * Architected system registers. 2239 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 2240 * 2241 * Debug handling: We do trap most, if not all debug related system 2242 * registers. The implementation is good enough to ensure that a guest 2243 * can use these with minimal performance degradation. The drawback is 2244 * that we don't implement any of the external debug architecture. 2245 * This should be revisited if we ever encounter a more demanding 2246 * guest... 2247 */ 2248 static const struct sys_reg_desc sys_reg_descs[] = { 2249 DBG_BCR_BVR_WCR_WVR_EL1(0), 2250 DBG_BCR_BVR_WCR_WVR_EL1(1), 2251 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, 2252 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, 2253 DBG_BCR_BVR_WCR_WVR_EL1(2), 2254 DBG_BCR_BVR_WCR_WVR_EL1(3), 2255 DBG_BCR_BVR_WCR_WVR_EL1(4), 2256 DBG_BCR_BVR_WCR_WVR_EL1(5), 2257 DBG_BCR_BVR_WCR_WVR_EL1(6), 2258 DBG_BCR_BVR_WCR_WVR_EL1(7), 2259 DBG_BCR_BVR_WCR_WVR_EL1(8), 2260 DBG_BCR_BVR_WCR_WVR_EL1(9), 2261 DBG_BCR_BVR_WCR_WVR_EL1(10), 2262 DBG_BCR_BVR_WCR_WVR_EL1(11), 2263 DBG_BCR_BVR_WCR_WVR_EL1(12), 2264 DBG_BCR_BVR_WCR_WVR_EL1(13), 2265 DBG_BCR_BVR_WCR_WVR_EL1(14), 2266 DBG_BCR_BVR_WCR_WVR_EL1(15), 2267 2268 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, 2269 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, 2270 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, 2271 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, 2272 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, 2273 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, 2274 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, 2275 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, 2276 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, 2277 2278 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, 2279 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, 2280 // DBGDTR[TR]X_EL0 share the same encoding 2281 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, 2282 2283 { SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 }, 2284 2285 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, 2286 2287 /* 2288 * ID regs: all ID_SANITISED() entries here must have corresponding 2289 * entries in arm64_ftr_regs[]. 2290 */ 2291 2292 /* AArch64 mappings of the AArch32 ID registers */ 2293 /* CRm=1 */ 2294 AA32_ID_SANITISED(ID_PFR0_EL1), 2295 AA32_ID_SANITISED(ID_PFR1_EL1), 2296 { SYS_DESC(SYS_ID_DFR0_EL1), 2297 .access = access_id_reg, 2298 .get_user = get_id_reg, 2299 .set_user = set_id_dfr0_el1, 2300 .visibility = aa32_id_visibility, 2301 .reset = read_sanitised_id_dfr0_el1, 2302 .val = ID_DFR0_EL1_PerfMon_MASK | 2303 ID_DFR0_EL1_CopDbg_MASK, }, 2304 ID_HIDDEN(ID_AFR0_EL1), 2305 AA32_ID_SANITISED(ID_MMFR0_EL1), 2306 AA32_ID_SANITISED(ID_MMFR1_EL1), 2307 AA32_ID_SANITISED(ID_MMFR2_EL1), 2308 AA32_ID_SANITISED(ID_MMFR3_EL1), 2309 2310 /* CRm=2 */ 2311 AA32_ID_SANITISED(ID_ISAR0_EL1), 2312 AA32_ID_SANITISED(ID_ISAR1_EL1), 2313 AA32_ID_SANITISED(ID_ISAR2_EL1), 2314 AA32_ID_SANITISED(ID_ISAR3_EL1), 2315 AA32_ID_SANITISED(ID_ISAR4_EL1), 2316 AA32_ID_SANITISED(ID_ISAR5_EL1), 2317 AA32_ID_SANITISED(ID_MMFR4_EL1), 2318 AA32_ID_SANITISED(ID_ISAR6_EL1), 2319 2320 /* CRm=3 */ 2321 AA32_ID_SANITISED(MVFR0_EL1), 2322 AA32_ID_SANITISED(MVFR1_EL1), 2323 AA32_ID_SANITISED(MVFR2_EL1), 2324 ID_UNALLOCATED(3,3), 2325 AA32_ID_SANITISED(ID_PFR2_EL1), 2326 ID_HIDDEN(ID_DFR1_EL1), 2327 AA32_ID_SANITISED(ID_MMFR5_EL1), 2328 ID_UNALLOCATED(3,7), 2329 2330 /* AArch64 ID registers */ 2331 /* CRm=4 */ 2332 { SYS_DESC(SYS_ID_AA64PFR0_EL1), 2333 .access = access_id_reg, 2334 .get_user = get_id_reg, 2335 .set_user = set_id_reg, 2336 .reset = read_sanitised_id_aa64pfr0_el1, 2337 .val = ~(ID_AA64PFR0_EL1_AMU | 2338 ID_AA64PFR0_EL1_MPAM | 2339 ID_AA64PFR0_EL1_SVE | 2340 ID_AA64PFR0_EL1_RAS | 2341 ID_AA64PFR0_EL1_GIC | 2342 ID_AA64PFR0_EL1_AdvSIMD | 2343 ID_AA64PFR0_EL1_FP), }, 2344 ID_SANITISED(ID_AA64PFR1_EL1), 2345 ID_UNALLOCATED(4,2), 2346 ID_UNALLOCATED(4,3), 2347 ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0), 2348 ID_HIDDEN(ID_AA64SMFR0_EL1), 2349 ID_UNALLOCATED(4,6), 2350 ID_UNALLOCATED(4,7), 2351 2352 /* CRm=5 */ 2353 { SYS_DESC(SYS_ID_AA64DFR0_EL1), 2354 .access = access_id_reg, 2355 .get_user = get_id_reg, 2356 .set_user = set_id_aa64dfr0_el1, 2357 .reset = read_sanitised_id_aa64dfr0_el1, 2358 .val = ID_AA64DFR0_EL1_PMUVer_MASK | 2359 ID_AA64DFR0_EL1_DebugVer_MASK, }, 2360 ID_SANITISED(ID_AA64DFR1_EL1), 2361 ID_UNALLOCATED(5,2), 2362 ID_UNALLOCATED(5,3), 2363 ID_HIDDEN(ID_AA64AFR0_EL1), 2364 ID_HIDDEN(ID_AA64AFR1_EL1), 2365 ID_UNALLOCATED(5,6), 2366 ID_UNALLOCATED(5,7), 2367 2368 /* CRm=6 */ 2369 ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0), 2370 ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI | 2371 ID_AA64ISAR1_EL1_GPA | 2372 ID_AA64ISAR1_EL1_API | 2373 ID_AA64ISAR1_EL1_APA)), 2374 ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 | 2375 ID_AA64ISAR2_EL1_APA3 | 2376 ID_AA64ISAR2_EL1_GPA3)), 2377 ID_UNALLOCATED(6,3), 2378 ID_UNALLOCATED(6,4), 2379 ID_UNALLOCATED(6,5), 2380 ID_UNALLOCATED(6,6), 2381 ID_UNALLOCATED(6,7), 2382 2383 /* CRm=7 */ 2384 ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 | 2385 ID_AA64MMFR0_EL1_TGRAN4_2 | 2386 ID_AA64MMFR0_EL1_TGRAN64_2 | 2387 ID_AA64MMFR0_EL1_TGRAN16_2)), 2388 ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 | 2389 ID_AA64MMFR1_EL1_HCX | 2390 ID_AA64MMFR1_EL1_TWED | 2391 ID_AA64MMFR1_EL1_XNX | 2392 ID_AA64MMFR1_EL1_VH | 2393 ID_AA64MMFR1_EL1_VMIDBits)), 2394 ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 | 2395 ID_AA64MMFR2_EL1_EVT | 2396 ID_AA64MMFR2_EL1_FWB | 2397 ID_AA64MMFR2_EL1_IDS | 2398 ID_AA64MMFR2_EL1_NV | 2399 ID_AA64MMFR2_EL1_CCIDX)), 2400 ID_SANITISED(ID_AA64MMFR3_EL1), 2401 ID_SANITISED(ID_AA64MMFR4_EL1), 2402 ID_UNALLOCATED(7,5), 2403 ID_UNALLOCATED(7,6), 2404 ID_UNALLOCATED(7,7), 2405 2406 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, 2407 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, 2408 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, 2409 2410 MTE_REG(RGSR_EL1), 2411 MTE_REG(GCR_EL1), 2412 2413 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, 2414 { SYS_DESC(SYS_TRFCR_EL1), undef_access }, 2415 { SYS_DESC(SYS_SMPRI_EL1), undef_access }, 2416 { SYS_DESC(SYS_SMCR_EL1), undef_access }, 2417 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, 2418 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, 2419 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, 2420 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 }, 2421 2422 PTRAUTH_KEY(APIA), 2423 PTRAUTH_KEY(APIB), 2424 PTRAUTH_KEY(APDA), 2425 PTRAUTH_KEY(APDB), 2426 PTRAUTH_KEY(APGA), 2427 2428 { SYS_DESC(SYS_SPSR_EL1), access_spsr}, 2429 { SYS_DESC(SYS_ELR_EL1), access_elr}, 2430 2431 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, 2432 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, 2433 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, 2434 2435 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, 2436 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, 2437 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, 2438 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, 2439 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, 2440 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, 2441 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, 2442 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, 2443 2444 MTE_REG(TFSR_EL1), 2445 MTE_REG(TFSRE0_EL1), 2446 2447 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, 2448 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, 2449 2450 { SYS_DESC(SYS_PMSCR_EL1), undef_access }, 2451 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, 2452 { SYS_DESC(SYS_PMSICR_EL1), undef_access }, 2453 { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, 2454 { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, 2455 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, 2456 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, 2457 { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, 2458 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, 2459 { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, 2460 { SYS_DESC(SYS_PMBSR_EL1), undef_access }, 2461 /* PMBIDR_EL1 is not trapped */ 2462 2463 { PMU_SYS_REG(PMINTENSET_EL1), 2464 .access = access_pminten, .reg = PMINTENSET_EL1, 2465 .get_user = get_pmreg, .set_user = set_pmreg }, 2466 { PMU_SYS_REG(PMINTENCLR_EL1), 2467 .access = access_pminten, .reg = PMINTENSET_EL1, 2468 .get_user = get_pmreg, .set_user = set_pmreg }, 2469 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, 2470 2471 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, 2472 { SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 }, 2473 { SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 }, 2474 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, 2475 2476 { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, 2477 { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, 2478 { SYS_DESC(SYS_LORN_EL1), trap_loregion }, 2479 { SYS_DESC(SYS_LORC_EL1), trap_loregion }, 2480 { SYS_DESC(SYS_LORID_EL1), trap_loregion }, 2481 2482 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 }, 2483 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, 2484 2485 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, 2486 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, 2487 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, 2488 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, 2489 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, 2490 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, 2491 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, 2492 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, 2493 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, 2494 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, 2495 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, 2496 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, 2497 2498 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, 2499 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, 2500 2501 { SYS_DESC(SYS_ACCDATA_EL1), undef_access }, 2502 2503 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, 2504 2505 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, 2506 2507 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, 2508 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1, 2509 .set_user = set_clidr }, 2510 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access }, 2511 { SYS_DESC(SYS_SMIDR_EL1), undef_access }, 2512 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, 2513 { SYS_DESC(SYS_CTR_EL0), access_ctr }, 2514 { SYS_DESC(SYS_SVCR), undef_access }, 2515 2516 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr, 2517 .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr }, 2518 { PMU_SYS_REG(PMCNTENSET_EL0), 2519 .access = access_pmcnten, .reg = PMCNTENSET_EL0, 2520 .get_user = get_pmreg, .set_user = set_pmreg }, 2521 { PMU_SYS_REG(PMCNTENCLR_EL0), 2522 .access = access_pmcnten, .reg = PMCNTENSET_EL0, 2523 .get_user = get_pmreg, .set_user = set_pmreg }, 2524 { PMU_SYS_REG(PMOVSCLR_EL0), 2525 .access = access_pmovs, .reg = PMOVSSET_EL0, 2526 .get_user = get_pmreg, .set_user = set_pmreg }, 2527 /* 2528 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was 2529 * previously (and pointlessly) advertised in the past... 2530 */ 2531 { PMU_SYS_REG(PMSWINC_EL0), 2532 .get_user = get_raz_reg, .set_user = set_wi_reg, 2533 .access = access_pmswinc, .reset = NULL }, 2534 { PMU_SYS_REG(PMSELR_EL0), 2535 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, 2536 { PMU_SYS_REG(PMCEID0_EL0), 2537 .access = access_pmceid, .reset = NULL }, 2538 { PMU_SYS_REG(PMCEID1_EL0), 2539 .access = access_pmceid, .reset = NULL }, 2540 { PMU_SYS_REG(PMCCNTR_EL0), 2541 .access = access_pmu_evcntr, .reset = reset_unknown, 2542 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, 2543 { PMU_SYS_REG(PMXEVTYPER_EL0), 2544 .access = access_pmu_evtyper, .reset = NULL }, 2545 { PMU_SYS_REG(PMXEVCNTR_EL0), 2546 .access = access_pmu_evcntr, .reset = NULL }, 2547 /* 2548 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero 2549 * in 32bit mode. Here we choose to reset it as zero for consistency. 2550 */ 2551 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr, 2552 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, 2553 { PMU_SYS_REG(PMOVSSET_EL0), 2554 .access = access_pmovs, .reg = PMOVSSET_EL0, 2555 .get_user = get_pmreg, .set_user = set_pmreg }, 2556 2557 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, 2558 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, 2559 { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, 2560 2561 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, 2562 2563 { SYS_DESC(SYS_AMCR_EL0), undef_access }, 2564 { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, 2565 { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, 2566 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, 2567 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, 2568 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, 2569 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, 2570 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, 2571 AMU_AMEVCNTR0_EL0(0), 2572 AMU_AMEVCNTR0_EL0(1), 2573 AMU_AMEVCNTR0_EL0(2), 2574 AMU_AMEVCNTR0_EL0(3), 2575 AMU_AMEVCNTR0_EL0(4), 2576 AMU_AMEVCNTR0_EL0(5), 2577 AMU_AMEVCNTR0_EL0(6), 2578 AMU_AMEVCNTR0_EL0(7), 2579 AMU_AMEVCNTR0_EL0(8), 2580 AMU_AMEVCNTR0_EL0(9), 2581 AMU_AMEVCNTR0_EL0(10), 2582 AMU_AMEVCNTR0_EL0(11), 2583 AMU_AMEVCNTR0_EL0(12), 2584 AMU_AMEVCNTR0_EL0(13), 2585 AMU_AMEVCNTR0_EL0(14), 2586 AMU_AMEVCNTR0_EL0(15), 2587 AMU_AMEVTYPER0_EL0(0), 2588 AMU_AMEVTYPER0_EL0(1), 2589 AMU_AMEVTYPER0_EL0(2), 2590 AMU_AMEVTYPER0_EL0(3), 2591 AMU_AMEVTYPER0_EL0(4), 2592 AMU_AMEVTYPER0_EL0(5), 2593 AMU_AMEVTYPER0_EL0(6), 2594 AMU_AMEVTYPER0_EL0(7), 2595 AMU_AMEVTYPER0_EL0(8), 2596 AMU_AMEVTYPER0_EL0(9), 2597 AMU_AMEVTYPER0_EL0(10), 2598 AMU_AMEVTYPER0_EL0(11), 2599 AMU_AMEVTYPER0_EL0(12), 2600 AMU_AMEVTYPER0_EL0(13), 2601 AMU_AMEVTYPER0_EL0(14), 2602 AMU_AMEVTYPER0_EL0(15), 2603 AMU_AMEVCNTR1_EL0(0), 2604 AMU_AMEVCNTR1_EL0(1), 2605 AMU_AMEVCNTR1_EL0(2), 2606 AMU_AMEVCNTR1_EL0(3), 2607 AMU_AMEVCNTR1_EL0(4), 2608 AMU_AMEVCNTR1_EL0(5), 2609 AMU_AMEVCNTR1_EL0(6), 2610 AMU_AMEVCNTR1_EL0(7), 2611 AMU_AMEVCNTR1_EL0(8), 2612 AMU_AMEVCNTR1_EL0(9), 2613 AMU_AMEVCNTR1_EL0(10), 2614 AMU_AMEVCNTR1_EL0(11), 2615 AMU_AMEVCNTR1_EL0(12), 2616 AMU_AMEVCNTR1_EL0(13), 2617 AMU_AMEVCNTR1_EL0(14), 2618 AMU_AMEVCNTR1_EL0(15), 2619 AMU_AMEVTYPER1_EL0(0), 2620 AMU_AMEVTYPER1_EL0(1), 2621 AMU_AMEVTYPER1_EL0(2), 2622 AMU_AMEVTYPER1_EL0(3), 2623 AMU_AMEVTYPER1_EL0(4), 2624 AMU_AMEVTYPER1_EL0(5), 2625 AMU_AMEVTYPER1_EL0(6), 2626 AMU_AMEVTYPER1_EL0(7), 2627 AMU_AMEVTYPER1_EL0(8), 2628 AMU_AMEVTYPER1_EL0(9), 2629 AMU_AMEVTYPER1_EL0(10), 2630 AMU_AMEVTYPER1_EL0(11), 2631 AMU_AMEVTYPER1_EL0(12), 2632 AMU_AMEVTYPER1_EL0(13), 2633 AMU_AMEVTYPER1_EL0(14), 2634 AMU_AMEVTYPER1_EL0(15), 2635 2636 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer }, 2637 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer }, 2638 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, 2639 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, 2640 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, 2641 2642 /* PMEVCNTRn_EL0 */ 2643 PMU_PMEVCNTR_EL0(0), 2644 PMU_PMEVCNTR_EL0(1), 2645 PMU_PMEVCNTR_EL0(2), 2646 PMU_PMEVCNTR_EL0(3), 2647 PMU_PMEVCNTR_EL0(4), 2648 PMU_PMEVCNTR_EL0(5), 2649 PMU_PMEVCNTR_EL0(6), 2650 PMU_PMEVCNTR_EL0(7), 2651 PMU_PMEVCNTR_EL0(8), 2652 PMU_PMEVCNTR_EL0(9), 2653 PMU_PMEVCNTR_EL0(10), 2654 PMU_PMEVCNTR_EL0(11), 2655 PMU_PMEVCNTR_EL0(12), 2656 PMU_PMEVCNTR_EL0(13), 2657 PMU_PMEVCNTR_EL0(14), 2658 PMU_PMEVCNTR_EL0(15), 2659 PMU_PMEVCNTR_EL0(16), 2660 PMU_PMEVCNTR_EL0(17), 2661 PMU_PMEVCNTR_EL0(18), 2662 PMU_PMEVCNTR_EL0(19), 2663 PMU_PMEVCNTR_EL0(20), 2664 PMU_PMEVCNTR_EL0(21), 2665 PMU_PMEVCNTR_EL0(22), 2666 PMU_PMEVCNTR_EL0(23), 2667 PMU_PMEVCNTR_EL0(24), 2668 PMU_PMEVCNTR_EL0(25), 2669 PMU_PMEVCNTR_EL0(26), 2670 PMU_PMEVCNTR_EL0(27), 2671 PMU_PMEVCNTR_EL0(28), 2672 PMU_PMEVCNTR_EL0(29), 2673 PMU_PMEVCNTR_EL0(30), 2674 /* PMEVTYPERn_EL0 */ 2675 PMU_PMEVTYPER_EL0(0), 2676 PMU_PMEVTYPER_EL0(1), 2677 PMU_PMEVTYPER_EL0(2), 2678 PMU_PMEVTYPER_EL0(3), 2679 PMU_PMEVTYPER_EL0(4), 2680 PMU_PMEVTYPER_EL0(5), 2681 PMU_PMEVTYPER_EL0(6), 2682 PMU_PMEVTYPER_EL0(7), 2683 PMU_PMEVTYPER_EL0(8), 2684 PMU_PMEVTYPER_EL0(9), 2685 PMU_PMEVTYPER_EL0(10), 2686 PMU_PMEVTYPER_EL0(11), 2687 PMU_PMEVTYPER_EL0(12), 2688 PMU_PMEVTYPER_EL0(13), 2689 PMU_PMEVTYPER_EL0(14), 2690 PMU_PMEVTYPER_EL0(15), 2691 PMU_PMEVTYPER_EL0(16), 2692 PMU_PMEVTYPER_EL0(17), 2693 PMU_PMEVTYPER_EL0(18), 2694 PMU_PMEVTYPER_EL0(19), 2695 PMU_PMEVTYPER_EL0(20), 2696 PMU_PMEVTYPER_EL0(21), 2697 PMU_PMEVTYPER_EL0(22), 2698 PMU_PMEVTYPER_EL0(23), 2699 PMU_PMEVTYPER_EL0(24), 2700 PMU_PMEVTYPER_EL0(25), 2701 PMU_PMEVTYPER_EL0(26), 2702 PMU_PMEVTYPER_EL0(27), 2703 PMU_PMEVTYPER_EL0(28), 2704 PMU_PMEVTYPER_EL0(29), 2705 PMU_PMEVTYPER_EL0(30), 2706 /* 2707 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero 2708 * in 32bit mode. Here we choose to reset it as zero for consistency. 2709 */ 2710 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper, 2711 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, 2712 2713 EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0), 2714 EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0), 2715 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1), 2716 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0), 2717 EL2_REG_VNCR(HCR_EL2, reset_hcr, 0), 2718 EL2_REG(MDCR_EL2, access_rw, reset_val, 0), 2719 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1), 2720 EL2_REG_VNCR(HSTR_EL2, reset_val, 0), 2721 EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0), 2722 EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0), 2723 EL2_REG_VNCR(HFGITR_EL2, reset_val, 0), 2724 EL2_REG_VNCR(HACR_EL2, reset_val, 0), 2725 2726 { SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val, 2727 .visibility = sve_el2_visibility, .reg = ZCR_EL2 }, 2728 2729 EL2_REG_VNCR(HCRX_EL2, reset_val, 0), 2730 2731 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0), 2732 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0), 2733 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1), 2734 EL2_REG_VNCR(VTTBR_EL2, reset_val, 0), 2735 EL2_REG_VNCR(VTCR_EL2, reset_val, 0), 2736 2737 { SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 }, 2738 EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0), 2739 EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0), 2740 EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0), 2741 EL2_REG_REDIR(SPSR_EL2, reset_val, 0), 2742 EL2_REG_REDIR(ELR_EL2, reset_val, 0), 2743 { SYS_DESC(SYS_SP_EL1), access_sp_el1}, 2744 2745 /* AArch32 SPSR_* are RES0 if trapped from a NV guest */ 2746 { SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi, 2747 .visibility = hidden_user_visibility }, 2748 { SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi, 2749 .visibility = hidden_user_visibility }, 2750 { SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi, 2751 .visibility = hidden_user_visibility }, 2752 { SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi, 2753 .visibility = hidden_user_visibility }, 2754 2755 { SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 }, 2756 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0), 2757 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0), 2758 EL2_REG_REDIR(ESR_EL2, reset_val, 0), 2759 { SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 }, 2760 2761 EL2_REG_REDIR(FAR_EL2, reset_val, 0), 2762 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0), 2763 2764 EL2_REG(MAIR_EL2, access_rw, reset_val, 0), 2765 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0), 2766 2767 EL2_REG(VBAR_EL2, access_rw, reset_val, 0), 2768 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0), 2769 { SYS_DESC(SYS_RMR_EL2), trap_undef }, 2770 2771 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0), 2772 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0), 2773 2774 EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0), 2775 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0), 2776 2777 EL12_REG(CNTKCTL, access_rw, reset_val, 0), 2778 2779 EL2_REG(SP_EL2, NULL, reset_unknown, 0), 2780 }; 2781 2782 static struct sys_reg_desc sys_insn_descs[] = { 2783 { SYS_DESC(SYS_DC_ISW), access_dcsw }, 2784 { SYS_DESC(SYS_DC_IGSW), access_dcgsw }, 2785 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, 2786 { SYS_DESC(SYS_DC_CSW), access_dcsw }, 2787 { SYS_DESC(SYS_DC_CGSW), access_dcgsw }, 2788 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, 2789 { SYS_DESC(SYS_DC_CISW), access_dcsw }, 2790 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw }, 2791 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw }, 2792 }; 2793 2794 static const struct sys_reg_desc *first_idreg; 2795 2796 static bool trap_dbgdidr(struct kvm_vcpu *vcpu, 2797 struct sys_reg_params *p, 2798 const struct sys_reg_desc *r) 2799 { 2800 if (p->is_write) { 2801 return ignore_write(vcpu, p); 2802 } else { 2803 u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1); 2804 u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP); 2805 2806 p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) | 2807 (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) | 2808 (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) | 2809 (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) | 2810 (1 << 15) | (el3 << 14) | (el3 << 12)); 2811 return true; 2812 } 2813 } 2814 2815 /* 2816 * AArch32 debug register mappings 2817 * 2818 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] 2819 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] 2820 * 2821 * None of the other registers share their location, so treat them as 2822 * if they were 64bit. 2823 */ 2824 #define DBG_BCR_BVR_WCR_WVR(n) \ 2825 /* DBGBVRn */ \ 2826 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ 2827 /* DBGBCRn */ \ 2828 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ 2829 /* DBGWVRn */ \ 2830 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ 2831 /* DBGWCRn */ \ 2832 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } 2833 2834 #define DBGBXVR(n) \ 2835 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } 2836 2837 /* 2838 * Trapped cp14 registers. We generally ignore most of the external 2839 * debug, on the principle that they don't really make sense to a 2840 * guest. Revisit this one day, would this principle change. 2841 */ 2842 static const struct sys_reg_desc cp14_regs[] = { 2843 /* DBGDIDR */ 2844 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, 2845 /* DBGDTRRXext */ 2846 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, 2847 2848 DBG_BCR_BVR_WCR_WVR(0), 2849 /* DBGDSCRint */ 2850 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, 2851 DBG_BCR_BVR_WCR_WVR(1), 2852 /* DBGDCCINT */ 2853 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, 2854 /* DBGDSCRext */ 2855 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, 2856 DBG_BCR_BVR_WCR_WVR(2), 2857 /* DBGDTR[RT]Xint */ 2858 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, 2859 /* DBGDTR[RT]Xext */ 2860 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, 2861 DBG_BCR_BVR_WCR_WVR(3), 2862 DBG_BCR_BVR_WCR_WVR(4), 2863 DBG_BCR_BVR_WCR_WVR(5), 2864 /* DBGWFAR */ 2865 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, 2866 /* DBGOSECCR */ 2867 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, 2868 DBG_BCR_BVR_WCR_WVR(6), 2869 /* DBGVCR */ 2870 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, 2871 DBG_BCR_BVR_WCR_WVR(7), 2872 DBG_BCR_BVR_WCR_WVR(8), 2873 DBG_BCR_BVR_WCR_WVR(9), 2874 DBG_BCR_BVR_WCR_WVR(10), 2875 DBG_BCR_BVR_WCR_WVR(11), 2876 DBG_BCR_BVR_WCR_WVR(12), 2877 DBG_BCR_BVR_WCR_WVR(13), 2878 DBG_BCR_BVR_WCR_WVR(14), 2879 DBG_BCR_BVR_WCR_WVR(15), 2880 2881 /* DBGDRAR (32bit) */ 2882 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, 2883 2884 DBGBXVR(0), 2885 /* DBGOSLAR */ 2886 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, 2887 DBGBXVR(1), 2888 /* DBGOSLSR */ 2889 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, 2890 DBGBXVR(2), 2891 DBGBXVR(3), 2892 /* DBGOSDLR */ 2893 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, 2894 DBGBXVR(4), 2895 /* DBGPRCR */ 2896 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, 2897 DBGBXVR(5), 2898 DBGBXVR(6), 2899 DBGBXVR(7), 2900 DBGBXVR(8), 2901 DBGBXVR(9), 2902 DBGBXVR(10), 2903 DBGBXVR(11), 2904 DBGBXVR(12), 2905 DBGBXVR(13), 2906 DBGBXVR(14), 2907 DBGBXVR(15), 2908 2909 /* DBGDSAR (32bit) */ 2910 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, 2911 2912 /* DBGDEVID2 */ 2913 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, 2914 /* DBGDEVID1 */ 2915 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, 2916 /* DBGDEVID */ 2917 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, 2918 /* DBGCLAIMSET */ 2919 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, 2920 /* DBGCLAIMCLR */ 2921 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, 2922 /* DBGAUTHSTATUS */ 2923 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, 2924 }; 2925 2926 /* Trapped cp14 64bit registers */ 2927 static const struct sys_reg_desc cp14_64_regs[] = { 2928 /* DBGDRAR (64bit) */ 2929 { Op1( 0), CRm( 1), .access = trap_raz_wi }, 2930 2931 /* DBGDSAR (64bit) */ 2932 { Op1( 0), CRm( 2), .access = trap_raz_wi }, 2933 }; 2934 2935 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ 2936 AA32(_map), \ 2937 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ 2938 .visibility = pmu_visibility 2939 2940 /* Macro to expand the PMEVCNTRn register */ 2941 #define PMU_PMEVCNTR(n) \ 2942 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2943 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2944 .access = access_pmu_evcntr } 2945 2946 /* Macro to expand the PMEVTYPERn register */ 2947 #define PMU_PMEVTYPER(n) \ 2948 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ 2949 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ 2950 .access = access_pmu_evtyper } 2951 /* 2952 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, 2953 * depending on the way they are accessed (as a 32bit or a 64bit 2954 * register). 2955 */ 2956 static const struct sys_reg_desc cp15_regs[] = { 2957 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, 2958 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, 2959 /* ACTLR */ 2960 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, 2961 /* ACTLR2 */ 2962 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, 2963 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 2964 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, 2965 /* TTBCR */ 2966 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, 2967 /* TTBCR2 */ 2968 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, 2969 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, 2970 /* DFSR */ 2971 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, 2972 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, 2973 /* ADFSR */ 2974 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, 2975 /* AIFSR */ 2976 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, 2977 /* DFAR */ 2978 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, 2979 /* IFAR */ 2980 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, 2981 2982 /* 2983 * DC{C,I,CI}SW operations: 2984 */ 2985 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, 2986 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, 2987 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, 2988 2989 /* PMU */ 2990 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, 2991 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, 2992 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, 2993 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, 2994 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, 2995 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, 2996 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, 2997 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, 2998 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, 2999 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, 3000 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, 3001 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, 3002 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, 3003 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, 3004 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, 3005 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, 3006 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, 3007 /* PMMIR */ 3008 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, 3009 3010 /* PRRR/MAIR0 */ 3011 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, 3012 /* NMRR/MAIR1 */ 3013 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, 3014 /* AMAIR0 */ 3015 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, 3016 /* AMAIR1 */ 3017 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, 3018 3019 /* ICC_SRE */ 3020 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, 3021 3022 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, 3023 3024 /* Arch Tmers */ 3025 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, 3026 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, 3027 3028 /* PMEVCNTRn */ 3029 PMU_PMEVCNTR(0), 3030 PMU_PMEVCNTR(1), 3031 PMU_PMEVCNTR(2), 3032 PMU_PMEVCNTR(3), 3033 PMU_PMEVCNTR(4), 3034 PMU_PMEVCNTR(5), 3035 PMU_PMEVCNTR(6), 3036 PMU_PMEVCNTR(7), 3037 PMU_PMEVCNTR(8), 3038 PMU_PMEVCNTR(9), 3039 PMU_PMEVCNTR(10), 3040 PMU_PMEVCNTR(11), 3041 PMU_PMEVCNTR(12), 3042 PMU_PMEVCNTR(13), 3043 PMU_PMEVCNTR(14), 3044 PMU_PMEVCNTR(15), 3045 PMU_PMEVCNTR(16), 3046 PMU_PMEVCNTR(17), 3047 PMU_PMEVCNTR(18), 3048 PMU_PMEVCNTR(19), 3049 PMU_PMEVCNTR(20), 3050 PMU_PMEVCNTR(21), 3051 PMU_PMEVCNTR(22), 3052 PMU_PMEVCNTR(23), 3053 PMU_PMEVCNTR(24), 3054 PMU_PMEVCNTR(25), 3055 PMU_PMEVCNTR(26), 3056 PMU_PMEVCNTR(27), 3057 PMU_PMEVCNTR(28), 3058 PMU_PMEVCNTR(29), 3059 PMU_PMEVCNTR(30), 3060 /* PMEVTYPERn */ 3061 PMU_PMEVTYPER(0), 3062 PMU_PMEVTYPER(1), 3063 PMU_PMEVTYPER(2), 3064 PMU_PMEVTYPER(3), 3065 PMU_PMEVTYPER(4), 3066 PMU_PMEVTYPER(5), 3067 PMU_PMEVTYPER(6), 3068 PMU_PMEVTYPER(7), 3069 PMU_PMEVTYPER(8), 3070 PMU_PMEVTYPER(9), 3071 PMU_PMEVTYPER(10), 3072 PMU_PMEVTYPER(11), 3073 PMU_PMEVTYPER(12), 3074 PMU_PMEVTYPER(13), 3075 PMU_PMEVTYPER(14), 3076 PMU_PMEVTYPER(15), 3077 PMU_PMEVTYPER(16), 3078 PMU_PMEVTYPER(17), 3079 PMU_PMEVTYPER(18), 3080 PMU_PMEVTYPER(19), 3081 PMU_PMEVTYPER(20), 3082 PMU_PMEVTYPER(21), 3083 PMU_PMEVTYPER(22), 3084 PMU_PMEVTYPER(23), 3085 PMU_PMEVTYPER(24), 3086 PMU_PMEVTYPER(25), 3087 PMU_PMEVTYPER(26), 3088 PMU_PMEVTYPER(27), 3089 PMU_PMEVTYPER(28), 3090 PMU_PMEVTYPER(29), 3091 PMU_PMEVTYPER(30), 3092 /* PMCCFILTR */ 3093 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, 3094 3095 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, 3096 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, 3097 3098 /* CCSIDR2 */ 3099 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access }, 3100 3101 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, 3102 }; 3103 3104 static const struct sys_reg_desc cp15_64_regs[] = { 3105 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, 3106 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, 3107 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ 3108 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer }, 3109 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, 3110 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ 3111 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ 3112 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, 3113 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer }, 3114 }; 3115 3116 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, 3117 bool is_32) 3118 { 3119 unsigned int i; 3120 3121 for (i = 0; i < n; i++) { 3122 if (!is_32 && table[i].reg && !table[i].reset) { 3123 kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n", 3124 &table[i], i, table[i].name); 3125 return false; 3126 } 3127 3128 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { 3129 kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n", 3130 &table[i], i, table[i - 1].name, table[i].name); 3131 return false; 3132 } 3133 } 3134 3135 return true; 3136 } 3137 3138 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) 3139 { 3140 kvm_inject_undefined(vcpu); 3141 return 1; 3142 } 3143 3144 static void perform_access(struct kvm_vcpu *vcpu, 3145 struct sys_reg_params *params, 3146 const struct sys_reg_desc *r) 3147 { 3148 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); 3149 3150 /* Check for regs disabled by runtime config */ 3151 if (sysreg_hidden(vcpu, r)) { 3152 kvm_inject_undefined(vcpu); 3153 return; 3154 } 3155 3156 /* 3157 * Not having an accessor means that we have configured a trap 3158 * that we don't know how to handle. This certainly qualifies 3159 * as a gross bug that should be fixed right away. 3160 */ 3161 BUG_ON(!r->access); 3162 3163 /* Skip instruction if instructed so */ 3164 if (likely(r->access(vcpu, params, r))) 3165 kvm_incr_pc(vcpu); 3166 } 3167 3168 /* 3169 * emulate_cp -- tries to match a sys_reg access in a handling table, and 3170 * call the corresponding trap handler. 3171 * 3172 * @params: pointer to the descriptor of the access 3173 * @table: array of trap descriptors 3174 * @num: size of the trap descriptor array 3175 * 3176 * Return true if the access has been handled, false if not. 3177 */ 3178 static bool emulate_cp(struct kvm_vcpu *vcpu, 3179 struct sys_reg_params *params, 3180 const struct sys_reg_desc *table, 3181 size_t num) 3182 { 3183 const struct sys_reg_desc *r; 3184 3185 if (!table) 3186 return false; /* Not handled */ 3187 3188 r = find_reg(params, table, num); 3189 3190 if (r) { 3191 perform_access(vcpu, params, r); 3192 return true; 3193 } 3194 3195 /* Not handled */ 3196 return false; 3197 } 3198 3199 static void unhandled_cp_access(struct kvm_vcpu *vcpu, 3200 struct sys_reg_params *params) 3201 { 3202 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); 3203 int cp = -1; 3204 3205 switch (esr_ec) { 3206 case ESR_ELx_EC_CP15_32: 3207 case ESR_ELx_EC_CP15_64: 3208 cp = 15; 3209 break; 3210 case ESR_ELx_EC_CP14_MR: 3211 case ESR_ELx_EC_CP14_64: 3212 cp = 14; 3213 break; 3214 default: 3215 WARN_ON(1); 3216 } 3217 3218 print_sys_reg_msg(params, 3219 "Unsupported guest CP%d access at: %08lx [%08lx]\n", 3220 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 3221 kvm_inject_undefined(vcpu); 3222 } 3223 3224 /** 3225 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access 3226 * @vcpu: The VCPU pointer 3227 * @global: &struct sys_reg_desc 3228 * @nr_global: size of the @global array 3229 */ 3230 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, 3231 const struct sys_reg_desc *global, 3232 size_t nr_global) 3233 { 3234 struct sys_reg_params params; 3235 u64 esr = kvm_vcpu_get_esr(vcpu); 3236 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3237 int Rt2 = (esr >> 10) & 0x1f; 3238 3239 params.CRm = (esr >> 1) & 0xf; 3240 params.is_write = ((esr & 1) == 0); 3241 3242 params.Op0 = 0; 3243 params.Op1 = (esr >> 16) & 0xf; 3244 params.Op2 = 0; 3245 params.CRn = 0; 3246 3247 /* 3248 * Make a 64-bit value out of Rt and Rt2. As we use the same trap 3249 * backends between AArch32 and AArch64, we get away with it. 3250 */ 3251 if (params.is_write) { 3252 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; 3253 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; 3254 } 3255 3256 /* 3257 * If the table contains a handler, handle the 3258 * potential register operation in the case of a read and return 3259 * with success. 3260 */ 3261 if (emulate_cp(vcpu, ¶ms, global, nr_global)) { 3262 /* Split up the value between registers for the read side */ 3263 if (!params.is_write) { 3264 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); 3265 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); 3266 } 3267 3268 return 1; 3269 } 3270 3271 unhandled_cp_access(vcpu, ¶ms); 3272 return 1; 3273 } 3274 3275 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); 3276 3277 /* 3278 * The CP10 ID registers are architecturally mapped to AArch64 feature 3279 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses 3280 * from AArch32. 3281 */ 3282 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) 3283 { 3284 u8 reg_id = (esr >> 10) & 0xf; 3285 bool valid; 3286 3287 params->is_write = ((esr & 1) == 0); 3288 params->Op0 = 3; 3289 params->Op1 = 0; 3290 params->CRn = 0; 3291 params->CRm = 3; 3292 3293 /* CP10 ID registers are read-only */ 3294 valid = !params->is_write; 3295 3296 switch (reg_id) { 3297 /* MVFR0 */ 3298 case 0b0111: 3299 params->Op2 = 0; 3300 break; 3301 /* MVFR1 */ 3302 case 0b0110: 3303 params->Op2 = 1; 3304 break; 3305 /* MVFR2 */ 3306 case 0b0101: 3307 params->Op2 = 2; 3308 break; 3309 default: 3310 valid = false; 3311 } 3312 3313 if (valid) 3314 return true; 3315 3316 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", 3317 params->is_write ? "write" : "read", reg_id); 3318 return false; 3319 } 3320 3321 /** 3322 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and 3323 * VFP Register' from AArch32. 3324 * @vcpu: The vCPU pointer 3325 * 3326 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. 3327 * Work out the correct AArch64 system register encoding and reroute to the 3328 * AArch64 system register emulation. 3329 */ 3330 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) 3331 { 3332 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3333 u64 esr = kvm_vcpu_get_esr(vcpu); 3334 struct sys_reg_params params; 3335 3336 /* UNDEF on any unhandled register access */ 3337 if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { 3338 kvm_inject_undefined(vcpu); 3339 return 1; 3340 } 3341 3342 if (emulate_sys_reg(vcpu, ¶ms)) 3343 vcpu_set_reg(vcpu, Rt, params.regval); 3344 3345 return 1; 3346 } 3347 3348 /** 3349 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where 3350 * CRn=0, which corresponds to the AArch32 feature 3351 * registers. 3352 * @vcpu: the vCPU pointer 3353 * @params: the system register access parameters. 3354 * 3355 * Our cp15 system register tables do not enumerate the AArch32 feature 3356 * registers. Conveniently, our AArch64 table does, and the AArch32 system 3357 * register encoding can be trivially remapped into the AArch64 for the feature 3358 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. 3359 * 3360 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit 3361 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this 3362 * range are either UNKNOWN or RES0. Rerouting remains architectural as we 3363 * treat undefined registers in this range as RAZ. 3364 */ 3365 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, 3366 struct sys_reg_params *params) 3367 { 3368 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3369 3370 /* Treat impossible writes to RO registers as UNDEFINED */ 3371 if (params->is_write) { 3372 unhandled_cp_access(vcpu, params); 3373 return 1; 3374 } 3375 3376 params->Op0 = 3; 3377 3378 /* 3379 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. 3380 * Avoid conflicting with future expansion of AArch64 feature registers 3381 * and simply treat them as RAZ here. 3382 */ 3383 if (params->CRm > 3) 3384 params->regval = 0; 3385 else if (!emulate_sys_reg(vcpu, params)) 3386 return 1; 3387 3388 vcpu_set_reg(vcpu, Rt, params->regval); 3389 return 1; 3390 } 3391 3392 /** 3393 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access 3394 * @vcpu: The VCPU pointer 3395 * @params: &struct sys_reg_params 3396 * @global: &struct sys_reg_desc 3397 * @nr_global: size of the @global array 3398 */ 3399 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, 3400 struct sys_reg_params *params, 3401 const struct sys_reg_desc *global, 3402 size_t nr_global) 3403 { 3404 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3405 3406 params->regval = vcpu_get_reg(vcpu, Rt); 3407 3408 if (emulate_cp(vcpu, params, global, nr_global)) { 3409 if (!params->is_write) 3410 vcpu_set_reg(vcpu, Rt, params->regval); 3411 return 1; 3412 } 3413 3414 unhandled_cp_access(vcpu, params); 3415 return 1; 3416 } 3417 3418 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) 3419 { 3420 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); 3421 } 3422 3423 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) 3424 { 3425 struct sys_reg_params params; 3426 3427 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 3428 3429 /* 3430 * Certain AArch32 ID registers are handled by rerouting to the AArch64 3431 * system register table. Registers in the ID range where CRm=0 are 3432 * excluded from this scheme as they do not trivially map into AArch64 3433 * system register encodings. 3434 */ 3435 if (params.Op1 == 0 && params.CRn == 0 && params.CRm) 3436 return kvm_emulate_cp15_id_reg(vcpu, ¶ms); 3437 3438 return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); 3439 } 3440 3441 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) 3442 { 3443 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); 3444 } 3445 3446 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) 3447 { 3448 struct sys_reg_params params; 3449 3450 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); 3451 3452 return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); 3453 } 3454 3455 /** 3456 * emulate_sys_reg - Emulate a guest access to an AArch64 system register 3457 * @vcpu: The VCPU pointer 3458 * @params: Decoded system register parameters 3459 * 3460 * Return: true if the system register access was successful, false otherwise. 3461 */ 3462 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, 3463 struct sys_reg_params *params) 3464 { 3465 const struct sys_reg_desc *r; 3466 3467 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3468 if (likely(r)) { 3469 perform_access(vcpu, params, r); 3470 return true; 3471 } 3472 3473 print_sys_reg_msg(params, 3474 "Unsupported guest sys_reg access at: %lx [%08lx]\n", 3475 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); 3476 kvm_inject_undefined(vcpu); 3477 3478 return false; 3479 } 3480 3481 static void *idregs_debug_start(struct seq_file *s, loff_t *pos) 3482 { 3483 struct kvm *kvm = s->private; 3484 u8 *iter; 3485 3486 mutex_lock(&kvm->arch.config_lock); 3487 3488 iter = &kvm->arch.idreg_debugfs_iter; 3489 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) && 3490 *iter == (u8)~0) { 3491 *iter = *pos; 3492 if (*iter >= KVM_ARM_ID_REG_NUM) 3493 iter = NULL; 3494 } else { 3495 iter = ERR_PTR(-EBUSY); 3496 } 3497 3498 mutex_unlock(&kvm->arch.config_lock); 3499 3500 return iter; 3501 } 3502 3503 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos) 3504 { 3505 struct kvm *kvm = s->private; 3506 3507 (*pos)++; 3508 3509 if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) { 3510 kvm->arch.idreg_debugfs_iter++; 3511 3512 return &kvm->arch.idreg_debugfs_iter; 3513 } 3514 3515 return NULL; 3516 } 3517 3518 static void idregs_debug_stop(struct seq_file *s, void *v) 3519 { 3520 struct kvm *kvm = s->private; 3521 3522 if (IS_ERR(v)) 3523 return; 3524 3525 mutex_lock(&kvm->arch.config_lock); 3526 3527 kvm->arch.idreg_debugfs_iter = ~0; 3528 3529 mutex_unlock(&kvm->arch.config_lock); 3530 } 3531 3532 static int idregs_debug_show(struct seq_file *s, void *v) 3533 { 3534 struct kvm *kvm = s->private; 3535 const struct sys_reg_desc *desc; 3536 3537 desc = first_idreg + kvm->arch.idreg_debugfs_iter; 3538 3539 if (!desc->name) 3540 return 0; 3541 3542 seq_printf(s, "%20s:\t%016llx\n", 3543 desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter))); 3544 3545 return 0; 3546 } 3547 3548 static const struct seq_operations idregs_debug_sops = { 3549 .start = idregs_debug_start, 3550 .next = idregs_debug_next, 3551 .stop = idregs_debug_stop, 3552 .show = idregs_debug_show, 3553 }; 3554 3555 DEFINE_SEQ_ATTRIBUTE(idregs_debug); 3556 3557 void kvm_sys_regs_create_debugfs(struct kvm *kvm) 3558 { 3559 kvm->arch.idreg_debugfs_iter = ~0; 3560 3561 debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm, 3562 &idregs_debug_fops); 3563 } 3564 3565 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg) 3566 { 3567 u32 id = reg_to_encoding(reg); 3568 struct kvm *kvm = vcpu->kvm; 3569 3570 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags)) 3571 return; 3572 3573 lockdep_assert_held(&kvm->arch.config_lock); 3574 IDREG(kvm, id) = reg->reset(vcpu, reg); 3575 } 3576 3577 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu, 3578 const struct sys_reg_desc *reg) 3579 { 3580 if (kvm_vcpu_initialized(vcpu)) 3581 return; 3582 3583 reg->reset(vcpu, reg); 3584 } 3585 3586 /** 3587 * kvm_reset_sys_regs - sets system registers to reset value 3588 * @vcpu: The VCPU pointer 3589 * 3590 * This function finds the right table above and sets the registers on the 3591 * virtual CPU struct to their architecturally defined reset values. 3592 */ 3593 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) 3594 { 3595 struct kvm *kvm = vcpu->kvm; 3596 unsigned long i; 3597 3598 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { 3599 const struct sys_reg_desc *r = &sys_reg_descs[i]; 3600 3601 if (!r->reset) 3602 continue; 3603 3604 if (is_vm_ftr_id_reg(reg_to_encoding(r))) 3605 reset_vm_ftr_id_reg(vcpu, r); 3606 else if (is_vcpu_ftr_id_reg(reg_to_encoding(r))) 3607 reset_vcpu_ftr_id_reg(vcpu, r); 3608 else 3609 r->reset(vcpu, r); 3610 } 3611 3612 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags); 3613 } 3614 3615 /** 3616 * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction 3617 * trap on a guest execution 3618 * @vcpu: The VCPU pointer 3619 */ 3620 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) 3621 { 3622 const struct sys_reg_desc *desc = NULL; 3623 struct sys_reg_params params; 3624 unsigned long esr = kvm_vcpu_get_esr(vcpu); 3625 int Rt = kvm_vcpu_sys_get_rt(vcpu); 3626 int sr_idx; 3627 3628 trace_kvm_handle_sys_reg(esr); 3629 3630 if (triage_sysreg_trap(vcpu, &sr_idx)) 3631 return 1; 3632 3633 params = esr_sys64_to_params(esr); 3634 params.regval = vcpu_get_reg(vcpu, Rt); 3635 3636 /* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */ 3637 if (params.Op0 == 2 || params.Op0 == 3) 3638 desc = &sys_reg_descs[sr_idx]; 3639 else 3640 desc = &sys_insn_descs[sr_idx]; 3641 3642 perform_access(vcpu, ¶ms, desc); 3643 3644 /* Read from system register? */ 3645 if (!params.is_write && 3646 (params.Op0 == 2 || params.Op0 == 3)) 3647 vcpu_set_reg(vcpu, Rt, params.regval); 3648 3649 return 1; 3650 } 3651 3652 /****************************************************************************** 3653 * Userspace API 3654 *****************************************************************************/ 3655 3656 static bool index_to_params(u64 id, struct sys_reg_params *params) 3657 { 3658 switch (id & KVM_REG_SIZE_MASK) { 3659 case KVM_REG_SIZE_U64: 3660 /* Any unused index bits means it's not valid. */ 3661 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK 3662 | KVM_REG_ARM_COPROC_MASK 3663 | KVM_REG_ARM64_SYSREG_OP0_MASK 3664 | KVM_REG_ARM64_SYSREG_OP1_MASK 3665 | KVM_REG_ARM64_SYSREG_CRN_MASK 3666 | KVM_REG_ARM64_SYSREG_CRM_MASK 3667 | KVM_REG_ARM64_SYSREG_OP2_MASK)) 3668 return false; 3669 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) 3670 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); 3671 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) 3672 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); 3673 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) 3674 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); 3675 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) 3676 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); 3677 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) 3678 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); 3679 return true; 3680 default: 3681 return false; 3682 } 3683 } 3684 3685 const struct sys_reg_desc *get_reg_by_id(u64 id, 3686 const struct sys_reg_desc table[], 3687 unsigned int num) 3688 { 3689 struct sys_reg_params params; 3690 3691 if (!index_to_params(id, ¶ms)) 3692 return NULL; 3693 3694 return find_reg(¶ms, table, num); 3695 } 3696 3697 /* Decode an index value, and find the sys_reg_desc entry. */ 3698 static const struct sys_reg_desc * 3699 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, 3700 const struct sys_reg_desc table[], unsigned int num) 3701 3702 { 3703 const struct sys_reg_desc *r; 3704 3705 /* We only do sys_reg for now. */ 3706 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) 3707 return NULL; 3708 3709 r = get_reg_by_id(id, table, num); 3710 3711 /* Not saved in the sys_reg array and not otherwise accessible? */ 3712 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) 3713 r = NULL; 3714 3715 return r; 3716 } 3717 3718 /* 3719 * These are the invariant sys_reg registers: we let the guest see the 3720 * host versions of these, so they're part of the guest state. 3721 * 3722 * A future CPU may provide a mechanism to present different values to 3723 * the guest, or a future kvm may trap them. 3724 */ 3725 3726 #define FUNCTION_INVARIANT(reg) \ 3727 static u64 get_##reg(struct kvm_vcpu *v, \ 3728 const struct sys_reg_desc *r) \ 3729 { \ 3730 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ 3731 return ((struct sys_reg_desc *)r)->val; \ 3732 } 3733 3734 FUNCTION_INVARIANT(midr_el1) 3735 FUNCTION_INVARIANT(revidr_el1) 3736 FUNCTION_INVARIANT(aidr_el1) 3737 3738 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) 3739 { 3740 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); 3741 return ((struct sys_reg_desc *)r)->val; 3742 } 3743 3744 /* ->val is filled in by kvm_sys_reg_table_init() */ 3745 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = { 3746 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, 3747 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, 3748 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, 3749 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, 3750 }; 3751 3752 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) 3753 { 3754 const struct sys_reg_desc *r; 3755 3756 r = get_reg_by_id(id, invariant_sys_regs, 3757 ARRAY_SIZE(invariant_sys_regs)); 3758 if (!r) 3759 return -ENOENT; 3760 3761 return put_user(r->val, uaddr); 3762 } 3763 3764 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) 3765 { 3766 const struct sys_reg_desc *r; 3767 u64 val; 3768 3769 r = get_reg_by_id(id, invariant_sys_regs, 3770 ARRAY_SIZE(invariant_sys_regs)); 3771 if (!r) 3772 return -ENOENT; 3773 3774 if (get_user(val, uaddr)) 3775 return -EFAULT; 3776 3777 /* This is what we mean by invariant: you can't change it. */ 3778 if (r->val != val) 3779 return -EINVAL; 3780 3781 return 0; 3782 } 3783 3784 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) 3785 { 3786 u32 val; 3787 u32 __user *uval = uaddr; 3788 3789 /* Fail if we have unknown bits set. */ 3790 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 3791 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 3792 return -ENOENT; 3793 3794 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 3795 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 3796 if (KVM_REG_SIZE(id) != 4) 3797 return -ENOENT; 3798 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 3799 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 3800 if (val >= CSSELR_MAX) 3801 return -ENOENT; 3802 3803 return put_user(get_ccsidr(vcpu, val), uval); 3804 default: 3805 return -ENOENT; 3806 } 3807 } 3808 3809 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr) 3810 { 3811 u32 val, newval; 3812 u32 __user *uval = uaddr; 3813 3814 /* Fail if we have unknown bits set. */ 3815 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK 3816 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) 3817 return -ENOENT; 3818 3819 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { 3820 case KVM_REG_ARM_DEMUX_ID_CCSIDR: 3821 if (KVM_REG_SIZE(id) != 4) 3822 return -ENOENT; 3823 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) 3824 >> KVM_REG_ARM_DEMUX_VAL_SHIFT; 3825 if (val >= CSSELR_MAX) 3826 return -ENOENT; 3827 3828 if (get_user(newval, uval)) 3829 return -EFAULT; 3830 3831 return set_ccsidr(vcpu, val, newval); 3832 default: 3833 return -ENOENT; 3834 } 3835 } 3836 3837 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 3838 const struct sys_reg_desc table[], unsigned int num) 3839 { 3840 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 3841 const struct sys_reg_desc *r; 3842 u64 val; 3843 int ret; 3844 3845 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 3846 if (!r || sysreg_hidden_user(vcpu, r)) 3847 return -ENOENT; 3848 3849 if (r->get_user) { 3850 ret = (r->get_user)(vcpu, r, &val); 3851 } else { 3852 val = __vcpu_sys_reg(vcpu, r->reg); 3853 ret = 0; 3854 } 3855 3856 if (!ret) 3857 ret = put_user(val, uaddr); 3858 3859 return ret; 3860 } 3861 3862 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 3863 { 3864 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 3865 int err; 3866 3867 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 3868 return demux_c15_get(vcpu, reg->id, uaddr); 3869 3870 err = get_invariant_sys_reg(reg->id, uaddr); 3871 if (err != -ENOENT) 3872 return err; 3873 3874 return kvm_sys_reg_get_user(vcpu, reg, 3875 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3876 } 3877 3878 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, 3879 const struct sys_reg_desc table[], unsigned int num) 3880 { 3881 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; 3882 const struct sys_reg_desc *r; 3883 u64 val; 3884 int ret; 3885 3886 if (get_user(val, uaddr)) 3887 return -EFAULT; 3888 3889 r = id_to_sys_reg_desc(vcpu, reg->id, table, num); 3890 if (!r || sysreg_hidden_user(vcpu, r)) 3891 return -ENOENT; 3892 3893 if (sysreg_user_write_ignore(vcpu, r)) 3894 return 0; 3895 3896 if (r->set_user) { 3897 ret = (r->set_user)(vcpu, r, val); 3898 } else { 3899 __vcpu_sys_reg(vcpu, r->reg) = val; 3900 ret = 0; 3901 } 3902 3903 return ret; 3904 } 3905 3906 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 3907 { 3908 void __user *uaddr = (void __user *)(unsigned long)reg->addr; 3909 int err; 3910 3911 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) 3912 return demux_c15_set(vcpu, reg->id, uaddr); 3913 3914 err = set_invariant_sys_reg(reg->id, uaddr); 3915 if (err != -ENOENT) 3916 return err; 3917 3918 return kvm_sys_reg_set_user(vcpu, reg, 3919 sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 3920 } 3921 3922 static unsigned int num_demux_regs(void) 3923 { 3924 return CSSELR_MAX; 3925 } 3926 3927 static int write_demux_regids(u64 __user *uindices) 3928 { 3929 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; 3930 unsigned int i; 3931 3932 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; 3933 for (i = 0; i < CSSELR_MAX; i++) { 3934 if (put_user(val | i, uindices)) 3935 return -EFAULT; 3936 uindices++; 3937 } 3938 return 0; 3939 } 3940 3941 static u64 sys_reg_to_index(const struct sys_reg_desc *reg) 3942 { 3943 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | 3944 KVM_REG_ARM64_SYSREG | 3945 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | 3946 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | 3947 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | 3948 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | 3949 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); 3950 } 3951 3952 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) 3953 { 3954 if (!*uind) 3955 return true; 3956 3957 if (put_user(sys_reg_to_index(reg), *uind)) 3958 return false; 3959 3960 (*uind)++; 3961 return true; 3962 } 3963 3964 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, 3965 const struct sys_reg_desc *rd, 3966 u64 __user **uind, 3967 unsigned int *total) 3968 { 3969 /* 3970 * Ignore registers we trap but don't save, 3971 * and for which no custom user accessor is provided. 3972 */ 3973 if (!(rd->reg || rd->get_user)) 3974 return 0; 3975 3976 if (sysreg_hidden_user(vcpu, rd)) 3977 return 0; 3978 3979 if (!copy_reg_to_user(rd, uind)) 3980 return -EFAULT; 3981 3982 (*total)++; 3983 return 0; 3984 } 3985 3986 /* Assumed ordered tables, see kvm_sys_reg_table_init. */ 3987 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) 3988 { 3989 const struct sys_reg_desc *i2, *end2; 3990 unsigned int total = 0; 3991 int err; 3992 3993 i2 = sys_reg_descs; 3994 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); 3995 3996 while (i2 != end2) { 3997 err = walk_one_sys_reg(vcpu, i2++, &uind, &total); 3998 if (err) 3999 return err; 4000 } 4001 return total; 4002 } 4003 4004 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) 4005 { 4006 return ARRAY_SIZE(invariant_sys_regs) 4007 + num_demux_regs() 4008 + walk_sys_regs(vcpu, (u64 __user *)NULL); 4009 } 4010 4011 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 4012 { 4013 unsigned int i; 4014 int err; 4015 4016 /* Then give them all the invariant registers' indices. */ 4017 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { 4018 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) 4019 return -EFAULT; 4020 uindices++; 4021 } 4022 4023 err = walk_sys_regs(vcpu, uindices); 4024 if (err < 0) 4025 return err; 4026 uindices += err; 4027 4028 return write_demux_regids(uindices); 4029 } 4030 4031 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r) \ 4032 KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r), \ 4033 sys_reg_Op1(r), \ 4034 sys_reg_CRn(r), \ 4035 sys_reg_CRm(r), \ 4036 sys_reg_Op2(r)) 4037 4038 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range) 4039 { 4040 const void *zero_page = page_to_virt(ZERO_PAGE(0)); 4041 u64 __user *masks = (u64 __user *)range->addr; 4042 4043 /* Only feature id range is supported, reserved[13] must be zero. */ 4044 if (range->range || 4045 memcmp(range->reserved, zero_page, sizeof(range->reserved))) 4046 return -EINVAL; 4047 4048 /* Wipe the whole thing first */ 4049 if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64))) 4050 return -EFAULT; 4051 4052 for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) { 4053 const struct sys_reg_desc *reg = &sys_reg_descs[i]; 4054 u32 encoding = reg_to_encoding(reg); 4055 u64 val; 4056 4057 if (!is_feature_id_reg(encoding) || !reg->set_user) 4058 continue; 4059 4060 /* 4061 * For ID registers, we return the writable mask. Other feature 4062 * registers return a full 64bit mask. That's not necessary 4063 * compliant with a given revision of the architecture, but the 4064 * RES0/RES1 definitions allow us to do that. 4065 */ 4066 if (is_vm_ftr_id_reg(encoding)) { 4067 if (!reg->val || 4068 (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) 4069 continue; 4070 val = reg->val; 4071 } else { 4072 val = ~0UL; 4073 } 4074 4075 if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding)))) 4076 return -EFAULT; 4077 } 4078 4079 return 0; 4080 } 4081 4082 void kvm_init_sysreg(struct kvm_vcpu *vcpu) 4083 { 4084 struct kvm *kvm = vcpu->kvm; 4085 4086 mutex_lock(&kvm->arch.config_lock); 4087 4088 /* 4089 * In the absence of FGT, we cannot independently trap TLBI 4090 * Range instructions. This isn't great, but trapping all 4091 * TLBIs would be far worse. Live with it... 4092 */ 4093 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) 4094 vcpu->arch.hcr_el2 |= HCR_TTLBOS; 4095 4096 if (cpus_have_final_cap(ARM64_HAS_HCX)) { 4097 vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS; 4098 4099 if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) 4100 vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); 4101 } 4102 4103 if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags)) 4104 goto out; 4105 4106 kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1 | 4107 HFGxTR_EL2_nMAIR2_EL1 | 4108 HFGxTR_EL2_nS2POR_EL1 | 4109 HFGxTR_EL2_nPOR_EL1 | 4110 HFGxTR_EL2_nPOR_EL0 | 4111 HFGxTR_EL2_nACCDATA_EL1 | 4112 HFGxTR_EL2_nSMPRI_EL1_MASK | 4113 HFGxTR_EL2_nTPIDR2_EL0_MASK); 4114 4115 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) 4116 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS| 4117 HFGITR_EL2_TLBIRVALE1OS | 4118 HFGITR_EL2_TLBIRVAAE1OS | 4119 HFGITR_EL2_TLBIRVAE1OS | 4120 HFGITR_EL2_TLBIVAALE1OS | 4121 HFGITR_EL2_TLBIVALE1OS | 4122 HFGITR_EL2_TLBIVAAE1OS | 4123 HFGITR_EL2_TLBIASIDE1OS | 4124 HFGITR_EL2_TLBIVAE1OS | 4125 HFGITR_EL2_TLBIVMALLE1OS); 4126 4127 if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) 4128 kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1 | 4129 HFGITR_EL2_TLBIRVALE1 | 4130 HFGITR_EL2_TLBIRVAAE1 | 4131 HFGITR_EL2_TLBIRVAE1 | 4132 HFGITR_EL2_TLBIRVAALE1IS| 4133 HFGITR_EL2_TLBIRVALE1IS | 4134 HFGITR_EL2_TLBIRVAAE1IS | 4135 HFGITR_EL2_TLBIRVAE1IS | 4136 HFGITR_EL2_TLBIRVAALE1OS| 4137 HFGITR_EL2_TLBIRVALE1OS | 4138 HFGITR_EL2_TLBIRVAAE1OS | 4139 HFGITR_EL2_TLBIRVAE1OS); 4140 4141 if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) 4142 kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | 4143 HFGxTR_EL2_nPIR_EL1); 4144 4145 if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP)) 4146 kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 | 4147 HAFGRTR_EL2_RES1); 4148 4149 set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags); 4150 out: 4151 mutex_unlock(&kvm->arch.config_lock); 4152 } 4153 4154 int __init kvm_sys_reg_table_init(void) 4155 { 4156 struct sys_reg_params params; 4157 bool valid = true; 4158 unsigned int i; 4159 int ret = 0; 4160 4161 /* Make sure tables are unique and in order. */ 4162 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); 4163 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); 4164 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); 4165 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); 4166 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); 4167 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); 4168 valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false); 4169 4170 if (!valid) 4171 return -EINVAL; 4172 4173 /* We abuse the reset function to overwrite the table itself. */ 4174 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) 4175 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); 4176 4177 /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */ 4178 params = encoding_to_params(SYS_ID_PFR0_EL1); 4179 first_idreg = find_reg(¶ms, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); 4180 if (!first_idreg) 4181 return -EINVAL; 4182 4183 ret = populate_nv_trap_config(); 4184 4185 for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++) 4186 ret = populate_sysreg_config(sys_reg_descs + i, i); 4187 4188 for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++) 4189 ret = populate_sysreg_config(sys_insn_descs + i, i); 4190 4191 return ret; 4192 } 4193