xref: /linux/arch/arm64/kvm/reset.c (revision 7ff836f064e2c814a7504c91a4464eea45d475bd)
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/reset.c
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/kernel.h>
24 #include <linux/kvm_host.h>
25 #include <linux/kvm.h>
26 #include <linux/hw_breakpoint.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 
31 #include <kvm/arm_arch_timer.h>
32 
33 #include <asm/cpufeature.h>
34 #include <asm/cputype.h>
35 #include <asm/fpsimd.h>
36 #include <asm/ptrace.h>
37 #include <asm/kvm_arm.h>
38 #include <asm/kvm_asm.h>
39 #include <asm/kvm_coproc.h>
40 #include <asm/kvm_emulate.h>
41 #include <asm/kvm_mmu.h>
42 #include <asm/virt.h>
43 
44 /* Maximum phys_shift supported for any VM on this host */
45 static u32 kvm_ipa_limit;
46 
47 /*
48  * ARMv8 Reset Values
49  */
50 static const struct kvm_regs default_regs_reset = {
51 	.regs.pstate = (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT |
52 			PSR_F_BIT | PSR_D_BIT),
53 };
54 
55 static const struct kvm_regs default_regs_reset32 = {
56 	.regs.pstate = (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT |
57 			PSR_AA32_I_BIT | PSR_AA32_F_BIT),
58 };
59 
60 static bool cpu_has_32bit_el1(void)
61 {
62 	u64 pfr0;
63 
64 	pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
65 	return !!(pfr0 & 0x20);
66 }
67 
68 /**
69  * kvm_arch_vm_ioctl_check_extension
70  *
71  * We currently assume that the number of HW registers is uniform
72  * across all CPUs (see cpuinfo_sanity_check).
73  */
74 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
75 {
76 	int r;
77 
78 	switch (ext) {
79 	case KVM_CAP_ARM_EL1_32BIT:
80 		r = cpu_has_32bit_el1();
81 		break;
82 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
83 		r = get_num_brps();
84 		break;
85 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
86 		r = get_num_wrps();
87 		break;
88 	case KVM_CAP_ARM_PMU_V3:
89 		r = kvm_arm_support_pmu_v3();
90 		break;
91 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
92 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
93 		break;
94 	case KVM_CAP_SET_GUEST_DEBUG:
95 	case KVM_CAP_VCPU_ATTRIBUTES:
96 		r = 1;
97 		break;
98 	case KVM_CAP_ARM_VM_IPA_SIZE:
99 		r = kvm_ipa_limit;
100 		break;
101 	case KVM_CAP_ARM_SVE:
102 		r = system_supports_sve();
103 		break;
104 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
105 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
106 		r = has_vhe() && system_supports_address_auth() &&
107 				 system_supports_generic_auth();
108 		break;
109 	default:
110 		r = 0;
111 	}
112 
113 	return r;
114 }
115 
116 unsigned int kvm_sve_max_vl;
117 
118 int kvm_arm_init_sve(void)
119 {
120 	if (system_supports_sve()) {
121 		kvm_sve_max_vl = sve_max_virtualisable_vl;
122 
123 		/*
124 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
125 		 * to be extended with multiple register slice support in
126 		 * order to support vector lengths greater than
127 		 * SVE_VL_ARCH_MAX:
128 		 */
129 		if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
130 			kvm_sve_max_vl = SVE_VL_ARCH_MAX;
131 
132 		/*
133 		 * Don't even try to make use of vector lengths that
134 		 * aren't available on all CPUs, for now:
135 		 */
136 		if (kvm_sve_max_vl < sve_max_vl)
137 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
138 				kvm_sve_max_vl);
139 	}
140 
141 	return 0;
142 }
143 
144 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
145 {
146 	if (!system_supports_sve())
147 		return -EINVAL;
148 
149 	/* Verify that KVM startup enforced this when SVE was detected: */
150 	if (WARN_ON(!has_vhe()))
151 		return -EINVAL;
152 
153 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
154 
155 	/*
156 	 * Userspace can still customize the vector lengths by writing
157 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
158 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
159 	 */
160 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
161 
162 	return 0;
163 }
164 
165 /*
166  * Finalize vcpu's maximum SVE vector length, allocating
167  * vcpu->arch.sve_state as necessary.
168  */
169 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
170 {
171 	void *buf;
172 	unsigned int vl;
173 
174 	vl = vcpu->arch.sve_max_vl;
175 
176 	/*
177 	 * Resposibility for these properties is shared between
178 	 * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
179 	 * set_sve_vls().  Double-check here just to be sure:
180 	 */
181 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
182 		    vl > SVE_VL_ARCH_MAX))
183 		return -EIO;
184 
185 	buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
186 	if (!buf)
187 		return -ENOMEM;
188 
189 	vcpu->arch.sve_state = buf;
190 	vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
191 	return 0;
192 }
193 
194 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
195 {
196 	switch (feature) {
197 	case KVM_ARM_VCPU_SVE:
198 		if (!vcpu_has_sve(vcpu))
199 			return -EINVAL;
200 
201 		if (kvm_arm_vcpu_sve_finalized(vcpu))
202 			return -EPERM;
203 
204 		return kvm_vcpu_finalize_sve(vcpu);
205 	}
206 
207 	return -EINVAL;
208 }
209 
210 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
211 {
212 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
213 		return false;
214 
215 	return true;
216 }
217 
218 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
219 {
220 	kfree(vcpu->arch.sve_state);
221 }
222 
223 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
224 {
225 	if (vcpu_has_sve(vcpu))
226 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
227 }
228 
229 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
230 {
231 	/* Support ptrauth only if the system supports these capabilities. */
232 	if (!has_vhe())
233 		return -EINVAL;
234 
235 	if (!system_supports_address_auth() ||
236 	    !system_supports_generic_auth())
237 		return -EINVAL;
238 	/*
239 	 * For now make sure that both address/generic pointer authentication
240 	 * features are requested by the userspace together.
241 	 */
242 	if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
243 	    !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
244 		return -EINVAL;
245 
246 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
247 	return 0;
248 }
249 
250 /**
251  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
252  * @vcpu: The VCPU pointer
253  *
254  * This function finds the right table above and sets the registers on
255  * the virtual CPU struct to their architecturally defined reset
256  * values, except for registers whose reset is deferred until
257  * kvm_arm_vcpu_finalize().
258  *
259  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
260  * ioctl or as part of handling a request issued by another VCPU in the PSCI
261  * handling code.  In the first case, the VCPU will not be loaded, and in the
262  * second case the VCPU will be loaded.  Because this function operates purely
263  * on the memory-backed valus of system registers, we want to do a full put if
264  * we were loaded (handling a request) and load the values back at the end of
265  * the function.  Otherwise we leave the state alone.  In both cases, we
266  * disable preemption around the vcpu reset as we would otherwise race with
267  * preempt notifiers which also call put/load.
268  */
269 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
270 {
271 	const struct kvm_regs *cpu_reset;
272 	int ret = -EINVAL;
273 	bool loaded;
274 
275 	/* Reset PMU outside of the non-preemptible section */
276 	kvm_pmu_vcpu_reset(vcpu);
277 
278 	preempt_disable();
279 	loaded = (vcpu->cpu != -1);
280 	if (loaded)
281 		kvm_arch_vcpu_put(vcpu);
282 
283 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
284 		if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
285 			ret = kvm_vcpu_enable_sve(vcpu);
286 			if (ret)
287 				goto out;
288 		}
289 	} else {
290 		kvm_vcpu_reset_sve(vcpu);
291 	}
292 
293 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
294 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
295 		if (kvm_vcpu_enable_ptrauth(vcpu))
296 			goto out;
297 	}
298 
299 	switch (vcpu->arch.target) {
300 	default:
301 		if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
302 			if (!cpu_has_32bit_el1())
303 				goto out;
304 			cpu_reset = &default_regs_reset32;
305 		} else {
306 			cpu_reset = &default_regs_reset;
307 		}
308 
309 		break;
310 	}
311 
312 	/* Reset core registers */
313 	memcpy(vcpu_gp_regs(vcpu), cpu_reset, sizeof(*cpu_reset));
314 
315 	/* Reset system registers */
316 	kvm_reset_sys_regs(vcpu);
317 
318 	/*
319 	 * Additional reset state handling that PSCI may have imposed on us.
320 	 * Must be done after all the sys_reg reset.
321 	 */
322 	if (vcpu->arch.reset_state.reset) {
323 		unsigned long target_pc = vcpu->arch.reset_state.pc;
324 
325 		/* Gracefully handle Thumb2 entry point */
326 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
327 			target_pc &= ~1UL;
328 			vcpu_set_thumb(vcpu);
329 		}
330 
331 		/* Propagate caller endianness */
332 		if (vcpu->arch.reset_state.be)
333 			kvm_vcpu_set_be(vcpu);
334 
335 		*vcpu_pc(vcpu) = target_pc;
336 		vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
337 
338 		vcpu->arch.reset_state.reset = false;
339 	}
340 
341 	/* Default workaround setup is enabled (if supported) */
342 	if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
343 		vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
344 
345 	/* Reset timer */
346 	ret = kvm_timer_vcpu_reset(vcpu);
347 out:
348 	if (loaded)
349 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
350 	preempt_enable();
351 	return ret;
352 }
353 
354 void kvm_set_ipa_limit(void)
355 {
356 	unsigned int ipa_max, pa_max, va_max, parange;
357 
358 	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 0x7;
359 	pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
360 
361 	/* Clamp the IPA limit to the PA size supported by the kernel */
362 	ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
363 	/*
364 	 * Since our stage2 table is dependent on the stage1 page table code,
365 	 * we must always honor the following condition:
366 	 *
367 	 *  Number of levels in Stage1 >= Number of levels in Stage2.
368 	 *
369 	 * So clamp the ipa limit further down to limit the number of levels.
370 	 * Since we can concatenate upto 16 tables at entry level, we could
371 	 * go upto 4bits above the maximum VA addressible with the current
372 	 * number of levels.
373 	 */
374 	va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
375 	va_max += 4;
376 
377 	if (va_max < ipa_max)
378 		ipa_max = va_max;
379 
380 	/*
381 	 * If the final limit is lower than the real physical address
382 	 * limit of the CPUs, report the reason.
383 	 */
384 	if (ipa_max < pa_max)
385 		pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
386 			(va_max < pa_max) ? "Virtual" : "Physical");
387 
388 	WARN(ipa_max < KVM_PHYS_SHIFT,
389 	     "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
390 	kvm_ipa_limit = ipa_max;
391 	kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
392 }
393 
394 /*
395  * Configure the VTCR_EL2 for this VM. The VTCR value is common
396  * across all the physical CPUs on the system. We use system wide
397  * sanitised values to fill in different fields, except for Hardware
398  * Management of Access Flags. HA Flag is set unconditionally on
399  * all CPUs, as it is safe to run with or without the feature and
400  * the bit is RES0 on CPUs that don't support it.
401  */
402 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
403 {
404 	u64 vtcr = VTCR_EL2_FLAGS;
405 	u32 parange, phys_shift;
406 	u8 lvls;
407 
408 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
409 		return -EINVAL;
410 
411 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
412 	if (phys_shift) {
413 		if (phys_shift > kvm_ipa_limit ||
414 		    phys_shift < 32)
415 			return -EINVAL;
416 	} else {
417 		phys_shift = KVM_PHYS_SHIFT;
418 	}
419 
420 	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 7;
421 	if (parange > ID_AA64MMFR0_PARANGE_MAX)
422 		parange = ID_AA64MMFR0_PARANGE_MAX;
423 	vtcr |= parange << VTCR_EL2_PS_SHIFT;
424 
425 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
426 	/*
427 	 * Use a minimum 2 level page table to prevent splitting
428 	 * host PMD huge pages at stage2.
429 	 */
430 	lvls = stage2_pgtable_levels(phys_shift);
431 	if (lvls < 2)
432 		lvls = 2;
433 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
434 
435 	/*
436 	 * Enable the Hardware Access Flag management, unconditionally
437 	 * on all CPUs. The features is RES0 on CPUs without the support
438 	 * and must be ignored by the CPUs.
439 	 */
440 	vtcr |= VTCR_EL2_HA;
441 
442 	/* Set the vmid bits */
443 	vtcr |= (kvm_get_vmid_bits() == 16) ?
444 		VTCR_EL2_VS_16BIT :
445 		VTCR_EL2_VS_8BIT;
446 	kvm->arch.vtcr = vtcr;
447 	return 0;
448 }
449