1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012,2013 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 * 6 * Derived from arch/arm/kvm/reset.c 7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University 8 * Author: Christoffer Dall <c.dall@virtualopensystems.com> 9 */ 10 11 #include <linux/errno.h> 12 #include <linux/kernel.h> 13 #include <linux/kvm_host.h> 14 #include <linux/kvm.h> 15 #include <linux/hw_breakpoint.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/types.h> 19 20 #include <kvm/arm_arch_timer.h> 21 22 #include <asm/cpufeature.h> 23 #include <asm/cputype.h> 24 #include <asm/fpsimd.h> 25 #include <asm/ptrace.h> 26 #include <asm/kvm_arm.h> 27 #include <asm/kvm_asm.h> 28 #include <asm/kvm_emulate.h> 29 #include <asm/kvm_mmu.h> 30 #include <asm/virt.h> 31 32 /* Maximum phys_shift supported for any VM on this host */ 33 static u32 kvm_ipa_limit; 34 35 /* 36 * ARMv8 Reset Values 37 */ 38 #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \ 39 PSR_F_BIT | PSR_D_BIT) 40 41 #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \ 42 PSR_AA32_I_BIT | PSR_AA32_F_BIT) 43 44 unsigned int kvm_sve_max_vl; 45 46 int kvm_arm_init_sve(void) 47 { 48 if (system_supports_sve()) { 49 kvm_sve_max_vl = sve_max_virtualisable_vl; 50 51 /* 52 * The get_sve_reg()/set_sve_reg() ioctl interface will need 53 * to be extended with multiple register slice support in 54 * order to support vector lengths greater than 55 * SVE_VL_ARCH_MAX: 56 */ 57 if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX)) 58 kvm_sve_max_vl = SVE_VL_ARCH_MAX; 59 60 /* 61 * Don't even try to make use of vector lengths that 62 * aren't available on all CPUs, for now: 63 */ 64 if (kvm_sve_max_vl < sve_max_vl) 65 pr_warn("KVM: SVE vector length for guests limited to %u bytes\n", 66 kvm_sve_max_vl); 67 } 68 69 return 0; 70 } 71 72 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu) 73 { 74 if (!system_supports_sve()) 75 return -EINVAL; 76 77 vcpu->arch.sve_max_vl = kvm_sve_max_vl; 78 79 /* 80 * Userspace can still customize the vector lengths by writing 81 * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until 82 * kvm_arm_vcpu_finalize(), which freezes the configuration. 83 */ 84 vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE; 85 86 return 0; 87 } 88 89 /* 90 * Finalize vcpu's maximum SVE vector length, allocating 91 * vcpu->arch.sve_state as necessary. 92 */ 93 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu) 94 { 95 void *buf; 96 unsigned int vl; 97 98 vl = vcpu->arch.sve_max_vl; 99 100 /* 101 * Responsibility for these properties is shared between 102 * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and 103 * set_sve_vls(). Double-check here just to be sure: 104 */ 105 if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl || 106 vl > SVE_VL_ARCH_MAX)) 107 return -EIO; 108 109 buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL); 110 if (!buf) 111 return -ENOMEM; 112 113 vcpu->arch.sve_state = buf; 114 vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED; 115 return 0; 116 } 117 118 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature) 119 { 120 switch (feature) { 121 case KVM_ARM_VCPU_SVE: 122 if (!vcpu_has_sve(vcpu)) 123 return -EINVAL; 124 125 if (kvm_arm_vcpu_sve_finalized(vcpu)) 126 return -EPERM; 127 128 return kvm_vcpu_finalize_sve(vcpu); 129 } 130 131 return -EINVAL; 132 } 133 134 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu) 135 { 136 if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu)) 137 return false; 138 139 return true; 140 } 141 142 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu) 143 { 144 kfree(vcpu->arch.sve_state); 145 } 146 147 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu) 148 { 149 if (vcpu_has_sve(vcpu)) 150 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu)); 151 } 152 153 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu) 154 { 155 /* 156 * For now make sure that both address/generic pointer authentication 157 * features are requested by the userspace together and the system 158 * supports these capabilities. 159 */ 160 if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || 161 !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) || 162 !system_has_full_ptr_auth()) 163 return -EINVAL; 164 165 vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH; 166 return 0; 167 } 168 169 /** 170 * kvm_reset_vcpu - sets core registers and sys_regs to reset value 171 * @vcpu: The VCPU pointer 172 * 173 * This function finds the right table above and sets the registers on 174 * the virtual CPU struct to their architecturally defined reset 175 * values, except for registers whose reset is deferred until 176 * kvm_arm_vcpu_finalize(). 177 * 178 * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT 179 * ioctl or as part of handling a request issued by another VCPU in the PSCI 180 * handling code. In the first case, the VCPU will not be loaded, and in the 181 * second case the VCPU will be loaded. Because this function operates purely 182 * on the memory-backed values of system registers, we want to do a full put if 183 * we were loaded (handling a request) and load the values back at the end of 184 * the function. Otherwise we leave the state alone. In both cases, we 185 * disable preemption around the vcpu reset as we would otherwise race with 186 * preempt notifiers which also call put/load. 187 */ 188 int kvm_reset_vcpu(struct kvm_vcpu *vcpu) 189 { 190 int ret; 191 bool loaded; 192 u32 pstate; 193 194 /* Reset PMU outside of the non-preemptible section */ 195 kvm_pmu_vcpu_reset(vcpu); 196 197 preempt_disable(); 198 loaded = (vcpu->cpu != -1); 199 if (loaded) 200 kvm_arch_vcpu_put(vcpu); 201 202 if (!kvm_arm_vcpu_sve_finalized(vcpu)) { 203 if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) { 204 ret = kvm_vcpu_enable_sve(vcpu); 205 if (ret) 206 goto out; 207 } 208 } else { 209 kvm_vcpu_reset_sve(vcpu); 210 } 211 212 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) || 213 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) { 214 if (kvm_vcpu_enable_ptrauth(vcpu)) { 215 ret = -EINVAL; 216 goto out; 217 } 218 } 219 220 switch (vcpu->arch.target) { 221 default: 222 if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) { 223 if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) { 224 ret = -EINVAL; 225 goto out; 226 } 227 pstate = VCPU_RESET_PSTATE_SVC; 228 } else { 229 pstate = VCPU_RESET_PSTATE_EL1; 230 } 231 232 if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) { 233 ret = -EINVAL; 234 goto out; 235 } 236 break; 237 } 238 239 /* Reset core registers */ 240 memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu))); 241 memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs)); 242 vcpu->arch.ctxt.spsr_abt = 0; 243 vcpu->arch.ctxt.spsr_und = 0; 244 vcpu->arch.ctxt.spsr_irq = 0; 245 vcpu->arch.ctxt.spsr_fiq = 0; 246 vcpu_gp_regs(vcpu)->pstate = pstate; 247 248 /* Reset system registers */ 249 kvm_reset_sys_regs(vcpu); 250 251 /* 252 * Additional reset state handling that PSCI may have imposed on us. 253 * Must be done after all the sys_reg reset. 254 */ 255 if (vcpu->arch.reset_state.reset) { 256 unsigned long target_pc = vcpu->arch.reset_state.pc; 257 258 /* Gracefully handle Thumb2 entry point */ 259 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) { 260 target_pc &= ~1UL; 261 vcpu_set_thumb(vcpu); 262 } 263 264 /* Propagate caller endianness */ 265 if (vcpu->arch.reset_state.be) 266 kvm_vcpu_set_be(vcpu); 267 268 *vcpu_pc(vcpu) = target_pc; 269 vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0); 270 271 vcpu->arch.reset_state.reset = false; 272 } 273 274 /* Reset timer */ 275 ret = kvm_timer_vcpu_reset(vcpu); 276 out: 277 if (loaded) 278 kvm_arch_vcpu_load(vcpu, smp_processor_id()); 279 preempt_enable(); 280 return ret; 281 } 282 283 u32 get_kvm_ipa_limit(void) 284 { 285 return kvm_ipa_limit; 286 } 287 288 int kvm_set_ipa_limit(void) 289 { 290 unsigned int parange, tgran_2; 291 u64 mmfr0; 292 293 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 294 parange = cpuid_feature_extract_unsigned_field(mmfr0, 295 ID_AA64MMFR0_PARANGE_SHIFT); 296 297 /* 298 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at 299 * Stage-2. If not, things will stop very quickly. 300 */ 301 switch (PAGE_SIZE) { 302 default: 303 case SZ_4K: 304 tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT; 305 break; 306 case SZ_16K: 307 tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT; 308 break; 309 case SZ_64K: 310 tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT; 311 break; 312 } 313 314 switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) { 315 case ID_AA64MMFR0_TGRAN_2_SUPPORTED_NONE: 316 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n"); 317 return -EINVAL; 318 case ID_AA64MMFR0_TGRAN_2_SUPPORTED_DEFAULT: 319 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n"); 320 break; 321 case ID_AA64MMFR0_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_TGRAN_2_SUPPORTED_MAX: 322 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n"); 323 break; 324 default: 325 kvm_err("Unsupported value for TGRAN_2, giving up\n"); 326 return -EINVAL; 327 } 328 329 kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange); 330 kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit, 331 ((kvm_ipa_limit < KVM_PHYS_SHIFT) ? 332 " (Reduced IPA size, limited VM/VMM compatibility)" : "")); 333 334 return 0; 335 } 336 337 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type) 338 { 339 u64 mmfr0, mmfr1; 340 u32 phys_shift; 341 342 if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK) 343 return -EINVAL; 344 345 phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type); 346 if (phys_shift) { 347 if (phys_shift > kvm_ipa_limit || 348 phys_shift < 32) 349 return -EINVAL; 350 } else { 351 phys_shift = KVM_PHYS_SHIFT; 352 if (phys_shift > kvm_ipa_limit) { 353 pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n", 354 current->comm); 355 return -EINVAL; 356 } 357 } 358 359 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1); 360 mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); 361 kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift); 362 363 return 0; 364 } 365