xref: /linux/arch/arm64/kvm/sys_regs.c (revision 091258a0a0f894981e2dc7e35a1c709fc0257aa6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/coproc.c:
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Authors: Rusty Russell <rusty@rustcorp.com.au>
9  *          Christoffer Dall <c.dall@virtualopensystems.com>
10  */
11 
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/debugfs.h>
16 #include <linux/kvm_host.h>
17 #include <linux/mm.h>
18 #include <linux/printk.h>
19 #include <linux/uaccess.h>
20 
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/esr.h>
25 #include <asm/kvm_arm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/kvm_nested.h>
30 #include <asm/perf_event.h>
31 #include <asm/sysreg.h>
32 
33 #include <trace/events/kvm.h>
34 
35 #include "sys_regs.h"
36 #include "vgic/vgic.h"
37 
38 #include "trace.h"
39 
40 /*
41  * For AArch32, we only take care of what is being trapped. Anything
42  * that has to do with init and userspace access has to go via the
43  * 64bit interface.
44  */
45 
46 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
47 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
48 		      u64 val);
49 
50 static bool bad_trap(struct kvm_vcpu *vcpu,
51 		     struct sys_reg_params *params,
52 		     const struct sys_reg_desc *r,
53 		     const char *msg)
54 {
55 	WARN_ONCE(1, "Unexpected %s\n", msg);
56 	print_sys_reg_instr(params);
57 	kvm_inject_undefined(vcpu);
58 	return false;
59 }
60 
61 static bool read_from_write_only(struct kvm_vcpu *vcpu,
62 				 struct sys_reg_params *params,
63 				 const struct sys_reg_desc *r)
64 {
65 	return bad_trap(vcpu, params, r,
66 			"sys_reg read to write-only register");
67 }
68 
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70 			       struct sys_reg_params *params,
71 			       const struct sys_reg_desc *r)
72 {
73 	return bad_trap(vcpu, params, r,
74 			"sys_reg write to read-only register");
75 }
76 
77 #define PURE_EL2_SYSREG(el2)						\
78 	case el2: {							\
79 		*el1r = el2;						\
80 		return true;						\
81 	}
82 
83 #define MAPPED_EL2_SYSREG(el2, el1, fn)					\
84 	case el2: {							\
85 		*xlate = fn;						\
86 		*el1r = el1;						\
87 		return true;						\
88 	}
89 
90 static bool get_el2_to_el1_mapping(unsigned int reg,
91 				   unsigned int *el1r, u64 (**xlate)(u64))
92 {
93 	switch (reg) {
94 		PURE_EL2_SYSREG(  VPIDR_EL2	);
95 		PURE_EL2_SYSREG(  VMPIDR_EL2	);
96 		PURE_EL2_SYSREG(  ACTLR_EL2	);
97 		PURE_EL2_SYSREG(  HCR_EL2	);
98 		PURE_EL2_SYSREG(  MDCR_EL2	);
99 		PURE_EL2_SYSREG(  HSTR_EL2	);
100 		PURE_EL2_SYSREG(  HACR_EL2	);
101 		PURE_EL2_SYSREG(  VTTBR_EL2	);
102 		PURE_EL2_SYSREG(  VTCR_EL2	);
103 		PURE_EL2_SYSREG(  RVBAR_EL2	);
104 		PURE_EL2_SYSREG(  TPIDR_EL2	);
105 		PURE_EL2_SYSREG(  HPFAR_EL2	);
106 		PURE_EL2_SYSREG(  CNTHCTL_EL2	);
107 		MAPPED_EL2_SYSREG(SCTLR_EL2,   SCTLR_EL1,
108 				  translate_sctlr_el2_to_sctlr_el1	     );
109 		MAPPED_EL2_SYSREG(CPTR_EL2,    CPACR_EL1,
110 				  translate_cptr_el2_to_cpacr_el1	     );
111 		MAPPED_EL2_SYSREG(TTBR0_EL2,   TTBR0_EL1,
112 				  translate_ttbr0_el2_to_ttbr0_el1	     );
113 		MAPPED_EL2_SYSREG(TTBR1_EL2,   TTBR1_EL1,   NULL	     );
114 		MAPPED_EL2_SYSREG(TCR_EL2,     TCR_EL1,
115 				  translate_tcr_el2_to_tcr_el1		     );
116 		MAPPED_EL2_SYSREG(VBAR_EL2,    VBAR_EL1,    NULL	     );
117 		MAPPED_EL2_SYSREG(AFSR0_EL2,   AFSR0_EL1,   NULL	     );
118 		MAPPED_EL2_SYSREG(AFSR1_EL2,   AFSR1_EL1,   NULL	     );
119 		MAPPED_EL2_SYSREG(ESR_EL2,     ESR_EL1,     NULL	     );
120 		MAPPED_EL2_SYSREG(FAR_EL2,     FAR_EL1,     NULL	     );
121 		MAPPED_EL2_SYSREG(MAIR_EL2,    MAIR_EL1,    NULL	     );
122 		MAPPED_EL2_SYSREG(AMAIR_EL2,   AMAIR_EL1,   NULL	     );
123 		MAPPED_EL2_SYSREG(ELR_EL2,     ELR_EL1,	    NULL	     );
124 		MAPPED_EL2_SYSREG(SPSR_EL2,    SPSR_EL1,    NULL	     );
125 		MAPPED_EL2_SYSREG(ZCR_EL2,     ZCR_EL1,     NULL	     );
126 	default:
127 		return false;
128 	}
129 }
130 
131 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
132 {
133 	u64 val = 0x8badf00d8badf00d;
134 	u64 (*xlate)(u64) = NULL;
135 	unsigned int el1r;
136 
137 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
138 		goto memory_read;
139 
140 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
141 		if (!is_hyp_ctxt(vcpu))
142 			goto memory_read;
143 
144 		/*
145 		 * If this register does not have an EL1 counterpart,
146 		 * then read the stored EL2 version.
147 		 */
148 		if (reg == el1r)
149 			goto memory_read;
150 
151 		/*
152 		 * If we have a non-VHE guest and that the sysreg
153 		 * requires translation to be used at EL1, use the
154 		 * in-memory copy instead.
155 		 */
156 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
157 			goto memory_read;
158 
159 		/* Get the current version of the EL1 counterpart. */
160 		WARN_ON(!__vcpu_read_sys_reg_from_cpu(el1r, &val));
161 		return val;
162 	}
163 
164 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
165 	if (unlikely(is_hyp_ctxt(vcpu)))
166 		goto memory_read;
167 
168 	if (__vcpu_read_sys_reg_from_cpu(reg, &val))
169 		return val;
170 
171 memory_read:
172 	return __vcpu_sys_reg(vcpu, reg);
173 }
174 
175 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
176 {
177 	u64 (*xlate)(u64) = NULL;
178 	unsigned int el1r;
179 
180 	if (!vcpu_get_flag(vcpu, SYSREGS_ON_CPU))
181 		goto memory_write;
182 
183 	if (unlikely(get_el2_to_el1_mapping(reg, &el1r, &xlate))) {
184 		if (!is_hyp_ctxt(vcpu))
185 			goto memory_write;
186 
187 		/*
188 		 * Always store a copy of the write to memory to avoid having
189 		 * to reverse-translate virtual EL2 system registers for a
190 		 * non-VHE guest hypervisor.
191 		 */
192 		__vcpu_sys_reg(vcpu, reg) = val;
193 
194 		/* No EL1 counterpart? We're done here.? */
195 		if (reg == el1r)
196 			return;
197 
198 		if (!vcpu_el2_e2h_is_set(vcpu) && xlate)
199 			val = xlate(val);
200 
201 		/* Redirect this to the EL1 version of the register. */
202 		WARN_ON(!__vcpu_write_sys_reg_to_cpu(val, el1r));
203 		return;
204 	}
205 
206 	/* EL1 register can't be on the CPU if the guest is in vEL2. */
207 	if (unlikely(is_hyp_ctxt(vcpu)))
208 		goto memory_write;
209 
210 	if (__vcpu_write_sys_reg_to_cpu(val, reg))
211 		return;
212 
213 memory_write:
214 	 __vcpu_sys_reg(vcpu, reg) = val;
215 }
216 
217 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
218 #define CSSELR_MAX 14
219 
220 /*
221  * Returns the minimum line size for the selected cache, expressed as
222  * Log2(bytes).
223  */
224 static u8 get_min_cache_line_size(bool icache)
225 {
226 	u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
227 	u8 field;
228 
229 	if (icache)
230 		field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
231 	else
232 		field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
233 
234 	/*
235 	 * Cache line size is represented as Log2(words) in CTR_EL0.
236 	 * Log2(bytes) can be derived with the following:
237 	 *
238 	 * Log2(words) + 2 = Log2(bytes / 4) + 2
239 	 * 		   = Log2(bytes) - 2 + 2
240 	 * 		   = Log2(bytes)
241 	 */
242 	return field + 2;
243 }
244 
245 /* Which cache CCSIDR represents depends on CSSELR value. */
246 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
247 {
248 	u8 line_size;
249 
250 	if (vcpu->arch.ccsidr)
251 		return vcpu->arch.ccsidr[csselr];
252 
253 	line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
254 
255 	/*
256 	 * Fabricate a CCSIDR value as the overriding value does not exist.
257 	 * The real CCSIDR value will not be used as it can vary by the
258 	 * physical CPU which the vcpu currently resides in.
259 	 *
260 	 * The line size is determined with get_min_cache_line_size(), which
261 	 * should be valid for all CPUs even if they have different cache
262 	 * configuration.
263 	 *
264 	 * The associativity bits are cleared, meaning the geometry of all data
265 	 * and unified caches (which are guaranteed to be PIPT and thus
266 	 * non-aliasing) are 1 set and 1 way.
267 	 * Guests should not be doing cache operations by set/way at all, and
268 	 * for this reason, we trap them and attempt to infer the intent, so
269 	 * that we can flush the entire guest's address space at the appropriate
270 	 * time. The exposed geometry minimizes the number of the traps.
271 	 * [If guests should attempt to infer aliasing properties from the
272 	 * geometry (which is not permitted by the architecture), they would
273 	 * only do so for virtually indexed caches.]
274 	 *
275 	 * We don't check if the cache level exists as it is allowed to return
276 	 * an UNKNOWN value if not.
277 	 */
278 	return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
279 }
280 
281 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
282 {
283 	u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
284 	u32 *ccsidr = vcpu->arch.ccsidr;
285 	u32 i;
286 
287 	if ((val & CCSIDR_EL1_RES0) ||
288 	    line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
289 		return -EINVAL;
290 
291 	if (!ccsidr) {
292 		if (val == get_ccsidr(vcpu, csselr))
293 			return 0;
294 
295 		ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
296 		if (!ccsidr)
297 			return -ENOMEM;
298 
299 		for (i = 0; i < CSSELR_MAX; i++)
300 			ccsidr[i] = get_ccsidr(vcpu, i);
301 
302 		vcpu->arch.ccsidr = ccsidr;
303 	}
304 
305 	ccsidr[csselr] = val;
306 
307 	return 0;
308 }
309 
310 static bool access_rw(struct kvm_vcpu *vcpu,
311 		      struct sys_reg_params *p,
312 		      const struct sys_reg_desc *r)
313 {
314 	if (p->is_write)
315 		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
316 	else
317 		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
318 
319 	return true;
320 }
321 
322 /*
323  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
324  */
325 static bool access_dcsw(struct kvm_vcpu *vcpu,
326 			struct sys_reg_params *p,
327 			const struct sys_reg_desc *r)
328 {
329 	if (!p->is_write)
330 		return read_from_write_only(vcpu, p, r);
331 
332 	/*
333 	 * Only track S/W ops if we don't have FWB. It still indicates
334 	 * that the guest is a bit broken (S/W operations should only
335 	 * be done by firmware, knowing that there is only a single
336 	 * CPU left in the system, and certainly not from non-secure
337 	 * software).
338 	 */
339 	if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
340 		kvm_set_way_flush(vcpu);
341 
342 	return true;
343 }
344 
345 static bool access_dcgsw(struct kvm_vcpu *vcpu,
346 			 struct sys_reg_params *p,
347 			 const struct sys_reg_desc *r)
348 {
349 	if (!kvm_has_mte(vcpu->kvm)) {
350 		kvm_inject_undefined(vcpu);
351 		return false;
352 	}
353 
354 	/* Treat MTE S/W ops as we treat the classic ones: with contempt */
355 	return access_dcsw(vcpu, p, r);
356 }
357 
358 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
359 {
360 	switch (r->aarch32_map) {
361 	case AA32_LO:
362 		*mask = GENMASK_ULL(31, 0);
363 		*shift = 0;
364 		break;
365 	case AA32_HI:
366 		*mask = GENMASK_ULL(63, 32);
367 		*shift = 32;
368 		break;
369 	default:
370 		*mask = GENMASK_ULL(63, 0);
371 		*shift = 0;
372 		break;
373 	}
374 }
375 
376 /*
377  * Generic accessor for VM registers. Only called as long as HCR_TVM
378  * is set. If the guest enables the MMU, we stop trapping the VM
379  * sys_regs and leave it in complete control of the caches.
380  */
381 static bool access_vm_reg(struct kvm_vcpu *vcpu,
382 			  struct sys_reg_params *p,
383 			  const struct sys_reg_desc *r)
384 {
385 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
386 	u64 val, mask, shift;
387 
388 	if (reg_to_encoding(r) == SYS_TCR2_EL1 &&
389 	    !kvm_has_feat(vcpu->kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) {
390 		kvm_inject_undefined(vcpu);
391 		return false;
392 	}
393 
394 	BUG_ON(!p->is_write);
395 
396 	get_access_mask(r, &mask, &shift);
397 
398 	if (~mask) {
399 		val = vcpu_read_sys_reg(vcpu, r->reg);
400 		val &= ~mask;
401 	} else {
402 		val = 0;
403 	}
404 
405 	val |= (p->regval & (mask >> shift)) << shift;
406 	vcpu_write_sys_reg(vcpu, val, r->reg);
407 
408 	kvm_toggle_cache(vcpu, was_enabled);
409 	return true;
410 }
411 
412 static bool access_actlr(struct kvm_vcpu *vcpu,
413 			 struct sys_reg_params *p,
414 			 const struct sys_reg_desc *r)
415 {
416 	u64 mask, shift;
417 
418 	if (p->is_write)
419 		return ignore_write(vcpu, p);
420 
421 	get_access_mask(r, &mask, &shift);
422 	p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
423 
424 	return true;
425 }
426 
427 /*
428  * Trap handler for the GICv3 SGI generation system register.
429  * Forward the request to the VGIC emulation.
430  * The cp15_64 code makes sure this automatically works
431  * for both AArch64 and AArch32 accesses.
432  */
433 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
434 			   struct sys_reg_params *p,
435 			   const struct sys_reg_desc *r)
436 {
437 	bool g1;
438 
439 	if (!kvm_has_gicv3(vcpu->kvm)) {
440 		kvm_inject_undefined(vcpu);
441 		return false;
442 	}
443 
444 	if (!p->is_write)
445 		return read_from_write_only(vcpu, p, r);
446 
447 	/*
448 	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
449 	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
450 	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
451 	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
452 	 * group.
453 	 */
454 	if (p->Op0 == 0) {		/* AArch32 */
455 		switch (p->Op1) {
456 		default:		/* Keep GCC quiet */
457 		case 0:			/* ICC_SGI1R */
458 			g1 = true;
459 			break;
460 		case 1:			/* ICC_ASGI1R */
461 		case 2:			/* ICC_SGI0R */
462 			g1 = false;
463 			break;
464 		}
465 	} else {			/* AArch64 */
466 		switch (p->Op2) {
467 		default:		/* Keep GCC quiet */
468 		case 5:			/* ICC_SGI1R_EL1 */
469 			g1 = true;
470 			break;
471 		case 6:			/* ICC_ASGI1R_EL1 */
472 		case 7:			/* ICC_SGI0R_EL1 */
473 			g1 = false;
474 			break;
475 		}
476 	}
477 
478 	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
479 
480 	return true;
481 }
482 
483 static bool access_gic_sre(struct kvm_vcpu *vcpu,
484 			   struct sys_reg_params *p,
485 			   const struct sys_reg_desc *r)
486 {
487 	if (p->is_write)
488 		return ignore_write(vcpu, p);
489 
490 	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
491 	return true;
492 }
493 
494 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
495 			struct sys_reg_params *p,
496 			const struct sys_reg_desc *r)
497 {
498 	if (p->is_write)
499 		return ignore_write(vcpu, p);
500 	else
501 		return read_zero(vcpu, p);
502 }
503 
504 static bool trap_undef(struct kvm_vcpu *vcpu,
505 		       struct sys_reg_params *p,
506 		       const struct sys_reg_desc *r)
507 {
508 	kvm_inject_undefined(vcpu);
509 	return false;
510 }
511 
512 /*
513  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
514  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
515  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
516  * treat it separately.
517  */
518 static bool trap_loregion(struct kvm_vcpu *vcpu,
519 			  struct sys_reg_params *p,
520 			  const struct sys_reg_desc *r)
521 {
522 	u32 sr = reg_to_encoding(r);
523 
524 	if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, LO, IMP)) {
525 		kvm_inject_undefined(vcpu);
526 		return false;
527 	}
528 
529 	if (p->is_write && sr == SYS_LORID_EL1)
530 		return write_to_read_only(vcpu, p, r);
531 
532 	return trap_raz_wi(vcpu, p, r);
533 }
534 
535 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
536 			   struct sys_reg_params *p,
537 			   const struct sys_reg_desc *r)
538 {
539 	u64 oslsr;
540 
541 	if (!p->is_write)
542 		return read_from_write_only(vcpu, p, r);
543 
544 	/* Forward the OSLK bit to OSLSR */
545 	oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
546 	if (p->regval & OSLAR_EL1_OSLK)
547 		oslsr |= OSLSR_EL1_OSLK;
548 
549 	__vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
550 	return true;
551 }
552 
553 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
554 			   struct sys_reg_params *p,
555 			   const struct sys_reg_desc *r)
556 {
557 	if (p->is_write)
558 		return write_to_read_only(vcpu, p, r);
559 
560 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
561 	return true;
562 }
563 
564 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
565 			 u64 val)
566 {
567 	/*
568 	 * The only modifiable bit is the OSLK bit. Refuse the write if
569 	 * userspace attempts to change any other bit in the register.
570 	 */
571 	if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
572 		return -EINVAL;
573 
574 	__vcpu_sys_reg(vcpu, rd->reg) = val;
575 	return 0;
576 }
577 
578 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
579 				   struct sys_reg_params *p,
580 				   const struct sys_reg_desc *r)
581 {
582 	if (p->is_write) {
583 		return ignore_write(vcpu, p);
584 	} else {
585 		p->regval = read_sysreg(dbgauthstatus_el1);
586 		return true;
587 	}
588 }
589 
590 /*
591  * We want to avoid world-switching all the DBG registers all the
592  * time:
593  *
594  * - If we've touched any debug register, it is likely that we're
595  *   going to touch more of them. It then makes sense to disable the
596  *   traps and start doing the save/restore dance
597  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
598  *   then mandatory to save/restore the registers, as the guest
599  *   depends on them.
600  *
601  * For this, we use a DIRTY bit, indicating the guest has modified the
602  * debug registers, used as follow:
603  *
604  * On guest entry:
605  * - If the dirty bit is set (because we're coming back from trapping),
606  *   disable the traps, save host registers, restore guest registers.
607  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
608  *   set the dirty bit, disable the traps, save host registers,
609  *   restore guest registers.
610  * - Otherwise, enable the traps
611  *
612  * On guest exit:
613  * - If the dirty bit is set, save guest registers, restore host
614  *   registers and clear the dirty bit. This ensure that the host can
615  *   now use the debug registers.
616  */
617 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
618 			    struct sys_reg_params *p,
619 			    const struct sys_reg_desc *r)
620 {
621 	access_rw(vcpu, p, r);
622 	if (p->is_write)
623 		vcpu_set_flag(vcpu, DEBUG_DIRTY);
624 
625 	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
626 
627 	return true;
628 }
629 
630 /*
631  * reg_to_dbg/dbg_to_reg
632  *
633  * A 32 bit write to a debug register leave top bits alone
634  * A 32 bit read from a debug register only returns the bottom bits
635  *
636  * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
637  * switches between host and guest values in future.
638  */
639 static void reg_to_dbg(struct kvm_vcpu *vcpu,
640 		       struct sys_reg_params *p,
641 		       const struct sys_reg_desc *rd,
642 		       u64 *dbg_reg)
643 {
644 	u64 mask, shift, val;
645 
646 	get_access_mask(rd, &mask, &shift);
647 
648 	val = *dbg_reg;
649 	val &= ~mask;
650 	val |= (p->regval & (mask >> shift)) << shift;
651 	*dbg_reg = val;
652 
653 	vcpu_set_flag(vcpu, DEBUG_DIRTY);
654 }
655 
656 static void dbg_to_reg(struct kvm_vcpu *vcpu,
657 		       struct sys_reg_params *p,
658 		       const struct sys_reg_desc *rd,
659 		       u64 *dbg_reg)
660 {
661 	u64 mask, shift;
662 
663 	get_access_mask(rd, &mask, &shift);
664 	p->regval = (*dbg_reg & mask) >> shift;
665 }
666 
667 static bool trap_bvr(struct kvm_vcpu *vcpu,
668 		     struct sys_reg_params *p,
669 		     const struct sys_reg_desc *rd)
670 {
671 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
672 
673 	if (p->is_write)
674 		reg_to_dbg(vcpu, p, rd, dbg_reg);
675 	else
676 		dbg_to_reg(vcpu, p, rd, dbg_reg);
677 
678 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
679 
680 	return true;
681 }
682 
683 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
684 		   u64 val)
685 {
686 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
687 	return 0;
688 }
689 
690 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
691 		   u64 *val)
692 {
693 	*val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
694 	return 0;
695 }
696 
697 static u64 reset_bvr(struct kvm_vcpu *vcpu,
698 		      const struct sys_reg_desc *rd)
699 {
700 	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
701 	return rd->val;
702 }
703 
704 static bool trap_bcr(struct kvm_vcpu *vcpu,
705 		     struct sys_reg_params *p,
706 		     const struct sys_reg_desc *rd)
707 {
708 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
709 
710 	if (p->is_write)
711 		reg_to_dbg(vcpu, p, rd, dbg_reg);
712 	else
713 		dbg_to_reg(vcpu, p, rd, dbg_reg);
714 
715 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
716 
717 	return true;
718 }
719 
720 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
721 		   u64 val)
722 {
723 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
724 	return 0;
725 }
726 
727 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
728 		   u64 *val)
729 {
730 	*val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
731 	return 0;
732 }
733 
734 static u64 reset_bcr(struct kvm_vcpu *vcpu,
735 		      const struct sys_reg_desc *rd)
736 {
737 	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
738 	return rd->val;
739 }
740 
741 static bool trap_wvr(struct kvm_vcpu *vcpu,
742 		     struct sys_reg_params *p,
743 		     const struct sys_reg_desc *rd)
744 {
745 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
746 
747 	if (p->is_write)
748 		reg_to_dbg(vcpu, p, rd, dbg_reg);
749 	else
750 		dbg_to_reg(vcpu, p, rd, dbg_reg);
751 
752 	trace_trap_reg(__func__, rd->CRm, p->is_write,
753 		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
754 
755 	return true;
756 }
757 
758 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
759 		   u64 val)
760 {
761 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
762 	return 0;
763 }
764 
765 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
766 		   u64 *val)
767 {
768 	*val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
769 	return 0;
770 }
771 
772 static u64 reset_wvr(struct kvm_vcpu *vcpu,
773 		      const struct sys_reg_desc *rd)
774 {
775 	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
776 	return rd->val;
777 }
778 
779 static bool trap_wcr(struct kvm_vcpu *vcpu,
780 		     struct sys_reg_params *p,
781 		     const struct sys_reg_desc *rd)
782 {
783 	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
784 
785 	if (p->is_write)
786 		reg_to_dbg(vcpu, p, rd, dbg_reg);
787 	else
788 		dbg_to_reg(vcpu, p, rd, dbg_reg);
789 
790 	trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
791 
792 	return true;
793 }
794 
795 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
796 		   u64 val)
797 {
798 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
799 	return 0;
800 }
801 
802 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
803 		   u64 *val)
804 {
805 	*val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
806 	return 0;
807 }
808 
809 static u64 reset_wcr(struct kvm_vcpu *vcpu,
810 		      const struct sys_reg_desc *rd)
811 {
812 	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
813 	return rd->val;
814 }
815 
816 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
817 {
818 	u64 amair = read_sysreg(amair_el1);
819 	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
820 	return amair;
821 }
822 
823 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
824 {
825 	u64 actlr = read_sysreg(actlr_el1);
826 	vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
827 	return actlr;
828 }
829 
830 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
831 {
832 	u64 mpidr;
833 
834 	/*
835 	 * Map the vcpu_id into the first three affinity level fields of
836 	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
837 	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
838 	 * of the GICv3 to be able to address each CPU directly when
839 	 * sending IPIs.
840 	 */
841 	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
842 	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
843 	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
844 	mpidr |= (1ULL << 31);
845 	vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
846 
847 	return mpidr;
848 }
849 
850 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
851 				   const struct sys_reg_desc *r)
852 {
853 	if (kvm_vcpu_has_pmu(vcpu))
854 		return 0;
855 
856 	return REG_HIDDEN;
857 }
858 
859 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
860 {
861 	u64 mask = BIT(ARMV8_PMU_CYCLE_IDX);
862 	u8 n = vcpu->kvm->arch.pmcr_n;
863 
864 	if (n)
865 		mask |= GENMASK(n - 1, 0);
866 
867 	reset_unknown(vcpu, r);
868 	__vcpu_sys_reg(vcpu, r->reg) &= mask;
869 
870 	return __vcpu_sys_reg(vcpu, r->reg);
871 }
872 
873 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
874 {
875 	reset_unknown(vcpu, r);
876 	__vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
877 
878 	return __vcpu_sys_reg(vcpu, r->reg);
879 }
880 
881 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
882 {
883 	/* This thing will UNDEF, who cares about the reset value? */
884 	if (!kvm_vcpu_has_pmu(vcpu))
885 		return 0;
886 
887 	reset_unknown(vcpu, r);
888 	__vcpu_sys_reg(vcpu, r->reg) &= kvm_pmu_evtyper_mask(vcpu->kvm);
889 
890 	return __vcpu_sys_reg(vcpu, r->reg);
891 }
892 
893 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
894 {
895 	reset_unknown(vcpu, r);
896 	__vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
897 
898 	return __vcpu_sys_reg(vcpu, r->reg);
899 }
900 
901 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
902 {
903 	u64 pmcr = 0;
904 
905 	if (!kvm_supports_32bit_el0())
906 		pmcr |= ARMV8_PMU_PMCR_LC;
907 
908 	/*
909 	 * The value of PMCR.N field is included when the
910 	 * vCPU register is read via kvm_vcpu_read_pmcr().
911 	 */
912 	__vcpu_sys_reg(vcpu, r->reg) = pmcr;
913 
914 	return __vcpu_sys_reg(vcpu, r->reg);
915 }
916 
917 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
918 {
919 	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
920 	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
921 
922 	if (!enabled)
923 		kvm_inject_undefined(vcpu);
924 
925 	return !enabled;
926 }
927 
928 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
929 {
930 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
931 }
932 
933 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
934 {
935 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
936 }
937 
938 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
939 {
940 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
941 }
942 
943 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
944 {
945 	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
946 }
947 
948 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
949 			const struct sys_reg_desc *r)
950 {
951 	u64 val;
952 
953 	if (pmu_access_el0_disabled(vcpu))
954 		return false;
955 
956 	if (p->is_write) {
957 		/*
958 		 * Only update writeable bits of PMCR (continuing into
959 		 * kvm_pmu_handle_pmcr() as well)
960 		 */
961 		val = kvm_vcpu_read_pmcr(vcpu);
962 		val &= ~ARMV8_PMU_PMCR_MASK;
963 		val |= p->regval & ARMV8_PMU_PMCR_MASK;
964 		if (!kvm_supports_32bit_el0())
965 			val |= ARMV8_PMU_PMCR_LC;
966 		kvm_pmu_handle_pmcr(vcpu, val);
967 	} else {
968 		/* PMCR.P & PMCR.C are RAZ */
969 		val = kvm_vcpu_read_pmcr(vcpu)
970 		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
971 		p->regval = val;
972 	}
973 
974 	return true;
975 }
976 
977 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
978 			  const struct sys_reg_desc *r)
979 {
980 	if (pmu_access_event_counter_el0_disabled(vcpu))
981 		return false;
982 
983 	if (p->is_write)
984 		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
985 	else
986 		/* return PMSELR.SEL field */
987 		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
988 			    & ARMV8_PMU_COUNTER_MASK;
989 
990 	return true;
991 }
992 
993 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
994 			  const struct sys_reg_desc *r)
995 {
996 	u64 pmceid, mask, shift;
997 
998 	BUG_ON(p->is_write);
999 
1000 	if (pmu_access_el0_disabled(vcpu))
1001 		return false;
1002 
1003 	get_access_mask(r, &mask, &shift);
1004 
1005 	pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
1006 	pmceid &= mask;
1007 	pmceid >>= shift;
1008 
1009 	p->regval = pmceid;
1010 
1011 	return true;
1012 }
1013 
1014 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
1015 {
1016 	u64 pmcr, val;
1017 
1018 	pmcr = kvm_vcpu_read_pmcr(vcpu);
1019 	val = FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
1020 	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
1021 		kvm_inject_undefined(vcpu);
1022 		return false;
1023 	}
1024 
1025 	return true;
1026 }
1027 
1028 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1029 			  u64 *val)
1030 {
1031 	u64 idx;
1032 
1033 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
1034 		/* PMCCNTR_EL0 */
1035 		idx = ARMV8_PMU_CYCLE_IDX;
1036 	else
1037 		/* PMEVCNTRn_EL0 */
1038 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1039 
1040 	*val = kvm_pmu_get_counter_value(vcpu, idx);
1041 	return 0;
1042 }
1043 
1044 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
1045 			      struct sys_reg_params *p,
1046 			      const struct sys_reg_desc *r)
1047 {
1048 	u64 idx = ~0UL;
1049 
1050 	if (r->CRn == 9 && r->CRm == 13) {
1051 		if (r->Op2 == 2) {
1052 			/* PMXEVCNTR_EL0 */
1053 			if (pmu_access_event_counter_el0_disabled(vcpu))
1054 				return false;
1055 
1056 			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
1057 			      & ARMV8_PMU_COUNTER_MASK;
1058 		} else if (r->Op2 == 0) {
1059 			/* PMCCNTR_EL0 */
1060 			if (pmu_access_cycle_counter_el0_disabled(vcpu))
1061 				return false;
1062 
1063 			idx = ARMV8_PMU_CYCLE_IDX;
1064 		}
1065 	} else if (r->CRn == 0 && r->CRm == 9) {
1066 		/* PMCCNTR */
1067 		if (pmu_access_event_counter_el0_disabled(vcpu))
1068 			return false;
1069 
1070 		idx = ARMV8_PMU_CYCLE_IDX;
1071 	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
1072 		/* PMEVCNTRn_EL0 */
1073 		if (pmu_access_event_counter_el0_disabled(vcpu))
1074 			return false;
1075 
1076 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1077 	}
1078 
1079 	/* Catch any decoding mistake */
1080 	WARN_ON(idx == ~0UL);
1081 
1082 	if (!pmu_counter_idx_valid(vcpu, idx))
1083 		return false;
1084 
1085 	if (p->is_write) {
1086 		if (pmu_access_el0_disabled(vcpu))
1087 			return false;
1088 
1089 		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
1090 	} else {
1091 		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
1092 	}
1093 
1094 	return true;
1095 }
1096 
1097 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1098 			       const struct sys_reg_desc *r)
1099 {
1100 	u64 idx, reg;
1101 
1102 	if (pmu_access_el0_disabled(vcpu))
1103 		return false;
1104 
1105 	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
1106 		/* PMXEVTYPER_EL0 */
1107 		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
1108 		reg = PMEVTYPER0_EL0 + idx;
1109 	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
1110 		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
1111 		if (idx == ARMV8_PMU_CYCLE_IDX)
1112 			reg = PMCCFILTR_EL0;
1113 		else
1114 			/* PMEVTYPERn_EL0 */
1115 			reg = PMEVTYPER0_EL0 + idx;
1116 	} else {
1117 		BUG();
1118 	}
1119 
1120 	if (!pmu_counter_idx_valid(vcpu, idx))
1121 		return false;
1122 
1123 	if (p->is_write) {
1124 		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
1125 		kvm_vcpu_pmu_restore_guest(vcpu);
1126 	} else {
1127 		p->regval = __vcpu_sys_reg(vcpu, reg);
1128 	}
1129 
1130 	return true;
1131 }
1132 
1133 static int set_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 val)
1134 {
1135 	bool set;
1136 
1137 	val &= kvm_pmu_valid_counter_mask(vcpu);
1138 
1139 	switch (r->reg) {
1140 	case PMOVSSET_EL0:
1141 		/* CRm[1] being set indicates a SET register, and CLR otherwise */
1142 		set = r->CRm & 2;
1143 		break;
1144 	default:
1145 		/* Op2[0] being set indicates a SET register, and CLR otherwise */
1146 		set = r->Op2 & 1;
1147 		break;
1148 	}
1149 
1150 	if (set)
1151 		__vcpu_sys_reg(vcpu, r->reg) |= val;
1152 	else
1153 		__vcpu_sys_reg(vcpu, r->reg) &= ~val;
1154 
1155 	return 0;
1156 }
1157 
1158 static int get_pmreg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, u64 *val)
1159 {
1160 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1161 
1162 	*val = __vcpu_sys_reg(vcpu, r->reg) & mask;
1163 	return 0;
1164 }
1165 
1166 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1167 			   const struct sys_reg_desc *r)
1168 {
1169 	u64 val, mask;
1170 
1171 	if (pmu_access_el0_disabled(vcpu))
1172 		return false;
1173 
1174 	mask = kvm_pmu_valid_counter_mask(vcpu);
1175 	if (p->is_write) {
1176 		val = p->regval & mask;
1177 		if (r->Op2 & 0x1) {
1178 			/* accessing PMCNTENSET_EL0 */
1179 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1180 			kvm_pmu_enable_counter_mask(vcpu, val);
1181 			kvm_vcpu_pmu_restore_guest(vcpu);
1182 		} else {
1183 			/* accessing PMCNTENCLR_EL0 */
1184 			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1185 			kvm_pmu_disable_counter_mask(vcpu, val);
1186 		}
1187 	} else {
1188 		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1189 	}
1190 
1191 	return true;
1192 }
1193 
1194 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1195 			   const struct sys_reg_desc *r)
1196 {
1197 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1198 
1199 	if (check_pmu_access_disabled(vcpu, 0))
1200 		return false;
1201 
1202 	if (p->is_write) {
1203 		u64 val = p->regval & mask;
1204 
1205 		if (r->Op2 & 0x1)
1206 			/* accessing PMINTENSET_EL1 */
1207 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1208 		else
1209 			/* accessing PMINTENCLR_EL1 */
1210 			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1211 	} else {
1212 		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1213 	}
1214 
1215 	return true;
1216 }
1217 
1218 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1219 			 const struct sys_reg_desc *r)
1220 {
1221 	u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1222 
1223 	if (pmu_access_el0_disabled(vcpu))
1224 		return false;
1225 
1226 	if (p->is_write) {
1227 		if (r->CRm & 0x2)
1228 			/* accessing PMOVSSET_EL0 */
1229 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1230 		else
1231 			/* accessing PMOVSCLR_EL0 */
1232 			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1233 	} else {
1234 		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1235 	}
1236 
1237 	return true;
1238 }
1239 
1240 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1241 			   const struct sys_reg_desc *r)
1242 {
1243 	u64 mask;
1244 
1245 	if (!p->is_write)
1246 		return read_from_write_only(vcpu, p, r);
1247 
1248 	if (pmu_write_swinc_el0_disabled(vcpu))
1249 		return false;
1250 
1251 	mask = kvm_pmu_valid_counter_mask(vcpu);
1252 	kvm_pmu_software_increment(vcpu, p->regval & mask);
1253 	return true;
1254 }
1255 
1256 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1257 			     const struct sys_reg_desc *r)
1258 {
1259 	if (p->is_write) {
1260 		if (!vcpu_mode_priv(vcpu)) {
1261 			kvm_inject_undefined(vcpu);
1262 			return false;
1263 		}
1264 
1265 		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1266 			       p->regval & ARMV8_PMU_USERENR_MASK;
1267 	} else {
1268 		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1269 			    & ARMV8_PMU_USERENR_MASK;
1270 	}
1271 
1272 	return true;
1273 }
1274 
1275 static int get_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1276 		    u64 *val)
1277 {
1278 	*val = kvm_vcpu_read_pmcr(vcpu);
1279 	return 0;
1280 }
1281 
1282 static int set_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
1283 		    u64 val)
1284 {
1285 	u8 new_n = FIELD_GET(ARMV8_PMU_PMCR_N, val);
1286 	struct kvm *kvm = vcpu->kvm;
1287 
1288 	mutex_lock(&kvm->arch.config_lock);
1289 
1290 	/*
1291 	 * The vCPU can't have more counters than the PMU hardware
1292 	 * implements. Ignore this error to maintain compatibility
1293 	 * with the existing KVM behavior.
1294 	 */
1295 	if (!kvm_vm_has_ran_once(kvm) &&
1296 	    new_n <= kvm_arm_pmu_get_max_counters(kvm))
1297 		kvm->arch.pmcr_n = new_n;
1298 
1299 	mutex_unlock(&kvm->arch.config_lock);
1300 
1301 	/*
1302 	 * Ignore writes to RES0 bits, read only bits that are cleared on
1303 	 * vCPU reset, and writable bits that KVM doesn't support yet.
1304 	 * (i.e. only PMCR.N and bits [7:0] are mutable from userspace)
1305 	 * The LP bit is RES0 when FEAT_PMUv3p5 is not supported on the vCPU.
1306 	 * But, we leave the bit as it is here, as the vCPU's PMUver might
1307 	 * be changed later (NOTE: the bit will be cleared on first vCPU run
1308 	 * if necessary).
1309 	 */
1310 	val &= ARMV8_PMU_PMCR_MASK;
1311 
1312 	/* The LC bit is RES1 when AArch32 is not supported */
1313 	if (!kvm_supports_32bit_el0())
1314 		val |= ARMV8_PMU_PMCR_LC;
1315 
1316 	__vcpu_sys_reg(vcpu, r->reg) = val;
1317 	return 0;
1318 }
1319 
1320 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1321 #define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
1322 	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
1323 	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
1324 	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
1325 	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
1326 	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
1327 	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
1328 	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
1329 	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }
1330 
1331 #define PMU_SYS_REG(name)						\
1332 	SYS_DESC(SYS_##name), .reset = reset_pmu_reg,			\
1333 	.visibility = pmu_visibility
1334 
1335 /* Macro to expand the PMEVCNTRn_EL0 register */
1336 #define PMU_PMEVCNTR_EL0(n)						\
1337 	{ PMU_SYS_REG(PMEVCNTRn_EL0(n)),				\
1338 	  .reset = reset_pmevcntr, .get_user = get_pmu_evcntr,		\
1339 	  .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1340 
1341 /* Macro to expand the PMEVTYPERn_EL0 register */
1342 #define PMU_PMEVTYPER_EL0(n)						\
1343 	{ PMU_SYS_REG(PMEVTYPERn_EL0(n)),				\
1344 	  .reset = reset_pmevtyper,					\
1345 	  .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1346 
1347 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1348 			 const struct sys_reg_desc *r)
1349 {
1350 	kvm_inject_undefined(vcpu);
1351 
1352 	return false;
1353 }
1354 
1355 /* Macro to expand the AMU counter and type registers*/
1356 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1357 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1358 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1359 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1360 
1361 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1362 			const struct sys_reg_desc *rd)
1363 {
1364 	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1365 }
1366 
1367 /*
1368  * If we land here on a PtrAuth access, that is because we didn't
1369  * fixup the access on exit by allowing the PtrAuth sysregs. The only
1370  * way this happens is when the guest does not have PtrAuth support
1371  * enabled.
1372  */
1373 #define __PTRAUTH_KEY(k)						\
1374 	{ SYS_DESC(SYS_## k), undef_access, reset_unknown, k,		\
1375 	.visibility = ptrauth_visibility}
1376 
1377 #define PTRAUTH_KEY(k)							\
1378 	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
1379 	__PTRAUTH_KEY(k ## KEYHI_EL1)
1380 
1381 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1382 			      struct sys_reg_params *p,
1383 			      const struct sys_reg_desc *r)
1384 {
1385 	enum kvm_arch_timers tmr;
1386 	enum kvm_arch_timer_regs treg;
1387 	u64 reg = reg_to_encoding(r);
1388 
1389 	switch (reg) {
1390 	case SYS_CNTP_TVAL_EL0:
1391 	case SYS_AARCH32_CNTP_TVAL:
1392 		tmr = TIMER_PTIMER;
1393 		treg = TIMER_REG_TVAL;
1394 		break;
1395 	case SYS_CNTP_CTL_EL0:
1396 	case SYS_AARCH32_CNTP_CTL:
1397 		tmr = TIMER_PTIMER;
1398 		treg = TIMER_REG_CTL;
1399 		break;
1400 	case SYS_CNTP_CVAL_EL0:
1401 	case SYS_AARCH32_CNTP_CVAL:
1402 		tmr = TIMER_PTIMER;
1403 		treg = TIMER_REG_CVAL;
1404 		break;
1405 	case SYS_CNTPCT_EL0:
1406 	case SYS_CNTPCTSS_EL0:
1407 	case SYS_AARCH32_CNTPCT:
1408 		tmr = TIMER_PTIMER;
1409 		treg = TIMER_REG_CNT;
1410 		break;
1411 	default:
1412 		print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1413 		kvm_inject_undefined(vcpu);
1414 		return false;
1415 	}
1416 
1417 	if (p->is_write)
1418 		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1419 	else
1420 		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1421 
1422 	return true;
1423 }
1424 
1425 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1426 				    s64 new, s64 cur)
1427 {
1428 	struct arm64_ftr_bits kvm_ftr = *ftrp;
1429 
1430 	/* Some features have different safe value type in KVM than host features */
1431 	switch (id) {
1432 	case SYS_ID_AA64DFR0_EL1:
1433 		switch (kvm_ftr.shift) {
1434 		case ID_AA64DFR0_EL1_PMUVer_SHIFT:
1435 			kvm_ftr.type = FTR_LOWER_SAFE;
1436 			break;
1437 		case ID_AA64DFR0_EL1_DebugVer_SHIFT:
1438 			kvm_ftr.type = FTR_LOWER_SAFE;
1439 			break;
1440 		}
1441 		break;
1442 	case SYS_ID_DFR0_EL1:
1443 		if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1444 			kvm_ftr.type = FTR_LOWER_SAFE;
1445 		break;
1446 	}
1447 
1448 	return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1449 }
1450 
1451 /*
1452  * arm64_check_features() - Check if a feature register value constitutes
1453  * a subset of features indicated by the idreg's KVM sanitised limit.
1454  *
1455  * This function will check if each feature field of @val is the "safe" value
1456  * against idreg's KVM sanitised limit return from reset() callback.
1457  * If a field value in @val is the same as the one in limit, it is always
1458  * considered the safe value regardless For register fields that are not in
1459  * writable, only the value in limit is considered the safe value.
1460  *
1461  * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1462  */
1463 static int arm64_check_features(struct kvm_vcpu *vcpu,
1464 				const struct sys_reg_desc *rd,
1465 				u64 val)
1466 {
1467 	const struct arm64_ftr_reg *ftr_reg;
1468 	const struct arm64_ftr_bits *ftrp = NULL;
1469 	u32 id = reg_to_encoding(rd);
1470 	u64 writable_mask = rd->val;
1471 	u64 limit = rd->reset(vcpu, rd);
1472 	u64 mask = 0;
1473 
1474 	/*
1475 	 * Hidden and unallocated ID registers may not have a corresponding
1476 	 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1477 	 * only safe value is 0.
1478 	 */
1479 	if (sysreg_visible_as_raz(vcpu, rd))
1480 		return val ? -E2BIG : 0;
1481 
1482 	ftr_reg = get_arm64_ftr_reg(id);
1483 	if (!ftr_reg)
1484 		return -EINVAL;
1485 
1486 	ftrp = ftr_reg->ftr_bits;
1487 
1488 	for (; ftrp && ftrp->width; ftrp++) {
1489 		s64 f_val, f_lim, safe_val;
1490 		u64 ftr_mask;
1491 
1492 		ftr_mask = arm64_ftr_mask(ftrp);
1493 		if ((ftr_mask & writable_mask) != ftr_mask)
1494 			continue;
1495 
1496 		f_val = arm64_ftr_value(ftrp, val);
1497 		f_lim = arm64_ftr_value(ftrp, limit);
1498 		mask |= ftr_mask;
1499 
1500 		if (f_val == f_lim)
1501 			safe_val = f_val;
1502 		else
1503 			safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1504 
1505 		if (safe_val != f_val)
1506 			return -E2BIG;
1507 	}
1508 
1509 	/* For fields that are not writable, values in limit are the safe values. */
1510 	if ((val & ~mask) != (limit & ~mask))
1511 		return -E2BIG;
1512 
1513 	return 0;
1514 }
1515 
1516 static u8 pmuver_to_perfmon(u8 pmuver)
1517 {
1518 	switch (pmuver) {
1519 	case ID_AA64DFR0_EL1_PMUVer_IMP:
1520 		return ID_DFR0_EL1_PerfMon_PMUv3;
1521 	case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1522 		return ID_DFR0_EL1_PerfMon_IMPDEF;
1523 	default:
1524 		/* Anything ARMv8.1+ and NI have the same value. For now. */
1525 		return pmuver;
1526 	}
1527 }
1528 
1529 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1530 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1531 				       const struct sys_reg_desc *r)
1532 {
1533 	u32 id = reg_to_encoding(r);
1534 	u64 val;
1535 
1536 	if (sysreg_visible_as_raz(vcpu, r))
1537 		return 0;
1538 
1539 	val = read_sanitised_ftr_reg(id);
1540 
1541 	switch (id) {
1542 	case SYS_ID_AA64PFR1_EL1:
1543 		if (!kvm_has_mte(vcpu->kvm))
1544 			val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1545 
1546 		val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1547 		break;
1548 	case SYS_ID_AA64PFR2_EL1:
1549 		/* We only expose FPMR */
1550 		val &= ID_AA64PFR2_EL1_FPMR;
1551 		break;
1552 	case SYS_ID_AA64ISAR1_EL1:
1553 		if (!vcpu_has_ptrauth(vcpu))
1554 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1555 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1556 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1557 				 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1558 		break;
1559 	case SYS_ID_AA64ISAR2_EL1:
1560 		if (!vcpu_has_ptrauth(vcpu))
1561 			val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1562 				 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1563 		if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1564 			val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1565 		break;
1566 	case SYS_ID_AA64MMFR2_EL1:
1567 		val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1568 		break;
1569 	case SYS_ID_MMFR4_EL1:
1570 		val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1571 		break;
1572 	}
1573 
1574 	return val;
1575 }
1576 
1577 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1578 				     const struct sys_reg_desc *r)
1579 {
1580 	return __kvm_read_sanitised_id_reg(vcpu, r);
1581 }
1582 
1583 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1584 {
1585 	return kvm_read_vm_id_reg(vcpu->kvm, reg_to_encoding(r));
1586 }
1587 
1588 static bool is_feature_id_reg(u32 encoding)
1589 {
1590 	return (sys_reg_Op0(encoding) == 3 &&
1591 		(sys_reg_Op1(encoding) < 2 || sys_reg_Op1(encoding) == 3) &&
1592 		sys_reg_CRn(encoding) == 0 &&
1593 		sys_reg_CRm(encoding) <= 7);
1594 }
1595 
1596 /*
1597  * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1598  * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8, which is the range of ID
1599  * registers KVM maintains on a per-VM basis.
1600  */
1601 static inline bool is_vm_ftr_id_reg(u32 id)
1602 {
1603 	if (id == SYS_CTR_EL0)
1604 		return true;
1605 
1606 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1607 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1608 		sys_reg_CRm(id) < 8);
1609 }
1610 
1611 static inline bool is_vcpu_ftr_id_reg(u32 id)
1612 {
1613 	return is_feature_id_reg(id) && !is_vm_ftr_id_reg(id);
1614 }
1615 
1616 static inline bool is_aa32_id_reg(u32 id)
1617 {
1618 	return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1619 		sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1620 		sys_reg_CRm(id) <= 3);
1621 }
1622 
1623 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1624 				  const struct sys_reg_desc *r)
1625 {
1626 	u32 id = reg_to_encoding(r);
1627 
1628 	switch (id) {
1629 	case SYS_ID_AA64ZFR0_EL1:
1630 		if (!vcpu_has_sve(vcpu))
1631 			return REG_RAZ;
1632 		break;
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1639 				       const struct sys_reg_desc *r)
1640 {
1641 	/*
1642 	 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1643 	 * EL. Promote to RAZ/WI in order to guarantee consistency between
1644 	 * systems.
1645 	 */
1646 	if (!kvm_supports_32bit_el0())
1647 		return REG_RAZ | REG_USER_WI;
1648 
1649 	return id_visibility(vcpu, r);
1650 }
1651 
1652 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1653 				   const struct sys_reg_desc *r)
1654 {
1655 	return REG_RAZ;
1656 }
1657 
1658 /* cpufeature ID register access trap handlers */
1659 
1660 static bool access_id_reg(struct kvm_vcpu *vcpu,
1661 			  struct sys_reg_params *p,
1662 			  const struct sys_reg_desc *r)
1663 {
1664 	if (p->is_write)
1665 		return write_to_read_only(vcpu, p, r);
1666 
1667 	p->regval = read_id_reg(vcpu, r);
1668 
1669 	return true;
1670 }
1671 
1672 /* Visibility overrides for SVE-specific control registers */
1673 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1674 				   const struct sys_reg_desc *rd)
1675 {
1676 	if (vcpu_has_sve(vcpu))
1677 		return 0;
1678 
1679 	return REG_HIDDEN;
1680 }
1681 
1682 static unsigned int sme_visibility(const struct kvm_vcpu *vcpu,
1683 				   const struct sys_reg_desc *rd)
1684 {
1685 	if (kvm_has_feat(vcpu->kvm, ID_AA64PFR1_EL1, SME, IMP))
1686 		return 0;
1687 
1688 	return REG_HIDDEN;
1689 }
1690 
1691 static unsigned int fp8_visibility(const struct kvm_vcpu *vcpu,
1692 				   const struct sys_reg_desc *rd)
1693 {
1694 	if (kvm_has_fpmr(vcpu->kvm))
1695 		return 0;
1696 
1697 	return REG_HIDDEN;
1698 }
1699 
1700 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1701 					  const struct sys_reg_desc *rd)
1702 {
1703 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1704 
1705 	if (!vcpu_has_sve(vcpu))
1706 		val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1707 
1708 	/*
1709 	 * The default is to expose CSV2 == 1 if the HW isn't affected.
1710 	 * Although this is a per-CPU feature, we make it global because
1711 	 * asymmetric systems are just a nuisance.
1712 	 *
1713 	 * Userspace can override this as long as it doesn't promise
1714 	 * the impossible.
1715 	 */
1716 	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1717 		val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1718 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1719 	}
1720 	if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1721 		val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1722 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1723 	}
1724 
1725 	if (kvm_vgic_global_state.type == VGIC_V3) {
1726 		val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1727 		val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1728 	}
1729 
1730 	val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1731 
1732 	return val;
1733 }
1734 
1735 #define ID_REG_LIMIT_FIELD_ENUM(val, reg, field, limit)			       \
1736 ({									       \
1737 	u64 __f_val = FIELD_GET(reg##_##field##_MASK, val);		       \
1738 	(val) &= ~reg##_##field##_MASK;					       \
1739 	(val) |= FIELD_PREP(reg##_##field##_MASK,			       \
1740 			    min(__f_val,				       \
1741 				(u64)SYS_FIELD_VALUE(reg, field, limit)));     \
1742 	(val);								       \
1743 })
1744 
1745 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1746 					  const struct sys_reg_desc *rd)
1747 {
1748 	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1749 
1750 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_AA64DFR0_EL1, DebugVer, V8P8);
1751 
1752 	/*
1753 	 * Only initialize the PMU version if the vCPU was configured with one.
1754 	 */
1755 	val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1756 	if (kvm_vcpu_has_pmu(vcpu))
1757 		val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1758 				      kvm_arm_pmu_get_pmuver_limit());
1759 
1760 	/* Hide SPE from guests */
1761 	val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1762 
1763 	return val;
1764 }
1765 
1766 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1767 			       const struct sys_reg_desc *rd,
1768 			       u64 val)
1769 {
1770 	u8 debugver = SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, val);
1771 	u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1772 
1773 	/*
1774 	 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1775 	 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1776 	 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1777 	 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1778 	 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1779 	 *
1780 	 * At minimum, we're on the hook to allow values that were given to
1781 	 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1782 	 * with a more sensible NI. The value of an ID register changing under
1783 	 * the nose of the guest is unfortunate, but is certainly no more
1784 	 * surprising than an ill-guided PMU driver poking at impdef system
1785 	 * registers that end in an UNDEF...
1786 	 */
1787 	if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1788 		val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1789 
1790 	/*
1791 	 * ID_AA64DFR0_EL1.DebugVer is one of those awkward fields with a
1792 	 * nonzero minimum safe value.
1793 	 */
1794 	if (debugver < ID_AA64DFR0_EL1_DebugVer_IMP)
1795 		return -EINVAL;
1796 
1797 	return set_id_reg(vcpu, rd, val);
1798 }
1799 
1800 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1801 				      const struct sys_reg_desc *rd)
1802 {
1803 	u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1804 	u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1805 
1806 	val &= ~ID_DFR0_EL1_PerfMon_MASK;
1807 	if (kvm_vcpu_has_pmu(vcpu))
1808 		val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1809 
1810 	val = ID_REG_LIMIT_FIELD_ENUM(val, ID_DFR0_EL1, CopDbg, Debugv8p8);
1811 
1812 	return val;
1813 }
1814 
1815 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1816 			   const struct sys_reg_desc *rd,
1817 			   u64 val)
1818 {
1819 	u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1820 	u8 copdbg = SYS_FIELD_GET(ID_DFR0_EL1, CopDbg, val);
1821 
1822 	if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1823 		val &= ~ID_DFR0_EL1_PerfMon_MASK;
1824 		perfmon = 0;
1825 	}
1826 
1827 	/*
1828 	 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1829 	 * it doesn't promise more than what the HW gives us on the
1830 	 * AArch64 side (as everything is emulated with that), and
1831 	 * that this is a PMUv3.
1832 	 */
1833 	if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1834 		return -EINVAL;
1835 
1836 	if (copdbg < ID_DFR0_EL1_CopDbg_Armv8)
1837 		return -EINVAL;
1838 
1839 	return set_id_reg(vcpu, rd, val);
1840 }
1841 
1842 /*
1843  * cpufeature ID register user accessors
1844  *
1845  * For now, these registers are immutable for userspace, so no values
1846  * are stored, and for set_id_reg() we don't allow the effective value
1847  * to be changed.
1848  */
1849 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1850 		      u64 *val)
1851 {
1852 	/*
1853 	 * Avoid locking if the VM has already started, as the ID registers are
1854 	 * guaranteed to be invariant at that point.
1855 	 */
1856 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1857 		*val = read_id_reg(vcpu, rd);
1858 		return 0;
1859 	}
1860 
1861 	mutex_lock(&vcpu->kvm->arch.config_lock);
1862 	*val = read_id_reg(vcpu, rd);
1863 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1864 
1865 	return 0;
1866 }
1867 
1868 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1869 		      u64 val)
1870 {
1871 	u32 id = reg_to_encoding(rd);
1872 	int ret;
1873 
1874 	mutex_lock(&vcpu->kvm->arch.config_lock);
1875 
1876 	/*
1877 	 * Once the VM has started the ID registers are immutable. Reject any
1878 	 * write that does not match the final register value.
1879 	 */
1880 	if (kvm_vm_has_ran_once(vcpu->kvm)) {
1881 		if (val != read_id_reg(vcpu, rd))
1882 			ret = -EBUSY;
1883 		else
1884 			ret = 0;
1885 
1886 		mutex_unlock(&vcpu->kvm->arch.config_lock);
1887 		return ret;
1888 	}
1889 
1890 	ret = arm64_check_features(vcpu, rd, val);
1891 	if (!ret)
1892 		kvm_set_vm_id_reg(vcpu->kvm, id, val);
1893 
1894 	mutex_unlock(&vcpu->kvm->arch.config_lock);
1895 
1896 	/*
1897 	 * arm64_check_features() returns -E2BIG to indicate the register's
1898 	 * feature set is a superset of the maximally-allowed register value.
1899 	 * While it would be nice to precisely describe this to userspace, the
1900 	 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1901 	 * writes return -EINVAL.
1902 	 */
1903 	if (ret == -E2BIG)
1904 		ret = -EINVAL;
1905 	return ret;
1906 }
1907 
1908 void kvm_set_vm_id_reg(struct kvm *kvm, u32 reg, u64 val)
1909 {
1910 	u64 *p = __vm_id_reg(&kvm->arch, reg);
1911 
1912 	lockdep_assert_held(&kvm->arch.config_lock);
1913 
1914 	if (KVM_BUG_ON(kvm_vm_has_ran_once(kvm) || !p, kvm))
1915 		return;
1916 
1917 	*p = val;
1918 }
1919 
1920 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1921 		       u64 *val)
1922 {
1923 	*val = 0;
1924 	return 0;
1925 }
1926 
1927 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1928 		      u64 val)
1929 {
1930 	return 0;
1931 }
1932 
1933 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1934 		       const struct sys_reg_desc *r)
1935 {
1936 	if (p->is_write)
1937 		return write_to_read_only(vcpu, p, r);
1938 
1939 	p->regval = kvm_read_vm_id_reg(vcpu->kvm, SYS_CTR_EL0);
1940 	return true;
1941 }
1942 
1943 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1944 			 const struct sys_reg_desc *r)
1945 {
1946 	if (p->is_write)
1947 		return write_to_read_only(vcpu, p, r);
1948 
1949 	p->regval = __vcpu_sys_reg(vcpu, r->reg);
1950 	return true;
1951 }
1952 
1953 /*
1954  * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1955  * by the physical CPU which the vcpu currently resides in.
1956  */
1957 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1958 {
1959 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1960 	u64 clidr;
1961 	u8 loc;
1962 
1963 	if ((ctr_el0 & CTR_EL0_IDC)) {
1964 		/*
1965 		 * Data cache clean to the PoU is not required so LoUU and LoUIS
1966 		 * will not be set and a unified cache, which will be marked as
1967 		 * LoC, will be added.
1968 		 *
1969 		 * If not DIC, let the unified cache L2 so that an instruction
1970 		 * cache can be added as L1 later.
1971 		 */
1972 		loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1973 		clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1974 	} else {
1975 		/*
1976 		 * Data cache clean to the PoU is required so let L1 have a data
1977 		 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1978 		 * it can be marked as LoC too.
1979 		 */
1980 		loc = 1;
1981 		clidr = 1 << CLIDR_LOUU_SHIFT;
1982 		clidr |= 1 << CLIDR_LOUIS_SHIFT;
1983 		clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1984 	}
1985 
1986 	/*
1987 	 * Instruction cache invalidation to the PoU is required so let L1 have
1988 	 * an instruction cache. If L1 already has a data cache, it will be
1989 	 * CACHE_TYPE_SEPARATE.
1990 	 */
1991 	if (!(ctr_el0 & CTR_EL0_DIC))
1992 		clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1993 
1994 	clidr |= loc << CLIDR_LOC_SHIFT;
1995 
1996 	/*
1997 	 * Add tag cache unified to data cache. Allocation tags and data are
1998 	 * unified in a cache line so that it looks valid even if there is only
1999 	 * one cache line.
2000 	 */
2001 	if (kvm_has_mte(vcpu->kvm))
2002 		clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
2003 
2004 	__vcpu_sys_reg(vcpu, r->reg) = clidr;
2005 
2006 	return __vcpu_sys_reg(vcpu, r->reg);
2007 }
2008 
2009 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
2010 		      u64 val)
2011 {
2012 	u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
2013 	u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
2014 
2015 	if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
2016 		return -EINVAL;
2017 
2018 	__vcpu_sys_reg(vcpu, rd->reg) = val;
2019 
2020 	return 0;
2021 }
2022 
2023 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2024 			  const struct sys_reg_desc *r)
2025 {
2026 	int reg = r->reg;
2027 
2028 	if (p->is_write)
2029 		vcpu_write_sys_reg(vcpu, p->regval, reg);
2030 	else
2031 		p->regval = vcpu_read_sys_reg(vcpu, reg);
2032 	return true;
2033 }
2034 
2035 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2036 			  const struct sys_reg_desc *r)
2037 {
2038 	u32 csselr;
2039 
2040 	if (p->is_write)
2041 		return write_to_read_only(vcpu, p, r);
2042 
2043 	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
2044 	csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
2045 	if (csselr < CSSELR_MAX)
2046 		p->regval = get_ccsidr(vcpu, csselr);
2047 
2048 	return true;
2049 }
2050 
2051 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
2052 				   const struct sys_reg_desc *rd)
2053 {
2054 	if (kvm_has_mte(vcpu->kvm))
2055 		return 0;
2056 
2057 	return REG_HIDDEN;
2058 }
2059 
2060 #define MTE_REG(name) {				\
2061 	SYS_DESC(SYS_##name),			\
2062 	.access = undef_access,			\
2063 	.reset = reset_unknown,			\
2064 	.reg = name,				\
2065 	.visibility = mte_visibility,		\
2066 }
2067 
2068 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
2069 				   const struct sys_reg_desc *rd)
2070 {
2071 	if (vcpu_has_nv(vcpu))
2072 		return 0;
2073 
2074 	return REG_HIDDEN;
2075 }
2076 
2077 static bool bad_vncr_trap(struct kvm_vcpu *vcpu,
2078 			  struct sys_reg_params *p,
2079 			  const struct sys_reg_desc *r)
2080 {
2081 	/*
2082 	 * We really shouldn't be here, and this is likely the result
2083 	 * of a misconfigured trap, as this register should target the
2084 	 * VNCR page, and nothing else.
2085 	 */
2086 	return bad_trap(vcpu, p, r,
2087 			"trap of VNCR-backed register");
2088 }
2089 
2090 static bool bad_redir_trap(struct kvm_vcpu *vcpu,
2091 			   struct sys_reg_params *p,
2092 			   const struct sys_reg_desc *r)
2093 {
2094 	/*
2095 	 * We really shouldn't be here, and this is likely the result
2096 	 * of a misconfigured trap, as this register should target the
2097 	 * corresponding EL1, and nothing else.
2098 	 */
2099 	return bad_trap(vcpu, p, r,
2100 			"trap of EL2 register redirected to EL1");
2101 }
2102 
2103 #define EL2_REG(name, acc, rst, v) {		\
2104 	SYS_DESC(SYS_##name),			\
2105 	.access = acc,				\
2106 	.reset = rst,				\
2107 	.reg = name,				\
2108 	.visibility = el2_visibility,		\
2109 	.val = v,				\
2110 }
2111 
2112 #define EL2_REG_VNCR(name, rst, v)	EL2_REG(name, bad_vncr_trap, rst, v)
2113 #define EL2_REG_REDIR(name, rst, v)	EL2_REG(name, bad_redir_trap, rst, v)
2114 
2115 /*
2116  * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
2117  * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
2118  * handling traps. Given that, they are always hidden from userspace.
2119  */
2120 static unsigned int hidden_user_visibility(const struct kvm_vcpu *vcpu,
2121 					   const struct sys_reg_desc *rd)
2122 {
2123 	return REG_HIDDEN_USER;
2124 }
2125 
2126 #define EL12_REG(name, acc, rst, v) {		\
2127 	SYS_DESC(SYS_##name##_EL12),		\
2128 	.access = acc,				\
2129 	.reset = rst,				\
2130 	.reg = name##_EL1,			\
2131 	.val = v,				\
2132 	.visibility = hidden_user_visibility,	\
2133 }
2134 
2135 /*
2136  * Since reset() callback and field val are not used for idregs, they will be
2137  * used for specific purposes for idregs.
2138  * The reset() would return KVM sanitised register value. The value would be the
2139  * same as the host kernel sanitised value if there is no KVM sanitisation.
2140  * The val would be used as a mask indicating writable fields for the idreg.
2141  * Only bits with 1 are writable from userspace. This mask might not be
2142  * necessary in the future whenever all ID registers are enabled as writable
2143  * from userspace.
2144  */
2145 
2146 #define ID_DESC(name)				\
2147 	SYS_DESC(SYS_##name),			\
2148 	.access	= access_id_reg,		\
2149 	.get_user = get_id_reg			\
2150 
2151 /* sys_reg_desc initialiser for known cpufeature ID registers */
2152 #define ID_SANITISED(name) {			\
2153 	ID_DESC(name),				\
2154 	.set_user = set_id_reg,			\
2155 	.visibility = id_visibility,		\
2156 	.reset = kvm_read_sanitised_id_reg,	\
2157 	.val = 0,				\
2158 }
2159 
2160 /* sys_reg_desc initialiser for known cpufeature ID registers */
2161 #define AA32_ID_SANITISED(name) {		\
2162 	ID_DESC(name),				\
2163 	.set_user = set_id_reg,			\
2164 	.visibility = aa32_id_visibility,	\
2165 	.reset = kvm_read_sanitised_id_reg,	\
2166 	.val = 0,				\
2167 }
2168 
2169 /* sys_reg_desc initialiser for writable ID registers */
2170 #define ID_WRITABLE(name, mask) {		\
2171 	ID_DESC(name),				\
2172 	.set_user = set_id_reg,			\
2173 	.visibility = id_visibility,		\
2174 	.reset = kvm_read_sanitised_id_reg,	\
2175 	.val = mask,				\
2176 }
2177 
2178 /*
2179  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
2180  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
2181  * (1 <= crm < 8, 0 <= Op2 < 8).
2182  */
2183 #define ID_UNALLOCATED(crm, op2) {			\
2184 	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
2185 	.access = access_id_reg,			\
2186 	.get_user = get_id_reg,				\
2187 	.set_user = set_id_reg,				\
2188 	.visibility = raz_visibility,			\
2189 	.reset = kvm_read_sanitised_id_reg,		\
2190 	.val = 0,					\
2191 }
2192 
2193 /*
2194  * sys_reg_desc initialiser for known ID registers that we hide from guests.
2195  * For now, these are exposed just like unallocated ID regs: they appear
2196  * RAZ for the guest.
2197  */
2198 #define ID_HIDDEN(name) {			\
2199 	ID_DESC(name),				\
2200 	.set_user = set_id_reg,			\
2201 	.visibility = raz_visibility,		\
2202 	.reset = kvm_read_sanitised_id_reg,	\
2203 	.val = 0,				\
2204 }
2205 
2206 static bool access_sp_el1(struct kvm_vcpu *vcpu,
2207 			  struct sys_reg_params *p,
2208 			  const struct sys_reg_desc *r)
2209 {
2210 	if (p->is_write)
2211 		__vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
2212 	else
2213 		p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
2214 
2215 	return true;
2216 }
2217 
2218 static bool access_elr(struct kvm_vcpu *vcpu,
2219 		       struct sys_reg_params *p,
2220 		       const struct sys_reg_desc *r)
2221 {
2222 	if (p->is_write)
2223 		vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
2224 	else
2225 		p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
2226 
2227 	return true;
2228 }
2229 
2230 static bool access_spsr(struct kvm_vcpu *vcpu,
2231 			struct sys_reg_params *p,
2232 			const struct sys_reg_desc *r)
2233 {
2234 	if (p->is_write)
2235 		__vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
2236 	else
2237 		p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
2238 
2239 	return true;
2240 }
2241 
2242 static u64 reset_hcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
2243 {
2244 	u64 val = r->val;
2245 
2246 	if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1))
2247 		val |= HCR_E2H;
2248 
2249 	return __vcpu_sys_reg(vcpu, r->reg) = val;
2250 }
2251 
2252 static unsigned int sve_el2_visibility(const struct kvm_vcpu *vcpu,
2253 				       const struct sys_reg_desc *rd)
2254 {
2255 	unsigned int r;
2256 
2257 	r = el2_visibility(vcpu, rd);
2258 	if (r)
2259 		return r;
2260 
2261 	return sve_visibility(vcpu, rd);
2262 }
2263 
2264 static bool access_zcr_el2(struct kvm_vcpu *vcpu,
2265 			   struct sys_reg_params *p,
2266 			   const struct sys_reg_desc *r)
2267 {
2268 	unsigned int vq;
2269 
2270 	if (guest_hyp_sve_traps_enabled(vcpu)) {
2271 		kvm_inject_nested_sve_trap(vcpu);
2272 		return true;
2273 	}
2274 
2275 	if (!p->is_write) {
2276 		p->regval = vcpu_read_sys_reg(vcpu, ZCR_EL2);
2277 		return true;
2278 	}
2279 
2280 	vq = SYS_FIELD_GET(ZCR_ELx, LEN, p->regval) + 1;
2281 	vq = min(vq, vcpu_sve_max_vq(vcpu));
2282 	vcpu_write_sys_reg(vcpu, vq - 1, ZCR_EL2);
2283 	return true;
2284 }
2285 
2286 /*
2287  * Architected system registers.
2288  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
2289  *
2290  * Debug handling: We do trap most, if not all debug related system
2291  * registers. The implementation is good enough to ensure that a guest
2292  * can use these with minimal performance degradation. The drawback is
2293  * that we don't implement any of the external debug architecture.
2294  * This should be revisited if we ever encounter a more demanding
2295  * guest...
2296  */
2297 static const struct sys_reg_desc sys_reg_descs[] = {
2298 	DBG_BCR_BVR_WCR_WVR_EL1(0),
2299 	DBG_BCR_BVR_WCR_WVR_EL1(1),
2300 	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
2301 	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
2302 	DBG_BCR_BVR_WCR_WVR_EL1(2),
2303 	DBG_BCR_BVR_WCR_WVR_EL1(3),
2304 	DBG_BCR_BVR_WCR_WVR_EL1(4),
2305 	DBG_BCR_BVR_WCR_WVR_EL1(5),
2306 	DBG_BCR_BVR_WCR_WVR_EL1(6),
2307 	DBG_BCR_BVR_WCR_WVR_EL1(7),
2308 	DBG_BCR_BVR_WCR_WVR_EL1(8),
2309 	DBG_BCR_BVR_WCR_WVR_EL1(9),
2310 	DBG_BCR_BVR_WCR_WVR_EL1(10),
2311 	DBG_BCR_BVR_WCR_WVR_EL1(11),
2312 	DBG_BCR_BVR_WCR_WVR_EL1(12),
2313 	DBG_BCR_BVR_WCR_WVR_EL1(13),
2314 	DBG_BCR_BVR_WCR_WVR_EL1(14),
2315 	DBG_BCR_BVR_WCR_WVR_EL1(15),
2316 
2317 	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
2318 	{ SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
2319 	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
2320 		OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
2321 	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
2322 	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
2323 	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
2324 	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
2325 	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
2326 
2327 	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
2328 	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
2329 	// DBGDTR[TR]X_EL0 share the same encoding
2330 	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
2331 
2332 	{ SYS_DESC(SYS_DBGVCR32_EL2), trap_undef, reset_val, DBGVCR32_EL2, 0 },
2333 
2334 	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
2335 
2336 	/*
2337 	 * ID regs: all ID_SANITISED() entries here must have corresponding
2338 	 * entries in arm64_ftr_regs[].
2339 	 */
2340 
2341 	/* AArch64 mappings of the AArch32 ID registers */
2342 	/* CRm=1 */
2343 	AA32_ID_SANITISED(ID_PFR0_EL1),
2344 	AA32_ID_SANITISED(ID_PFR1_EL1),
2345 	{ SYS_DESC(SYS_ID_DFR0_EL1),
2346 	  .access = access_id_reg,
2347 	  .get_user = get_id_reg,
2348 	  .set_user = set_id_dfr0_el1,
2349 	  .visibility = aa32_id_visibility,
2350 	  .reset = read_sanitised_id_dfr0_el1,
2351 	  .val = ID_DFR0_EL1_PerfMon_MASK |
2352 		 ID_DFR0_EL1_CopDbg_MASK, },
2353 	ID_HIDDEN(ID_AFR0_EL1),
2354 	AA32_ID_SANITISED(ID_MMFR0_EL1),
2355 	AA32_ID_SANITISED(ID_MMFR1_EL1),
2356 	AA32_ID_SANITISED(ID_MMFR2_EL1),
2357 	AA32_ID_SANITISED(ID_MMFR3_EL1),
2358 
2359 	/* CRm=2 */
2360 	AA32_ID_SANITISED(ID_ISAR0_EL1),
2361 	AA32_ID_SANITISED(ID_ISAR1_EL1),
2362 	AA32_ID_SANITISED(ID_ISAR2_EL1),
2363 	AA32_ID_SANITISED(ID_ISAR3_EL1),
2364 	AA32_ID_SANITISED(ID_ISAR4_EL1),
2365 	AA32_ID_SANITISED(ID_ISAR5_EL1),
2366 	AA32_ID_SANITISED(ID_MMFR4_EL1),
2367 	AA32_ID_SANITISED(ID_ISAR6_EL1),
2368 
2369 	/* CRm=3 */
2370 	AA32_ID_SANITISED(MVFR0_EL1),
2371 	AA32_ID_SANITISED(MVFR1_EL1),
2372 	AA32_ID_SANITISED(MVFR2_EL1),
2373 	ID_UNALLOCATED(3,3),
2374 	AA32_ID_SANITISED(ID_PFR2_EL1),
2375 	ID_HIDDEN(ID_DFR1_EL1),
2376 	AA32_ID_SANITISED(ID_MMFR5_EL1),
2377 	ID_UNALLOCATED(3,7),
2378 
2379 	/* AArch64 ID registers */
2380 	/* CRm=4 */
2381 	{ SYS_DESC(SYS_ID_AA64PFR0_EL1),
2382 	  .access = access_id_reg,
2383 	  .get_user = get_id_reg,
2384 	  .set_user = set_id_reg,
2385 	  .reset = read_sanitised_id_aa64pfr0_el1,
2386 	  .val = ~(ID_AA64PFR0_EL1_AMU |
2387 		   ID_AA64PFR0_EL1_MPAM |
2388 		   ID_AA64PFR0_EL1_SVE |
2389 		   ID_AA64PFR0_EL1_RAS |
2390 		   ID_AA64PFR0_EL1_GIC |
2391 		   ID_AA64PFR0_EL1_AdvSIMD |
2392 		   ID_AA64PFR0_EL1_FP), },
2393 	ID_SANITISED(ID_AA64PFR1_EL1),
2394 	ID_WRITABLE(ID_AA64PFR2_EL1, ID_AA64PFR2_EL1_FPMR),
2395 	ID_UNALLOCATED(4,3),
2396 	ID_WRITABLE(ID_AA64ZFR0_EL1, ~ID_AA64ZFR0_EL1_RES0),
2397 	ID_HIDDEN(ID_AA64SMFR0_EL1),
2398 	ID_UNALLOCATED(4,6),
2399 	ID_WRITABLE(ID_AA64FPFR0_EL1, ~ID_AA64FPFR0_EL1_RES0),
2400 
2401 	/* CRm=5 */
2402 	{ SYS_DESC(SYS_ID_AA64DFR0_EL1),
2403 	  .access = access_id_reg,
2404 	  .get_user = get_id_reg,
2405 	  .set_user = set_id_aa64dfr0_el1,
2406 	  .reset = read_sanitised_id_aa64dfr0_el1,
2407 	  .val = ID_AA64DFR0_EL1_PMUVer_MASK |
2408 		 ID_AA64DFR0_EL1_DebugVer_MASK, },
2409 	ID_SANITISED(ID_AA64DFR1_EL1),
2410 	ID_UNALLOCATED(5,2),
2411 	ID_UNALLOCATED(5,3),
2412 	ID_HIDDEN(ID_AA64AFR0_EL1),
2413 	ID_HIDDEN(ID_AA64AFR1_EL1),
2414 	ID_UNALLOCATED(5,6),
2415 	ID_UNALLOCATED(5,7),
2416 
2417 	/* CRm=6 */
2418 	ID_WRITABLE(ID_AA64ISAR0_EL1, ~ID_AA64ISAR0_EL1_RES0),
2419 	ID_WRITABLE(ID_AA64ISAR1_EL1, ~(ID_AA64ISAR1_EL1_GPI |
2420 					ID_AA64ISAR1_EL1_GPA |
2421 					ID_AA64ISAR1_EL1_API |
2422 					ID_AA64ISAR1_EL1_APA)),
2423 	ID_WRITABLE(ID_AA64ISAR2_EL1, ~(ID_AA64ISAR2_EL1_RES0 |
2424 					ID_AA64ISAR2_EL1_APA3 |
2425 					ID_AA64ISAR2_EL1_GPA3)),
2426 	ID_UNALLOCATED(6,3),
2427 	ID_UNALLOCATED(6,4),
2428 	ID_UNALLOCATED(6,5),
2429 	ID_UNALLOCATED(6,6),
2430 	ID_UNALLOCATED(6,7),
2431 
2432 	/* CRm=7 */
2433 	ID_WRITABLE(ID_AA64MMFR0_EL1, ~(ID_AA64MMFR0_EL1_RES0 |
2434 					ID_AA64MMFR0_EL1_TGRAN4_2 |
2435 					ID_AA64MMFR0_EL1_TGRAN64_2 |
2436 					ID_AA64MMFR0_EL1_TGRAN16_2)),
2437 	ID_WRITABLE(ID_AA64MMFR1_EL1, ~(ID_AA64MMFR1_EL1_RES0 |
2438 					ID_AA64MMFR1_EL1_HCX |
2439 					ID_AA64MMFR1_EL1_TWED |
2440 					ID_AA64MMFR1_EL1_XNX |
2441 					ID_AA64MMFR1_EL1_VH |
2442 					ID_AA64MMFR1_EL1_VMIDBits)),
2443 	ID_WRITABLE(ID_AA64MMFR2_EL1, ~(ID_AA64MMFR2_EL1_RES0 |
2444 					ID_AA64MMFR2_EL1_EVT |
2445 					ID_AA64MMFR2_EL1_FWB |
2446 					ID_AA64MMFR2_EL1_IDS |
2447 					ID_AA64MMFR2_EL1_NV |
2448 					ID_AA64MMFR2_EL1_CCIDX)),
2449 	ID_SANITISED(ID_AA64MMFR3_EL1),
2450 	ID_SANITISED(ID_AA64MMFR4_EL1),
2451 	ID_UNALLOCATED(7,5),
2452 	ID_UNALLOCATED(7,6),
2453 	ID_UNALLOCATED(7,7),
2454 
2455 	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2456 	{ SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2457 	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2458 
2459 	MTE_REG(RGSR_EL1),
2460 	MTE_REG(GCR_EL1),
2461 
2462 	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2463 	{ SYS_DESC(SYS_TRFCR_EL1), undef_access },
2464 	{ SYS_DESC(SYS_SMPRI_EL1), undef_access },
2465 	{ SYS_DESC(SYS_SMCR_EL1), undef_access },
2466 	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2467 	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2468 	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2469 	{ SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2470 
2471 	PTRAUTH_KEY(APIA),
2472 	PTRAUTH_KEY(APIB),
2473 	PTRAUTH_KEY(APDA),
2474 	PTRAUTH_KEY(APDB),
2475 	PTRAUTH_KEY(APGA),
2476 
2477 	{ SYS_DESC(SYS_SPSR_EL1), access_spsr},
2478 	{ SYS_DESC(SYS_ELR_EL1), access_elr},
2479 
2480 	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2481 	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2482 	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2483 
2484 	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2485 	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2486 	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2487 	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2488 	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2489 	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2490 	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2491 	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2492 
2493 	MTE_REG(TFSR_EL1),
2494 	MTE_REG(TFSRE0_EL1),
2495 
2496 	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2497 	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2498 
2499 	{ SYS_DESC(SYS_PMSCR_EL1), undef_access },
2500 	{ SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2501 	{ SYS_DESC(SYS_PMSICR_EL1), undef_access },
2502 	{ SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2503 	{ SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2504 	{ SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2505 	{ SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2506 	{ SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2507 	{ SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2508 	{ SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2509 	{ SYS_DESC(SYS_PMBSR_EL1), undef_access },
2510 	/* PMBIDR_EL1 is not trapped */
2511 
2512 	{ PMU_SYS_REG(PMINTENSET_EL1),
2513 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2514 	  .get_user = get_pmreg, .set_user = set_pmreg },
2515 	{ PMU_SYS_REG(PMINTENCLR_EL1),
2516 	  .access = access_pminten, .reg = PMINTENSET_EL1,
2517 	  .get_user = get_pmreg, .set_user = set_pmreg },
2518 	{ SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2519 
2520 	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2521 	{ SYS_DESC(SYS_PIRE0_EL1), NULL, reset_unknown, PIRE0_EL1 },
2522 	{ SYS_DESC(SYS_PIR_EL1), NULL, reset_unknown, PIR_EL1 },
2523 	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2524 
2525 	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2526 	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2527 	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
2528 	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
2529 	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },
2530 
2531 	{ SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2532 	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2533 
2534 	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2535 	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2536 	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2537 	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2538 	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2539 	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2540 	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2541 	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2542 	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2543 	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2544 	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2545 	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2546 
2547 	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2548 	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2549 
2550 	{ SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2551 
2552 	{ SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2553 
2554 	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2555 
2556 	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2557 	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2558 	  .set_user = set_clidr, .val = ~CLIDR_EL1_RES0 },
2559 	{ SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2560 	{ SYS_DESC(SYS_SMIDR_EL1), undef_access },
2561 	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2562 	ID_WRITABLE(CTR_EL0, CTR_EL0_DIC_MASK |
2563 			     CTR_EL0_IDC_MASK |
2564 			     CTR_EL0_DminLine_MASK |
2565 			     CTR_EL0_IminLine_MASK),
2566 	{ SYS_DESC(SYS_SVCR), undef_access, reset_val, SVCR, 0, .visibility = sme_visibility  },
2567 	{ SYS_DESC(SYS_FPMR), undef_access, reset_val, FPMR, 0, .visibility = fp8_visibility },
2568 
2569 	{ PMU_SYS_REG(PMCR_EL0), .access = access_pmcr, .reset = reset_pmcr,
2570 	  .reg = PMCR_EL0, .get_user = get_pmcr, .set_user = set_pmcr },
2571 	{ PMU_SYS_REG(PMCNTENSET_EL0),
2572 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2573 	  .get_user = get_pmreg, .set_user = set_pmreg },
2574 	{ PMU_SYS_REG(PMCNTENCLR_EL0),
2575 	  .access = access_pmcnten, .reg = PMCNTENSET_EL0,
2576 	  .get_user = get_pmreg, .set_user = set_pmreg },
2577 	{ PMU_SYS_REG(PMOVSCLR_EL0),
2578 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2579 	  .get_user = get_pmreg, .set_user = set_pmreg },
2580 	/*
2581 	 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2582 	 * previously (and pointlessly) advertised in the past...
2583 	 */
2584 	{ PMU_SYS_REG(PMSWINC_EL0),
2585 	  .get_user = get_raz_reg, .set_user = set_wi_reg,
2586 	  .access = access_pmswinc, .reset = NULL },
2587 	{ PMU_SYS_REG(PMSELR_EL0),
2588 	  .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2589 	{ PMU_SYS_REG(PMCEID0_EL0),
2590 	  .access = access_pmceid, .reset = NULL },
2591 	{ PMU_SYS_REG(PMCEID1_EL0),
2592 	  .access = access_pmceid, .reset = NULL },
2593 	{ PMU_SYS_REG(PMCCNTR_EL0),
2594 	  .access = access_pmu_evcntr, .reset = reset_unknown,
2595 	  .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2596 	{ PMU_SYS_REG(PMXEVTYPER_EL0),
2597 	  .access = access_pmu_evtyper, .reset = NULL },
2598 	{ PMU_SYS_REG(PMXEVCNTR_EL0),
2599 	  .access = access_pmu_evcntr, .reset = NULL },
2600 	/*
2601 	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2602 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2603 	 */
2604 	{ PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2605 	  .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2606 	{ PMU_SYS_REG(PMOVSSET_EL0),
2607 	  .access = access_pmovs, .reg = PMOVSSET_EL0,
2608 	  .get_user = get_pmreg, .set_user = set_pmreg },
2609 
2610 	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2611 	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2612 	{ SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2613 
2614 	{ SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2615 
2616 	{ SYS_DESC(SYS_AMCR_EL0), undef_access },
2617 	{ SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2618 	{ SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2619 	{ SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2620 	{ SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2621 	{ SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2622 	{ SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2623 	{ SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2624 	AMU_AMEVCNTR0_EL0(0),
2625 	AMU_AMEVCNTR0_EL0(1),
2626 	AMU_AMEVCNTR0_EL0(2),
2627 	AMU_AMEVCNTR0_EL0(3),
2628 	AMU_AMEVCNTR0_EL0(4),
2629 	AMU_AMEVCNTR0_EL0(5),
2630 	AMU_AMEVCNTR0_EL0(6),
2631 	AMU_AMEVCNTR0_EL0(7),
2632 	AMU_AMEVCNTR0_EL0(8),
2633 	AMU_AMEVCNTR0_EL0(9),
2634 	AMU_AMEVCNTR0_EL0(10),
2635 	AMU_AMEVCNTR0_EL0(11),
2636 	AMU_AMEVCNTR0_EL0(12),
2637 	AMU_AMEVCNTR0_EL0(13),
2638 	AMU_AMEVCNTR0_EL0(14),
2639 	AMU_AMEVCNTR0_EL0(15),
2640 	AMU_AMEVTYPER0_EL0(0),
2641 	AMU_AMEVTYPER0_EL0(1),
2642 	AMU_AMEVTYPER0_EL0(2),
2643 	AMU_AMEVTYPER0_EL0(3),
2644 	AMU_AMEVTYPER0_EL0(4),
2645 	AMU_AMEVTYPER0_EL0(5),
2646 	AMU_AMEVTYPER0_EL0(6),
2647 	AMU_AMEVTYPER0_EL0(7),
2648 	AMU_AMEVTYPER0_EL0(8),
2649 	AMU_AMEVTYPER0_EL0(9),
2650 	AMU_AMEVTYPER0_EL0(10),
2651 	AMU_AMEVTYPER0_EL0(11),
2652 	AMU_AMEVTYPER0_EL0(12),
2653 	AMU_AMEVTYPER0_EL0(13),
2654 	AMU_AMEVTYPER0_EL0(14),
2655 	AMU_AMEVTYPER0_EL0(15),
2656 	AMU_AMEVCNTR1_EL0(0),
2657 	AMU_AMEVCNTR1_EL0(1),
2658 	AMU_AMEVCNTR1_EL0(2),
2659 	AMU_AMEVCNTR1_EL0(3),
2660 	AMU_AMEVCNTR1_EL0(4),
2661 	AMU_AMEVCNTR1_EL0(5),
2662 	AMU_AMEVCNTR1_EL0(6),
2663 	AMU_AMEVCNTR1_EL0(7),
2664 	AMU_AMEVCNTR1_EL0(8),
2665 	AMU_AMEVCNTR1_EL0(9),
2666 	AMU_AMEVCNTR1_EL0(10),
2667 	AMU_AMEVCNTR1_EL0(11),
2668 	AMU_AMEVCNTR1_EL0(12),
2669 	AMU_AMEVCNTR1_EL0(13),
2670 	AMU_AMEVCNTR1_EL0(14),
2671 	AMU_AMEVCNTR1_EL0(15),
2672 	AMU_AMEVTYPER1_EL0(0),
2673 	AMU_AMEVTYPER1_EL0(1),
2674 	AMU_AMEVTYPER1_EL0(2),
2675 	AMU_AMEVTYPER1_EL0(3),
2676 	AMU_AMEVTYPER1_EL0(4),
2677 	AMU_AMEVTYPER1_EL0(5),
2678 	AMU_AMEVTYPER1_EL0(6),
2679 	AMU_AMEVTYPER1_EL0(7),
2680 	AMU_AMEVTYPER1_EL0(8),
2681 	AMU_AMEVTYPER1_EL0(9),
2682 	AMU_AMEVTYPER1_EL0(10),
2683 	AMU_AMEVTYPER1_EL0(11),
2684 	AMU_AMEVTYPER1_EL0(12),
2685 	AMU_AMEVTYPER1_EL0(13),
2686 	AMU_AMEVTYPER1_EL0(14),
2687 	AMU_AMEVTYPER1_EL0(15),
2688 
2689 	{ SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2690 	{ SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2691 	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2692 	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2693 	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2694 
2695 	/* PMEVCNTRn_EL0 */
2696 	PMU_PMEVCNTR_EL0(0),
2697 	PMU_PMEVCNTR_EL0(1),
2698 	PMU_PMEVCNTR_EL0(2),
2699 	PMU_PMEVCNTR_EL0(3),
2700 	PMU_PMEVCNTR_EL0(4),
2701 	PMU_PMEVCNTR_EL0(5),
2702 	PMU_PMEVCNTR_EL0(6),
2703 	PMU_PMEVCNTR_EL0(7),
2704 	PMU_PMEVCNTR_EL0(8),
2705 	PMU_PMEVCNTR_EL0(9),
2706 	PMU_PMEVCNTR_EL0(10),
2707 	PMU_PMEVCNTR_EL0(11),
2708 	PMU_PMEVCNTR_EL0(12),
2709 	PMU_PMEVCNTR_EL0(13),
2710 	PMU_PMEVCNTR_EL0(14),
2711 	PMU_PMEVCNTR_EL0(15),
2712 	PMU_PMEVCNTR_EL0(16),
2713 	PMU_PMEVCNTR_EL0(17),
2714 	PMU_PMEVCNTR_EL0(18),
2715 	PMU_PMEVCNTR_EL0(19),
2716 	PMU_PMEVCNTR_EL0(20),
2717 	PMU_PMEVCNTR_EL0(21),
2718 	PMU_PMEVCNTR_EL0(22),
2719 	PMU_PMEVCNTR_EL0(23),
2720 	PMU_PMEVCNTR_EL0(24),
2721 	PMU_PMEVCNTR_EL0(25),
2722 	PMU_PMEVCNTR_EL0(26),
2723 	PMU_PMEVCNTR_EL0(27),
2724 	PMU_PMEVCNTR_EL0(28),
2725 	PMU_PMEVCNTR_EL0(29),
2726 	PMU_PMEVCNTR_EL0(30),
2727 	/* PMEVTYPERn_EL0 */
2728 	PMU_PMEVTYPER_EL0(0),
2729 	PMU_PMEVTYPER_EL0(1),
2730 	PMU_PMEVTYPER_EL0(2),
2731 	PMU_PMEVTYPER_EL0(3),
2732 	PMU_PMEVTYPER_EL0(4),
2733 	PMU_PMEVTYPER_EL0(5),
2734 	PMU_PMEVTYPER_EL0(6),
2735 	PMU_PMEVTYPER_EL0(7),
2736 	PMU_PMEVTYPER_EL0(8),
2737 	PMU_PMEVTYPER_EL0(9),
2738 	PMU_PMEVTYPER_EL0(10),
2739 	PMU_PMEVTYPER_EL0(11),
2740 	PMU_PMEVTYPER_EL0(12),
2741 	PMU_PMEVTYPER_EL0(13),
2742 	PMU_PMEVTYPER_EL0(14),
2743 	PMU_PMEVTYPER_EL0(15),
2744 	PMU_PMEVTYPER_EL0(16),
2745 	PMU_PMEVTYPER_EL0(17),
2746 	PMU_PMEVTYPER_EL0(18),
2747 	PMU_PMEVTYPER_EL0(19),
2748 	PMU_PMEVTYPER_EL0(20),
2749 	PMU_PMEVTYPER_EL0(21),
2750 	PMU_PMEVTYPER_EL0(22),
2751 	PMU_PMEVTYPER_EL0(23),
2752 	PMU_PMEVTYPER_EL0(24),
2753 	PMU_PMEVTYPER_EL0(25),
2754 	PMU_PMEVTYPER_EL0(26),
2755 	PMU_PMEVTYPER_EL0(27),
2756 	PMU_PMEVTYPER_EL0(28),
2757 	PMU_PMEVTYPER_EL0(29),
2758 	PMU_PMEVTYPER_EL0(30),
2759 	/*
2760 	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2761 	 * in 32bit mode. Here we choose to reset it as zero for consistency.
2762 	 */
2763 	{ PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2764 	  .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2765 
2766 	EL2_REG_VNCR(VPIDR_EL2, reset_unknown, 0),
2767 	EL2_REG_VNCR(VMPIDR_EL2, reset_unknown, 0),
2768 	EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2769 	EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2770 	EL2_REG_VNCR(HCR_EL2, reset_hcr, 0),
2771 	EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2772 	EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2773 	EL2_REG_VNCR(HSTR_EL2, reset_val, 0),
2774 	EL2_REG_VNCR(HFGRTR_EL2, reset_val, 0),
2775 	EL2_REG_VNCR(HFGWTR_EL2, reset_val, 0),
2776 	EL2_REG_VNCR(HFGITR_EL2, reset_val, 0),
2777 	EL2_REG_VNCR(HACR_EL2, reset_val, 0),
2778 
2779 	{ SYS_DESC(SYS_ZCR_EL2), .access = access_zcr_el2, .reset = reset_val,
2780 	  .visibility = sve_el2_visibility, .reg = ZCR_EL2 },
2781 
2782 	EL2_REG_VNCR(HCRX_EL2, reset_val, 0),
2783 
2784 	EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2785 	EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2786 	EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2787 	EL2_REG_VNCR(VTTBR_EL2, reset_val, 0),
2788 	EL2_REG_VNCR(VTCR_EL2, reset_val, 0),
2789 
2790 	{ SYS_DESC(SYS_DACR32_EL2), trap_undef, reset_unknown, DACR32_EL2 },
2791 	EL2_REG_VNCR(HDFGRTR_EL2, reset_val, 0),
2792 	EL2_REG_VNCR(HDFGWTR_EL2, reset_val, 0),
2793 	EL2_REG_VNCR(HAFGRTR_EL2, reset_val, 0),
2794 	EL2_REG_REDIR(SPSR_EL2, reset_val, 0),
2795 	EL2_REG_REDIR(ELR_EL2, reset_val, 0),
2796 	{ SYS_DESC(SYS_SP_EL1), access_sp_el1},
2797 
2798 	/* AArch32 SPSR_* are RES0 if trapped from a NV guest */
2799 	{ SYS_DESC(SYS_SPSR_irq), .access = trap_raz_wi,
2800 	  .visibility = hidden_user_visibility },
2801 	{ SYS_DESC(SYS_SPSR_abt), .access = trap_raz_wi,
2802 	  .visibility = hidden_user_visibility },
2803 	{ SYS_DESC(SYS_SPSR_und), .access = trap_raz_wi,
2804 	  .visibility = hidden_user_visibility },
2805 	{ SYS_DESC(SYS_SPSR_fiq), .access = trap_raz_wi,
2806 	  .visibility = hidden_user_visibility },
2807 
2808 	{ SYS_DESC(SYS_IFSR32_EL2), trap_undef, reset_unknown, IFSR32_EL2 },
2809 	EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2810 	EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2811 	EL2_REG_REDIR(ESR_EL2, reset_val, 0),
2812 	{ SYS_DESC(SYS_FPEXC32_EL2), trap_undef, reset_val, FPEXC32_EL2, 0x700 },
2813 
2814 	EL2_REG_REDIR(FAR_EL2, reset_val, 0),
2815 	EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2816 
2817 	EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2818 	EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2819 
2820 	EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2821 	EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2822 	{ SYS_DESC(SYS_RMR_EL2), trap_undef },
2823 
2824 	EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2825 	EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2826 
2827 	EL2_REG_VNCR(CNTVOFF_EL2, reset_val, 0),
2828 	EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2829 
2830 	EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2831 
2832 	EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2833 };
2834 
2835 static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
2836 {
2837 	struct kvm *kvm = vpcu->kvm;
2838 	u8 CRm = sys_reg_CRm(instr);
2839 
2840 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2841 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2842 		return false;
2843 
2844 	if (CRm == TLBI_CRm_nROS &&
2845 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2846 		return false;
2847 
2848 	return true;
2849 }
2850 
2851 static bool handle_alle1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2852 			   const struct sys_reg_desc *r)
2853 {
2854 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2855 
2856 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
2857 		kvm_inject_undefined(vcpu);
2858 		return false;
2859 	}
2860 
2861 	write_lock(&vcpu->kvm->mmu_lock);
2862 
2863 	/*
2864 	 * Drop all shadow S2s, resulting in S1/S2 TLBIs for each of the
2865 	 * corresponding VMIDs.
2866 	 */
2867 	kvm_nested_s2_unmap(vcpu->kvm);
2868 
2869 	write_unlock(&vcpu->kvm->mmu_lock);
2870 
2871 	return true;
2872 }
2873 
2874 static bool kvm_supported_tlbi_ipas2_op(struct kvm_vcpu *vpcu, u32 instr)
2875 {
2876 	struct kvm *kvm = vpcu->kvm;
2877 	u8 CRm = sys_reg_CRm(instr);
2878 	u8 Op2 = sys_reg_Op2(instr);
2879 
2880 	if (sys_reg_CRn(instr) == TLBI_CRn_nXS &&
2881 	    !kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP))
2882 		return false;
2883 
2884 	if (CRm == TLBI_CRm_IPAIS && (Op2 == 2 || Op2 == 6) &&
2885 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2886 		return false;
2887 
2888 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 0 || Op2 == 4) &&
2889 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
2890 		return false;
2891 
2892 	if (CRm == TLBI_CRm_IPAONS && (Op2 == 3 || Op2 == 7) &&
2893 	    !kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
2894 		return false;
2895 
2896 	return true;
2897 }
2898 
2899 /* Only defined here as this is an internal "abstraction" */
2900 union tlbi_info {
2901 	struct {
2902 		u64	start;
2903 		u64	size;
2904 	} range;
2905 
2906 	struct {
2907 		u64	addr;
2908 	} ipa;
2909 
2910 	struct {
2911 		u64	addr;
2912 		u32	encoding;
2913 	} va;
2914 };
2915 
2916 static void s2_mmu_unmap_range(struct kvm_s2_mmu *mmu,
2917 			       const union tlbi_info *info)
2918 {
2919 	kvm_stage2_unmap_range(mmu, info->range.start, info->range.size);
2920 }
2921 
2922 static bool handle_vmalls12e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2923 				const struct sys_reg_desc *r)
2924 {
2925 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2926 	u64 limit, vttbr;
2927 
2928 	if (!kvm_supported_tlbi_s12_op(vcpu, sys_encoding)) {
2929 		kvm_inject_undefined(vcpu);
2930 		return false;
2931 	}
2932 
2933 	vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
2934 	limit = BIT_ULL(kvm_get_pa_bits(vcpu->kvm));
2935 
2936 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
2937 				   &(union tlbi_info) {
2938 					   .range = {
2939 						   .start = 0,
2940 						   .size = limit,
2941 					   },
2942 				   },
2943 				   s2_mmu_unmap_range);
2944 
2945 	return true;
2946 }
2947 
2948 static bool handle_ripas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
2949 			      const struct sys_reg_desc *r)
2950 {
2951 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
2952 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
2953 	u64 base, range, tg, num, scale;
2954 	int shift;
2955 
2956 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
2957 		kvm_inject_undefined(vcpu);
2958 		return false;
2959 	}
2960 
2961 	/*
2962 	 * Because the shadow S2 structure doesn't necessarily reflect that
2963 	 * of the guest's S2 (different base granule size, for example), we
2964 	 * decide to ignore TTL and only use the described range.
2965 	 */
2966 	tg	= FIELD_GET(GENMASK(47, 46), p->regval);
2967 	scale	= FIELD_GET(GENMASK(45, 44), p->regval);
2968 	num	= FIELD_GET(GENMASK(43, 39), p->regval);
2969 	base	= p->regval & GENMASK(36, 0);
2970 
2971 	switch(tg) {
2972 	case 1:
2973 		shift = 12;
2974 		break;
2975 	case 2:
2976 		shift = 14;
2977 		break;
2978 	case 3:
2979 	default:		/* IMPDEF: handle tg==0 as 64k */
2980 		shift = 16;
2981 		break;
2982 	}
2983 
2984 	base <<= shift;
2985 	range = __TLBI_RANGE_PAGES(num, scale) << shift;
2986 
2987 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
2988 				   &(union tlbi_info) {
2989 					   .range = {
2990 						   .start = base,
2991 						   .size = range,
2992 					   },
2993 				   },
2994 				   s2_mmu_unmap_range);
2995 
2996 	return true;
2997 }
2998 
2999 static void s2_mmu_unmap_ipa(struct kvm_s2_mmu *mmu,
3000 			     const union tlbi_info *info)
3001 {
3002 	unsigned long max_size;
3003 	u64 base_addr;
3004 
3005 	/*
3006 	 * We drop a number of things from the supplied value:
3007 	 *
3008 	 * - NS bit: we're non-secure only.
3009 	 *
3010 	 * - IPA[51:48]: We don't support 52bit IPA just yet...
3011 	 *
3012 	 * And of course, adjust the IPA to be on an actual address.
3013 	 */
3014 	base_addr = (info->ipa.addr & GENMASK_ULL(35, 0)) << 12;
3015 	max_size = compute_tlb_inval_range(mmu, info->ipa.addr);
3016 	base_addr &= ~(max_size - 1);
3017 
3018 	kvm_stage2_unmap_range(mmu, base_addr, max_size);
3019 }
3020 
3021 static bool handle_ipas2e1is(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3022 			     const struct sys_reg_desc *r)
3023 {
3024 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3025 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3026 
3027 	if (!kvm_supported_tlbi_ipas2_op(vcpu, sys_encoding)) {
3028 		kvm_inject_undefined(vcpu);
3029 		return false;
3030 	}
3031 
3032 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3033 				   &(union tlbi_info) {
3034 					   .ipa = {
3035 						   .addr = p->regval,
3036 					   },
3037 				   },
3038 				   s2_mmu_unmap_ipa);
3039 
3040 	return true;
3041 }
3042 
3043 static void s2_mmu_tlbi_s1e1(struct kvm_s2_mmu *mmu,
3044 			     const union tlbi_info *info)
3045 {
3046 	WARN_ON(__kvm_tlbi_s1e2(mmu, info->va.addr, info->va.encoding));
3047 }
3048 
3049 static bool handle_tlbi_el1(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
3050 			    const struct sys_reg_desc *r)
3051 {
3052 	u32 sys_encoding = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
3053 	u64 vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2);
3054 
3055 	/*
3056 	 * If we're here, this is because we've trapped on a EL1 TLBI
3057 	 * instruction that affects the EL1 translation regime while
3058 	 * we're running in a context that doesn't allow us to let the
3059 	 * HW do its thing (aka vEL2):
3060 	 *
3061 	 * - HCR_EL2.E2H == 0 : a non-VHE guest
3062 	 * - HCR_EL2.{E2H,TGE} == { 1, 0 } : a VHE guest in guest mode
3063 	 *
3064 	 * We don't expect these helpers to ever be called when running
3065 	 * in a vEL1 context.
3066 	 */
3067 
3068 	WARN_ON(!vcpu_is_el2(vcpu));
3069 
3070 	if (!kvm_supported_tlbi_s1e1_op(vcpu, sys_encoding)) {
3071 		kvm_inject_undefined(vcpu);
3072 		return false;
3073 	}
3074 
3075 	kvm_s2_mmu_iterate_by_vmid(vcpu->kvm, get_vmid(vttbr),
3076 				   &(union tlbi_info) {
3077 					   .va = {
3078 						   .addr = p->regval,
3079 						   .encoding = sys_encoding,
3080 					   },
3081 				   },
3082 				   s2_mmu_tlbi_s1e1);
3083 
3084 	return true;
3085 }
3086 
3087 #define SYS_INSN(insn, access_fn)					\
3088 	{								\
3089 		SYS_DESC(OP_##insn),					\
3090 		.access = (access_fn),					\
3091 	}
3092 
3093 static struct sys_reg_desc sys_insn_descs[] = {
3094 	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
3095 	{ SYS_DESC(SYS_DC_IGSW), access_dcgsw },
3096 	{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
3097 	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
3098 	{ SYS_DESC(SYS_DC_CGSW), access_dcgsw },
3099 	{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
3100 	{ SYS_DESC(SYS_DC_CISW), access_dcsw },
3101 	{ SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
3102 	{ SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
3103 
3104 	SYS_INSN(TLBI_VMALLE1OS, handle_tlbi_el1),
3105 	SYS_INSN(TLBI_VAE1OS, handle_tlbi_el1),
3106 	SYS_INSN(TLBI_ASIDE1OS, handle_tlbi_el1),
3107 	SYS_INSN(TLBI_VAAE1OS, handle_tlbi_el1),
3108 	SYS_INSN(TLBI_VALE1OS, handle_tlbi_el1),
3109 	SYS_INSN(TLBI_VAALE1OS, handle_tlbi_el1),
3110 
3111 	SYS_INSN(TLBI_RVAE1IS, handle_tlbi_el1),
3112 	SYS_INSN(TLBI_RVAAE1IS, handle_tlbi_el1),
3113 	SYS_INSN(TLBI_RVALE1IS, handle_tlbi_el1),
3114 	SYS_INSN(TLBI_RVAALE1IS, handle_tlbi_el1),
3115 
3116 	SYS_INSN(TLBI_VMALLE1IS, handle_tlbi_el1),
3117 	SYS_INSN(TLBI_VAE1IS, handle_tlbi_el1),
3118 	SYS_INSN(TLBI_ASIDE1IS, handle_tlbi_el1),
3119 	SYS_INSN(TLBI_VAAE1IS, handle_tlbi_el1),
3120 	SYS_INSN(TLBI_VALE1IS, handle_tlbi_el1),
3121 	SYS_INSN(TLBI_VAALE1IS, handle_tlbi_el1),
3122 
3123 	SYS_INSN(TLBI_RVAE1OS, handle_tlbi_el1),
3124 	SYS_INSN(TLBI_RVAAE1OS, handle_tlbi_el1),
3125 	SYS_INSN(TLBI_RVALE1OS, handle_tlbi_el1),
3126 	SYS_INSN(TLBI_RVAALE1OS, handle_tlbi_el1),
3127 
3128 	SYS_INSN(TLBI_RVAE1, handle_tlbi_el1),
3129 	SYS_INSN(TLBI_RVAAE1, handle_tlbi_el1),
3130 	SYS_INSN(TLBI_RVALE1, handle_tlbi_el1),
3131 	SYS_INSN(TLBI_RVAALE1, handle_tlbi_el1),
3132 
3133 	SYS_INSN(TLBI_VMALLE1, handle_tlbi_el1),
3134 	SYS_INSN(TLBI_VAE1, handle_tlbi_el1),
3135 	SYS_INSN(TLBI_ASIDE1, handle_tlbi_el1),
3136 	SYS_INSN(TLBI_VAAE1, handle_tlbi_el1),
3137 	SYS_INSN(TLBI_VALE1, handle_tlbi_el1),
3138 	SYS_INSN(TLBI_VAALE1, handle_tlbi_el1),
3139 
3140 	SYS_INSN(TLBI_VMALLE1OSNXS, handle_tlbi_el1),
3141 	SYS_INSN(TLBI_VAE1OSNXS, handle_tlbi_el1),
3142 	SYS_INSN(TLBI_ASIDE1OSNXS, handle_tlbi_el1),
3143 	SYS_INSN(TLBI_VAAE1OSNXS, handle_tlbi_el1),
3144 	SYS_INSN(TLBI_VALE1OSNXS, handle_tlbi_el1),
3145 	SYS_INSN(TLBI_VAALE1OSNXS, handle_tlbi_el1),
3146 
3147 	SYS_INSN(TLBI_RVAE1ISNXS, handle_tlbi_el1),
3148 	SYS_INSN(TLBI_RVAAE1ISNXS, handle_tlbi_el1),
3149 	SYS_INSN(TLBI_RVALE1ISNXS, handle_tlbi_el1),
3150 	SYS_INSN(TLBI_RVAALE1ISNXS, handle_tlbi_el1),
3151 
3152 	SYS_INSN(TLBI_VMALLE1ISNXS, handle_tlbi_el1),
3153 	SYS_INSN(TLBI_VAE1ISNXS, handle_tlbi_el1),
3154 	SYS_INSN(TLBI_ASIDE1ISNXS, handle_tlbi_el1),
3155 	SYS_INSN(TLBI_VAAE1ISNXS, handle_tlbi_el1),
3156 	SYS_INSN(TLBI_VALE1ISNXS, handle_tlbi_el1),
3157 	SYS_INSN(TLBI_VAALE1ISNXS, handle_tlbi_el1),
3158 
3159 	SYS_INSN(TLBI_RVAE1OSNXS, handle_tlbi_el1),
3160 	SYS_INSN(TLBI_RVAAE1OSNXS, handle_tlbi_el1),
3161 	SYS_INSN(TLBI_RVALE1OSNXS, handle_tlbi_el1),
3162 	SYS_INSN(TLBI_RVAALE1OSNXS, handle_tlbi_el1),
3163 
3164 	SYS_INSN(TLBI_RVAE1NXS, handle_tlbi_el1),
3165 	SYS_INSN(TLBI_RVAAE1NXS, handle_tlbi_el1),
3166 	SYS_INSN(TLBI_RVALE1NXS, handle_tlbi_el1),
3167 	SYS_INSN(TLBI_RVAALE1NXS, handle_tlbi_el1),
3168 
3169 	SYS_INSN(TLBI_VMALLE1NXS, handle_tlbi_el1),
3170 	SYS_INSN(TLBI_VAE1NXS, handle_tlbi_el1),
3171 	SYS_INSN(TLBI_ASIDE1NXS, handle_tlbi_el1),
3172 	SYS_INSN(TLBI_VAAE1NXS, handle_tlbi_el1),
3173 	SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
3174 	SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
3175 
3176 	SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
3177 	SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
3178 	SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
3179 	SYS_INSN(TLBI_RIPAS2LE1IS, handle_ripas2e1is),
3180 
3181 	SYS_INSN(TLBI_ALLE2OS, trap_undef),
3182 	SYS_INSN(TLBI_VAE2OS, trap_undef),
3183 	SYS_INSN(TLBI_ALLE1OS, handle_alle1is),
3184 	SYS_INSN(TLBI_VALE2OS, trap_undef),
3185 	SYS_INSN(TLBI_VMALLS12E1OS, handle_vmalls12e1is),
3186 
3187 	SYS_INSN(TLBI_RVAE2IS, trap_undef),
3188 	SYS_INSN(TLBI_RVALE2IS, trap_undef),
3189 
3190 	SYS_INSN(TLBI_ALLE1IS, handle_alle1is),
3191 	SYS_INSN(TLBI_VMALLS12E1IS, handle_vmalls12e1is),
3192 	SYS_INSN(TLBI_IPAS2E1OS, handle_ipas2e1is),
3193 	SYS_INSN(TLBI_IPAS2E1, handle_ipas2e1is),
3194 	SYS_INSN(TLBI_RIPAS2E1, handle_ripas2e1is),
3195 	SYS_INSN(TLBI_RIPAS2E1OS, handle_ripas2e1is),
3196 	SYS_INSN(TLBI_IPAS2LE1OS, handle_ipas2e1is),
3197 	SYS_INSN(TLBI_IPAS2LE1, handle_ipas2e1is),
3198 	SYS_INSN(TLBI_RIPAS2LE1, handle_ripas2e1is),
3199 	SYS_INSN(TLBI_RIPAS2LE1OS, handle_ripas2e1is),
3200 	SYS_INSN(TLBI_RVAE2OS, trap_undef),
3201 	SYS_INSN(TLBI_RVALE2OS, trap_undef),
3202 	SYS_INSN(TLBI_RVAE2, trap_undef),
3203 	SYS_INSN(TLBI_RVALE2, trap_undef),
3204 	SYS_INSN(TLBI_ALLE1, handle_alle1is),
3205 	SYS_INSN(TLBI_VMALLS12E1, handle_vmalls12e1is),
3206 
3207 	SYS_INSN(TLBI_IPAS2E1ISNXS, handle_ipas2e1is),
3208 	SYS_INSN(TLBI_RIPAS2E1ISNXS, handle_ripas2e1is),
3209 	SYS_INSN(TLBI_IPAS2LE1ISNXS, handle_ipas2e1is),
3210 	SYS_INSN(TLBI_RIPAS2LE1ISNXS, handle_ripas2e1is),
3211 
3212 	SYS_INSN(TLBI_ALLE2OSNXS, trap_undef),
3213 	SYS_INSN(TLBI_VAE2OSNXS, trap_undef),
3214 	SYS_INSN(TLBI_ALLE1OSNXS, handle_alle1is),
3215 	SYS_INSN(TLBI_VALE2OSNXS, trap_undef),
3216 	SYS_INSN(TLBI_VMALLS12E1OSNXS, handle_vmalls12e1is),
3217 
3218 	SYS_INSN(TLBI_RVAE2ISNXS, trap_undef),
3219 	SYS_INSN(TLBI_RVALE2ISNXS, trap_undef),
3220 	SYS_INSN(TLBI_ALLE2ISNXS, trap_undef),
3221 	SYS_INSN(TLBI_VAE2ISNXS, trap_undef),
3222 
3223 	SYS_INSN(TLBI_ALLE1ISNXS, handle_alle1is),
3224 	SYS_INSN(TLBI_VALE2ISNXS, trap_undef),
3225 	SYS_INSN(TLBI_VMALLS12E1ISNXS, handle_vmalls12e1is),
3226 	SYS_INSN(TLBI_IPAS2E1OSNXS, handle_ipas2e1is),
3227 	SYS_INSN(TLBI_IPAS2E1NXS, handle_ipas2e1is),
3228 	SYS_INSN(TLBI_RIPAS2E1NXS, handle_ripas2e1is),
3229 	SYS_INSN(TLBI_RIPAS2E1OSNXS, handle_ripas2e1is),
3230 	SYS_INSN(TLBI_IPAS2LE1OSNXS, handle_ipas2e1is),
3231 	SYS_INSN(TLBI_IPAS2LE1NXS, handle_ipas2e1is),
3232 	SYS_INSN(TLBI_RIPAS2LE1NXS, handle_ripas2e1is),
3233 	SYS_INSN(TLBI_RIPAS2LE1OSNXS, handle_ripas2e1is),
3234 	SYS_INSN(TLBI_RVAE2OSNXS, trap_undef),
3235 	SYS_INSN(TLBI_RVALE2OSNXS, trap_undef),
3236 	SYS_INSN(TLBI_RVAE2NXS, trap_undef),
3237 	SYS_INSN(TLBI_RVALE2NXS, trap_undef),
3238 	SYS_INSN(TLBI_ALLE2NXS, trap_undef),
3239 	SYS_INSN(TLBI_VAE2NXS, trap_undef),
3240 	SYS_INSN(TLBI_ALLE1NXS, handle_alle1is),
3241 	SYS_INSN(TLBI_VALE2NXS, trap_undef),
3242 	SYS_INSN(TLBI_VMALLS12E1NXS, handle_vmalls12e1is),
3243 };
3244 
3245 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
3246 			struct sys_reg_params *p,
3247 			const struct sys_reg_desc *r)
3248 {
3249 	if (p->is_write) {
3250 		return ignore_write(vcpu, p);
3251 	} else {
3252 		u64 dfr = kvm_read_vm_id_reg(vcpu->kvm, SYS_ID_AA64DFR0_EL1);
3253 		u32 el3 = kvm_has_feat(vcpu->kvm, ID_AA64PFR0_EL1, EL3, IMP);
3254 
3255 		p->regval = ((SYS_FIELD_GET(ID_AA64DFR0_EL1, WRPs, dfr) << 28) |
3256 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, BRPs, dfr) << 24) |
3257 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, CTX_CMPs, dfr) << 20) |
3258 			     (SYS_FIELD_GET(ID_AA64DFR0_EL1, DebugVer, dfr) << 16) |
3259 			     (1 << 15) | (el3 << 14) | (el3 << 12));
3260 		return true;
3261 	}
3262 }
3263 
3264 /*
3265  * AArch32 debug register mappings
3266  *
3267  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
3268  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
3269  *
3270  * None of the other registers share their location, so treat them as
3271  * if they were 64bit.
3272  */
3273 #define DBG_BCR_BVR_WCR_WVR(n)						      \
3274 	/* DBGBVRn */							      \
3275 	{ AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
3276 	/* DBGBCRn */							      \
3277 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	      \
3278 	/* DBGWVRn */							      \
3279 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	      \
3280 	/* DBGWCRn */							      \
3281 	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
3282 
3283 #define DBGBXVR(n)							      \
3284 	{ AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
3285 
3286 /*
3287  * Trapped cp14 registers. We generally ignore most of the external
3288  * debug, on the principle that they don't really make sense to a
3289  * guest. Revisit this one day, would this principle change.
3290  */
3291 static const struct sys_reg_desc cp14_regs[] = {
3292 	/* DBGDIDR */
3293 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
3294 	/* DBGDTRRXext */
3295 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
3296 
3297 	DBG_BCR_BVR_WCR_WVR(0),
3298 	/* DBGDSCRint */
3299 	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
3300 	DBG_BCR_BVR_WCR_WVR(1),
3301 	/* DBGDCCINT */
3302 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
3303 	/* DBGDSCRext */
3304 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
3305 	DBG_BCR_BVR_WCR_WVR(2),
3306 	/* DBGDTR[RT]Xint */
3307 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
3308 	/* DBGDTR[RT]Xext */
3309 	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
3310 	DBG_BCR_BVR_WCR_WVR(3),
3311 	DBG_BCR_BVR_WCR_WVR(4),
3312 	DBG_BCR_BVR_WCR_WVR(5),
3313 	/* DBGWFAR */
3314 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
3315 	/* DBGOSECCR */
3316 	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
3317 	DBG_BCR_BVR_WCR_WVR(6),
3318 	/* DBGVCR */
3319 	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
3320 	DBG_BCR_BVR_WCR_WVR(7),
3321 	DBG_BCR_BVR_WCR_WVR(8),
3322 	DBG_BCR_BVR_WCR_WVR(9),
3323 	DBG_BCR_BVR_WCR_WVR(10),
3324 	DBG_BCR_BVR_WCR_WVR(11),
3325 	DBG_BCR_BVR_WCR_WVR(12),
3326 	DBG_BCR_BVR_WCR_WVR(13),
3327 	DBG_BCR_BVR_WCR_WVR(14),
3328 	DBG_BCR_BVR_WCR_WVR(15),
3329 
3330 	/* DBGDRAR (32bit) */
3331 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
3332 
3333 	DBGBXVR(0),
3334 	/* DBGOSLAR */
3335 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
3336 	DBGBXVR(1),
3337 	/* DBGOSLSR */
3338 	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
3339 	DBGBXVR(2),
3340 	DBGBXVR(3),
3341 	/* DBGOSDLR */
3342 	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
3343 	DBGBXVR(4),
3344 	/* DBGPRCR */
3345 	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
3346 	DBGBXVR(5),
3347 	DBGBXVR(6),
3348 	DBGBXVR(7),
3349 	DBGBXVR(8),
3350 	DBGBXVR(9),
3351 	DBGBXVR(10),
3352 	DBGBXVR(11),
3353 	DBGBXVR(12),
3354 	DBGBXVR(13),
3355 	DBGBXVR(14),
3356 	DBGBXVR(15),
3357 
3358 	/* DBGDSAR (32bit) */
3359 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
3360 
3361 	/* DBGDEVID2 */
3362 	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
3363 	/* DBGDEVID1 */
3364 	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
3365 	/* DBGDEVID */
3366 	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
3367 	/* DBGCLAIMSET */
3368 	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
3369 	/* DBGCLAIMCLR */
3370 	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
3371 	/* DBGAUTHSTATUS */
3372 	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
3373 };
3374 
3375 /* Trapped cp14 64bit registers */
3376 static const struct sys_reg_desc cp14_64_regs[] = {
3377 	/* DBGDRAR (64bit) */
3378 	{ Op1( 0), CRm( 1), .access = trap_raz_wi },
3379 
3380 	/* DBGDSAR (64bit) */
3381 	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
3382 };
3383 
3384 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2)			\
3385 	AA32(_map),							\
3386 	Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2),			\
3387 	.visibility = pmu_visibility
3388 
3389 /* Macro to expand the PMEVCNTRn register */
3390 #define PMU_PMEVCNTR(n)							\
3391 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3392 	  (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3393 	  .access = access_pmu_evcntr }
3394 
3395 /* Macro to expand the PMEVTYPERn register */
3396 #define PMU_PMEVTYPER(n)						\
3397 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0b1110,				\
3398 	  (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)),			\
3399 	  .access = access_pmu_evtyper }
3400 /*
3401  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
3402  * depending on the way they are accessed (as a 32bit or a 64bit
3403  * register).
3404  */
3405 static const struct sys_reg_desc cp15_regs[] = {
3406 	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
3407 	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
3408 	/* ACTLR */
3409 	{ AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
3410 	/* ACTLR2 */
3411 	{ AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
3412 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3413 	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
3414 	/* TTBCR */
3415 	{ AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
3416 	/* TTBCR2 */
3417 	{ AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
3418 	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
3419 	/* DFSR */
3420 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
3421 	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
3422 	/* ADFSR */
3423 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
3424 	/* AIFSR */
3425 	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
3426 	/* DFAR */
3427 	{ AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
3428 	/* IFAR */
3429 	{ AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
3430 
3431 	/*
3432 	 * DC{C,I,CI}SW operations:
3433 	 */
3434 	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
3435 	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
3436 	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
3437 
3438 	/* PMU */
3439 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
3440 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
3441 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
3442 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
3443 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
3444 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
3445 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 6), .access = access_pmceid },
3446 	{ CP15_PMU_SYS_REG(LO,     0, 9, 12, 7), .access = access_pmceid },
3447 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
3448 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
3449 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
3450 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
3451 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
3452 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
3453 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
3454 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 4), .access = access_pmceid },
3455 	{ CP15_PMU_SYS_REG(HI,     0, 9, 14, 5), .access = access_pmceid },
3456 	/* PMMIR */
3457 	{ CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
3458 
3459 	/* PRRR/MAIR0 */
3460 	{ AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
3461 	/* NMRR/MAIR1 */
3462 	{ AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
3463 	/* AMAIR0 */
3464 	{ AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
3465 	/* AMAIR1 */
3466 	{ AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
3467 
3468 	/* ICC_SRE */
3469 	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
3470 
3471 	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
3472 
3473 	/* Arch Tmers */
3474 	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
3475 	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
3476 
3477 	/* PMEVCNTRn */
3478 	PMU_PMEVCNTR(0),
3479 	PMU_PMEVCNTR(1),
3480 	PMU_PMEVCNTR(2),
3481 	PMU_PMEVCNTR(3),
3482 	PMU_PMEVCNTR(4),
3483 	PMU_PMEVCNTR(5),
3484 	PMU_PMEVCNTR(6),
3485 	PMU_PMEVCNTR(7),
3486 	PMU_PMEVCNTR(8),
3487 	PMU_PMEVCNTR(9),
3488 	PMU_PMEVCNTR(10),
3489 	PMU_PMEVCNTR(11),
3490 	PMU_PMEVCNTR(12),
3491 	PMU_PMEVCNTR(13),
3492 	PMU_PMEVCNTR(14),
3493 	PMU_PMEVCNTR(15),
3494 	PMU_PMEVCNTR(16),
3495 	PMU_PMEVCNTR(17),
3496 	PMU_PMEVCNTR(18),
3497 	PMU_PMEVCNTR(19),
3498 	PMU_PMEVCNTR(20),
3499 	PMU_PMEVCNTR(21),
3500 	PMU_PMEVCNTR(22),
3501 	PMU_PMEVCNTR(23),
3502 	PMU_PMEVCNTR(24),
3503 	PMU_PMEVCNTR(25),
3504 	PMU_PMEVCNTR(26),
3505 	PMU_PMEVCNTR(27),
3506 	PMU_PMEVCNTR(28),
3507 	PMU_PMEVCNTR(29),
3508 	PMU_PMEVCNTR(30),
3509 	/* PMEVTYPERn */
3510 	PMU_PMEVTYPER(0),
3511 	PMU_PMEVTYPER(1),
3512 	PMU_PMEVTYPER(2),
3513 	PMU_PMEVTYPER(3),
3514 	PMU_PMEVTYPER(4),
3515 	PMU_PMEVTYPER(5),
3516 	PMU_PMEVTYPER(6),
3517 	PMU_PMEVTYPER(7),
3518 	PMU_PMEVTYPER(8),
3519 	PMU_PMEVTYPER(9),
3520 	PMU_PMEVTYPER(10),
3521 	PMU_PMEVTYPER(11),
3522 	PMU_PMEVTYPER(12),
3523 	PMU_PMEVTYPER(13),
3524 	PMU_PMEVTYPER(14),
3525 	PMU_PMEVTYPER(15),
3526 	PMU_PMEVTYPER(16),
3527 	PMU_PMEVTYPER(17),
3528 	PMU_PMEVTYPER(18),
3529 	PMU_PMEVTYPER(19),
3530 	PMU_PMEVTYPER(20),
3531 	PMU_PMEVTYPER(21),
3532 	PMU_PMEVTYPER(22),
3533 	PMU_PMEVTYPER(23),
3534 	PMU_PMEVTYPER(24),
3535 	PMU_PMEVTYPER(25),
3536 	PMU_PMEVTYPER(26),
3537 	PMU_PMEVTYPER(27),
3538 	PMU_PMEVTYPER(28),
3539 	PMU_PMEVTYPER(29),
3540 	PMU_PMEVTYPER(30),
3541 	/* PMCCFILTR */
3542 	{ CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
3543 
3544 	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
3545 	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
3546 
3547 	/* CCSIDR2 */
3548 	{ Op1(1), CRn( 0), CRm( 0),  Op2(2), undef_access },
3549 
3550 	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
3551 };
3552 
3553 static const struct sys_reg_desc cp15_64_regs[] = {
3554 	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
3555 	{ CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
3556 	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
3557 	{ SYS_DESC(SYS_AARCH32_CNTPCT),	      access_arch_timer },
3558 	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
3559 	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
3560 	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
3561 	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
3562 	{ SYS_DESC(SYS_AARCH32_CNTPCTSS),     access_arch_timer },
3563 };
3564 
3565 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
3566 			       bool is_32)
3567 {
3568 	unsigned int i;
3569 
3570 	for (i = 0; i < n; i++) {
3571 		if (!is_32 && table[i].reg && !table[i].reset) {
3572 			kvm_err("sys_reg table %pS entry %d (%s) lacks reset\n",
3573 				&table[i], i, table[i].name);
3574 			return false;
3575 		}
3576 
3577 		if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
3578 			kvm_err("sys_reg table %pS entry %d (%s -> %s) out of order\n",
3579 				&table[i], i, table[i - 1].name, table[i].name);
3580 			return false;
3581 		}
3582 	}
3583 
3584 	return true;
3585 }
3586 
3587 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
3588 {
3589 	kvm_inject_undefined(vcpu);
3590 	return 1;
3591 }
3592 
3593 static void perform_access(struct kvm_vcpu *vcpu,
3594 			   struct sys_reg_params *params,
3595 			   const struct sys_reg_desc *r)
3596 {
3597 	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
3598 
3599 	/* Check for regs disabled by runtime config */
3600 	if (sysreg_hidden(vcpu, r)) {
3601 		kvm_inject_undefined(vcpu);
3602 		return;
3603 	}
3604 
3605 	/*
3606 	 * Not having an accessor means that we have configured a trap
3607 	 * that we don't know how to handle. This certainly qualifies
3608 	 * as a gross bug that should be fixed right away.
3609 	 */
3610 	BUG_ON(!r->access);
3611 
3612 	/* Skip instruction if instructed so */
3613 	if (likely(r->access(vcpu, params, r)))
3614 		kvm_incr_pc(vcpu);
3615 }
3616 
3617 /*
3618  * emulate_cp --  tries to match a sys_reg access in a handling table, and
3619  *                call the corresponding trap handler.
3620  *
3621  * @params: pointer to the descriptor of the access
3622  * @table: array of trap descriptors
3623  * @num: size of the trap descriptor array
3624  *
3625  * Return true if the access has been handled, false if not.
3626  */
3627 static bool emulate_cp(struct kvm_vcpu *vcpu,
3628 		       struct sys_reg_params *params,
3629 		       const struct sys_reg_desc *table,
3630 		       size_t num)
3631 {
3632 	const struct sys_reg_desc *r;
3633 
3634 	if (!table)
3635 		return false;	/* Not handled */
3636 
3637 	r = find_reg(params, table, num);
3638 
3639 	if (r) {
3640 		perform_access(vcpu, params, r);
3641 		return true;
3642 	}
3643 
3644 	/* Not handled */
3645 	return false;
3646 }
3647 
3648 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
3649 				struct sys_reg_params *params)
3650 {
3651 	u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
3652 	int cp = -1;
3653 
3654 	switch (esr_ec) {
3655 	case ESR_ELx_EC_CP15_32:
3656 	case ESR_ELx_EC_CP15_64:
3657 		cp = 15;
3658 		break;
3659 	case ESR_ELx_EC_CP14_MR:
3660 	case ESR_ELx_EC_CP14_64:
3661 		cp = 14;
3662 		break;
3663 	default:
3664 		WARN_ON(1);
3665 	}
3666 
3667 	print_sys_reg_msg(params,
3668 			  "Unsupported guest CP%d access at: %08lx [%08lx]\n",
3669 			  cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3670 	kvm_inject_undefined(vcpu);
3671 }
3672 
3673 /**
3674  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
3675  * @vcpu: The VCPU pointer
3676  * @global: &struct sys_reg_desc
3677  * @nr_global: size of the @global array
3678  */
3679 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
3680 			    const struct sys_reg_desc *global,
3681 			    size_t nr_global)
3682 {
3683 	struct sys_reg_params params;
3684 	u64 esr = kvm_vcpu_get_esr(vcpu);
3685 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3686 	int Rt2 = (esr >> 10) & 0x1f;
3687 
3688 	params.CRm = (esr >> 1) & 0xf;
3689 	params.is_write = ((esr & 1) == 0);
3690 
3691 	params.Op0 = 0;
3692 	params.Op1 = (esr >> 16) & 0xf;
3693 	params.Op2 = 0;
3694 	params.CRn = 0;
3695 
3696 	/*
3697 	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
3698 	 * backends between AArch32 and AArch64, we get away with it.
3699 	 */
3700 	if (params.is_write) {
3701 		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
3702 		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
3703 	}
3704 
3705 	/*
3706 	 * If the table contains a handler, handle the
3707 	 * potential register operation in the case of a read and return
3708 	 * with success.
3709 	 */
3710 	if (emulate_cp(vcpu, &params, global, nr_global)) {
3711 		/* Split up the value between registers for the read side */
3712 		if (!params.is_write) {
3713 			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
3714 			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
3715 		}
3716 
3717 		return 1;
3718 	}
3719 
3720 	unhandled_cp_access(vcpu, &params);
3721 	return 1;
3722 }
3723 
3724 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
3725 
3726 /*
3727  * The CP10 ID registers are architecturally mapped to AArch64 feature
3728  * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
3729  * from AArch32.
3730  */
3731 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
3732 {
3733 	u8 reg_id = (esr >> 10) & 0xf;
3734 	bool valid;
3735 
3736 	params->is_write = ((esr & 1) == 0);
3737 	params->Op0 = 3;
3738 	params->Op1 = 0;
3739 	params->CRn = 0;
3740 	params->CRm = 3;
3741 
3742 	/* CP10 ID registers are read-only */
3743 	valid = !params->is_write;
3744 
3745 	switch (reg_id) {
3746 	/* MVFR0 */
3747 	case 0b0111:
3748 		params->Op2 = 0;
3749 		break;
3750 	/* MVFR1 */
3751 	case 0b0110:
3752 		params->Op2 = 1;
3753 		break;
3754 	/* MVFR2 */
3755 	case 0b0101:
3756 		params->Op2 = 2;
3757 		break;
3758 	default:
3759 		valid = false;
3760 	}
3761 
3762 	if (valid)
3763 		return true;
3764 
3765 	kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
3766 		      params->is_write ? "write" : "read", reg_id);
3767 	return false;
3768 }
3769 
3770 /**
3771  * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
3772  *			  VFP Register' from AArch32.
3773  * @vcpu: The vCPU pointer
3774  *
3775  * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
3776  * Work out the correct AArch64 system register encoding and reroute to the
3777  * AArch64 system register emulation.
3778  */
3779 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
3780 {
3781 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3782 	u64 esr = kvm_vcpu_get_esr(vcpu);
3783 	struct sys_reg_params params;
3784 
3785 	/* UNDEF on any unhandled register access */
3786 	if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
3787 		kvm_inject_undefined(vcpu);
3788 		return 1;
3789 	}
3790 
3791 	if (emulate_sys_reg(vcpu, &params))
3792 		vcpu_set_reg(vcpu, Rt, params.regval);
3793 
3794 	return 1;
3795 }
3796 
3797 /**
3798  * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
3799  *			       CRn=0, which corresponds to the AArch32 feature
3800  *			       registers.
3801  * @vcpu: the vCPU pointer
3802  * @params: the system register access parameters.
3803  *
3804  * Our cp15 system register tables do not enumerate the AArch32 feature
3805  * registers. Conveniently, our AArch64 table does, and the AArch32 system
3806  * register encoding can be trivially remapped into the AArch64 for the feature
3807  * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
3808  *
3809  * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
3810  * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
3811  * range are either UNKNOWN or RES0. Rerouting remains architectural as we
3812  * treat undefined registers in this range as RAZ.
3813  */
3814 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3815 				   struct sys_reg_params *params)
3816 {
3817 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
3818 
3819 	/* Treat impossible writes to RO registers as UNDEFINED */
3820 	if (params->is_write) {
3821 		unhandled_cp_access(vcpu, params);
3822 		return 1;
3823 	}
3824 
3825 	params->Op0 = 3;
3826 
3827 	/*
3828 	 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3829 	 * Avoid conflicting with future expansion of AArch64 feature registers
3830 	 * and simply treat them as RAZ here.
3831 	 */
3832 	if (params->CRm > 3)
3833 		params->regval = 0;
3834 	else if (!emulate_sys_reg(vcpu, params))
3835 		return 1;
3836 
3837 	vcpu_set_reg(vcpu, Rt, params->regval);
3838 	return 1;
3839 }
3840 
3841 /**
3842  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3843  * @vcpu: The VCPU pointer
3844  * @params: &struct sys_reg_params
3845  * @global: &struct sys_reg_desc
3846  * @nr_global: size of the @global array
3847  */
3848 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3849 			    struct sys_reg_params *params,
3850 			    const struct sys_reg_desc *global,
3851 			    size_t nr_global)
3852 {
3853 	int Rt  = kvm_vcpu_sys_get_rt(vcpu);
3854 
3855 	params->regval = vcpu_get_reg(vcpu, Rt);
3856 
3857 	if (emulate_cp(vcpu, params, global, nr_global)) {
3858 		if (!params->is_write)
3859 			vcpu_set_reg(vcpu, Rt, params->regval);
3860 		return 1;
3861 	}
3862 
3863 	unhandled_cp_access(vcpu, params);
3864 	return 1;
3865 }
3866 
3867 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3868 {
3869 	return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3870 }
3871 
3872 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3873 {
3874 	struct sys_reg_params params;
3875 
3876 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3877 
3878 	/*
3879 	 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3880 	 * system register table. Registers in the ID range where CRm=0 are
3881 	 * excluded from this scheme as they do not trivially map into AArch64
3882 	 * system register encodings.
3883 	 */
3884 	if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3885 		return kvm_emulate_cp15_id_reg(vcpu, &params);
3886 
3887 	return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3888 }
3889 
3890 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3891 {
3892 	return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3893 }
3894 
3895 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3896 {
3897 	struct sys_reg_params params;
3898 
3899 	params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3900 
3901 	return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3902 }
3903 
3904 /**
3905  * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3906  * @vcpu: The VCPU pointer
3907  * @params: Decoded system register parameters
3908  *
3909  * Return: true if the system register access was successful, false otherwise.
3910  */
3911 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3912 			    struct sys_reg_params *params)
3913 {
3914 	const struct sys_reg_desc *r;
3915 
3916 	r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3917 	if (likely(r)) {
3918 		perform_access(vcpu, params, r);
3919 		return true;
3920 	}
3921 
3922 	print_sys_reg_msg(params,
3923 			  "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3924 			  *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3925 	kvm_inject_undefined(vcpu);
3926 
3927 	return false;
3928 }
3929 
3930 static const struct sys_reg_desc *idregs_debug_find(struct kvm *kvm, u8 pos)
3931 {
3932 	unsigned long i, idreg_idx = 0;
3933 
3934 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3935 		const struct sys_reg_desc *r = &sys_reg_descs[i];
3936 
3937 		if (!is_vm_ftr_id_reg(reg_to_encoding(r)))
3938 			continue;
3939 
3940 		if (idreg_idx == pos)
3941 			return r;
3942 
3943 		idreg_idx++;
3944 	}
3945 
3946 	return NULL;
3947 }
3948 
3949 static void *idregs_debug_start(struct seq_file *s, loff_t *pos)
3950 {
3951 	struct kvm *kvm = s->private;
3952 	u8 *iter;
3953 
3954 	mutex_lock(&kvm->arch.config_lock);
3955 
3956 	iter = &kvm->arch.idreg_debugfs_iter;
3957 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags) &&
3958 	    *iter == (u8)~0) {
3959 		*iter = *pos;
3960 		if (!idregs_debug_find(kvm, *iter))
3961 			iter = NULL;
3962 	} else {
3963 		iter = ERR_PTR(-EBUSY);
3964 	}
3965 
3966 	mutex_unlock(&kvm->arch.config_lock);
3967 
3968 	return iter;
3969 }
3970 
3971 static void *idregs_debug_next(struct seq_file *s, void *v, loff_t *pos)
3972 {
3973 	struct kvm *kvm = s->private;
3974 
3975 	(*pos)++;
3976 
3977 	if (idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter + 1)) {
3978 		kvm->arch.idreg_debugfs_iter++;
3979 
3980 		return &kvm->arch.idreg_debugfs_iter;
3981 	}
3982 
3983 	return NULL;
3984 }
3985 
3986 static void idregs_debug_stop(struct seq_file *s, void *v)
3987 {
3988 	struct kvm *kvm = s->private;
3989 
3990 	if (IS_ERR(v))
3991 		return;
3992 
3993 	mutex_lock(&kvm->arch.config_lock);
3994 
3995 	kvm->arch.idreg_debugfs_iter = ~0;
3996 
3997 	mutex_unlock(&kvm->arch.config_lock);
3998 }
3999 
4000 static int idregs_debug_show(struct seq_file *s, void *v)
4001 {
4002 	const struct sys_reg_desc *desc;
4003 	struct kvm *kvm = s->private;
4004 
4005 	desc = idregs_debug_find(kvm, kvm->arch.idreg_debugfs_iter);
4006 
4007 	if (!desc->name)
4008 		return 0;
4009 
4010 	seq_printf(s, "%20s:\t%016llx\n",
4011 		   desc->name, kvm_read_vm_id_reg(kvm, reg_to_encoding(desc)));
4012 
4013 	return 0;
4014 }
4015 
4016 static const struct seq_operations idregs_debug_sops = {
4017 	.start	= idregs_debug_start,
4018 	.next	= idregs_debug_next,
4019 	.stop	= idregs_debug_stop,
4020 	.show	= idregs_debug_show,
4021 };
4022 
4023 DEFINE_SEQ_ATTRIBUTE(idregs_debug);
4024 
4025 void kvm_sys_regs_create_debugfs(struct kvm *kvm)
4026 {
4027 	kvm->arch.idreg_debugfs_iter = ~0;
4028 
4029 	debugfs_create_file("idregs", 0444, kvm->debugfs_dentry, kvm,
4030 			    &idregs_debug_fops);
4031 }
4032 
4033 static void reset_vm_ftr_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *reg)
4034 {
4035 	u32 id = reg_to_encoding(reg);
4036 	struct kvm *kvm = vcpu->kvm;
4037 
4038 	if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
4039 		return;
4040 
4041 	kvm_set_vm_id_reg(kvm, id, reg->reset(vcpu, reg));
4042 }
4043 
4044 static void reset_vcpu_ftr_id_reg(struct kvm_vcpu *vcpu,
4045 				  const struct sys_reg_desc *reg)
4046 {
4047 	if (kvm_vcpu_initialized(vcpu))
4048 		return;
4049 
4050 	reg->reset(vcpu, reg);
4051 }
4052 
4053 /**
4054  * kvm_reset_sys_regs - sets system registers to reset value
4055  * @vcpu: The VCPU pointer
4056  *
4057  * This function finds the right table above and sets the registers on the
4058  * virtual CPU struct to their architecturally defined reset values.
4059  */
4060 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
4061 {
4062 	struct kvm *kvm = vcpu->kvm;
4063 	unsigned long i;
4064 
4065 	for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4066 		const struct sys_reg_desc *r = &sys_reg_descs[i];
4067 
4068 		if (!r->reset)
4069 			continue;
4070 
4071 		if (is_vm_ftr_id_reg(reg_to_encoding(r)))
4072 			reset_vm_ftr_id_reg(vcpu, r);
4073 		else if (is_vcpu_ftr_id_reg(reg_to_encoding(r)))
4074 			reset_vcpu_ftr_id_reg(vcpu, r);
4075 		else
4076 			r->reset(vcpu, r);
4077 	}
4078 
4079 	set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
4080 }
4081 
4082 /**
4083  * kvm_handle_sys_reg -- handles a system instruction or mrs/msr instruction
4084  *			 trap on a guest execution
4085  * @vcpu: The VCPU pointer
4086  */
4087 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
4088 {
4089 	const struct sys_reg_desc *desc = NULL;
4090 	struct sys_reg_params params;
4091 	unsigned long esr = kvm_vcpu_get_esr(vcpu);
4092 	int Rt = kvm_vcpu_sys_get_rt(vcpu);
4093 	int sr_idx;
4094 
4095 	trace_kvm_handle_sys_reg(esr);
4096 
4097 	if (triage_sysreg_trap(vcpu, &sr_idx))
4098 		return 1;
4099 
4100 	params = esr_sys64_to_params(esr);
4101 	params.regval = vcpu_get_reg(vcpu, Rt);
4102 
4103 	/* System registers have Op0=={2,3}, as per DDI487 J.a C5.1.2 */
4104 	if (params.Op0 == 2 || params.Op0 == 3)
4105 		desc = &sys_reg_descs[sr_idx];
4106 	else
4107 		desc = &sys_insn_descs[sr_idx];
4108 
4109 	perform_access(vcpu, &params, desc);
4110 
4111 	/* Read from system register? */
4112 	if (!params.is_write &&
4113 	    (params.Op0 == 2 || params.Op0 == 3))
4114 		vcpu_set_reg(vcpu, Rt, params.regval);
4115 
4116 	return 1;
4117 }
4118 
4119 /******************************************************************************
4120  * Userspace API
4121  *****************************************************************************/
4122 
4123 static bool index_to_params(u64 id, struct sys_reg_params *params)
4124 {
4125 	switch (id & KVM_REG_SIZE_MASK) {
4126 	case KVM_REG_SIZE_U64:
4127 		/* Any unused index bits means it's not valid. */
4128 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
4129 			      | KVM_REG_ARM_COPROC_MASK
4130 			      | KVM_REG_ARM64_SYSREG_OP0_MASK
4131 			      | KVM_REG_ARM64_SYSREG_OP1_MASK
4132 			      | KVM_REG_ARM64_SYSREG_CRN_MASK
4133 			      | KVM_REG_ARM64_SYSREG_CRM_MASK
4134 			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
4135 			return false;
4136 		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
4137 			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
4138 		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
4139 			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
4140 		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
4141 			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
4142 		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
4143 			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
4144 		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
4145 			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
4146 		return true;
4147 	default:
4148 		return false;
4149 	}
4150 }
4151 
4152 const struct sys_reg_desc *get_reg_by_id(u64 id,
4153 					 const struct sys_reg_desc table[],
4154 					 unsigned int num)
4155 {
4156 	struct sys_reg_params params;
4157 
4158 	if (!index_to_params(id, &params))
4159 		return NULL;
4160 
4161 	return find_reg(&params, table, num);
4162 }
4163 
4164 /* Decode an index value, and find the sys_reg_desc entry. */
4165 static const struct sys_reg_desc *
4166 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
4167 		   const struct sys_reg_desc table[], unsigned int num)
4168 
4169 {
4170 	const struct sys_reg_desc *r;
4171 
4172 	/* We only do sys_reg for now. */
4173 	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
4174 		return NULL;
4175 
4176 	r = get_reg_by_id(id, table, num);
4177 
4178 	/* Not saved in the sys_reg array and not otherwise accessible? */
4179 	if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
4180 		r = NULL;
4181 
4182 	return r;
4183 }
4184 
4185 /*
4186  * These are the invariant sys_reg registers: we let the guest see the
4187  * host versions of these, so they're part of the guest state.
4188  *
4189  * A future CPU may provide a mechanism to present different values to
4190  * the guest, or a future kvm may trap them.
4191  */
4192 
4193 #define FUNCTION_INVARIANT(reg)						\
4194 	static u64 reset_##reg(struct kvm_vcpu *v,			\
4195 			       const struct sys_reg_desc *r)		\
4196 	{								\
4197 		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
4198 		return ((struct sys_reg_desc *)r)->val;			\
4199 	}
4200 
4201 FUNCTION_INVARIANT(midr_el1)
4202 FUNCTION_INVARIANT(revidr_el1)
4203 FUNCTION_INVARIANT(aidr_el1)
4204 
4205 /* ->val is filled in by kvm_sys_reg_table_init() */
4206 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
4207 	{ SYS_DESC(SYS_MIDR_EL1), NULL, reset_midr_el1 },
4208 	{ SYS_DESC(SYS_REVIDR_EL1), NULL, reset_revidr_el1 },
4209 	{ SYS_DESC(SYS_AIDR_EL1), NULL, reset_aidr_el1 },
4210 };
4211 
4212 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
4213 {
4214 	const struct sys_reg_desc *r;
4215 
4216 	r = get_reg_by_id(id, invariant_sys_regs,
4217 			  ARRAY_SIZE(invariant_sys_regs));
4218 	if (!r)
4219 		return -ENOENT;
4220 
4221 	return put_user(r->val, uaddr);
4222 }
4223 
4224 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
4225 {
4226 	const struct sys_reg_desc *r;
4227 	u64 val;
4228 
4229 	r = get_reg_by_id(id, invariant_sys_regs,
4230 			  ARRAY_SIZE(invariant_sys_regs));
4231 	if (!r)
4232 		return -ENOENT;
4233 
4234 	if (get_user(val, uaddr))
4235 		return -EFAULT;
4236 
4237 	/* This is what we mean by invariant: you can't change it. */
4238 	if (r->val != val)
4239 		return -EINVAL;
4240 
4241 	return 0;
4242 }
4243 
4244 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4245 {
4246 	u32 val;
4247 	u32 __user *uval = uaddr;
4248 
4249 	/* Fail if we have unknown bits set. */
4250 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4251 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4252 		return -ENOENT;
4253 
4254 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4255 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4256 		if (KVM_REG_SIZE(id) != 4)
4257 			return -ENOENT;
4258 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4259 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4260 		if (val >= CSSELR_MAX)
4261 			return -ENOENT;
4262 
4263 		return put_user(get_ccsidr(vcpu, val), uval);
4264 	default:
4265 		return -ENOENT;
4266 	}
4267 }
4268 
4269 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
4270 {
4271 	u32 val, newval;
4272 	u32 __user *uval = uaddr;
4273 
4274 	/* Fail if we have unknown bits set. */
4275 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
4276 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
4277 		return -ENOENT;
4278 
4279 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
4280 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
4281 		if (KVM_REG_SIZE(id) != 4)
4282 			return -ENOENT;
4283 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
4284 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
4285 		if (val >= CSSELR_MAX)
4286 			return -ENOENT;
4287 
4288 		if (get_user(newval, uval))
4289 			return -EFAULT;
4290 
4291 		return set_ccsidr(vcpu, val, newval);
4292 	default:
4293 		return -ENOENT;
4294 	}
4295 }
4296 
4297 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4298 			 const struct sys_reg_desc table[], unsigned int num)
4299 {
4300 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4301 	const struct sys_reg_desc *r;
4302 	u64 val;
4303 	int ret;
4304 
4305 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4306 	if (!r || sysreg_hidden_user(vcpu, r))
4307 		return -ENOENT;
4308 
4309 	if (r->get_user) {
4310 		ret = (r->get_user)(vcpu, r, &val);
4311 	} else {
4312 		val = __vcpu_sys_reg(vcpu, r->reg);
4313 		ret = 0;
4314 	}
4315 
4316 	if (!ret)
4317 		ret = put_user(val, uaddr);
4318 
4319 	return ret;
4320 }
4321 
4322 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4323 {
4324 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4325 	int err;
4326 
4327 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4328 		return demux_c15_get(vcpu, reg->id, uaddr);
4329 
4330 	err = get_invariant_sys_reg(reg->id, uaddr);
4331 	if (err != -ENOENT)
4332 		return err;
4333 
4334 	return kvm_sys_reg_get_user(vcpu, reg,
4335 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4336 }
4337 
4338 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
4339 			 const struct sys_reg_desc table[], unsigned int num)
4340 {
4341 	u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
4342 	const struct sys_reg_desc *r;
4343 	u64 val;
4344 	int ret;
4345 
4346 	if (get_user(val, uaddr))
4347 		return -EFAULT;
4348 
4349 	r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
4350 	if (!r || sysreg_hidden_user(vcpu, r))
4351 		return -ENOENT;
4352 
4353 	if (sysreg_user_write_ignore(vcpu, r))
4354 		return 0;
4355 
4356 	if (r->set_user) {
4357 		ret = (r->set_user)(vcpu, r, val);
4358 	} else {
4359 		__vcpu_sys_reg(vcpu, r->reg) = val;
4360 		ret = 0;
4361 	}
4362 
4363 	return ret;
4364 }
4365 
4366 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
4367 {
4368 	void __user *uaddr = (void __user *)(unsigned long)reg->addr;
4369 	int err;
4370 
4371 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
4372 		return demux_c15_set(vcpu, reg->id, uaddr);
4373 
4374 	err = set_invariant_sys_reg(reg->id, uaddr);
4375 	if (err != -ENOENT)
4376 		return err;
4377 
4378 	return kvm_sys_reg_set_user(vcpu, reg,
4379 				    sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
4380 }
4381 
4382 static unsigned int num_demux_regs(void)
4383 {
4384 	return CSSELR_MAX;
4385 }
4386 
4387 static int write_demux_regids(u64 __user *uindices)
4388 {
4389 	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
4390 	unsigned int i;
4391 
4392 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
4393 	for (i = 0; i < CSSELR_MAX; i++) {
4394 		if (put_user(val | i, uindices))
4395 			return -EFAULT;
4396 		uindices++;
4397 	}
4398 	return 0;
4399 }
4400 
4401 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
4402 {
4403 	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
4404 		KVM_REG_ARM64_SYSREG |
4405 		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
4406 		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
4407 		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
4408 		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
4409 		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
4410 }
4411 
4412 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
4413 {
4414 	if (!*uind)
4415 		return true;
4416 
4417 	if (put_user(sys_reg_to_index(reg), *uind))
4418 		return false;
4419 
4420 	(*uind)++;
4421 	return true;
4422 }
4423 
4424 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
4425 			    const struct sys_reg_desc *rd,
4426 			    u64 __user **uind,
4427 			    unsigned int *total)
4428 {
4429 	/*
4430 	 * Ignore registers we trap but don't save,
4431 	 * and for which no custom user accessor is provided.
4432 	 */
4433 	if (!(rd->reg || rd->get_user))
4434 		return 0;
4435 
4436 	if (sysreg_hidden_user(vcpu, rd))
4437 		return 0;
4438 
4439 	if (!copy_reg_to_user(rd, uind))
4440 		return -EFAULT;
4441 
4442 	(*total)++;
4443 	return 0;
4444 }
4445 
4446 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
4447 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
4448 {
4449 	const struct sys_reg_desc *i2, *end2;
4450 	unsigned int total = 0;
4451 	int err;
4452 
4453 	i2 = sys_reg_descs;
4454 	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
4455 
4456 	while (i2 != end2) {
4457 		err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
4458 		if (err)
4459 			return err;
4460 	}
4461 	return total;
4462 }
4463 
4464 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
4465 {
4466 	return ARRAY_SIZE(invariant_sys_regs)
4467 		+ num_demux_regs()
4468 		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
4469 }
4470 
4471 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
4472 {
4473 	unsigned int i;
4474 	int err;
4475 
4476 	/* Then give them all the invariant registers' indices. */
4477 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
4478 		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
4479 			return -EFAULT;
4480 		uindices++;
4481 	}
4482 
4483 	err = walk_sys_regs(vcpu, uindices);
4484 	if (err < 0)
4485 		return err;
4486 	uindices += err;
4487 
4488 	return write_demux_regids(uindices);
4489 }
4490 
4491 #define KVM_ARM_FEATURE_ID_RANGE_INDEX(r)			\
4492 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(r),		\
4493 		sys_reg_Op1(r),					\
4494 		sys_reg_CRn(r),					\
4495 		sys_reg_CRm(r),					\
4496 		sys_reg_Op2(r))
4497 
4498 int kvm_vm_ioctl_get_reg_writable_masks(struct kvm *kvm, struct reg_mask_range *range)
4499 {
4500 	const void *zero_page = page_to_virt(ZERO_PAGE(0));
4501 	u64 __user *masks = (u64 __user *)range->addr;
4502 
4503 	/* Only feature id range is supported, reserved[13] must be zero. */
4504 	if (range->range ||
4505 	    memcmp(range->reserved, zero_page, sizeof(range->reserved)))
4506 		return -EINVAL;
4507 
4508 	/* Wipe the whole thing first */
4509 	if (clear_user(masks, KVM_ARM_FEATURE_ID_RANGE_SIZE * sizeof(__u64)))
4510 		return -EFAULT;
4511 
4512 	for (int i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
4513 		const struct sys_reg_desc *reg = &sys_reg_descs[i];
4514 		u32 encoding = reg_to_encoding(reg);
4515 		u64 val;
4516 
4517 		if (!is_feature_id_reg(encoding) || !reg->set_user)
4518 			continue;
4519 
4520 		if (!reg->val ||
4521 		    (is_aa32_id_reg(encoding) && !kvm_supports_32bit_el0())) {
4522 			continue;
4523 		}
4524 		val = reg->val;
4525 
4526 		if (put_user(val, (masks + KVM_ARM_FEATURE_ID_RANGE_INDEX(encoding))))
4527 			return -EFAULT;
4528 	}
4529 
4530 	return 0;
4531 }
4532 
4533 static void vcpu_set_hcr(struct kvm_vcpu *vcpu)
4534 {
4535 	struct kvm *kvm = vcpu->kvm;
4536 
4537 	if (has_vhe() || has_hvhe())
4538 		vcpu->arch.hcr_el2 |= HCR_E2H;
4539 	if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) {
4540 		/* route synchronous external abort exceptions to EL2 */
4541 		vcpu->arch.hcr_el2 |= HCR_TEA;
4542 		/* trap error record accesses */
4543 		vcpu->arch.hcr_el2 |= HCR_TERR;
4544 	}
4545 
4546 	if (cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
4547 		vcpu->arch.hcr_el2 |= HCR_FWB;
4548 
4549 	if (cpus_have_final_cap(ARM64_HAS_EVT) &&
4550 	    !cpus_have_final_cap(ARM64_MISMATCHED_CACHE_TYPE) &&
4551 	    kvm_read_vm_id_reg(kvm, SYS_CTR_EL0) == read_sanitised_ftr_reg(SYS_CTR_EL0))
4552 		vcpu->arch.hcr_el2 |= HCR_TID4;
4553 	else
4554 		vcpu->arch.hcr_el2 |= HCR_TID2;
4555 
4556 	if (vcpu_el1_is_32bit(vcpu))
4557 		vcpu->arch.hcr_el2 &= ~HCR_RW;
4558 
4559 	if (kvm_has_mte(vcpu->kvm))
4560 		vcpu->arch.hcr_el2 |= HCR_ATA;
4561 
4562 	/*
4563 	 * In the absence of FGT, we cannot independently trap TLBI
4564 	 * Range instructions. This isn't great, but trapping all
4565 	 * TLBIs would be far worse. Live with it...
4566 	 */
4567 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4568 		vcpu->arch.hcr_el2 |= HCR_TTLBOS;
4569 }
4570 
4571 void kvm_calculate_traps(struct kvm_vcpu *vcpu)
4572 {
4573 	struct kvm *kvm = vcpu->kvm;
4574 
4575 	mutex_lock(&kvm->arch.config_lock);
4576 	vcpu_set_hcr(vcpu);
4577 
4578 	if (cpus_have_final_cap(ARM64_HAS_HCX)) {
4579 		/*
4580 		 * In general, all HCRX_EL2 bits are gated by a feature.
4581 		 * The only reason we can set SMPME without checking any
4582 		 * feature is that its effects are not directly observable
4583 		 * from the guest.
4584 		 */
4585 		vcpu->arch.hcrx_el2 = HCRX_EL2_SMPME;
4586 
4587 		if (kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP))
4588 			vcpu->arch.hcrx_el2 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2);
4589 
4590 		if (kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP))
4591 			vcpu->arch.hcrx_el2 |= HCRX_EL2_TCR2En;
4592 
4593 		if (kvm_has_fpmr(kvm))
4594 			vcpu->arch.hcrx_el2 |= HCRX_EL2_EnFPM;
4595 	}
4596 
4597 	if (test_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags))
4598 		goto out;
4599 
4600 	kvm->arch.fgu[HFGxTR_GROUP] = (HFGxTR_EL2_nAMAIR2_EL1		|
4601 				       HFGxTR_EL2_nMAIR2_EL1		|
4602 				       HFGxTR_EL2_nS2POR_EL1		|
4603 				       HFGxTR_EL2_nPOR_EL1		|
4604 				       HFGxTR_EL2_nPOR_EL0		|
4605 				       HFGxTR_EL2_nACCDATA_EL1		|
4606 				       HFGxTR_EL2_nSMPRI_EL1_MASK	|
4607 				       HFGxTR_EL2_nTPIDR2_EL0_MASK);
4608 
4609 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS))
4610 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1OS|
4611 						HFGITR_EL2_TLBIRVALE1OS	|
4612 						HFGITR_EL2_TLBIRVAAE1OS	|
4613 						HFGITR_EL2_TLBIRVAE1OS	|
4614 						HFGITR_EL2_TLBIVAALE1OS	|
4615 						HFGITR_EL2_TLBIVALE1OS	|
4616 						HFGITR_EL2_TLBIVAAE1OS	|
4617 						HFGITR_EL2_TLBIASIDE1OS	|
4618 						HFGITR_EL2_TLBIVAE1OS	|
4619 						HFGITR_EL2_TLBIVMALLE1OS);
4620 
4621 	if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE))
4622 		kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_TLBIRVAALE1	|
4623 						HFGITR_EL2_TLBIRVALE1	|
4624 						HFGITR_EL2_TLBIRVAAE1	|
4625 						HFGITR_EL2_TLBIRVAE1	|
4626 						HFGITR_EL2_TLBIRVAALE1IS|
4627 						HFGITR_EL2_TLBIRVALE1IS	|
4628 						HFGITR_EL2_TLBIRVAAE1IS	|
4629 						HFGITR_EL2_TLBIRVAE1IS	|
4630 						HFGITR_EL2_TLBIRVAALE1OS|
4631 						HFGITR_EL2_TLBIRVALE1OS	|
4632 						HFGITR_EL2_TLBIRVAAE1OS	|
4633 						HFGITR_EL2_TLBIRVAE1OS);
4634 
4635 	if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
4636 		kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
4637 						HFGxTR_EL2_nPIR_EL1);
4638 
4639 	if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, IMP))
4640 		kvm->arch.fgu[HAFGRTR_GROUP] |= ~(HAFGRTR_EL2_RES0 |
4641 						  HAFGRTR_EL2_RES1);
4642 
4643 	set_bit(KVM_ARCH_FLAG_FGU_INITIALIZED, &kvm->arch.flags);
4644 out:
4645 	mutex_unlock(&kvm->arch.config_lock);
4646 }
4647 
4648 int __init kvm_sys_reg_table_init(void)
4649 {
4650 	bool valid = true;
4651 	unsigned int i;
4652 	int ret = 0;
4653 
4654 	/* Make sure tables are unique and in order. */
4655 	valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
4656 	valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
4657 	valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
4658 	valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
4659 	valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
4660 	valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
4661 	valid &= check_sysreg_table(sys_insn_descs, ARRAY_SIZE(sys_insn_descs), false);
4662 
4663 	if (!valid)
4664 		return -EINVAL;
4665 
4666 	/* We abuse the reset function to overwrite the table itself. */
4667 	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
4668 		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
4669 
4670 	ret = populate_nv_trap_config();
4671 
4672 	for (i = 0; !ret && i < ARRAY_SIZE(sys_reg_descs); i++)
4673 		ret = populate_sysreg_config(sys_reg_descs + i, i);
4674 
4675 	for (i = 0; !ret && i < ARRAY_SIZE(sys_insn_descs); i++)
4676 		ret = populate_sysreg_config(sys_insn_descs + i, i);
4677 
4678 	return ret;
4679 }
4680