xref: /linux/arch/arm64/kvm/sys_regs.c (revision 1785f020b1124c37f59f3d92b7d45ba1d707ee91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/esr.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/perf_event.h>
31 #include <asm/sysreg.h>
32 
33 #include <trace/events/kvm.h>
34 
35 #include "sys_regs.h"
36 
37 #include "trace.h"
38 
39 /*
40  * For AArch32, we only take care of what is being trapped. Anything
41  * that has to do with init and userspace access has to go via the
42  * 64bit interface.
43  */
44 
45 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
46 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
47 		      u64 val);
48 
49 static bool bad_trap(struct kvm_vcpu *vcpu,
50 		     struct sys_reg_params *params,
51 		     const struct sys_reg_desc *r,
52 		     const char *msg)
53 {
54 	WARN_ONCE(1, "Unexpected %s\n", msg);
55 	print_sys_reg_instr(params);
56 	kvm_inject_undefined(vcpu);
57 	return false;
58 }
59 
60 static bool read_from_write_only(struct kvm_vcpu *vcpu,
61 				 struct sys_reg_params *params,
62 				 const struct sys_reg_desc *r)
63 {
64 	return bad_trap(vcpu, params, r,
65 			"sys_reg read to write-only register");
66 }
67 
68 static bool write_to_read_only(struct kvm_vcpu *vcpu,
69 			       struct sys_reg_params *params,
70 			       const struct sys_reg_desc *r)
71 {
72 	return bad_trap(vcpu, params, r,
73 			"sys_reg write to read-only register");
74 }
75 
76 #define PURE_EL2_SYSREG(el2)						\
77 	case el2: {							\
78 		*el1r = el2;						\
79 		return true;						\
80 	}
81 
82 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
83 	case el2: {							\
84 		*xlate = fn;						\
85 		*el1r = el1;						\
86 		return true;						\
87 	}
88 
89 static bool get_el2_to_el1_mapping(unsigned int reg,
90 				   unsigned int *el1r, u64 (**xlate)(u64))
91 {
92 	switch (reg) {
93 		PURE_EL2_SYSREG(  VPIDR_EL2	);
94 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
95 		PURE_EL2_SYSREG(  ACTLR_EL2	);
96 		PURE_EL2_SYSREG(  HCR_EL2	);
97 		PURE_EL2_SYSREG(  MDCR_EL2	);
98 		PURE_EL2_SYSREG(  HSTR_EL2	);
99 		PURE_EL2_SYSREG(  HACR_EL2	);
100 		PURE_EL2_SYSREG(  VTTBR_EL2	);
101 		PURE_EL2_SYSREG(  VTCR_EL2	);
102 		PURE_EL2_SYSREG(  RVBAR_EL2	);
103 		PURE_EL2_SYSREG(  TPIDR_EL2	);
104 		PURE_EL2_SYSREG(  HPFAR_EL2	);
105 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
106 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
107 				  translate_sctlr_el2_to_sctlr_el1	     );
108 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
109 				  translate_cptr_el2_to_cpacr_el1	     );
110 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
111 				  translate_ttbr0_el2_to_ttbr0_el1	     );
112 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
113 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
114 				  translate_tcr_el2_to_tcr_el1		     );
115 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
116 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
117 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
118 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
119 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
120 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
121 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
122 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
123 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
124 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
125 	default:
126 		return false;
127 	}
128 }
129 
130 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
131 {
132 	u64 val = 0x8badf00d8badf00d;
133 	u64 (*xlate)(u64) = NULL;
134 	unsigned int el1r;
135 
136 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
137 		goto memory_read;
138 
139 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
140 		if (!is_hyp_ctxt(vcpu))
141 			goto memory_read;
142 
143 		/*
144 		 * If this register does not have an EL1 counterpart,
145 		 * then read the stored EL2 version.
146 		 */
147 		if (reg == el1r)
148 			goto memory_read;
149 
150 		/*
151 		 * If we have a non-VHE guest and that the sysreg
152 		 * requires translation to be used at EL1, use the
153 		 * in-memory copy instead.
154 		 */
155 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
156 			goto memory_read;
157 
158 		/* Get the current version of the EL1 counterpart. */
159 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
160 		return val;
161 	}
162 
163 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
164 	if (unlikely(is_hyp_ctxt(vcpu)))
165 		goto memory_read;
166 
167 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
168 		return val;
169 
170 memory_read:
171 	return __vcpu_sys_reg(vcpu, reg);
172 }
173 
174 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
175 {
176 	u64 (*xlate)(u64) = NULL;
177 	unsigned int el1r;
178 
179 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
180 		goto memory_write;
181 
182 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
183 		if (!is_hyp_ctxt(vcpu))
184 			goto memory_write;
185 
186 		/*
187 		 * Always store a copy of the write to memory to avoid having
188 		 * to reverse-translate virtual EL2 system registers for a
189 		 * non-VHE guest hypervisor.
190 		 */
191 		__vcpu_sys_reg(vcpu, reg) = val;
192 
193 		/* No EL1 counterpart? We're done here.? */
194 		if (reg == el1r)
195 			return;
196 
197 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
198 			val = xlate(val);
199 
200 		/* Redirect this to the EL1 version of the register. */
201 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
202 		return;
203 	}
204 
205 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
206 	if (unlikely(is_hyp_ctxt(vcpu)))
207 		goto memory_write;
208 
209 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
210 		return;
211 
212 memory_write:
213 	 __vcpu_sys_reg(vcpu, reg) = val;
214 }
215 
216 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
217 #define CSSELR_MAX 14
218 
219 /*
220  * Returns the minimum line size for the selected cache, expressed as
221  * Log2(bytes).
222  */
223 static u8 get_min_cache_line_size(bool icache)
224 {
225 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
226 	u8 field;
227 
228 	if (icache)
229 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
230 	else
231 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
232 
233 	/*
234 	 * Cache line size is represented as Log2(words) in CTR_EL0.
235 	 * Log2(bytes) can be derived with the following:
236 	 *
237 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
238 	 * 		   = Log2(bytes) - 2 + 2
239 	 * 		   = Log2(bytes)
240 	 */
241 	return field + 2;
242 }
243 
244 /* Which cache CCSIDR represents depends on CSSELR value. */
245 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
246 {
247 	u8 line_size;
248 
249 	if (vcpu->arch.ccsidr)
250 		return vcpu->arch.ccsidr[csselr];
251 
252 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
253 
254 	/*
255 	 * Fabricate a CCSIDR value as the overriding value does not exist.
256 	 * The real CCSIDR value will not be used as it can vary by the
257 	 * physical CPU which the vcpu currently resides in.
258 	 *
259 	 * The line size is determined with get_min_cache_line_size(), which
260 	 * should be valid for all CPUs even if they have different cache
261 	 * configuration.
262 	 *
263 	 * The associativity bits are cleared, meaning the geometry of all data
264 	 * and unified caches (which are guaranteed to be PIPT and thus
265 	 * non-aliasing) are 1 set and 1 way.
266 	 * Guests should not be doing cache operations by set/way at all, and
267 	 * for this reason, we trap them and attempt to infer the intent, so
268 	 * that we can flush the entire guest's address space at the appropriate
269 	 * time. The exposed geometry minimizes the number of the traps.
270 	 * [If guests should attempt to infer aliasing properties from the
271 	 * geometry (which is not permitted by the architecture), they would
272 	 * only do so for virtually indexed caches.]
273 	 *
274 	 * We don't check if the cache level exists as it is allowed to return
275 	 * an UNKNOWN value if not.
276 	 */
277 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
278 }
279 
280 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
281 {
282 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
283 	u32 *ccsidr = vcpu->arch.ccsidr;
284 	u32 i;
285 
286 	if ((val & CCSIDR_EL1_RES0) ||
287 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
288 		return -EINVAL;
289 
290 	if (!ccsidr) {
291 		if (val == get_ccsidr(vcpu, csselr))
292 			return 0;
293 
294 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
295 		if (!ccsidr)
296 			return -ENOMEM;
297 
298 		for (i = 0; i < CSSELR_MAX; i++)
299 			ccsidr[i] = get_ccsidr(vcpu, i);
300 
301 		vcpu->arch.ccsidr = ccsidr;
302 	}
303 
304 	ccsidr[csselr] = val;
305 
306 	return 0;
307 }
308 
309 static bool access_rw(struct kvm_vcpu *vcpu,
310 		      struct sys_reg_params *p,
311 		      const struct sys_reg_desc *r)
312 {
313 	if (p->is_write)
314 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
315 	else
316 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
317 
318 	return true;
319 }
320 
321 /*
322  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
323  */
324 static bool access_dcsw(struct kvm_vcpu *vcpu,
325 			struct sys_reg_params *p,
326 			const struct sys_reg_desc *r)
327 {
328 	if (!p->is_write)
329 		return read_from_write_only(vcpu, p, r);
330 
331 	/*
332 	 * Only track S/W ops if we don't have FWB. It still indicates
333 	 * that the guest is a bit broken (S/W operations should only
334 	 * be done by firmware, knowing that there is only a single
335 	 * CPU left in the system, and certainly not from non-secure
336 	 * software).
337 	 */
338 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
339 		kvm_set_way_flush(vcpu);
340 
341 	return true;
342 }
343 
344 static bool access_dcgsw(struct kvm_vcpu *vcpu,
345 			 struct sys_reg_params *p,
346 			 const struct sys_reg_desc *r)
347 {
348 	if (!kvm_has_mte(vcpu->kvm)) {
349 		kvm_inject_undefined(vcpu);
350 		return false;
351 	}
352 
353 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
354 	return access_dcsw(vcpu, p, r);
355 }
356 
357 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
358 {
359 	switch (r->aarch32_map) {
360 	case AA32_LO:
361 		*mask = GENMASK_ULL(31, 0);
362 		*shift = 0;
363 		break;
364 	case AA32_HI:
365 		*mask = GENMASK_ULL(63, 32);
366 		*shift = 32;
367 		break;
368 	default:
369 		*mask = GENMASK_ULL(63, 0);
370 		*shift = 0;
371 		break;
372 	}
373 }
374 
375 /*
376  * Generic accessor for VM registers. Only called as long as HCR_TVM
377  * is set. If the guest enables the MMU, we stop trapping the VM
378  * sys_regs and leave it in complete control of the caches.
379  */
380 static bool access_vm_reg(struct kvm_vcpu *vcpu,
381 			  struct sys_reg_params *p,
382 			  const struct sys_reg_desc *r)
383 {
384 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
385 	u64 val, mask, shift;
386 
387 	BUG_ON(!p->is_write);
388 
389 	get_access_mask(r, &mask, &shift);
390 
391 	if (~mask) {
392 		val = vcpu_read_sys_reg(vcpu, r->reg);
393 		val &= ~mask;
394 	} else {
395 		val = 0;
396 	}
397 
398 	val |= (p->regval & (mask >> shift)) << shift;
399 	vcpu_write_sys_reg(vcpu, val, r->reg);
400 
401 	kvm_toggle_cache(vcpu, was_enabled);
402 	return true;
403 }
404 
405 static bool access_actlr(struct kvm_vcpu *vcpu,
406 			 struct sys_reg_params *p,
407 			 const struct sys_reg_desc *r)
408 {
409 	u64 mask, shift;
410 
411 	if (p->is_write)
412 		return ignore_write(vcpu, p);
413 
414 	get_access_mask(r, &mask, &shift);
415 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
416 
417 	return true;
418 }
419 
420 /*
421  * Trap handler for the GICv3 SGI generation system register.
422  * Forward the request to the VGIC emulation.
423  * The cp15_64 code makes sure this automatically works
424  * for both AArch64 and AArch32 accesses.
425  */
426 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
427 			   struct sys_reg_params *p,
428 			   const struct sys_reg_desc *r)
429 {
430 	bool g1;
431 
432 	if (!p->is_write)
433 		return read_from_write_only(vcpu, p, r);
434 
435 	/*
436 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
437 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
438 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
439 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
440 	 * group.
441 	 */
442 	if (p->Op0 == 0) {		/* AArch32 */
443 		switch (p->Op1) {
444 		default:		/* Keep GCC quiet */
445 		case 0:			/* ICC_SGI1R */
446 			g1 = true;
447 			break;
448 		case 1:			/* ICC_ASGI1R */
449 		case 2:			/* ICC_SGI0R */
450 			g1 = false;
451 			break;
452 		}
453 	} else {			/* AArch64 */
454 		switch (p->Op2) {
455 		default:		/* Keep GCC quiet */
456 		case 5:			/* ICC_SGI1R_EL1 */
457 			g1 = true;
458 			break;
459 		case 6:			/* ICC_ASGI1R_EL1 */
460 		case 7:			/* ICC_SGI0R_EL1 */
461 			g1 = false;
462 			break;
463 		}
464 	}
465 
466 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
467 
468 	return true;
469 }
470 
471 static bool access_gic_sre(struct kvm_vcpu *vcpu,
472 			   struct sys_reg_params *p,
473 			   const struct sys_reg_desc *r)
474 {
475 	if (p->is_write)
476 		return ignore_write(vcpu, p);
477 
478 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
479 	return true;
480 }
481 
482 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
483 			struct sys_reg_params *p,
484 			const struct sys_reg_desc *r)
485 {
486 	if (p->is_write)
487 		return ignore_write(vcpu, p);
488 	else
489 		return read_zero(vcpu, p);
490 }
491 
492 static bool trap_undef(struct kvm_vcpu *vcpu,
493 		       struct sys_reg_params *p,
494 		       const struct sys_reg_desc *r)
495 {
496 	kvm_inject_undefined(vcpu);
497 	return false;
498 }
499 
500 /*
501  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
502  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
503  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
504  * treat it separately.
505  */
506 static bool trap_loregion(struct kvm_vcpu *vcpu,
507 			  struct sys_reg_params *p,
508 			  const struct sys_reg_desc *r)
509 {
510 	u32 sr = reg_to_encoding(r);
511 
512 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
513 		kvm_inject_undefined(vcpu);
514 		return false;
515 	}
516 
517 	if (p->is_write && sr == SYS_LORID_EL1)
518 		return write_to_read_only(vcpu, p, r);
519 
520 	return trap_raz_wi(vcpu, p, r);
521 }
522 
523 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
524 			   struct sys_reg_params *p,
525 			   const struct sys_reg_desc *r)
526 {
527 	u64 oslsr;
528 
529 	if (!p->is_write)
530 		return read_from_write_only(vcpu, p, r);
531 
532 	/* Forward the OSLK bit to OSLSR */
533 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
534 	if (p->regval & OSLAR_EL1_OSLK)
535 		oslsr |= OSLSR_EL1_OSLK;
536 
537 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
538 	return true;
539 }
540 
541 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
542 			   struct sys_reg_params *p,
543 			   const struct sys_reg_desc *r)
544 {
545 	if (p->is_write)
546 		return write_to_read_only(vcpu, p, r);
547 
548 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
549 	return true;
550 }
551 
552 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
553 			 u64 val)
554 {
555 	/*
556 	 * The only modifiable bit is the OSLK bit. Refuse the write if
557 	 * userspace attempts to change any other bit in the register.
558 	 */
559 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
560 		return -EINVAL;
561 
562 	__vcpu_sys_reg(vcpu, rd->reg) = val;
563 	return 0;
564 }
565 
566 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
567 				   struct sys_reg_params *p,
568 				   const struct sys_reg_desc *r)
569 {
570 	if (p->is_write) {
571 		return ignore_write(vcpu, p);
572 	} else {
573 		p->regval = read_sysreg(dbgauthstatus_el1);
574 		return true;
575 	}
576 }
577 
578 /*
579  * We want to avoid world-switching all the DBG registers all the
580  * time:
581  *
582  * - If we've touched any debug register, it is likely that we're
583  *   going to touch more of them. It then makes sense to disable the
584  *   traps and start doing the save/restore dance
585  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
586  *   then mandatory to save/restore the registers, as the guest
587  *   depends on them.
588  *
589  * For this, we use a DIRTY bit, indicating the guest has modified the
590  * debug registers, used as follow:
591  *
592  * On guest entry:
593  * - If the dirty bit is set (because we're coming back from trapping),
594  *   disable the traps, save host registers, restore guest registers.
595  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
596  *   set the dirty bit, disable the traps, save host registers,
597  *   restore guest registers.
598  * - Otherwise, enable the traps
599  *
600  * On guest exit:
601  * - If the dirty bit is set, save guest registers, restore host
602  *   registers and clear the dirty bit. This ensure that the host can
603  *   now use the debug registers.
604  */
605 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
606 			    struct sys_reg_params *p,
607 			    const struct sys_reg_desc *r)
608 {
609 	access_rw(vcpu, p, r);
610 	if (p->is_write)
611 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
612 
613 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
614 
615 	return true;
616 }
617 
618 /*
619  * reg_to_dbg/dbg_to_reg
620  *
621  * A 32 bit write to a debug register leave top bits alone
622  * A 32 bit read from a debug register only returns the bottom bits
623  *
624  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
625  * switches between host and guest values in future.
626  */
627 static void reg_to_dbg(struct kvm_vcpu *vcpu,
628 		       struct sys_reg_params *p,
629 		       const struct sys_reg_desc *rd,
630 		       u64 *dbg_reg)
631 {
632 	u64 mask, shift, val;
633 
634 	get_access_mask(rd, &mask, &shift);
635 
636 	val = *dbg_reg;
637 	val &= ~mask;
638 	val |= (p->regval & (mask >> shift)) << shift;
639 	*dbg_reg = val;
640 
641 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
642 }
643 
644 static void dbg_to_reg(struct kvm_vcpu *vcpu,
645 		       struct sys_reg_params *p,
646 		       const struct sys_reg_desc *rd,
647 		       u64 *dbg_reg)
648 {
649 	u64 mask, shift;
650 
651 	get_access_mask(rd, &mask, &shift);
652 	p->regval = (*dbg_reg & mask) >> shift;
653 }
654 
655 static bool trap_bvr(struct kvm_vcpu *vcpu,
656 		     struct sys_reg_params *p,
657 		     const struct sys_reg_desc *rd)
658 {
659 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
660 
661 	if (p->is_write)
662 		reg_to_dbg(vcpu, p, rd, dbg_reg);
663 	else
664 		dbg_to_reg(vcpu, p, rd, dbg_reg);
665 
666 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
667 
668 	return true;
669 }
670 
671 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
672 		   u64 val)
673 {
674 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
675 	return 0;
676 }
677 
678 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
679 		   u64 *val)
680 {
681 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
682 	return 0;
683 }
684 
685 static u64 reset_bvr(struct kvm_vcpu *vcpu,
686 		      const struct sys_reg_desc *rd)
687 {
688 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
689 	return rd->val;
690 }
691 
692 static bool trap_bcr(struct kvm_vcpu *vcpu,
693 		     struct sys_reg_params *p,
694 		     const struct sys_reg_desc *rd)
695 {
696 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
697 
698 	if (p->is_write)
699 		reg_to_dbg(vcpu, p, rd, dbg_reg);
700 	else
701 		dbg_to_reg(vcpu, p, rd, dbg_reg);
702 
703 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
704 
705 	return true;
706 }
707 
708 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
709 		   u64 val)
710 {
711 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
712 	return 0;
713 }
714 
715 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
716 		   u64 *val)
717 {
718 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
719 	return 0;
720 }
721 
722 static u64 reset_bcr(struct kvm_vcpu *vcpu,
723 		      const struct sys_reg_desc *rd)
724 {
725 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
726 	return rd->val;
727 }
728 
729 static bool trap_wvr(struct kvm_vcpu *vcpu,
730 		     struct sys_reg_params *p,
731 		     const struct sys_reg_desc *rd)
732 {
733 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
734 
735 	if (p->is_write)
736 		reg_to_dbg(vcpu, p, rd, dbg_reg);
737 	else
738 		dbg_to_reg(vcpu, p, rd, dbg_reg);
739 
740 	trace_trap_reg(__func__, rd->CRm, p->is_write,
741 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
742 
743 	return true;
744 }
745 
746 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
747 		   u64 val)
748 {
749 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
750 	return 0;
751 }
752 
753 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
754 		   u64 *val)
755 {
756 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
757 	return 0;
758 }
759 
760 static u64 reset_wvr(struct kvm_vcpu *vcpu,
761 		      const struct sys_reg_desc *rd)
762 {
763 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
764 	return rd->val;
765 }
766 
767 static bool trap_wcr(struct kvm_vcpu *vcpu,
768 		     struct sys_reg_params *p,
769 		     const struct sys_reg_desc *rd)
770 {
771 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
772 
773 	if (p->is_write)
774 		reg_to_dbg(vcpu, p, rd, dbg_reg);
775 	else
776 		dbg_to_reg(vcpu, p, rd, dbg_reg);
777 
778 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
779 
780 	return true;
781 }
782 
783 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
784 		   u64 val)
785 {
786 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
787 	return 0;
788 }
789 
790 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
791 		   u64 *val)
792 {
793 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
794 	return 0;
795 }
796 
797 static u64 reset_wcr(struct kvm_vcpu *vcpu,
798 		      const struct sys_reg_desc *rd)
799 {
800 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
801 	return rd->val;
802 }
803 
804 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
805 {
806 	u64 amair = read_sysreg(amair_el1);
807 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
808 	return amair;
809 }
810 
811 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
812 {
813 	u64 actlr = read_sysreg(actlr_el1);
814 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
815 	return actlr;
816 }
817 
818 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
819 {
820 	u64 mpidr;
821 
822 	/*
823 	 * Map the vcpu_id into the first three affinity level fields of
824 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
825 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
826 	 * of the GICv3 to be able to address each CPU directly when
827 	 * sending IPIs.
828 	 */
829 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
830 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
831 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
832 	mpidr |= (1ULL << 31);
833 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
834 
835 	return mpidr;
836 }
837 
838 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
839 				   const struct sys_reg_desc *r)
840 {
841 	if (kvm_vcpu_has_pmu(vcpu))
842 		return 0;
843 
844 	return REG_HIDDEN;
845 }
846 
847 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
848 {
849 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
850 	u8 n = vcpu->kvm->arch.pmcr_n;
851 
852 	if (n)
853 		mask |= GENMASK(n - 1, 0);
854 
855 	reset_unknown(vcpu, r);
856 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
857 
858 	return __vcpu_sys_reg(vcpu, r->reg);
859 }
860 
861 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
862 {
863 	reset_unknown(vcpu, r);
864 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
865 
866 	return __vcpu_sys_reg(vcpu, r->reg);
867 }
868 
869 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
870 {
871 	/* This thing will UNDEF, who cares about the reset value? */
872 	if (!kvm_vcpu_has_pmu(vcpu))
873 		return 0;
874 
875 	reset_unknown(vcpu, r);
876 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
877 
878 	return __vcpu_sys_reg(vcpu, r->reg);
879 }
880 
881 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
882 {
883 	reset_unknown(vcpu, r);
884 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
885 
886 	return __vcpu_sys_reg(vcpu, r->reg);
887 }
888 
889 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
890 {
891 	u64 pmcr = 0;
892 
893 	if (!kvm_supports_32bit_el0())
894 		pmcr |= ARMV8_PMU_PMCR_LC;
895 
896 	/*
897 	 * The value of PMCR.N field is included when the
898 	 * vCPU register is read via kvm_vcpu_read_pmcr().
899 	 */
900 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
901 
902 	return __vcpu_sys_reg(vcpu, r->reg);
903 }
904 
905 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
906 {
907 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
908 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
909 
910 	if (!enabled)
911 		kvm_inject_undefined(vcpu);
912 
913 	return !enabled;
914 }
915 
916 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
917 {
918 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
919 }
920 
921 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
922 {
923 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
924 }
925 
926 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
927 {
928 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
929 }
930 
931 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
932 {
933 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
934 }
935 
936 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
937 			const struct sys_reg_desc *r)
938 {
939 	u64 val;
940 
941 	if (pmu_access_el0_disabled(vcpu))
942 		return false;
943 
944 	if (p->is_write) {
945 		/*
946 		 * Only update writeable bits of PMCR (continuing into
947 		 * kvm_pmu_handle_pmcr() as well)
948 		 */
949 		val = kvm_vcpu_read_pmcr(vcpu);
950 		val &= ~ARMV8_PMU_PMCR_MASK;
951 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
952 		if (!kvm_supports_32bit_el0())
953 			val |= ARMV8_PMU_PMCR_LC;
954 		kvm_pmu_handle_pmcr(vcpu, val);
955 	} else {
956 		/* PMCR.P & PMCR.C are RAZ */
957 		val = kvm_vcpu_read_pmcr(vcpu)
958 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
959 		p->regval = val;
960 	}
961 
962 	return true;
963 }
964 
965 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
966 			  const struct sys_reg_desc *r)
967 {
968 	if (pmu_access_event_counter_el0_disabled(vcpu))
969 		return false;
970 
971 	if (p->is_write)
972 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
973 	else
974 		/* return PMSELR.SEL field */
975 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
976 			    & ARMV8_PMU_COUNTER_MASK;
977 
978 	return true;
979 }
980 
981 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
982 			  const struct sys_reg_desc *r)
983 {
984 	u64 pmceid, mask, shift;
985 
986 	BUG_ON(p->is_write);
987 
988 	if (pmu_access_el0_disabled(vcpu))
989 		return false;
990 
991 	get_access_mask(r, &mask, &shift);
992 
993 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
994 	pmceid &= mask;
995 	pmceid >>= shift;
996 
997 	p->regval = pmceid;
998 
999 	return true;
1000 }
1001 
1002 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1003 {
1004 	u64 pmcr, val;
1005 
1006 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1007 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1008 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1009 		kvm_inject_undefined(vcpu);
1010 		return false;
1011 	}
1012 
1013 	return true;
1014 }
1015 
1016 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1017 			  u64 *val)
1018 {
1019 	u64 idx;
1020 
1021 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1022 		/* PMCCNTR_EL0 */
1023 		idx = ARMV8_PMU_CYCLE_IDX;
1024 	else
1025 		/* PMEVCNTRn_EL0 */
1026 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1027 
1028 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1029 	return 0;
1030 }
1031 
1032 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1033 			      struct sys_reg_params *p,
1034 			      const struct sys_reg_desc *r)
1035 {
1036 	u64 idx = ~0UL;
1037 
1038 	if (r->CRn == 9 && r->CRm == 13) {
1039 		if (r->Op2 == 2) {
1040 			/* PMXEVCNTR_EL0 */
1041 			if (pmu_access_event_counter_el0_disabled(vcpu))
1042 				return false;
1043 
1044 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1045 			      & ARMV8_PMU_COUNTER_MASK;
1046 		} else if (r->Op2 == 0) {
1047 			/* PMCCNTR_EL0 */
1048 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1049 				return false;
1050 
1051 			idx = ARMV8_PMU_CYCLE_IDX;
1052 		}
1053 	} else if (r->CRn == 0 && r->CRm == 9) {
1054 		/* PMCCNTR */
1055 		if (pmu_access_event_counter_el0_disabled(vcpu))
1056 			return false;
1057 
1058 		idx = ARMV8_PMU_CYCLE_IDX;
1059 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1060 		/* PMEVCNTRn_EL0 */
1061 		if (pmu_access_event_counter_el0_disabled(vcpu))
1062 			return false;
1063 
1064 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1065 	}
1066 
1067 	/* Catch any decoding mistake */
1068 	WARN_ON(idx == ~0UL);
1069 
1070 	if (!pmu_counter_idx_valid(vcpu, idx))
1071 		return false;
1072 
1073 	if (p->is_write) {
1074 		if (pmu_access_el0_disabled(vcpu))
1075 			return false;
1076 
1077 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1078 	} else {
1079 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1080 	}
1081 
1082 	return true;
1083 }
1084 
1085 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1086 			       const struct sys_reg_desc *r)
1087 {
1088 	u64 idx, reg;
1089 
1090 	if (pmu_access_el0_disabled(vcpu))
1091 		return false;
1092 
1093 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1094 		/* PMXEVTYPER_EL0 */
1095 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1096 		reg = PMEVTYPER0_EL0 + idx;
1097 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1098 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1099 		if (idx == ARMV8_PMU_CYCLE_IDX)
1100 			reg = PMCCFILTR_EL0;
1101 		else
1102 			/* PMEVTYPERn_EL0 */
1103 			reg = PMEVTYPER0_EL0 + idx;
1104 	} else {
1105 		BUG();
1106 	}
1107 
1108 	if (!pmu_counter_idx_valid(vcpu, idx))
1109 		return false;
1110 
1111 	if (p->is_write) {
1112 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1113 		kvm_vcpu_pmu_restore_guest(vcpu);
1114 	} else {
1115 		p->regval = __vcpu_sys_reg(vcpu, reg);
1116 	}
1117 
1118 	return true;
1119 }
1120 
1121 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1122 {
1123 	bool set;
1124 
1125 	val &= kvm_pmu_valid_counter_mask(vcpu);
1126 
1127 	switch (r->reg) {
1128 	case PMOVSSET_EL0:
1129 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1130 		set = r->CRm & 2;
1131 		break;
1132 	default:
1133 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1134 		set = r->Op2 & 1;
1135 		break;
1136 	}
1137 
1138 	if (set)
1139 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1140 	else
1141 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1142 
1143 	return 0;
1144 }
1145 
1146 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1147 {
1148 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1149 
1150 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1151 	return 0;
1152 }
1153 
1154 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1155 			   const struct sys_reg_desc *r)
1156 {
1157 	u64 val, mask;
1158 
1159 	if (pmu_access_el0_disabled(vcpu))
1160 		return false;
1161 
1162 	mask = kvm_pmu_valid_counter_mask(vcpu);
1163 	if (p->is_write) {
1164 		val = p->regval & mask;
1165 		if (r->Op2 & 0x1) {
1166 			/* accessing PMCNTENSET_EL0 */
1167 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1168 			kvm_pmu_enable_counter_mask(vcpu, val);
1169 			kvm_vcpu_pmu_restore_guest(vcpu);
1170 		} else {
1171 			/* accessing PMCNTENCLR_EL0 */
1172 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1173 			kvm_pmu_disable_counter_mask(vcpu, val);
1174 		}
1175 	} else {
1176 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1177 	}
1178 
1179 	return true;
1180 }
1181 
1182 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1183 			   const struct sys_reg_desc *r)
1184 {
1185 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1186 
1187 	if (check_pmu_access_disabled(vcpu, 0))
1188 		return false;
1189 
1190 	if (p->is_write) {
1191 		u64 val = p->regval & mask;
1192 
1193 		if (r->Op2 & 0x1)
1194 			/* accessing PMINTENSET_EL1 */
1195 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1196 		else
1197 			/* accessing PMINTENCLR_EL1 */
1198 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1199 	} else {
1200 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1201 	}
1202 
1203 	return true;
1204 }
1205 
1206 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1207 			 const struct sys_reg_desc *r)
1208 {
1209 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1210 
1211 	if (pmu_access_el0_disabled(vcpu))
1212 		return false;
1213 
1214 	if (p->is_write) {
1215 		if (r->CRm & 0x2)
1216 			/* accessing PMOVSSET_EL0 */
1217 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1218 		else
1219 			/* accessing PMOVSCLR_EL0 */
1220 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1221 	} else {
1222 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1223 	}
1224 
1225 	return true;
1226 }
1227 
1228 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1229 			   const struct sys_reg_desc *r)
1230 {
1231 	u64 mask;
1232 
1233 	if (!p->is_write)
1234 		return read_from_write_only(vcpu, p, r);
1235 
1236 	if (pmu_write_swinc_el0_disabled(vcpu))
1237 		return false;
1238 
1239 	mask = kvm_pmu_valid_counter_mask(vcpu);
1240 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1241 	return true;
1242 }
1243 
1244 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1245 			     const struct sys_reg_desc *r)
1246 {
1247 	if (p->is_write) {
1248 		if (!vcpu_mode_priv(vcpu)) {
1249 			kvm_inject_undefined(vcpu);
1250 			return false;
1251 		}
1252 
1253 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1254 			       p->regval & ARMV8_PMU_USERENR_MASK;
1255 	} else {
1256 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1257 			    & ARMV8_PMU_USERENR_MASK;
1258 	}
1259 
1260 	return true;
1261 }
1262 
1263 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1264 		    u64 *val)
1265 {
1266 	*val = kvm_vcpu_read_pmcr(vcpu);
1267 	return 0;
1268 }
1269 
1270 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1271 		    u64 val)
1272 {
1273 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1274 	struct kvm *kvm = vcpu->kvm;
1275 
1276 	mutex_lock(&kvm->arch.config_lock);
1277 
1278 	/*
1279 	 * The vCPU can't have more counters than the PMU hardware
1280 	 * implements. Ignore this error to maintain compatibility
1281 	 * with the existing KVM behavior.
1282 	 */
1283 	if (!kvm_vm_has_ran_once(kvm) &&
1284 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1285 		kvm->arch.pmcr_n = new_n;
1286 
1287 	mutex_unlock(&kvm->arch.config_lock);
1288 
1289 	/*
1290 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1291 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1292 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1293 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1294 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1295 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1296 	 * if necessary).
1297 	 */
1298 	val &= ARMV8_PMU_PMCR_MASK;
1299 
1300 	/* The LC bit is RES1 when AArch32 is not supported */
1301 	if (!kvm_supports_32bit_el0())
1302 		val |= ARMV8_PMU_PMCR_LC;
1303 
1304 	__vcpu_sys_reg(vcpu, r->reg) = val;
1305 	return 0;
1306 }
1307 
1308 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1309 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1310 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1311 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1312 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1313 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1314 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1315 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1316 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1317 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1318 
1319 #define PMU_SYS_REG(name)						\
1320 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1321 	.visibility = pmu_visibility
1322 
1323 /* Macro to expand the PMEVCNTRn_EL0 register */
1324 #define PMU_PMEVCNTR_EL0(n)						\
1325 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1326 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1327 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1328 
1329 /* Macro to expand the PMEVTYPERn_EL0 register */
1330 #define PMU_PMEVTYPER_EL0(n)						\
1331 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1332 	  .reset = reset_pmevtyper,					\
1333 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1334 
1335 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1336 			 const struct sys_reg_desc *r)
1337 {
1338 	kvm_inject_undefined(vcpu);
1339 
1340 	return false;
1341 }
1342 
1343 /* Macro to expand the AMU counter and type registers*/
1344 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1345 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1346 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1347 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1348 
1349 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1350 			const struct sys_reg_desc *rd)
1351 {
1352 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1353 }
1354 
1355 /*
1356  * If we land here on a PtrAuth access, that is because we didn't
1357  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1358  * way this happens is when the guest does not have PtrAuth support
1359  * enabled.
1360  */
1361 #define __PTRAUTH_KEY(k)						\
1362 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1363 	.visibility = ptrauth_visibility}
1364 
1365 #define PTRAUTH_KEY(k)							\
1366 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1367 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1368 
1369 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1370 			      struct sys_reg_params *p,
1371 			      const struct sys_reg_desc *r)
1372 {
1373 	enum kvm_arch_timers tmr;
1374 	enum kvm_arch_timer_regs treg;
1375 	u64 reg = reg_to_encoding(r);
1376 
1377 	switch (reg) {
1378 	case SYS_CNTP_TVAL_EL0:
1379 	case SYS_AARCH32_CNTP_TVAL:
1380 		tmr = TIMER_PTIMER;
1381 		treg = TIMER_REG_TVAL;
1382 		break;
1383 	case SYS_CNTP_CTL_EL0:
1384 	case SYS_AARCH32_CNTP_CTL:
1385 		tmr = TIMER_PTIMER;
1386 		treg = TIMER_REG_CTL;
1387 		break;
1388 	case SYS_CNTP_CVAL_EL0:
1389 	case SYS_AARCH32_CNTP_CVAL:
1390 		tmr = TIMER_PTIMER;
1391 		treg = TIMER_REG_CVAL;
1392 		break;
1393 	case SYS_CNTPCT_EL0:
1394 	case SYS_CNTPCTSS_EL0:
1395 	case SYS_AARCH32_CNTPCT:
1396 		tmr = TIMER_PTIMER;
1397 		treg = TIMER_REG_CNT;
1398 		break;
1399 	default:
1400 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1401 		kvm_inject_undefined(vcpu);
1402 		return false;
1403 	}
1404 
1405 	if (p->is_write)
1406 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1407 	else
1408 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1409 
1410 	return true;
1411 }
1412 
1413 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1414 				    s64 new, s64 cur)
1415 {
1416 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1417 
1418 	/* Some features have different safe value type in KVM than host features */
1419 	switch (id) {
1420 	case SYS_ID_AA64DFR0_EL1:
1421 		switch (kvm_ftr.shift) {
1422 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1423 			kvm_ftr.type = FTR_LOWER_SAFE;
1424 			break;
1425 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1426 			kvm_ftr.type = FTR_LOWER_SAFE;
1427 			break;
1428 		}
1429 		break;
1430 	case SYS_ID_DFR0_EL1:
1431 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1432 			kvm_ftr.type = FTR_LOWER_SAFE;
1433 		break;
1434 	}
1435 
1436 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1437 }
1438 
1439 /*
1440  * arm64_check_features() - Check if a feature register value constitutes
1441  * a subset of features indicated by the idreg's KVM sanitised limit.
1442  *
1443  * This function will check if each feature field of @val is the "safe" value
1444  * against idreg's KVM sanitised limit return from reset() callback.
1445  * If a field value in @val is the same as the one in limit, it is always
1446  * considered the safe value regardless For register fields that are not in
1447  * writable, only the value in limit is considered the safe value.
1448  *
1449  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1450  */
1451 static int arm64_check_features(struct kvm_vcpu *vcpu,
1452 				const struct sys_reg_desc *rd,
1453 				u64 val)
1454 {
1455 	const struct arm64_ftr_reg *ftr_reg;
1456 	const struct arm64_ftr_bits *ftrp = NULL;
1457 	u32 id = reg_to_encoding(rd);
1458 	u64 writable_mask = rd->val;
1459 	u64 limit = rd->reset(vcpu, rd);
1460 	u64 mask = 0;
1461 
1462 	/*
1463 	 * Hidden and unallocated ID registers may not have a corresponding
1464 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1465 	 * only safe value is 0.
1466 	 */
1467 	if (sysreg_visible_as_raz(vcpu, rd))
1468 		return val ? -E2BIG : 0;
1469 
1470 	ftr_reg = get_arm64_ftr_reg(id);
1471 	if (!ftr_reg)
1472 		return -EINVAL;
1473 
1474 	ftrp = ftr_reg->ftr_bits;
1475 
1476 	for (; ftrp && ftrp->width; ftrp++) {
1477 		s64 f_val, f_lim, safe_val;
1478 		u64 ftr_mask;
1479 
1480 		ftr_mask = arm64_ftr_mask(ftrp);
1481 		if ((ftr_mask & writable_mask) != ftr_mask)
1482 			continue;
1483 
1484 		f_val = arm64_ftr_value(ftrp, val);
1485 		f_lim = arm64_ftr_value(ftrp, limit);
1486 		mask |= ftr_mask;
1487 
1488 		if (f_val == f_lim)
1489 			safe_val = f_val;
1490 		else
1491 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1492 
1493 		if (safe_val != f_val)
1494 			return -E2BIG;
1495 	}
1496 
1497 	/* For fields that are not writable, values in limit are the safe values. */
1498 	if ((val & ~mask) != (limit & ~mask))
1499 		return -E2BIG;
1500 
1501 	return 0;
1502 }
1503 
1504 static u8 pmuver_to_perfmon(u8 pmuver)
1505 {
1506 	switch (pmuver) {
1507 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1508 		return ID_DFR0_EL1_PerfMon_PMUv3;
1509 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1510 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1511 	default:
1512 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1513 		return pmuver;
1514 	}
1515 }
1516 
1517 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1518 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1519 				       const struct sys_reg_desc *r)
1520 {
1521 	u32 id = reg_to_encoding(r);
1522 	u64 val;
1523 
1524 	if (sysreg_visible_as_raz(vcpu, r))
1525 		return 0;
1526 
1527 	val = read_sanitised_ftr_reg(id);
1528 
1529 	switch (id) {
1530 	case SYS_ID_AA64PFR1_EL1:
1531 		if (!kvm_has_mte(vcpu->kvm))
1532 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1533 
1534 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1535 		break;
1536 	case SYS_ID_AA64ISAR1_EL1:
1537 		if (!vcpu_has_ptrauth(vcpu))
1538 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1539 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1540 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1541 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1542 		break;
1543 	case SYS_ID_AA64ISAR2_EL1:
1544 		if (!vcpu_has_ptrauth(vcpu))
1545 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1546 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1547 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1548 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1549 		break;
1550 	case SYS_ID_AA64MMFR2_EL1:
1551 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1552 		break;
1553 	case SYS_ID_MMFR4_EL1:
1554 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1555 		break;
1556 	}
1557 
1558 	return val;
1559 }
1560 
1561 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1562 				     const struct sys_reg_desc *r)
1563 {
1564 	return __kvm_read_sanitised_id_reg(vcpu, r);
1565 }
1566 
1567 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1568 {
1569 	return IDREG(vcpu->kvm, reg_to_encoding(r));
1570 }
1571 
1572 static bool is_feature_id_reg(u32 encoding)
1573 {
1574 	return (sys_reg_Op0(encoding) == 3 &&
1575 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1576 		sys_reg_CRn(encoding) == 0 &&
1577 		sys_reg_CRm(encoding) <= 7);
1578 }
1579 
1580 /*
1581  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1582  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1583  * registers KVM maintains on a per-VM basis.
1584  */
1585 static inline bool is_vm_ftr_id_reg(u32 id)
1586 {
1587 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1588 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1589 		sys_reg_CRm(id) < 8);
1590 }
1591 
1592 static inline bool is_vcpu_ftr_id_reg(u32 id)
1593 {
1594 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1595 }
1596 
1597 static inline bool is_aa32_id_reg(u32 id)
1598 {
1599 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1600 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1601 		sys_reg_CRm(id) <= 3);
1602 }
1603 
1604 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1605 				  const struct sys_reg_desc *r)
1606 {
1607 	u32 id = reg_to_encoding(r);
1608 
1609 	switch (id) {
1610 	case SYS_ID_AA64ZFR0_EL1:
1611 		if (!vcpu_has_sve(vcpu))
1612 			return REG_RAZ;
1613 		break;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1620 				       const struct sys_reg_desc *r)
1621 {
1622 	/*
1623 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1624 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1625 	 * systems.
1626 	 */
1627 	if (!kvm_supports_32bit_el0())
1628 		return REG_RAZ | REG_USER_WI;
1629 
1630 	return id_visibility(vcpu, r);
1631 }
1632 
1633 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1634 				   const struct sys_reg_desc *r)
1635 {
1636 	return REG_RAZ;
1637 }
1638 
1639 /* cpufeature ID register access trap handlers */
1640 
1641 static bool access_id_reg(struct kvm_vcpu *vcpu,
1642 			  struct sys_reg_params *p,
1643 			  const struct sys_reg_desc *r)
1644 {
1645 	if (p->is_write)
1646 		return write_to_read_only(vcpu, p, r);
1647 
1648 	p->regval = read_id_reg(vcpu, r);
1649 
1650 	return true;
1651 }
1652 
1653 /* Visibility overrides for SVE-specific control registers */
1654 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1655 				   const struct sys_reg_desc *rd)
1656 {
1657 	if (vcpu_has_sve(vcpu))
1658 		return 0;
1659 
1660 	return REG_HIDDEN;
1661 }
1662 
1663 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1664 					  const struct sys_reg_desc *rd)
1665 {
1666 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1667 
1668 	if (!vcpu_has_sve(vcpu))
1669 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1670 
1671 	/*
1672 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1673 	 * Although this is a per-CPU feature, we make it global because
1674 	 * asymmetric systems are just a nuisance.
1675 	 *
1676 	 * Userspace can override this as long as it doesn't promise
1677 	 * the impossible.
1678 	 */
1679 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1680 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1681 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1682 	}
1683 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1684 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1685 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1686 	}
1687 
1688 	if (kvm_vgic_global_state.type == VGIC_V3) {
1689 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1690 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1691 	}
1692 
1693 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1694 
1695 	return val;
1696 }
1697 
1698 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1699 ({									       \
1700 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1701 	(val) &= ~reg##_##field##_MASK;					       \
1702 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1703 			    min(__f_val,				       \
1704 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1705 	(val);								       \
1706 })
1707 
1708 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1709 					  const struct sys_reg_desc *rd)
1710 {
1711 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1712 
1713 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1714 
1715 	/*
1716 	 * Only initialize the PMU version if the vCPU was configured with one.
1717 	 */
1718 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1719 	if (kvm_vcpu_has_pmu(vcpu))
1720 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1721 				      kvm_arm_pmu_get_pmuver_limit());
1722 
1723 	/* Hide SPE from guests */
1724 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1725 
1726 	return val;
1727 }
1728 
1729 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1730 			       const struct sys_reg_desc *rd,
1731 			       u64 val)
1732 {
1733 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1734 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1735 
1736 	/*
1737 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1738 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1739 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1740 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1741 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1742 	 *
1743 	 * At minimum, we're on the hook to allow values that were given to
1744 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1745 	 * with a more sensible NI. The value of an ID register changing under
1746 	 * the nose of the guest is unfortunate, but is certainly no more
1747 	 * surprising than an ill-guided PMU driver poking at impdef system
1748 	 * registers that end in an UNDEF...
1749 	 */
1750 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1751 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1752 
1753 	/*
1754 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1755 	 * nonzero minimum safe value.
1756 	 */
1757 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1758 		return -EINVAL;
1759 
1760 	return set_id_reg(vcpu, rd, val);
1761 }
1762 
1763 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1764 				      const struct sys_reg_desc *rd)
1765 {
1766 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1767 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1768 
1769 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1770 	if (kvm_vcpu_has_pmu(vcpu))
1771 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1772 
1773 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1774 
1775 	return val;
1776 }
1777 
1778 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1779 			   const struct sys_reg_desc *rd,
1780 			   u64 val)
1781 {
1782 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1783 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1784 
1785 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1786 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1787 		perfmon = 0;
1788 	}
1789 
1790 	/*
1791 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1792 	 * it doesn't promise more than what the HW gives us on the
1793 	 * AArch64 side (as everything is emulated with that), and
1794 	 * that this is a PMUv3.
1795 	 */
1796 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1797 		return -EINVAL;
1798 
1799 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1800 		return -EINVAL;
1801 
1802 	return set_id_reg(vcpu, rd, val);
1803 }
1804 
1805 /*
1806  * cpufeature ID register user accessors
1807  *
1808  * For now, these registers are immutable for userspace, so no values
1809  * are stored, and for set_id_reg() we don't allow the effective value
1810  * to be changed.
1811  */
1812 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1813 		      u64 *val)
1814 {
1815 	/*
1816 	 * Avoid locking if the VM has already started, as the ID registers are
1817 	 * guaranteed to be invariant at that point.
1818 	 */
1819 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1820 		*val = read_id_reg(vcpu, rd);
1821 		return 0;
1822 	}
1823 
1824 	mutex_lock(&vcpu->kvm->arch.config_lock);
1825 	*val = read_id_reg(vcpu, rd);
1826 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1827 
1828 	return 0;
1829 }
1830 
1831 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1832 		      u64 val)
1833 {
1834 	u32 id = reg_to_encoding(rd);
1835 	int ret;
1836 
1837 	mutex_lock(&vcpu->kvm->arch.config_lock);
1838 
1839 	/*
1840 	 * Once the VM has started the ID registers are immutable. Reject any
1841 	 * write that does not match the final register value.
1842 	 */
1843 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1844 		if (val != read_id_reg(vcpu, rd))
1845 			ret = -EBUSY;
1846 		else
1847 			ret = 0;
1848 
1849 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1850 		return ret;
1851 	}
1852 
1853 	ret = arm64_check_features(vcpu, rd, val);
1854 	if (!ret)
1855 		IDREG(vcpu->kvm, id) = val;
1856 
1857 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1858 
1859 	/*
1860 	 * arm64_check_features() returns -E2BIG to indicate the register's
1861 	 * feature set is a superset of the maximally-allowed register value.
1862 	 * While it would be nice to precisely describe this to userspace, the
1863 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1864 	 * writes return -EINVAL.
1865 	 */
1866 	if (ret == -E2BIG)
1867 		ret = -EINVAL;
1868 	return ret;
1869 }
1870 
1871 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1872 		       u64 *val)
1873 {
1874 	*val = 0;
1875 	return 0;
1876 }
1877 
1878 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1879 		      u64 val)
1880 {
1881 	return 0;
1882 }
1883 
1884 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1885 		       const struct sys_reg_desc *r)
1886 {
1887 	if (p->is_write)
1888 		return write_to_read_only(vcpu, p, r);
1889 
1890 	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1891 	return true;
1892 }
1893 
1894 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1895 			 const struct sys_reg_desc *r)
1896 {
1897 	if (p->is_write)
1898 		return write_to_read_only(vcpu, p, r);
1899 
1900 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1901 	return true;
1902 }
1903 
1904 /*
1905  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1906  * by the physical CPU which the vcpu currently resides in.
1907  */
1908 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1909 {
1910 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1911 	u64 clidr;
1912 	u8 loc;
1913 
1914 	if ((ctr_el0 & CTR_EL0_IDC)) {
1915 		/*
1916 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1917 		 * will not be set and a unified cache, which will be marked as
1918 		 * LoC, will be added.
1919 		 *
1920 		 * If not DIC, let the unified cache L2 so that an instruction
1921 		 * cache can be added as L1 later.
1922 		 */
1923 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1924 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1925 	} else {
1926 		/*
1927 		 * Data cache clean to the PoU is required so let L1 have a data
1928 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1929 		 * it can be marked as LoC too.
1930 		 */
1931 		loc = 1;
1932 		clidr = 1 << CLIDR_LOUU_SHIFT;
1933 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1934 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1935 	}
1936 
1937 	/*
1938 	 * Instruction cache invalidation to the PoU is required so let L1 have
1939 	 * an instruction cache. If L1 already has a data cache, it will be
1940 	 * CACHE_TYPE_SEPARATE.
1941 	 */
1942 	if (!(ctr_el0 & CTR_EL0_DIC))
1943 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1944 
1945 	clidr |= loc << CLIDR_LOC_SHIFT;
1946 
1947 	/*
1948 	 * Add tag cache unified to data cache. Allocation tags and data are
1949 	 * unified in a cache line so that it looks valid even if there is only
1950 	 * one cache line.
1951 	 */
1952 	if (kvm_has_mte(vcpu->kvm))
1953 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1954 
1955 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
1956 
1957 	return __vcpu_sys_reg(vcpu, r->reg);
1958 }
1959 
1960 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1961 		      u64 val)
1962 {
1963 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1964 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1965 
1966 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1967 		return -EINVAL;
1968 
1969 	__vcpu_sys_reg(vcpu, rd->reg) = val;
1970 
1971 	return 0;
1972 }
1973 
1974 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1975 			  const struct sys_reg_desc *r)
1976 {
1977 	int reg = r->reg;
1978 
1979 	if (p->is_write)
1980 		vcpu_write_sys_reg(vcpu, p->regval, reg);
1981 	else
1982 		p->regval = vcpu_read_sys_reg(vcpu, reg);
1983 	return true;
1984 }
1985 
1986 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1987 			  const struct sys_reg_desc *r)
1988 {
1989 	u32 csselr;
1990 
1991 	if (p->is_write)
1992 		return write_to_read_only(vcpu, p, r);
1993 
1994 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1995 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1996 	if (csselr < CSSELR_MAX)
1997 		p->regval = get_ccsidr(vcpu, csselr);
1998 
1999 	return true;
2000 }
2001 
2002 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2003 				   const struct sys_reg_desc *rd)
2004 {
2005 	if (kvm_has_mte(vcpu->kvm))
2006 		return 0;
2007 
2008 	return REG_HIDDEN;
2009 }
2010 
2011 #define MTE_REG(name) {				\
2012 	SYS_DESC(SYS_##name),			\
2013 	.access = undef_access,			\
2014 	.reset = reset_unknown,			\
2015 	.reg = name,				\
2016 	.visibility = mte_visibility,		\
2017 }
2018 
2019 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2020 				   const struct sys_reg_desc *rd)
2021 {
2022 	if (vcpu_has_nv(vcpu))
2023 		return 0;
2024 
2025 	return REG_HIDDEN;
2026 }
2027 
2028 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2029 			  struct sys_reg_params *p,
2030 			  const struct sys_reg_desc *r)
2031 {
2032 	/*
2033 	 * We really shouldn't be here, and this is likely the result
2034 	 * of a misconfigured trap, as this register should target the
2035 	 * VNCR page, and nothing else.
2036 	 */
2037 	return bad_trap(vcpu, p, r,
2038 			"trap of VNCR-backed register");
2039 }
2040 
2041 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2042 			   struct sys_reg_params *p,
2043 			   const struct sys_reg_desc *r)
2044 {
2045 	/*
2046 	 * We really shouldn't be here, and this is likely the result
2047 	 * of a misconfigured trap, as this register should target the
2048 	 * corresponding EL1, and nothing else.
2049 	 */
2050 	return bad_trap(vcpu, p, r,
2051 			"trap of EL2 register redirected to EL1");
2052 }
2053 
2054 #define EL2_REG(name, acc, rst, v) {		\
2055 	SYS_DESC(SYS_##name),			\
2056 	.access = acc,				\
2057 	.reset = rst,				\
2058 	.reg = name,				\
2059 	.visibility = el2_visibility,		\
2060 	.val = v,				\
2061 }
2062 
2063 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2064 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2065 
2066 /*
2067  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2068  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2069  * handling traps. Given that, they are always hidden from userspace.
2070  */
2071 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2072 					   const struct sys_reg_desc *rd)
2073 {
2074 	return REG_HIDDEN_USER;
2075 }
2076 
2077 #define EL12_REG(name, acc, rst, v) {		\
2078 	SYS_DESC(SYS_##name##_EL12),		\
2079 	.access = acc,				\
2080 	.reset = rst,				\
2081 	.reg = name##_EL1,			\
2082 	.val = v,				\
2083 	.visibility = hidden_user_visibility,	\
2084 }
2085 
2086 /*
2087  * Since reset() callback and field val are not used for idregs, they will be
2088  * used for specific purposes for idregs.
2089  * The reset() would return KVM sanitised register value. The value would be the
2090  * same as the host kernel sanitised value if there is no KVM sanitisation.
2091  * The val would be used as a mask indicating writable fields for the idreg.
2092  * Only bits with 1 are writable from userspace. This mask might not be
2093  * necessary in the future whenever all ID registers are enabled as writable
2094  * from userspace.
2095  */
2096 
2097 #define ID_DESC(name)				\
2098 	SYS_DESC(SYS_##name),			\
2099 	.access	= access_id_reg,		\
2100 	.get_user = get_id_reg			\
2101 
2102 /* sys_reg_desc initialiser for known cpufeature ID registers */
2103 #define ID_SANITISED(name) {			\
2104 	ID_DESC(name),				\
2105 	.set_user = set_id_reg,			\
2106 	.visibility = id_visibility,		\
2107 	.reset = kvm_read_sanitised_id_reg,	\
2108 	.val = 0,				\
2109 }
2110 
2111 /* sys_reg_desc initialiser for known cpufeature ID registers */
2112 #define AA32_ID_SANITISED(name) {		\
2113 	ID_DESC(name),				\
2114 	.set_user = set_id_reg,			\
2115 	.visibility = aa32_id_visibility,	\
2116 	.reset = kvm_read_sanitised_id_reg,	\
2117 	.val = 0,				\
2118 }
2119 
2120 /* sys_reg_desc initialiser for writable ID registers */
2121 #define ID_WRITABLE(name, mask) {		\
2122 	ID_DESC(name),				\
2123 	.set_user = set_id_reg,			\
2124 	.visibility = id_visibility,		\
2125 	.reset = kvm_read_sanitised_id_reg,	\
2126 	.val = mask,				\
2127 }
2128 
2129 /*
2130  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2131  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2132  * (1 <= crm < 8, 0 <= Op2 < 8).
2133  */
2134 #define ID_UNALLOCATED(crm, op2) {			\
2135 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2136 	.access = access_id_reg,			\
2137 	.get_user = get_id_reg,				\
2138 	.set_user = set_id_reg,				\
2139 	.visibility = raz_visibility,			\
2140 	.reset = kvm_read_sanitised_id_reg,		\
2141 	.val = 0,					\
2142 }
2143 
2144 /*
2145  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2146  * For now, these are exposed just like unallocated ID regs: they appear
2147  * RAZ for the guest.
2148  */
2149 #define ID_HIDDEN(name) {			\
2150 	ID_DESC(name),				\
2151 	.set_user = set_id_reg,			\
2152 	.visibility = raz_visibility,		\
2153 	.reset = kvm_read_sanitised_id_reg,	\
2154 	.val = 0,				\
2155 }
2156 
2157 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2158 			  struct sys_reg_params *p,
2159 			  const struct sys_reg_desc *r)
2160 {
2161 	if (p->is_write)
2162 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2163 	else
2164 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2165 
2166 	return true;
2167 }
2168 
2169 static bool access_elr(struct kvm_vcpu *vcpu,
2170 		       struct sys_reg_params *p,
2171 		       const struct sys_reg_desc *r)
2172 {
2173 	if (p->is_write)
2174 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2175 	else
2176 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2177 
2178 	return true;
2179 }
2180 
2181 static bool access_spsr(struct kvm_vcpu *vcpu,
2182 			struct sys_reg_params *p,
2183 			const struct sys_reg_desc *r)
2184 {
2185 	if (p->is_write)
2186 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2187 	else
2188 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2189 
2190 	return true;
2191 }
2192 
2193 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2194 {
2195 	u64 val = r->val;
2196 
2197 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2198 		val |= HCR_E2H;
2199 
2200 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2201 }
2202 
2203 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2204 				       const struct sys_reg_desc *rd)
2205 {
2206 	unsigned int r;
2207 
2208 	r = el2_visibility(vcpu, rd);
2209 	if (r)
2210 		return r;
2211 
2212 	return sve_visibility(vcpu, rd);
2213 }
2214 
2215 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2216 			   struct sys_reg_params *p,
2217 			   const struct sys_reg_desc *r)
2218 {
2219 	unsigned int vq;
2220 
2221 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2222 		kvm_inject_nested_sve_trap(vcpu);
2223 		return true;
2224 	}
2225 
2226 	if (!p->is_write) {
2227 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2228 		return true;
2229 	}
2230 
2231 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2232 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2233 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2234 	return true;
2235 }
2236 
2237 /*
2238  * Architected system registers.
2239  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2240  *
2241  * Debug handling: We do trap most, if not all debug related system
2242  * registers. The implementation is good enough to ensure that a guest
2243  * can use these with minimal performance degradation. The drawback is
2244  * that we don't implement any of the external debug architecture.
2245  * This should be revisited if we ever encounter a more demanding
2246  * guest...
2247  */
2248 static const struct sys_reg_desc sys_reg_descs[] = {
2249 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2250 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2251 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2252 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2253 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2254 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2255 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2256 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2257 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2258 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2259 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2260 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2261 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2262 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2263 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2264 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2265 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2266 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2267 
2268 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2269 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2270 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2271 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2272 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2273 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2274 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2275 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2276 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2277 
2278 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2279 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2280 	// DBGDTR[TR]X_EL0 share the same encoding
2281 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2282 
2283 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2284 
2285 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2286 
2287 	/*
2288 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2289 	 * entries in arm64_ftr_regs[].
2290 	 */
2291 
2292 	/* AArch64 mappings of the AArch32 ID registers */
2293 	/* CRm=1 */
2294 	AA32_ID_SANITISED(ID_PFR0_EL1),
2295 	AA32_ID_SANITISED(ID_PFR1_EL1),
2296 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2297 	  .access = access_id_reg,
2298 	  .get_user = get_id_reg,
2299 	  .set_user = set_id_dfr0_el1,
2300 	  .visibility = aa32_id_visibility,
2301 	  .reset = read_sanitised_id_dfr0_el1,
2302 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2303 		 ID_DFR0_EL1_CopDbg_MASK, },
2304 	ID_HIDDEN(ID_AFR0_EL1),
2305 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2306 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2307 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2308 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2309 
2310 	/* CRm=2 */
2311 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2312 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2313 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2314 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2315 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2316 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2317 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2318 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2319 
2320 	/* CRm=3 */
2321 	AA32_ID_SANITISED(MVFR0_EL1),
2322 	AA32_ID_SANITISED(MVFR1_EL1),
2323 	AA32_ID_SANITISED(MVFR2_EL1),
2324 	ID_UNALLOCATED(3,3),
2325 	AA32_ID_SANITISED(ID_PFR2_EL1),
2326 	ID_HIDDEN(ID_DFR1_EL1),
2327 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2328 	ID_UNALLOCATED(3,7),
2329 
2330 	/* AArch64 ID registers */
2331 	/* CRm=4 */
2332 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2333 	  .access = access_id_reg,
2334 	  .get_user = get_id_reg,
2335 	  .set_user = set_id_reg,
2336 	  .reset = read_sanitised_id_aa64pfr0_el1,
2337 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2338 		   ID_AA64PFR0_EL1_MPAM |
2339 		   ID_AA64PFR0_EL1_SVE |
2340 		   ID_AA64PFR0_EL1_RAS |
2341 		   ID_AA64PFR0_EL1_GIC |
2342 		   ID_AA64PFR0_EL1_AdvSIMD |
2343 		   ID_AA64PFR0_EL1_FP), },
2344 	ID_SANITISED(ID_AA64PFR1_EL1),
2345 	ID_UNALLOCATED(4,2),
2346 	ID_UNALLOCATED(4,3),
2347 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2348 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2349 	ID_UNALLOCATED(4,6),
2350 	ID_UNALLOCATED(4,7),
2351 
2352 	/* CRm=5 */
2353 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2354 	  .access = access_id_reg,
2355 	  .get_user = get_id_reg,
2356 	  .set_user = set_id_aa64dfr0_el1,
2357 	  .reset = read_sanitised_id_aa64dfr0_el1,
2358 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2359 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2360 	ID_SANITISED(ID_AA64DFR1_EL1),
2361 	ID_UNALLOCATED(5,2),
2362 	ID_UNALLOCATED(5,3),
2363 	ID_HIDDEN(ID_AA64AFR0_EL1),
2364 	ID_HIDDEN(ID_AA64AFR1_EL1),
2365 	ID_UNALLOCATED(5,6),
2366 	ID_UNALLOCATED(5,7),
2367 
2368 	/* CRm=6 */
2369 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2370 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2371 					ID_AA64ISAR1_EL1_GPA |
2372 					ID_AA64ISAR1_EL1_API |
2373 					ID_AA64ISAR1_EL1_APA)),
2374 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2375 					ID_AA64ISAR2_EL1_APA3 |
2376 					ID_AA64ISAR2_EL1_GPA3)),
2377 	ID_UNALLOCATED(6,3),
2378 	ID_UNALLOCATED(6,4),
2379 	ID_UNALLOCATED(6,5),
2380 	ID_UNALLOCATED(6,6),
2381 	ID_UNALLOCATED(6,7),
2382 
2383 	/* CRm=7 */
2384 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2385 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2386 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2387 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2388 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2389 					ID_AA64MMFR1_EL1_HCX |
2390 					ID_AA64MMFR1_EL1_TWED |
2391 					ID_AA64MMFR1_EL1_XNX |
2392 					ID_AA64MMFR1_EL1_VH |
2393 					ID_AA64MMFR1_EL1_VMIDBits)),
2394 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2395 					ID_AA64MMFR2_EL1_EVT |
2396 					ID_AA64MMFR2_EL1_FWB |
2397 					ID_AA64MMFR2_EL1_IDS |
2398 					ID_AA64MMFR2_EL1_NV |
2399 					ID_AA64MMFR2_EL1_CCIDX)),
2400 	ID_SANITISED(ID_AA64MMFR3_EL1),
2401 	ID_SANITISED(ID_AA64MMFR4_EL1),
2402 	ID_UNALLOCATED(7,5),
2403 	ID_UNALLOCATED(7,6),
2404 	ID_UNALLOCATED(7,7),
2405 
2406 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2407 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2408 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2409 
2410 	MTE_REG(RGSR_EL1),
2411 	MTE_REG(GCR_EL1),
2412 
2413 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2414 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2415 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2416 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2417 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2418 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2419 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2420 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2421 
2422 	PTRAUTH_KEY(APIA),
2423 	PTRAUTH_KEY(APIB),
2424 	PTRAUTH_KEY(APDA),
2425 	PTRAUTH_KEY(APDB),
2426 	PTRAUTH_KEY(APGA),
2427 
2428 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2429 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2430 
2431 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2432 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2433 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2434 
2435 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2436 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2437 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2438 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2439 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2440 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2441 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2442 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2443 
2444 	MTE_REG(TFSR_EL1),
2445 	MTE_REG(TFSRE0_EL1),
2446 
2447 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2448 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2449 
2450 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2451 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2452 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2453 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2454 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2455 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2456 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2457 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2458 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2459 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2460 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2461 	/* PMBIDR_EL1 is not trapped */
2462 
2463 	{ PMU_SYS_REG(PMINTENSET_EL1),
2464 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2465 	  .get_user = get_pmreg, .set_user = set_pmreg },
2466 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2467 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2468 	  .get_user = get_pmreg, .set_user = set_pmreg },
2469 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2470 
2471 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2472 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2473 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2474 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2475 
2476 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2477 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2478 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2479 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2480 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2481 
2482 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2483 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2484 
2485 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2486 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2487 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2488 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2489 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2490 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2491 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2492 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2493 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2494 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2495 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2496 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2497 
2498 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2499 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2500 
2501 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2502 
2503 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2504 
2505 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2506 
2507 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2508 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2509 	  .set_user = set_clidr },
2510 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2511 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2512 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2513 	{ SYS_DESC(SYS_CTR_EL0), access_ctr },
2514 	{ SYS_DESC(SYS_SVCR), undef_access },
2515 
2516 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2517 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2518 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2519 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2520 	  .get_user = get_pmreg, .set_user = set_pmreg },
2521 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2522 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2523 	  .get_user = get_pmreg, .set_user = set_pmreg },
2524 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2525 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2526 	  .get_user = get_pmreg, .set_user = set_pmreg },
2527 	/*
2528 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2529 	 * previously (and pointlessly) advertised in the past...
2530 	 */
2531 	{ PMU_SYS_REG(PMSWINC_EL0),
2532 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2533 	  .access = access_pmswinc, .reset = NULL },
2534 	{ PMU_SYS_REG(PMSELR_EL0),
2535 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2536 	{ PMU_SYS_REG(PMCEID0_EL0),
2537 	  .access = access_pmceid, .reset = NULL },
2538 	{ PMU_SYS_REG(PMCEID1_EL0),
2539 	  .access = access_pmceid, .reset = NULL },
2540 	{ PMU_SYS_REG(PMCCNTR_EL0),
2541 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2542 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2543 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2544 	  .access = access_pmu_evtyper, .reset = NULL },
2545 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2546 	  .access = access_pmu_evcntr, .reset = NULL },
2547 	/*
2548 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2549 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2550 	 */
2551 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2552 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2553 	{ PMU_SYS_REG(PMOVSSET_EL0),
2554 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2555 	  .get_user = get_pmreg, .set_user = set_pmreg },
2556 
2557 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2558 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2559 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2560 
2561 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2562 
2563 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2564 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2565 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2566 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2567 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2568 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2569 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2570 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2571 	AMU_AMEVCNTR0_EL0(0),
2572 	AMU_AMEVCNTR0_EL0(1),
2573 	AMU_AMEVCNTR0_EL0(2),
2574 	AMU_AMEVCNTR0_EL0(3),
2575 	AMU_AMEVCNTR0_EL0(4),
2576 	AMU_AMEVCNTR0_EL0(5),
2577 	AMU_AMEVCNTR0_EL0(6),
2578 	AMU_AMEVCNTR0_EL0(7),
2579 	AMU_AMEVCNTR0_EL0(8),
2580 	AMU_AMEVCNTR0_EL0(9),
2581 	AMU_AMEVCNTR0_EL0(10),
2582 	AMU_AMEVCNTR0_EL0(11),
2583 	AMU_AMEVCNTR0_EL0(12),
2584 	AMU_AMEVCNTR0_EL0(13),
2585 	AMU_AMEVCNTR0_EL0(14),
2586 	AMU_AMEVCNTR0_EL0(15),
2587 	AMU_AMEVTYPER0_EL0(0),
2588 	AMU_AMEVTYPER0_EL0(1),
2589 	AMU_AMEVTYPER0_EL0(2),
2590 	AMU_AMEVTYPER0_EL0(3),
2591 	AMU_AMEVTYPER0_EL0(4),
2592 	AMU_AMEVTYPER0_EL0(5),
2593 	AMU_AMEVTYPER0_EL0(6),
2594 	AMU_AMEVTYPER0_EL0(7),
2595 	AMU_AMEVTYPER0_EL0(8),
2596 	AMU_AMEVTYPER0_EL0(9),
2597 	AMU_AMEVTYPER0_EL0(10),
2598 	AMU_AMEVTYPER0_EL0(11),
2599 	AMU_AMEVTYPER0_EL0(12),
2600 	AMU_AMEVTYPER0_EL0(13),
2601 	AMU_AMEVTYPER0_EL0(14),
2602 	AMU_AMEVTYPER0_EL0(15),
2603 	AMU_AMEVCNTR1_EL0(0),
2604 	AMU_AMEVCNTR1_EL0(1),
2605 	AMU_AMEVCNTR1_EL0(2),
2606 	AMU_AMEVCNTR1_EL0(3),
2607 	AMU_AMEVCNTR1_EL0(4),
2608 	AMU_AMEVCNTR1_EL0(5),
2609 	AMU_AMEVCNTR1_EL0(6),
2610 	AMU_AMEVCNTR1_EL0(7),
2611 	AMU_AMEVCNTR1_EL0(8),
2612 	AMU_AMEVCNTR1_EL0(9),
2613 	AMU_AMEVCNTR1_EL0(10),
2614 	AMU_AMEVCNTR1_EL0(11),
2615 	AMU_AMEVCNTR1_EL0(12),
2616 	AMU_AMEVCNTR1_EL0(13),
2617 	AMU_AMEVCNTR1_EL0(14),
2618 	AMU_AMEVCNTR1_EL0(15),
2619 	AMU_AMEVTYPER1_EL0(0),
2620 	AMU_AMEVTYPER1_EL0(1),
2621 	AMU_AMEVTYPER1_EL0(2),
2622 	AMU_AMEVTYPER1_EL0(3),
2623 	AMU_AMEVTYPER1_EL0(4),
2624 	AMU_AMEVTYPER1_EL0(5),
2625 	AMU_AMEVTYPER1_EL0(6),
2626 	AMU_AMEVTYPER1_EL0(7),
2627 	AMU_AMEVTYPER1_EL0(8),
2628 	AMU_AMEVTYPER1_EL0(9),
2629 	AMU_AMEVTYPER1_EL0(10),
2630 	AMU_AMEVTYPER1_EL0(11),
2631 	AMU_AMEVTYPER1_EL0(12),
2632 	AMU_AMEVTYPER1_EL0(13),
2633 	AMU_AMEVTYPER1_EL0(14),
2634 	AMU_AMEVTYPER1_EL0(15),
2635 
2636 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2637 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2638 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2639 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2640 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2641 
2642 	/* PMEVCNTRn_EL0 */
2643 	PMU_PMEVCNTR_EL0(0),
2644 	PMU_PMEVCNTR_EL0(1),
2645 	PMU_PMEVCNTR_EL0(2),
2646 	PMU_PMEVCNTR_EL0(3),
2647 	PMU_PMEVCNTR_EL0(4),
2648 	PMU_PMEVCNTR_EL0(5),
2649 	PMU_PMEVCNTR_EL0(6),
2650 	PMU_PMEVCNTR_EL0(7),
2651 	PMU_PMEVCNTR_EL0(8),
2652 	PMU_PMEVCNTR_EL0(9),
2653 	PMU_PMEVCNTR_EL0(10),
2654 	PMU_PMEVCNTR_EL0(11),
2655 	PMU_PMEVCNTR_EL0(12),
2656 	PMU_PMEVCNTR_EL0(13),
2657 	PMU_PMEVCNTR_EL0(14),
2658 	PMU_PMEVCNTR_EL0(15),
2659 	PMU_PMEVCNTR_EL0(16),
2660 	PMU_PMEVCNTR_EL0(17),
2661 	PMU_PMEVCNTR_EL0(18),
2662 	PMU_PMEVCNTR_EL0(19),
2663 	PMU_PMEVCNTR_EL0(20),
2664 	PMU_PMEVCNTR_EL0(21),
2665 	PMU_PMEVCNTR_EL0(22),
2666 	PMU_PMEVCNTR_EL0(23),
2667 	PMU_PMEVCNTR_EL0(24),
2668 	PMU_PMEVCNTR_EL0(25),
2669 	PMU_PMEVCNTR_EL0(26),
2670 	PMU_PMEVCNTR_EL0(27),
2671 	PMU_PMEVCNTR_EL0(28),
2672 	PMU_PMEVCNTR_EL0(29),
2673 	PMU_PMEVCNTR_EL0(30),
2674 	/* PMEVTYPERn_EL0 */
2675 	PMU_PMEVTYPER_EL0(0),
2676 	PMU_PMEVTYPER_EL0(1),
2677 	PMU_PMEVTYPER_EL0(2),
2678 	PMU_PMEVTYPER_EL0(3),
2679 	PMU_PMEVTYPER_EL0(4),
2680 	PMU_PMEVTYPER_EL0(5),
2681 	PMU_PMEVTYPER_EL0(6),
2682 	PMU_PMEVTYPER_EL0(7),
2683 	PMU_PMEVTYPER_EL0(8),
2684 	PMU_PMEVTYPER_EL0(9),
2685 	PMU_PMEVTYPER_EL0(10),
2686 	PMU_PMEVTYPER_EL0(11),
2687 	PMU_PMEVTYPER_EL0(12),
2688 	PMU_PMEVTYPER_EL0(13),
2689 	PMU_PMEVTYPER_EL0(14),
2690 	PMU_PMEVTYPER_EL0(15),
2691 	PMU_PMEVTYPER_EL0(16),
2692 	PMU_PMEVTYPER_EL0(17),
2693 	PMU_PMEVTYPER_EL0(18),
2694 	PMU_PMEVTYPER_EL0(19),
2695 	PMU_PMEVTYPER_EL0(20),
2696 	PMU_PMEVTYPER_EL0(21),
2697 	PMU_PMEVTYPER_EL0(22),
2698 	PMU_PMEVTYPER_EL0(23),
2699 	PMU_PMEVTYPER_EL0(24),
2700 	PMU_PMEVTYPER_EL0(25),
2701 	PMU_PMEVTYPER_EL0(26),
2702 	PMU_PMEVTYPER_EL0(27),
2703 	PMU_PMEVTYPER_EL0(28),
2704 	PMU_PMEVTYPER_EL0(29),
2705 	PMU_PMEVTYPER_EL0(30),
2706 	/*
2707 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2708 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2709 	 */
2710 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2711 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2712 
2713 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2714 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2715 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2716 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2717 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2718 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2719 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2720 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2721 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2722 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2723 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2724 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2725 
2726 	{ SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val,
2727 	  .visibility = sve_el2_visibility, .reg = ZCR_EL2 },
2728 
2729 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2730 
2731 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2732 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2733 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2734 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2735 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2736 
2737 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2738 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2739 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2740 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2741 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2742 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2743 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2744 
2745 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2746 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2747 	  .visibility = hidden_user_visibility },
2748 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2749 	  .visibility = hidden_user_visibility },
2750 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2751 	  .visibility = hidden_user_visibility },
2752 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2753 	  .visibility = hidden_user_visibility },
2754 
2755 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2756 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2757 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2758 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2759 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2760 
2761 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2762 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2763 
2764 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2765 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2766 
2767 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2768 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2769 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2770 
2771 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2772 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2773 
2774 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2775 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2776 
2777 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2778 
2779 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2780 };
2781 
2782 static struct sys_reg_desc sys_insn_descs[] = {
2783 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
2784 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
2785 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
2786 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
2787 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
2788 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
2789 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
2790 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
2791 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
2792 };
2793 
2794 static const struct sys_reg_desc *first_idreg;
2795 
2796 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2797 			struct sys_reg_params *p,
2798 			const struct sys_reg_desc *r)
2799 {
2800 	if (p->is_write) {
2801 		return ignore_write(vcpu, p);
2802 	} else {
2803 		u64 dfr = IDREG(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
2804 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
2805 
2806 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
2807 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
2808 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
2809 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
2810 			     (1 << 15) | (el3 << 14) | (el3 << 12));
2811 		return true;
2812 	}
2813 }
2814 
2815 /*
2816  * AArch32 debug register mappings
2817  *
2818  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2819  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2820  *
2821  * None of the other registers share their location, so treat them as
2822  * if they were 64bit.
2823  */
2824 #define DBG_BCR_BVR_WCR_WVR(n)						      \
2825 	/* DBGBVRn */							      \
2826 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2827 	/* DBGBCRn */							      \
2828 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
2829 	/* DBGWVRn */							      \
2830 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
2831 	/* DBGWCRn */							      \
2832 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2833 
2834 #define DBGBXVR(n)							      \
2835 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2836 
2837 /*
2838  * Trapped cp14 registers. We generally ignore most of the external
2839  * debug, on the principle that they don't really make sense to a
2840  * guest. Revisit this one day, would this principle change.
2841  */
2842 static const struct sys_reg_desc cp14_regs[] = {
2843 	/* DBGDIDR */
2844 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2845 	/* DBGDTRRXext */
2846 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2847 
2848 	DBG_BCR_BVR_WCR_WVR(0),
2849 	/* DBGDSCRint */
2850 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2851 	DBG_BCR_BVR_WCR_WVR(1),
2852 	/* DBGDCCINT */
2853 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2854 	/* DBGDSCRext */
2855 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2856 	DBG_BCR_BVR_WCR_WVR(2),
2857 	/* DBGDTR[RT]Xint */
2858 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2859 	/* DBGDTR[RT]Xext */
2860 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2861 	DBG_BCR_BVR_WCR_WVR(3),
2862 	DBG_BCR_BVR_WCR_WVR(4),
2863 	DBG_BCR_BVR_WCR_WVR(5),
2864 	/* DBGWFAR */
2865 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2866 	/* DBGOSECCR */
2867 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2868 	DBG_BCR_BVR_WCR_WVR(6),
2869 	/* DBGVCR */
2870 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2871 	DBG_BCR_BVR_WCR_WVR(7),
2872 	DBG_BCR_BVR_WCR_WVR(8),
2873 	DBG_BCR_BVR_WCR_WVR(9),
2874 	DBG_BCR_BVR_WCR_WVR(10),
2875 	DBG_BCR_BVR_WCR_WVR(11),
2876 	DBG_BCR_BVR_WCR_WVR(12),
2877 	DBG_BCR_BVR_WCR_WVR(13),
2878 	DBG_BCR_BVR_WCR_WVR(14),
2879 	DBG_BCR_BVR_WCR_WVR(15),
2880 
2881 	/* DBGDRAR (32bit) */
2882 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2883 
2884 	DBGBXVR(0),
2885 	/* DBGOSLAR */
2886 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2887 	DBGBXVR(1),
2888 	/* DBGOSLSR */
2889 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2890 	DBGBXVR(2),
2891 	DBGBXVR(3),
2892 	/* DBGOSDLR */
2893 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2894 	DBGBXVR(4),
2895 	/* DBGPRCR */
2896 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2897 	DBGBXVR(5),
2898 	DBGBXVR(6),
2899 	DBGBXVR(7),
2900 	DBGBXVR(8),
2901 	DBGBXVR(9),
2902 	DBGBXVR(10),
2903 	DBGBXVR(11),
2904 	DBGBXVR(12),
2905 	DBGBXVR(13),
2906 	DBGBXVR(14),
2907 	DBGBXVR(15),
2908 
2909 	/* DBGDSAR (32bit) */
2910 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2911 
2912 	/* DBGDEVID2 */
2913 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2914 	/* DBGDEVID1 */
2915 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2916 	/* DBGDEVID */
2917 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2918 	/* DBGCLAIMSET */
2919 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2920 	/* DBGCLAIMCLR */
2921 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2922 	/* DBGAUTHSTATUS */
2923 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2924 };
2925 
2926 /* Trapped cp14 64bit registers */
2927 static const struct sys_reg_desc cp14_64_regs[] = {
2928 	/* DBGDRAR (64bit) */
2929 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
2930 
2931 	/* DBGDSAR (64bit) */
2932 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
2933 };
2934 
2935 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
2936 	AA32(_map),							\
2937 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
2938 	.visibility = pmu_visibility
2939 
2940 /* Macro to expand the PMEVCNTRn register */
2941 #define PMU_PMEVCNTR(n)							\
2942 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2943 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2944 	  .access = access_pmu_evcntr }
2945 
2946 /* Macro to expand the PMEVTYPERn register */
2947 #define PMU_PMEVTYPER(n)						\
2948 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
2949 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
2950 	  .access = access_pmu_evtyper }
2951 /*
2952  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2953  * depending on the way they are accessed (as a 32bit or a 64bit
2954  * register).
2955  */
2956 static const struct sys_reg_desc cp15_regs[] = {
2957 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2958 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2959 	/* ACTLR */
2960 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2961 	/* ACTLR2 */
2962 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2963 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2964 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2965 	/* TTBCR */
2966 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2967 	/* TTBCR2 */
2968 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2969 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2970 	/* DFSR */
2971 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2972 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2973 	/* ADFSR */
2974 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2975 	/* AIFSR */
2976 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2977 	/* DFAR */
2978 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2979 	/* IFAR */
2980 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2981 
2982 	/*
2983 	 * DC{C,I,CI}SW operations:
2984 	 */
2985 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2986 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2987 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2988 
2989 	/* PMU */
2990 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2991 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2992 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2993 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2994 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2995 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2996 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
2997 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
2998 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2999 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
3000 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
3001 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
3002 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
3003 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
3004 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
3005 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
3006 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
3007 	/* PMMIR */
3008 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
3009 
3010 	/* PRRR/MAIR0 */
3011 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
3012 	/* NMRR/MAIR1 */
3013 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
3014 	/* AMAIR0 */
3015 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
3016 	/* AMAIR1 */
3017 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
3018 
3019 	/* ICC_SRE */
3020 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
3021 
3022 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
3023 
3024 	/* Arch Tmers */
3025 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
3026 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
3027 
3028 	/* PMEVCNTRn */
3029 	PMU_PMEVCNTR(0),
3030 	PMU_PMEVCNTR(1),
3031 	PMU_PMEVCNTR(2),
3032 	PMU_PMEVCNTR(3),
3033 	PMU_PMEVCNTR(4),
3034 	PMU_PMEVCNTR(5),
3035 	PMU_PMEVCNTR(6),
3036 	PMU_PMEVCNTR(7),
3037 	PMU_PMEVCNTR(8),
3038 	PMU_PMEVCNTR(9),
3039 	PMU_PMEVCNTR(10),
3040 	PMU_PMEVCNTR(11),
3041 	PMU_PMEVCNTR(12),
3042 	PMU_PMEVCNTR(13),
3043 	PMU_PMEVCNTR(14),
3044 	PMU_PMEVCNTR(15),
3045 	PMU_PMEVCNTR(16),
3046 	PMU_PMEVCNTR(17),
3047 	PMU_PMEVCNTR(18),
3048 	PMU_PMEVCNTR(19),
3049 	PMU_PMEVCNTR(20),
3050 	PMU_PMEVCNTR(21),
3051 	PMU_PMEVCNTR(22),
3052 	PMU_PMEVCNTR(23),
3053 	PMU_PMEVCNTR(24),
3054 	PMU_PMEVCNTR(25),
3055 	PMU_PMEVCNTR(26),
3056 	PMU_PMEVCNTR(27),
3057 	PMU_PMEVCNTR(28),
3058 	PMU_PMEVCNTR(29),
3059 	PMU_PMEVCNTR(30),
3060 	/* PMEVTYPERn */
3061 	PMU_PMEVTYPER(0),
3062 	PMU_PMEVTYPER(1),
3063 	PMU_PMEVTYPER(2),
3064 	PMU_PMEVTYPER(3),
3065 	PMU_PMEVTYPER(4),
3066 	PMU_PMEVTYPER(5),
3067 	PMU_PMEVTYPER(6),
3068 	PMU_PMEVTYPER(7),
3069 	PMU_PMEVTYPER(8),
3070 	PMU_PMEVTYPER(9),
3071 	PMU_PMEVTYPER(10),
3072 	PMU_PMEVTYPER(11),
3073 	PMU_PMEVTYPER(12),
3074 	PMU_PMEVTYPER(13),
3075 	PMU_PMEVTYPER(14),
3076 	PMU_PMEVTYPER(15),
3077 	PMU_PMEVTYPER(16),
3078 	PMU_PMEVTYPER(17),
3079 	PMU_PMEVTYPER(18),
3080 	PMU_PMEVTYPER(19),
3081 	PMU_PMEVTYPER(20),
3082 	PMU_PMEVTYPER(21),
3083 	PMU_PMEVTYPER(22),
3084 	PMU_PMEVTYPER(23),
3085 	PMU_PMEVTYPER(24),
3086 	PMU_PMEVTYPER(25),
3087 	PMU_PMEVTYPER(26),
3088 	PMU_PMEVTYPER(27),
3089 	PMU_PMEVTYPER(28),
3090 	PMU_PMEVTYPER(29),
3091 	PMU_PMEVTYPER(30),
3092 	/* PMCCFILTR */
3093 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3094 
3095 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3096 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3097 
3098 	/* CCSIDR2 */
3099 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3100 
3101 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3102 };
3103 
3104 static const struct sys_reg_desc cp15_64_regs[] = {
3105 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3106 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3107 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3108 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3109 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3110 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3111 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3112 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3113 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3114 };
3115 
3116 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3117 			       bool is_32)
3118 {
3119 	unsigned int i;
3120 
3121 	for (i = 0; i < n; i++) {
3122 		if (!is_32 && table[i].reg && !table[i].reset) {
3123 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
3124 				&table[i], i, table[i].name);
3125 			return false;
3126 		}
3127 
3128 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3129 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
3130 				&table[i], i, table[i - 1].name, table[i].name);
3131 			return false;
3132 		}
3133 	}
3134 
3135 	return true;
3136 }
3137 
3138 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3139 {
3140 	kvm_inject_undefined(vcpu);
3141 	return 1;
3142 }
3143 
3144 static void perform_access(struct kvm_vcpu *vcpu,
3145 			   struct sys_reg_params *params,
3146 			   const struct sys_reg_desc *r)
3147 {
3148 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3149 
3150 	/* Check for regs disabled by runtime config */
3151 	if (sysreg_hidden(vcpu, r)) {
3152 		kvm_inject_undefined(vcpu);
3153 		return;
3154 	}
3155 
3156 	/*
3157 	 * Not having an accessor means that we have configured a trap
3158 	 * that we don't know how to handle. This certainly qualifies
3159 	 * as a gross bug that should be fixed right away.
3160 	 */
3161 	BUG_ON(!r->access);
3162 
3163 	/* Skip instruction if instructed so */
3164 	if (likely(r->access(vcpu, params, r)))
3165 		kvm_incr_pc(vcpu);
3166 }
3167 
3168 /*
3169  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3170  *                call the corresponding trap handler.
3171  *
3172  * @params: pointer to the descriptor of the access
3173  * @table: array of trap descriptors
3174  * @num: size of the trap descriptor array
3175  *
3176  * Return true if the access has been handled, false if not.
3177  */
3178 static bool emulate_cp(struct kvm_vcpu *vcpu,
3179 		       struct sys_reg_params *params,
3180 		       const struct sys_reg_desc *table,
3181 		       size_t num)
3182 {
3183 	const struct sys_reg_desc *r;
3184 
3185 	if (!table)
3186 		return false;	/* Not handled */
3187 
3188 	r = find_reg(params, table, num);
3189 
3190 	if (r) {
3191 		perform_access(vcpu, params, r);
3192 		return true;
3193 	}
3194 
3195 	/* Not handled */
3196 	return false;
3197 }
3198 
3199 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3200 				struct sys_reg_params *params)
3201 {
3202 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3203 	int cp = -1;
3204 
3205 	switch (esr_ec) {
3206 	case ESR_ELx_EC_CP15_32:
3207 	case ESR_ELx_EC_CP15_64:
3208 		cp = 15;
3209 		break;
3210 	case ESR_ELx_EC_CP14_MR:
3211 	case ESR_ELx_EC_CP14_64:
3212 		cp = 14;
3213 		break;
3214 	default:
3215 		WARN_ON(1);
3216 	}
3217 
3218 	print_sys_reg_msg(params,
3219 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3220 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3221 	kvm_inject_undefined(vcpu);
3222 }
3223 
3224 /**
3225  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3226  * @vcpu: The VCPU pointer
3227  * @global: &struct sys_reg_desc
3228  * @nr_global: size of the @global array
3229  */
3230 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3231 			    const struct sys_reg_desc *global,
3232 			    size_t nr_global)
3233 {
3234 	struct sys_reg_params params;
3235 	u64 esr = kvm_vcpu_get_esr(vcpu);
3236 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3237 	int Rt2 = (esr >> 10) & 0x1f;
3238 
3239 	params.CRm = (esr >> 1) & 0xf;
3240 	params.is_write = ((esr & 1) == 0);
3241 
3242 	params.Op0 = 0;
3243 	params.Op1 = (esr >> 16) & 0xf;
3244 	params.Op2 = 0;
3245 	params.CRn = 0;
3246 
3247 	/*
3248 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3249 	 * backends between AArch32 and AArch64, we get away with it.
3250 	 */
3251 	if (params.is_write) {
3252 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3253 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3254 	}
3255 
3256 	/*
3257 	 * If the table contains a handler, handle the
3258 	 * potential register operation in the case of a read and return
3259 	 * with success.
3260 	 */
3261 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3262 		/* Split up the value between registers for the read side */
3263 		if (!params.is_write) {
3264 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3265 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3266 		}
3267 
3268 		return 1;
3269 	}
3270 
3271 	unhandled_cp_access(vcpu, &params);
3272 	return 1;
3273 }
3274 
3275 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3276 
3277 /*
3278  * The CP10 ID registers are architecturally mapped to AArch64 feature
3279  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3280  * from AArch32.
3281  */
3282 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3283 {
3284 	u8 reg_id = (esr >> 10) & 0xf;
3285 	bool valid;
3286 
3287 	params->is_write = ((esr & 1) == 0);
3288 	params->Op0 = 3;
3289 	params->Op1 = 0;
3290 	params->CRn = 0;
3291 	params->CRm = 3;
3292 
3293 	/* CP10 ID registers are read-only */
3294 	valid = !params->is_write;
3295 
3296 	switch (reg_id) {
3297 	/* MVFR0 */
3298 	case 0b0111:
3299 		params->Op2 = 0;
3300 		break;
3301 	/* MVFR1 */
3302 	case 0b0110:
3303 		params->Op2 = 1;
3304 		break;
3305 	/* MVFR2 */
3306 	case 0b0101:
3307 		params->Op2 = 2;
3308 		break;
3309 	default:
3310 		valid = false;
3311 	}
3312 
3313 	if (valid)
3314 		return true;
3315 
3316 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3317 		      params->is_write ? "write" : "read", reg_id);
3318 	return false;
3319 }
3320 
3321 /**
3322  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3323  *			  VFP Register' from AArch32.
3324  * @vcpu: The vCPU pointer
3325  *
3326  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3327  * Work out the correct AArch64 system register encoding and reroute to the
3328  * AArch64 system register emulation.
3329  */
3330 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3331 {
3332 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3333 	u64 esr = kvm_vcpu_get_esr(vcpu);
3334 	struct sys_reg_params params;
3335 
3336 	/* UNDEF on any unhandled register access */
3337 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3338 		kvm_inject_undefined(vcpu);
3339 		return 1;
3340 	}
3341 
3342 	if (emulate_sys_reg(vcpu, &params))
3343 		vcpu_set_reg(vcpu, Rt, params.regval);
3344 
3345 	return 1;
3346 }
3347 
3348 /**
3349  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3350  *			       CRn=0, which corresponds to the AArch32 feature
3351  *			       registers.
3352  * @vcpu: the vCPU pointer
3353  * @params: the system register access parameters.
3354  *
3355  * Our cp15 system register tables do not enumerate the AArch32 feature
3356  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3357  * register encoding can be trivially remapped into the AArch64 for the feature
3358  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3359  *
3360  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3361  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3362  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3363  * treat undefined registers in this range as RAZ.
3364  */
3365 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3366 				   struct sys_reg_params *params)
3367 {
3368 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3369 
3370 	/* Treat impossible writes to RO registers as UNDEFINED */
3371 	if (params->is_write) {
3372 		unhandled_cp_access(vcpu, params);
3373 		return 1;
3374 	}
3375 
3376 	params->Op0 = 3;
3377 
3378 	/*
3379 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3380 	 * Avoid conflicting with future expansion of AArch64 feature registers
3381 	 * and simply treat them as RAZ here.
3382 	 */
3383 	if (params->CRm > 3)
3384 		params->regval = 0;
3385 	else if (!emulate_sys_reg(vcpu, params))
3386 		return 1;
3387 
3388 	vcpu_set_reg(vcpu, Rt, params->regval);
3389 	return 1;
3390 }
3391 
3392 /**
3393  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3394  * @vcpu: The VCPU pointer
3395  * @params: &struct sys_reg_params
3396  * @global: &struct sys_reg_desc
3397  * @nr_global: size of the @global array
3398  */
3399 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3400 			    struct sys_reg_params *params,
3401 			    const struct sys_reg_desc *global,
3402 			    size_t nr_global)
3403 {
3404 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3405 
3406 	params->regval = vcpu_get_reg(vcpu, Rt);
3407 
3408 	if (emulate_cp(vcpu, params, global, nr_global)) {
3409 		if (!params->is_write)
3410 			vcpu_set_reg(vcpu, Rt, params->regval);
3411 		return 1;
3412 	}
3413 
3414 	unhandled_cp_access(vcpu, params);
3415 	return 1;
3416 }
3417 
3418 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3419 {
3420 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3421 }
3422 
3423 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3424 {
3425 	struct sys_reg_params params;
3426 
3427 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3428 
3429 	/*
3430 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3431 	 * system register table. Registers in the ID range where CRm=0 are
3432 	 * excluded from this scheme as they do not trivially map into AArch64
3433 	 * system register encodings.
3434 	 */
3435 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3436 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3437 
3438 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3439 }
3440 
3441 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3442 {
3443 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3444 }
3445 
3446 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3447 {
3448 	struct sys_reg_params params;
3449 
3450 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3451 
3452 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3453 }
3454 
3455 /**
3456  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3457  * @vcpu: The VCPU pointer
3458  * @params: Decoded system register parameters
3459  *
3460  * Return: true if the system register access was successful, false otherwise.
3461  */
3462 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3463 			    struct sys_reg_params *params)
3464 {
3465 	const struct sys_reg_desc *r;
3466 
3467 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3468 	if (likely(r)) {
3469 		perform_access(vcpu, params, r);
3470 		return true;
3471 	}
3472 
3473 	print_sys_reg_msg(params,
3474 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3475 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3476 	kvm_inject_undefined(vcpu);
3477 
3478 	return false;
3479 }
3480 
3481 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3482 {
3483 	struct kvm *kvm = s->private;
3484 	u8 *iter;
3485 
3486 	mutex_lock(&kvm->arch.config_lock);
3487 
3488 	iter = &kvm->arch.idreg_debugfs_iter;
3489 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3490 	    *iter == (u8)~0) {
3491 		*iter = *pos;
3492 		if (*iter >= KVM_ARM_ID_REG_NUM)
3493 			iter = NULL;
3494 	} else {
3495 		iter = ERR_PTR(-EBUSY);
3496 	}
3497 
3498 	mutex_unlock(&kvm->arch.config_lock);
3499 
3500 	return iter;
3501 }
3502 
3503 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3504 {
3505 	struct kvm *kvm = s->private;
3506 
3507 	(*pos)++;
3508 
3509 	if ((kvm->arch.idreg_debugfs_iter + 1) < KVM_ARM_ID_REG_NUM) {
3510 		kvm->arch.idreg_debugfs_iter++;
3511 
3512 		return &kvm->arch.idreg_debugfs_iter;
3513 	}
3514 
3515 	return NULL;
3516 }
3517 
3518 static void idregs_debug_stop(struct seq_file *s, void *v)
3519 {
3520 	struct kvm *kvm = s->private;
3521 
3522 	if (IS_ERR(v))
3523 		return;
3524 
3525 	mutex_lock(&kvm->arch.config_lock);
3526 
3527 	kvm->arch.idreg_debugfs_iter = ~0;
3528 
3529 	mutex_unlock(&kvm->arch.config_lock);
3530 }
3531 
3532 static int idregs_debug_show(struct seq_file *s, void *v)
3533 {
3534 	struct kvm *kvm = s->private;
3535 	const struct sys_reg_desc *desc;
3536 
3537 	desc = first_idreg + kvm->arch.idreg_debugfs_iter;
3538 
3539 	if (!desc->name)
3540 		return 0;
3541 
3542 	seq_printf(s, "%20s:\t%016llx\n",
3543 		   desc->name, IDREG(kvm, IDX_IDREG(kvm->arch.idreg_debugfs_iter)));
3544 
3545 	return 0;
3546 }
3547 
3548 static const struct seq_operations idregs_debug_sops = {
3549 	.start	= idregs_debug_start,
3550 	.next	= idregs_debug_next,
3551 	.stop	= idregs_debug_stop,
3552 	.show	= idregs_debug_show,
3553 };
3554 
3555 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
3556 
3557 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
3558 {
3559 	kvm->arch.idreg_debugfs_iter = ~0;
3560 
3561 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
3562 			    &idregs_debug_fops);
3563 }
3564 
3565 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
3566 {
3567 	u32 id = reg_to_encoding(reg);
3568 	struct kvm *kvm = vcpu->kvm;
3569 
3570 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3571 		return;
3572 
3573 	lockdep_assert_held(&kvm->arch.config_lock);
3574 	IDREG(kvm, id) = reg->reset(vcpu, reg);
3575 }
3576 
3577 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
3578 				  const struct sys_reg_desc *reg)
3579 {
3580 	if (kvm_vcpu_initialized(vcpu))
3581 		return;
3582 
3583 	reg->reset(vcpu, reg);
3584 }
3585 
3586 /**
3587  * kvm_reset_sys_regs - sets system registers to reset value
3588  * @vcpu: The VCPU pointer
3589  *
3590  * This function finds the right table above and sets the registers on the
3591  * virtual CPU struct to their architecturally defined reset values.
3592  */
3593 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3594 {
3595 	struct kvm *kvm = vcpu->kvm;
3596 	unsigned long i;
3597 
3598 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3599 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3600 
3601 		if (!r->reset)
3602 			continue;
3603 
3604 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
3605 			reset_vm_ftr_id_reg(vcpu, r);
3606 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
3607 			reset_vcpu_ftr_id_reg(vcpu, r);
3608 		else
3609 			r->reset(vcpu, r);
3610 	}
3611 
3612 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3613 }
3614 
3615 /**
3616  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
3617  *			 trap on a guest execution
3618  * @vcpu: The VCPU pointer
3619  */
3620 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3621 {
3622 	const struct sys_reg_desc *desc = NULL;
3623 	struct sys_reg_params params;
3624 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
3625 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3626 	int sr_idx;
3627 
3628 	trace_kvm_handle_sys_reg(esr);
3629 
3630 	if (triage_sysreg_trap(vcpu, &sr_idx))
3631 		return 1;
3632 
3633 	params = esr_sys64_to_params(esr);
3634 	params.regval = vcpu_get_reg(vcpu, Rt);
3635 
3636 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
3637 	if (params.Op0 == 2 || params.Op0 == 3)
3638 		desc = &sys_reg_descs[sr_idx];
3639 	else
3640 		desc = &sys_insn_descs[sr_idx];
3641 
3642 	perform_access(vcpu, &params, desc);
3643 
3644 	/* Read from system register? */
3645 	if (!params.is_write &&
3646 	    (params.Op0 == 2 || params.Op0 == 3))
3647 		vcpu_set_reg(vcpu, Rt, params.regval);
3648 
3649 	return 1;
3650 }
3651 
3652 /******************************************************************************
3653  * Userspace API
3654  *****************************************************************************/
3655 
3656 static bool index_to_params(u64 id, struct sys_reg_params *params)
3657 {
3658 	switch (id & KVM_REG_SIZE_MASK) {
3659 	case KVM_REG_SIZE_U64:
3660 		/* Any unused index bits means it's not valid. */
3661 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3662 			      | KVM_REG_ARM_COPROC_MASK
3663 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
3664 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
3665 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
3666 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
3667 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
3668 			return false;
3669 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3670 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3671 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3672 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3673 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3674 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3675 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3676 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3677 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3678 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3679 		return true;
3680 	default:
3681 		return false;
3682 	}
3683 }
3684 
3685 const struct sys_reg_desc *get_reg_by_id(u64 id,
3686 					 const struct sys_reg_desc table[],
3687 					 unsigned int num)
3688 {
3689 	struct sys_reg_params params;
3690 
3691 	if (!index_to_params(id, &params))
3692 		return NULL;
3693 
3694 	return find_reg(&params, table, num);
3695 }
3696 
3697 /* Decode an index value, and find the sys_reg_desc entry. */
3698 static const struct sys_reg_desc *
3699 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3700 		   const struct sys_reg_desc table[], unsigned int num)
3701 
3702 {
3703 	const struct sys_reg_desc *r;
3704 
3705 	/* We only do sys_reg for now. */
3706 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3707 		return NULL;
3708 
3709 	r = get_reg_by_id(id, table, num);
3710 
3711 	/* Not saved in the sys_reg array and not otherwise accessible? */
3712 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3713 		r = NULL;
3714 
3715 	return r;
3716 }
3717 
3718 /*
3719  * These are the invariant sys_reg registers: we let the guest see the
3720  * host versions of these, so they're part of the guest state.
3721  *
3722  * A future CPU may provide a mechanism to present different values to
3723  * the guest, or a future kvm may trap them.
3724  */
3725 
3726 #define FUNCTION_INVARIANT(reg)						\
3727 	static u64 get_##reg(struct kvm_vcpu *v,			\
3728 			      const struct sys_reg_desc *r)		\
3729 	{								\
3730 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
3731 		return ((struct sys_reg_desc *)r)->val;			\
3732 	}
3733 
3734 FUNCTION_INVARIANT(midr_el1)
3735 FUNCTION_INVARIANT(revidr_el1)
3736 FUNCTION_INVARIANT(aidr_el1)
3737 
3738 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3739 {
3740 	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3741 	return ((struct sys_reg_desc *)r)->val;
3742 }
3743 
3744 /* ->val is filled in by kvm_sys_reg_table_init() */
3745 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3746 	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3747 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3748 	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3749 	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3750 };
3751 
3752 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3753 {
3754 	const struct sys_reg_desc *r;
3755 
3756 	r = get_reg_by_id(id, invariant_sys_regs,
3757 			  ARRAY_SIZE(invariant_sys_regs));
3758 	if (!r)
3759 		return -ENOENT;
3760 
3761 	return put_user(r->val, uaddr);
3762 }
3763 
3764 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3765 {
3766 	const struct sys_reg_desc *r;
3767 	u64 val;
3768 
3769 	r = get_reg_by_id(id, invariant_sys_regs,
3770 			  ARRAY_SIZE(invariant_sys_regs));
3771 	if (!r)
3772 		return -ENOENT;
3773 
3774 	if (get_user(val, uaddr))
3775 		return -EFAULT;
3776 
3777 	/* This is what we mean by invariant: you can't change it. */
3778 	if (r->val != val)
3779 		return -EINVAL;
3780 
3781 	return 0;
3782 }
3783 
3784 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3785 {
3786 	u32 val;
3787 	u32 __user *uval = uaddr;
3788 
3789 	/* Fail if we have unknown bits set. */
3790 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3791 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3792 		return -ENOENT;
3793 
3794 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3795 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3796 		if (KVM_REG_SIZE(id) != 4)
3797 			return -ENOENT;
3798 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3799 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3800 		if (val >= CSSELR_MAX)
3801 			return -ENOENT;
3802 
3803 		return put_user(get_ccsidr(vcpu, val), uval);
3804 	default:
3805 		return -ENOENT;
3806 	}
3807 }
3808 
3809 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3810 {
3811 	u32 val, newval;
3812 	u32 __user *uval = uaddr;
3813 
3814 	/* Fail if we have unknown bits set. */
3815 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3816 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3817 		return -ENOENT;
3818 
3819 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3820 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3821 		if (KVM_REG_SIZE(id) != 4)
3822 			return -ENOENT;
3823 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3824 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3825 		if (val >= CSSELR_MAX)
3826 			return -ENOENT;
3827 
3828 		if (get_user(newval, uval))
3829 			return -EFAULT;
3830 
3831 		return set_ccsidr(vcpu, val, newval);
3832 	default:
3833 		return -ENOENT;
3834 	}
3835 }
3836 
3837 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3838 			 const struct sys_reg_desc table[], unsigned int num)
3839 {
3840 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3841 	const struct sys_reg_desc *r;
3842 	u64 val;
3843 	int ret;
3844 
3845 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3846 	if (!r || sysreg_hidden_user(vcpu, r))
3847 		return -ENOENT;
3848 
3849 	if (r->get_user) {
3850 		ret = (r->get_user)(vcpu, r, &val);
3851 	} else {
3852 		val = __vcpu_sys_reg(vcpu, r->reg);
3853 		ret = 0;
3854 	}
3855 
3856 	if (!ret)
3857 		ret = put_user(val, uaddr);
3858 
3859 	return ret;
3860 }
3861 
3862 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3863 {
3864 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3865 	int err;
3866 
3867 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3868 		return demux_c15_get(vcpu, reg->id, uaddr);
3869 
3870 	err = get_invariant_sys_reg(reg->id, uaddr);
3871 	if (err != -ENOENT)
3872 		return err;
3873 
3874 	return kvm_sys_reg_get_user(vcpu, reg,
3875 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3876 }
3877 
3878 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3879 			 const struct sys_reg_desc table[], unsigned int num)
3880 {
3881 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3882 	const struct sys_reg_desc *r;
3883 	u64 val;
3884 	int ret;
3885 
3886 	if (get_user(val, uaddr))
3887 		return -EFAULT;
3888 
3889 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3890 	if (!r || sysreg_hidden_user(vcpu, r))
3891 		return -ENOENT;
3892 
3893 	if (sysreg_user_write_ignore(vcpu, r))
3894 		return 0;
3895 
3896 	if (r->set_user) {
3897 		ret = (r->set_user)(vcpu, r, val);
3898 	} else {
3899 		__vcpu_sys_reg(vcpu, r->reg) = val;
3900 		ret = 0;
3901 	}
3902 
3903 	return ret;
3904 }
3905 
3906 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3907 {
3908 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3909 	int err;
3910 
3911 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3912 		return demux_c15_set(vcpu, reg->id, uaddr);
3913 
3914 	err = set_invariant_sys_reg(reg->id, uaddr);
3915 	if (err != -ENOENT)
3916 		return err;
3917 
3918 	return kvm_sys_reg_set_user(vcpu, reg,
3919 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3920 }
3921 
3922 static unsigned int num_demux_regs(void)
3923 {
3924 	return CSSELR_MAX;
3925 }
3926 
3927 static int write_demux_regids(u64 __user *uindices)
3928 {
3929 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3930 	unsigned int i;
3931 
3932 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3933 	for (i = 0; i < CSSELR_MAX; i++) {
3934 		if (put_user(val | i, uindices))
3935 			return -EFAULT;
3936 		uindices++;
3937 	}
3938 	return 0;
3939 }
3940 
3941 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3942 {
3943 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3944 		KVM_REG_ARM64_SYSREG |
3945 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3946 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3947 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3948 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3949 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3950 }
3951 
3952 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3953 {
3954 	if (!*uind)
3955 		return true;
3956 
3957 	if (put_user(sys_reg_to_index(reg), *uind))
3958 		return false;
3959 
3960 	(*uind)++;
3961 	return true;
3962 }
3963 
3964 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3965 			    const struct sys_reg_desc *rd,
3966 			    u64 __user **uind,
3967 			    unsigned int *total)
3968 {
3969 	/*
3970 	 * Ignore registers we trap but don't save,
3971 	 * and for which no custom user accessor is provided.
3972 	 */
3973 	if (!(rd->reg || rd->get_user))
3974 		return 0;
3975 
3976 	if (sysreg_hidden_user(vcpu, rd))
3977 		return 0;
3978 
3979 	if (!copy_reg_to_user(rd, uind))
3980 		return -EFAULT;
3981 
3982 	(*total)++;
3983 	return 0;
3984 }
3985 
3986 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3987 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3988 {
3989 	const struct sys_reg_desc *i2, *end2;
3990 	unsigned int total = 0;
3991 	int err;
3992 
3993 	i2 = sys_reg_descs;
3994 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3995 
3996 	while (i2 != end2) {
3997 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3998 		if (err)
3999 			return err;
4000 	}
4001 	return total;
4002 }
4003 
4004 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
4005 {
4006 	return ARRAY_SIZE(invariant_sys_regs)
4007 		+ num_demux_regs()
4008 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
4009 }
4010 
4011 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
4012 {
4013 	unsigned int i;
4014 	int err;
4015 
4016 	/* Then give them all the invariant registers' indices. */
4017 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
4018 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
4019 			return -EFAULT;
4020 		uindices++;
4021 	}
4022 
4023 	err = walk_sys_regs(vcpu, uindices);
4024 	if (err < 0)
4025 		return err;
4026 	uindices += err;
4027 
4028 	return write_demux_regids(uindices);
4029 }
4030 
4031 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
4032 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
4033 		sys_reg_Op1(r),					\
4034 		sys_reg_CRn(r),					\
4035 		sys_reg_CRm(r),					\
4036 		sys_reg_Op2(r))
4037 
4038 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4039 {
4040 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4041 	u64 __user *masks = (u64 __user *)range->addr;
4042 
4043 	/* Only feature id range is supported, reserved[13] must be zero. */
4044 	if (range->range ||
4045 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4046 		return -EINVAL;
4047 
4048 	/* Wipe the whole thing first */
4049 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4050 		return -EFAULT;
4051 
4052 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4053 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4054 		u32 encoding = reg_to_encoding(reg);
4055 		u64 val;
4056 
4057 		if (!is_feature_id_reg(encoding) || !reg->set_user)
4058 			continue;
4059 
4060 		/*
4061 		 * For ID registers, we return the writable mask. Other feature
4062 		 * registers return a full 64bit mask. That's not necessary
4063 		 * compliant with a given revision of the architecture, but the
4064 		 * RES0/RES1 definitions allow us to do that.
4065 		 */
4066 		if (is_vm_ftr_id_reg(encoding)) {
4067 			if (!reg->val ||
4068 			    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0()))
4069 				continue;
4070 			val = reg->val;
4071 		} else {
4072 			val = ~0UL;
4073 		}
4074 
4075 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4076 			return -EFAULT;
4077 	}
4078 
4079 	return 0;
4080 }
4081 
4082 void kvm_init_sysreg(struct kvm_vcpu *vcpu)
4083 {
4084 	struct kvm *kvm = vcpu->kvm;
4085 
4086 	mutex_lock(&kvm->arch.config_lock);
4087 
4088 	/*
4089 	 * In the absence of FGT, we cannot independently trap TLBI
4090 	 * Range instructions. This isn't great, but trapping all
4091 	 * TLBIs would be far worse. Live with it...
4092 	 */
4093 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4094 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4095 
4096 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4097 		vcpu->arch.hcrx_el2 = HCRX_GUEST_FLAGS;
4098 
4099 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4100 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4101 	}
4102 
4103 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4104 		goto out;
4105 
4106 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4107 				       HFGxTR_EL2_nMAIR2_EL1		|
4108 				       HFGxTR_EL2_nS2POR_EL1		|
4109 				       HFGxTR_EL2_nPOR_EL1		|
4110 				       HFGxTR_EL2_nPOR_EL0		|
4111 				       HFGxTR_EL2_nACCDATA_EL1		|
4112 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4113 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4114 
4115 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4116 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4117 						HFGITR_EL2_TLBIRVALE1OS	|
4118 						HFGITR_EL2_TLBIRVAAE1OS	|
4119 						HFGITR_EL2_TLBIRVAE1OS	|
4120 						HFGITR_EL2_TLBIVAALE1OS	|
4121 						HFGITR_EL2_TLBIVALE1OS	|
4122 						HFGITR_EL2_TLBIVAAE1OS	|
4123 						HFGITR_EL2_TLBIASIDE1OS	|
4124 						HFGITR_EL2_TLBIVAE1OS	|
4125 						HFGITR_EL2_TLBIVMALLE1OS);
4126 
4127 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4128 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4129 						HFGITR_EL2_TLBIRVALE1	|
4130 						HFGITR_EL2_TLBIRVAAE1	|
4131 						HFGITR_EL2_TLBIRVAE1	|
4132 						HFGITR_EL2_TLBIRVAALE1IS|
4133 						HFGITR_EL2_TLBIRVALE1IS	|
4134 						HFGITR_EL2_TLBIRVAAE1IS	|
4135 						HFGITR_EL2_TLBIRVAE1IS	|
4136 						HFGITR_EL2_TLBIRVAALE1OS|
4137 						HFGITR_EL2_TLBIRVALE1OS	|
4138 						HFGITR_EL2_TLBIRVAAE1OS	|
4139 						HFGITR_EL2_TLBIRVAE1OS);
4140 
4141 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4142 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4143 						HFGxTR_EL2_nPIR_EL1);
4144 
4145 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4146 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4147 						  HAFGRTR_EL2_RES1);
4148 
4149 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4150 out:
4151 	mutex_unlock(&kvm->arch.config_lock);
4152 }
4153 
4154 int __init kvm_sys_reg_table_init(void)
4155 {
4156 	struct sys_reg_params params;
4157 	bool valid = true;
4158 	unsigned int i;
4159 	int ret = 0;
4160 
4161 	/* Make sure tables are unique and in order. */
4162 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4163 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4164 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4165 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4166 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4167 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4168 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4169 
4170 	if (!valid)
4171 		return -EINVAL;
4172 
4173 	/* We abuse the reset function to overwrite the table itself. */
4174 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4175 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4176 
4177 	/* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
4178 	params = encoding_to_params(SYS_ID_PFR0_EL1);
4179 	first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4180 	if (!first_idreg)
4181 		return -EINVAL;
4182 
4183 	ret = populate_nv_trap_config();
4184 
4185 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4186 		ret = populate_sysreg_config(sys_reg_descs + i, i);
4187 
4188 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4189 		ret = populate_sysreg_config(sys_insn_descs + i, i);
4190 
4191 	return ret;
4192 }
4193