xref: /linux/arch/arm64/kvm/reset.c (revision b8265621f4888af9494e1d685620871ec81bc33d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <kvm/arm_arch_timer.h>
21 
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_coproc.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/virt.h>
32 
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 kvm_ipa_limit;
35 
36 /*
37  * ARMv8 Reset Values
38  */
39 #define VCPU_RESET_PSTATE_EL1	(PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
40 				 PSR_F_BIT | PSR_D_BIT)
41 
42 #define VCPU_RESET_PSTATE_SVC	(PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
43 				 PSR_AA32_I_BIT | PSR_AA32_F_BIT)
44 
45 /**
46  * kvm_arch_vm_ioctl_check_extension
47  *
48  * We currently assume that the number of HW registers is uniform
49  * across all CPUs (see cpuinfo_sanity_check).
50  */
51 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
52 {
53 	int r;
54 
55 	switch (ext) {
56 	case KVM_CAP_ARM_EL1_32BIT:
57 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
58 		break;
59 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
60 		r = get_num_brps();
61 		break;
62 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
63 		r = get_num_wrps();
64 		break;
65 	case KVM_CAP_ARM_PMU_V3:
66 		r = kvm_arm_support_pmu_v3();
67 		break;
68 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
69 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
70 		break;
71 	case KVM_CAP_SET_GUEST_DEBUG:
72 	case KVM_CAP_VCPU_ATTRIBUTES:
73 		r = 1;
74 		break;
75 	case KVM_CAP_ARM_VM_IPA_SIZE:
76 		r = kvm_ipa_limit;
77 		break;
78 	case KVM_CAP_ARM_SVE:
79 		r = system_supports_sve();
80 		break;
81 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
82 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
83 		r = has_vhe() && system_supports_address_auth() &&
84 				 system_supports_generic_auth();
85 		break;
86 	default:
87 		r = 0;
88 	}
89 
90 	return r;
91 }
92 
93 unsigned int kvm_sve_max_vl;
94 
95 int kvm_arm_init_sve(void)
96 {
97 	if (system_supports_sve()) {
98 		kvm_sve_max_vl = sve_max_virtualisable_vl;
99 
100 		/*
101 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
102 		 * to be extended with multiple register slice support in
103 		 * order to support vector lengths greater than
104 		 * SVE_VL_ARCH_MAX:
105 		 */
106 		if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
107 			kvm_sve_max_vl = SVE_VL_ARCH_MAX;
108 
109 		/*
110 		 * Don't even try to make use of vector lengths that
111 		 * aren't available on all CPUs, for now:
112 		 */
113 		if (kvm_sve_max_vl < sve_max_vl)
114 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
115 				kvm_sve_max_vl);
116 	}
117 
118 	return 0;
119 }
120 
121 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
122 {
123 	if (!system_supports_sve())
124 		return -EINVAL;
125 
126 	/* Verify that KVM startup enforced this when SVE was detected: */
127 	if (WARN_ON(!has_vhe()))
128 		return -EINVAL;
129 
130 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
131 
132 	/*
133 	 * Userspace can still customize the vector lengths by writing
134 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
135 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
136 	 */
137 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
138 
139 	return 0;
140 }
141 
142 /*
143  * Finalize vcpu's maximum SVE vector length, allocating
144  * vcpu->arch.sve_state as necessary.
145  */
146 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
147 {
148 	void *buf;
149 	unsigned int vl;
150 
151 	vl = vcpu->arch.sve_max_vl;
152 
153 	/*
154 	 * Responsibility for these properties is shared between
155 	 * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
156 	 * set_sve_vls().  Double-check here just to be sure:
157 	 */
158 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
159 		    vl > SVE_VL_ARCH_MAX))
160 		return -EIO;
161 
162 	buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
163 	if (!buf)
164 		return -ENOMEM;
165 
166 	vcpu->arch.sve_state = buf;
167 	vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
168 	return 0;
169 }
170 
171 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
172 {
173 	switch (feature) {
174 	case KVM_ARM_VCPU_SVE:
175 		if (!vcpu_has_sve(vcpu))
176 			return -EINVAL;
177 
178 		if (kvm_arm_vcpu_sve_finalized(vcpu))
179 			return -EPERM;
180 
181 		return kvm_vcpu_finalize_sve(vcpu);
182 	}
183 
184 	return -EINVAL;
185 }
186 
187 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
188 {
189 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
190 		return false;
191 
192 	return true;
193 }
194 
195 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
196 {
197 	kfree(vcpu->arch.sve_state);
198 }
199 
200 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
201 {
202 	if (vcpu_has_sve(vcpu))
203 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
204 }
205 
206 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
207 {
208 	/* Support ptrauth only if the system supports these capabilities. */
209 	if (!has_vhe())
210 		return -EINVAL;
211 
212 	if (!system_supports_address_auth() ||
213 	    !system_supports_generic_auth())
214 		return -EINVAL;
215 	/*
216 	 * For now make sure that both address/generic pointer authentication
217 	 * features are requested by the userspace together.
218 	 */
219 	if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
220 	    !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
221 		return -EINVAL;
222 
223 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
224 	return 0;
225 }
226 
227 /**
228  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
229  * @vcpu: The VCPU pointer
230  *
231  * This function finds the right table above and sets the registers on
232  * the virtual CPU struct to their architecturally defined reset
233  * values, except for registers whose reset is deferred until
234  * kvm_arm_vcpu_finalize().
235  *
236  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
237  * ioctl or as part of handling a request issued by another VCPU in the PSCI
238  * handling code.  In the first case, the VCPU will not be loaded, and in the
239  * second case the VCPU will be loaded.  Because this function operates purely
240  * on the memory-backed values of system registers, we want to do a full put if
241  * we were loaded (handling a request) and load the values back at the end of
242  * the function.  Otherwise we leave the state alone.  In both cases, we
243  * disable preemption around the vcpu reset as we would otherwise race with
244  * preempt notifiers which also call put/load.
245  */
246 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
247 {
248 	int ret;
249 	bool loaded;
250 	u32 pstate;
251 
252 	/* Reset PMU outside of the non-preemptible section */
253 	kvm_pmu_vcpu_reset(vcpu);
254 
255 	preempt_disable();
256 	loaded = (vcpu->cpu != -1);
257 	if (loaded)
258 		kvm_arch_vcpu_put(vcpu);
259 
260 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
261 		if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
262 			ret = kvm_vcpu_enable_sve(vcpu);
263 			if (ret)
264 				goto out;
265 		}
266 	} else {
267 		kvm_vcpu_reset_sve(vcpu);
268 	}
269 
270 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
271 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
272 		if (kvm_vcpu_enable_ptrauth(vcpu)) {
273 			ret = -EINVAL;
274 			goto out;
275 		}
276 	}
277 
278 	switch (vcpu->arch.target) {
279 	default:
280 		if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
281 			if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) {
282 				ret = -EINVAL;
283 				goto out;
284 			}
285 			pstate = VCPU_RESET_PSTATE_SVC;
286 		} else {
287 			pstate = VCPU_RESET_PSTATE_EL1;
288 		}
289 
290 		break;
291 	}
292 
293 	/* Reset core registers */
294 	memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
295 	vcpu_gp_regs(vcpu)->regs.pstate = pstate;
296 
297 	/* Reset system registers */
298 	kvm_reset_sys_regs(vcpu);
299 
300 	/*
301 	 * Additional reset state handling that PSCI may have imposed on us.
302 	 * Must be done after all the sys_reg reset.
303 	 */
304 	if (vcpu->arch.reset_state.reset) {
305 		unsigned long target_pc = vcpu->arch.reset_state.pc;
306 
307 		/* Gracefully handle Thumb2 entry point */
308 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
309 			target_pc &= ~1UL;
310 			vcpu_set_thumb(vcpu);
311 		}
312 
313 		/* Propagate caller endianness */
314 		if (vcpu->arch.reset_state.be)
315 			kvm_vcpu_set_be(vcpu);
316 
317 		*vcpu_pc(vcpu) = target_pc;
318 		vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
319 
320 		vcpu->arch.reset_state.reset = false;
321 	}
322 
323 	/* Default workaround setup is enabled (if supported) */
324 	if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
325 		vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
326 
327 	/* Reset timer */
328 	ret = kvm_timer_vcpu_reset(vcpu);
329 out:
330 	if (loaded)
331 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
332 	preempt_enable();
333 	return ret;
334 }
335 
336 u32 get_kvm_ipa_limit(void)
337 {
338 	return kvm_ipa_limit;
339 }
340 
341 int kvm_set_ipa_limit(void)
342 {
343 	unsigned int ipa_max, pa_max, va_max, parange, tgran_2;
344 	u64 mmfr0;
345 
346 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
347 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
348 				ID_AA64MMFR0_PARANGE_SHIFT);
349 
350 	/*
351 	 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
352 	 * Stage-2. If not, things will stop very quickly.
353 	 */
354 	switch (PAGE_SIZE) {
355 	default:
356 	case SZ_4K:
357 		tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT;
358 		break;
359 	case SZ_16K:
360 		tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT;
361 		break;
362 	case SZ_64K:
363 		tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT;
364 		break;
365 	}
366 
367 	switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) {
368 	default:
369 	case 1:
370 		kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
371 		return -EINVAL;
372 	case 0:
373 		kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
374 		break;
375 	case 2:
376 		kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
377 		break;
378 	}
379 
380 	pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
381 
382 	/* Clamp the IPA limit to the PA size supported by the kernel */
383 	ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
384 	/*
385 	 * Since our stage2 table is dependent on the stage1 page table code,
386 	 * we must always honor the following condition:
387 	 *
388 	 *  Number of levels in Stage1 >= Number of levels in Stage2.
389 	 *
390 	 * So clamp the ipa limit further down to limit the number of levels.
391 	 * Since we can concatenate upto 16 tables at entry level, we could
392 	 * go upto 4bits above the maximum VA addressable with the current
393 	 * number of levels.
394 	 */
395 	va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
396 	va_max += 4;
397 
398 	if (va_max < ipa_max)
399 		ipa_max = va_max;
400 
401 	/*
402 	 * If the final limit is lower than the real physical address
403 	 * limit of the CPUs, report the reason.
404 	 */
405 	if (ipa_max < pa_max)
406 		pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
407 			(va_max < pa_max) ? "Virtual" : "Physical");
408 
409 	WARN(ipa_max < KVM_PHYS_SHIFT,
410 	     "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
411 	kvm_ipa_limit = ipa_max;
412 	kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
413 
414 	return 0;
415 }
416 
417 /*
418  * Configure the VTCR_EL2 for this VM. The VTCR value is common
419  * across all the physical CPUs on the system. We use system wide
420  * sanitised values to fill in different fields, except for Hardware
421  * Management of Access Flags. HA Flag is set unconditionally on
422  * all CPUs, as it is safe to run with or without the feature and
423  * the bit is RES0 on CPUs that don't support it.
424  */
425 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
426 {
427 	u64 vtcr = VTCR_EL2_FLAGS, mmfr0;
428 	u32 parange, phys_shift;
429 	u8 lvls;
430 
431 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
432 		return -EINVAL;
433 
434 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
435 	if (phys_shift) {
436 		if (phys_shift > kvm_ipa_limit ||
437 		    phys_shift < 32)
438 			return -EINVAL;
439 	} else {
440 		phys_shift = KVM_PHYS_SHIFT;
441 	}
442 
443 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
444 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
445 				ID_AA64MMFR0_PARANGE_SHIFT);
446 	if (parange > ID_AA64MMFR0_PARANGE_MAX)
447 		parange = ID_AA64MMFR0_PARANGE_MAX;
448 	vtcr |= parange << VTCR_EL2_PS_SHIFT;
449 
450 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
451 	/*
452 	 * Use a minimum 2 level page table to prevent splitting
453 	 * host PMD huge pages at stage2.
454 	 */
455 	lvls = stage2_pgtable_levels(phys_shift);
456 	if (lvls < 2)
457 		lvls = 2;
458 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
459 
460 	/*
461 	 * Enable the Hardware Access Flag management, unconditionally
462 	 * on all CPUs. The features is RES0 on CPUs without the support
463 	 * and must be ignored by the CPUs.
464 	 */
465 	vtcr |= VTCR_EL2_HA;
466 
467 	/* Set the vmid bits */
468 	vtcr |= (kvm_get_vmid_bits() == 16) ?
469 		VTCR_EL2_VS_16BIT :
470 		VTCR_EL2_VS_8BIT;
471 	kvm->arch.vtcr = vtcr;
472 	return 0;
473 }
474