xref: /linux/arch/arm64/kvm/reset.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <kvm/arm_arch_timer.h>
21 
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/virt.h>
31 
32 /* Maximum phys_shift supported for any VM on this host */
33 static u32 kvm_ipa_limit;
34 
35 /*
36  * ARMv8 Reset Values
37  */
38 #define VCPU_RESET_PSTATE_EL1	(PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
39 				 PSR_F_BIT | PSR_D_BIT)
40 
41 #define VCPU_RESET_PSTATE_SVC	(PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
42 				 PSR_AA32_I_BIT | PSR_AA32_F_BIT)
43 
44 unsigned int kvm_sve_max_vl;
45 
46 int kvm_arm_init_sve(void)
47 {
48 	if (system_supports_sve()) {
49 		kvm_sve_max_vl = sve_max_virtualisable_vl();
50 
51 		/*
52 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
53 		 * to be extended with multiple register slice support in
54 		 * order to support vector lengths greater than
55 		 * VL_ARCH_MAX:
56 		 */
57 		if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
58 			kvm_sve_max_vl = VL_ARCH_MAX;
59 
60 		/*
61 		 * Don't even try to make use of vector lengths that
62 		 * aren't available on all CPUs, for now:
63 		 */
64 		if (kvm_sve_max_vl < sve_max_vl())
65 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
66 				kvm_sve_max_vl);
67 	}
68 
69 	return 0;
70 }
71 
72 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
73 {
74 	if (!system_supports_sve())
75 		return -EINVAL;
76 
77 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
78 
79 	/*
80 	 * Userspace can still customize the vector lengths by writing
81 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
82 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
83 	 */
84 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
85 
86 	return 0;
87 }
88 
89 /*
90  * Finalize vcpu's maximum SVE vector length, allocating
91  * vcpu->arch.sve_state as necessary.
92  */
93 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
94 {
95 	void *buf;
96 	unsigned int vl;
97 	size_t reg_sz;
98 	int ret;
99 
100 	vl = vcpu->arch.sve_max_vl;
101 
102 	/*
103 	 * Responsibility for these properties is shared between
104 	 * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
105 	 * set_sve_vls().  Double-check here just to be sure:
106 	 */
107 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
108 		    vl > VL_ARCH_MAX))
109 		return -EIO;
110 
111 	reg_sz = vcpu_sve_state_size(vcpu);
112 	buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
113 	if (!buf)
114 		return -ENOMEM;
115 
116 	ret = kvm_share_hyp(buf, buf + reg_sz);
117 	if (ret) {
118 		kfree(buf);
119 		return ret;
120 	}
121 
122 	vcpu->arch.sve_state = buf;
123 	vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
124 	return 0;
125 }
126 
127 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
128 {
129 	switch (feature) {
130 	case KVM_ARM_VCPU_SVE:
131 		if (!vcpu_has_sve(vcpu))
132 			return -EINVAL;
133 
134 		if (kvm_arm_vcpu_sve_finalized(vcpu))
135 			return -EPERM;
136 
137 		return kvm_vcpu_finalize_sve(vcpu);
138 	}
139 
140 	return -EINVAL;
141 }
142 
143 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
144 {
145 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
146 		return false;
147 
148 	return true;
149 }
150 
151 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
152 {
153 	void *sve_state = vcpu->arch.sve_state;
154 
155 	kvm_vcpu_unshare_task_fp(vcpu);
156 	kvm_unshare_hyp(vcpu, vcpu + 1);
157 	if (sve_state)
158 		kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
159 	kfree(sve_state);
160 }
161 
162 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
163 {
164 	if (vcpu_has_sve(vcpu))
165 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
166 }
167 
168 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
169 {
170 	/*
171 	 * For now make sure that both address/generic pointer authentication
172 	 * features are requested by the userspace together and the system
173 	 * supports these capabilities.
174 	 */
175 	if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
176 	    !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
177 	    !system_has_full_ptr_auth())
178 		return -EINVAL;
179 
180 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
181 	return 0;
182 }
183 
184 static bool vcpu_allowed_register_width(struct kvm_vcpu *vcpu)
185 {
186 	struct kvm_vcpu *tmp;
187 	bool is32bit;
188 	unsigned long i;
189 
190 	is32bit = vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT);
191 	if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1) && is32bit)
192 		return false;
193 
194 	/* MTE is incompatible with AArch32 */
195 	if (kvm_has_mte(vcpu->kvm) && is32bit)
196 		return false;
197 
198 	/* Check that the vcpus are either all 32bit or all 64bit */
199 	kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
200 		if (vcpu_has_feature(tmp, KVM_ARM_VCPU_EL1_32BIT) != is32bit)
201 			return false;
202 	}
203 
204 	return true;
205 }
206 
207 /**
208  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
209  * @vcpu: The VCPU pointer
210  *
211  * This function sets the registers on the virtual CPU struct to their
212  * architecturally defined reset values, except for registers whose reset is
213  * deferred until kvm_arm_vcpu_finalize().
214  *
215  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
216  * ioctl or as part of handling a request issued by another VCPU in the PSCI
217  * handling code.  In the first case, the VCPU will not be loaded, and in the
218  * second case the VCPU will be loaded.  Because this function operates purely
219  * on the memory-backed values of system registers, we want to do a full put if
220  * we were loaded (handling a request) and load the values back at the end of
221  * the function.  Otherwise we leave the state alone.  In both cases, we
222  * disable preemption around the vcpu reset as we would otherwise race with
223  * preempt notifiers which also call put/load.
224  */
225 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
226 {
227 	struct vcpu_reset_state reset_state;
228 	int ret;
229 	bool loaded;
230 	u32 pstate;
231 
232 	mutex_lock(&vcpu->kvm->lock);
233 	reset_state = vcpu->arch.reset_state;
234 	WRITE_ONCE(vcpu->arch.reset_state.reset, false);
235 	mutex_unlock(&vcpu->kvm->lock);
236 
237 	/* Reset PMU outside of the non-preemptible section */
238 	kvm_pmu_vcpu_reset(vcpu);
239 
240 	preempt_disable();
241 	loaded = (vcpu->cpu != -1);
242 	if (loaded)
243 		kvm_arch_vcpu_put(vcpu);
244 
245 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
246 		if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
247 			ret = kvm_vcpu_enable_sve(vcpu);
248 			if (ret)
249 				goto out;
250 		}
251 	} else {
252 		kvm_vcpu_reset_sve(vcpu);
253 	}
254 
255 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
256 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
257 		if (kvm_vcpu_enable_ptrauth(vcpu)) {
258 			ret = -EINVAL;
259 			goto out;
260 		}
261 	}
262 
263 	if (!vcpu_allowed_register_width(vcpu)) {
264 		ret = -EINVAL;
265 		goto out;
266 	}
267 
268 	switch (vcpu->arch.target) {
269 	default:
270 		if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
271 			pstate = VCPU_RESET_PSTATE_SVC;
272 		} else {
273 			pstate = VCPU_RESET_PSTATE_EL1;
274 		}
275 
276 		if (kvm_vcpu_has_pmu(vcpu) && !kvm_arm_support_pmu_v3()) {
277 			ret = -EINVAL;
278 			goto out;
279 		}
280 		break;
281 	}
282 
283 	/* Reset core registers */
284 	memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
285 	memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
286 	vcpu->arch.ctxt.spsr_abt = 0;
287 	vcpu->arch.ctxt.spsr_und = 0;
288 	vcpu->arch.ctxt.spsr_irq = 0;
289 	vcpu->arch.ctxt.spsr_fiq = 0;
290 	vcpu_gp_regs(vcpu)->pstate = pstate;
291 
292 	/* Reset system registers */
293 	kvm_reset_sys_regs(vcpu);
294 
295 	/*
296 	 * Additional reset state handling that PSCI may have imposed on us.
297 	 * Must be done after all the sys_reg reset.
298 	 */
299 	if (reset_state.reset) {
300 		unsigned long target_pc = reset_state.pc;
301 
302 		/* Gracefully handle Thumb2 entry point */
303 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
304 			target_pc &= ~1UL;
305 			vcpu_set_thumb(vcpu);
306 		}
307 
308 		/* Propagate caller endianness */
309 		if (reset_state.be)
310 			kvm_vcpu_set_be(vcpu);
311 
312 		*vcpu_pc(vcpu) = target_pc;
313 		vcpu_set_reg(vcpu, 0, reset_state.r0);
314 	}
315 
316 	/* Reset timer */
317 	ret = kvm_timer_vcpu_reset(vcpu);
318 out:
319 	if (loaded)
320 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
321 	preempt_enable();
322 	return ret;
323 }
324 
325 u32 get_kvm_ipa_limit(void)
326 {
327 	return kvm_ipa_limit;
328 }
329 
330 int kvm_set_ipa_limit(void)
331 {
332 	unsigned int parange;
333 	u64 mmfr0;
334 
335 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
336 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
337 				ID_AA64MMFR0_PARANGE_SHIFT);
338 	/*
339 	 * IPA size beyond 48 bits could not be supported
340 	 * on either 4K or 16K page size. Hence let's cap
341 	 * it to 48 bits, in case it's reported as larger
342 	 * on the system.
343 	 */
344 	if (PAGE_SIZE != SZ_64K)
345 		parange = min(parange, (unsigned int)ID_AA64MMFR0_PARANGE_48);
346 
347 	/*
348 	 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
349 	 * Stage-2. If not, things will stop very quickly.
350 	 */
351 	switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_TGRAN_2_SHIFT)) {
352 	case ID_AA64MMFR0_TGRAN_2_SUPPORTED_NONE:
353 		kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
354 		return -EINVAL;
355 	case ID_AA64MMFR0_TGRAN_2_SUPPORTED_DEFAULT:
356 		kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
357 		break;
358 	case ID_AA64MMFR0_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_TGRAN_2_SUPPORTED_MAX:
359 		kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
360 		break;
361 	default:
362 		kvm_err("Unsupported value for TGRAN_2, giving up\n");
363 		return -EINVAL;
364 	}
365 
366 	kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
367 	kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
368 		 ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
369 		  " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
370 
371 	return 0;
372 }
373 
374 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
375 {
376 	u64 mmfr0, mmfr1;
377 	u32 phys_shift;
378 
379 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
380 		return -EINVAL;
381 
382 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
383 	if (phys_shift) {
384 		if (phys_shift > kvm_ipa_limit ||
385 		    phys_shift < ARM64_MIN_PARANGE_BITS)
386 			return -EINVAL;
387 	} else {
388 		phys_shift = KVM_PHYS_SHIFT;
389 		if (phys_shift > kvm_ipa_limit) {
390 			pr_warn_once("%s using unsupported default IPA limit, upgrade your VMM\n",
391 				     current->comm);
392 			return -EINVAL;
393 		}
394 	}
395 
396 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
397 	mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
398 	kvm->arch.vtcr = kvm_get_vtcr(mmfr0, mmfr1, phys_shift);
399 
400 	return 0;
401 }
402