xref: /linux/arch/arm64/kvm/reset.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <kvm/arm_arch_timer.h>
21 
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/kvm_nested.h>
31 #include <asm/virt.h>
32 
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 __ro_after_init kvm_ipa_limit;
35 unsigned int __ro_after_init kvm_host_sve_max_vl;
36 
37 /*
38  * ARMv8 Reset Values
39  */
40 #define VCPU_RESET_PSTATE_EL1	(PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
41 				 PSR_F_BIT | PSR_D_BIT)
42 
43 #define VCPU_RESET_PSTATE_EL2	(PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \
44 				 PSR_F_BIT | PSR_D_BIT)
45 
46 #define VCPU_RESET_PSTATE_SVC	(PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
47 				 PSR_AA32_I_BIT | PSR_AA32_F_BIT)
48 
49 unsigned int __ro_after_init kvm_sve_max_vl;
50 
51 int __init kvm_arm_init_sve(void)
52 {
53 	if (system_supports_sve()) {
54 		kvm_sve_max_vl = sve_max_virtualisable_vl();
55 		kvm_host_sve_max_vl = sve_max_vl();
56 		kvm_nvhe_sym(kvm_host_sve_max_vl) = kvm_host_sve_max_vl;
57 
58 		/*
59 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
60 		 * to be extended with multiple register slice support in
61 		 * order to support vector lengths greater than
62 		 * VL_ARCH_MAX:
63 		 */
64 		if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
65 			kvm_sve_max_vl = VL_ARCH_MAX;
66 
67 		/*
68 		 * Don't even try to make use of vector lengths that
69 		 * aren't available on all CPUs, for now:
70 		 */
71 		if (kvm_sve_max_vl < sve_max_vl())
72 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
73 				kvm_sve_max_vl);
74 	}
75 
76 	return 0;
77 }
78 
79 static void kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
80 {
81 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
82 
83 	/*
84 	 * Userspace can still customize the vector lengths by writing
85 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
86 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
87 	 */
88 	vcpu_set_flag(vcpu, GUEST_HAS_SVE);
89 }
90 
91 /*
92  * Finalize vcpu's maximum SVE vector length, allocating
93  * vcpu->arch.sve_state as necessary.
94  */
95 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
96 {
97 	void *buf;
98 	unsigned int vl;
99 	size_t reg_sz;
100 	int ret;
101 
102 	vl = vcpu->arch.sve_max_vl;
103 
104 	/*
105 	 * Responsibility for these properties is shared between
106 	 * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
107 	 * set_sve_vls().  Double-check here just to be sure:
108 	 */
109 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
110 		    vl > VL_ARCH_MAX))
111 		return -EIO;
112 
113 	reg_sz = vcpu_sve_state_size(vcpu);
114 	buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
115 	if (!buf)
116 		return -ENOMEM;
117 
118 	ret = kvm_share_hyp(buf, buf + reg_sz);
119 	if (ret) {
120 		kfree(buf);
121 		return ret;
122 	}
123 
124 	vcpu->arch.sve_state = buf;
125 	vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
126 	return 0;
127 }
128 
129 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
130 {
131 	switch (feature) {
132 	case KVM_ARM_VCPU_SVE:
133 		if (!vcpu_has_sve(vcpu))
134 			return -EINVAL;
135 
136 		if (kvm_arm_vcpu_sve_finalized(vcpu))
137 			return -EPERM;
138 
139 		return kvm_vcpu_finalize_sve(vcpu);
140 	}
141 
142 	return -EINVAL;
143 }
144 
145 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
146 {
147 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
148 		return false;
149 
150 	return true;
151 }
152 
153 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
154 {
155 	void *sve_state = vcpu->arch.sve_state;
156 
157 	kvm_unshare_hyp(vcpu, vcpu + 1);
158 	if (sve_state)
159 		kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
160 	kfree(sve_state);
161 	kfree(vcpu->arch.ccsidr);
162 }
163 
164 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
165 {
166 	if (vcpu_has_sve(vcpu))
167 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
168 }
169 
170 /**
171  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
172  * @vcpu: The VCPU pointer
173  *
174  * This function sets the registers on the virtual CPU struct to their
175  * architecturally defined reset values, except for registers whose reset is
176  * deferred until kvm_arm_vcpu_finalize().
177  *
178  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
179  * ioctl or as part of handling a request issued by another VCPU in the PSCI
180  * handling code.  In the first case, the VCPU will not be loaded, and in the
181  * second case the VCPU will be loaded.  Because this function operates purely
182  * on the memory-backed values of system registers, we want to do a full put if
183  * we were loaded (handling a request) and load the values back at the end of
184  * the function.  Otherwise we leave the state alone.  In both cases, we
185  * disable preemption around the vcpu reset as we would otherwise race with
186  * preempt notifiers which also call put/load.
187  */
188 void kvm_reset_vcpu(struct kvm_vcpu *vcpu)
189 {
190 	struct vcpu_reset_state reset_state;
191 	bool loaded;
192 	u32 pstate;
193 
194 	spin_lock(&vcpu->arch.mp_state_lock);
195 	reset_state = vcpu->arch.reset_state;
196 	vcpu->arch.reset_state.reset = false;
197 	spin_unlock(&vcpu->arch.mp_state_lock);
198 
199 	/* Reset PMU outside of the non-preemptible section */
200 	kvm_pmu_vcpu_reset(vcpu);
201 
202 	preempt_disable();
203 	loaded = (vcpu->cpu != -1);
204 	if (loaded)
205 		kvm_arch_vcpu_put(vcpu);
206 
207 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
208 		if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE))
209 			kvm_vcpu_enable_sve(vcpu);
210 	} else {
211 		kvm_vcpu_reset_sve(vcpu);
212 	}
213 
214 	if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||
215 	    vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC))
216 		kvm_vcpu_enable_ptrauth(vcpu);
217 
218 	if (vcpu_el1_is_32bit(vcpu))
219 		pstate = VCPU_RESET_PSTATE_SVC;
220 	else if (vcpu_has_nv(vcpu))
221 		pstate = VCPU_RESET_PSTATE_EL2;
222 	else
223 		pstate = VCPU_RESET_PSTATE_EL1;
224 
225 	/* Reset core registers */
226 	memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
227 	memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
228 	vcpu->arch.ctxt.spsr_abt = 0;
229 	vcpu->arch.ctxt.spsr_und = 0;
230 	vcpu->arch.ctxt.spsr_irq = 0;
231 	vcpu->arch.ctxt.spsr_fiq = 0;
232 	vcpu_gp_regs(vcpu)->pstate = pstate;
233 
234 	/* Reset system registers */
235 	kvm_reset_sys_regs(vcpu);
236 
237 	/*
238 	 * Additional reset state handling that PSCI may have imposed on us.
239 	 * Must be done after all the sys_reg reset.
240 	 */
241 	if (reset_state.reset) {
242 		unsigned long target_pc = reset_state.pc;
243 
244 		/* Gracefully handle Thumb2 entry point */
245 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
246 			target_pc &= ~1UL;
247 			vcpu_set_thumb(vcpu);
248 		}
249 
250 		/* Propagate caller endianness */
251 		if (reset_state.be)
252 			kvm_vcpu_set_be(vcpu);
253 
254 		*vcpu_pc(vcpu) = target_pc;
255 		vcpu_set_reg(vcpu, 0, reset_state.r0);
256 	}
257 
258 	/* Reset timer */
259 	kvm_timer_vcpu_reset(vcpu);
260 
261 	if (loaded)
262 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
263 	preempt_enable();
264 }
265 
266 u32 kvm_get_pa_bits(struct kvm *kvm)
267 {
268 	/* Fixed limit until we can configure ID_AA64MMFR0.PARange */
269 	return kvm_ipa_limit;
270 }
271 
272 u32 get_kvm_ipa_limit(void)
273 {
274 	return kvm_ipa_limit;
275 }
276 
277 int __init kvm_set_ipa_limit(void)
278 {
279 	unsigned int parange;
280 	u64 mmfr0;
281 
282 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
283 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
284 				ID_AA64MMFR0_EL1_PARANGE_SHIFT);
285 	/*
286 	 * IPA size beyond 48 bits for 4K and 16K page size is only supported
287 	 * when LPA2 is available. So if we have LPA2, enable it, else cap to 48
288 	 * bits, in case it's reported as larger on the system.
289 	 */
290 	if (!kvm_lpa2_is_enabled() && PAGE_SIZE != SZ_64K)
291 		parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
292 
293 	/*
294 	 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
295 	 * Stage-2. If not, things will stop very quickly.
296 	 */
297 	switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
298 	case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
299 		kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
300 		return -EINVAL;
301 	case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
302 		kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
303 		break;
304 	case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
305 		kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
306 		break;
307 	default:
308 		kvm_err("Unsupported value for TGRAN_2, giving up\n");
309 		return -EINVAL;
310 	}
311 
312 	kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
313 	kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
314 		 ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
315 		  " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
316 
317 	return 0;
318 }
319