xref: /linux/arch/arm64/kvm/reset.c (revision 63d6e721527e175edbbe8513cba8e4a0caf94da5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <kvm/arm_arch_timer.h>
21 
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_coproc.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/virt.h>
32 
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 kvm_ipa_limit;
35 
36 /*
37  * ARMv8 Reset Values
38  */
39 static const struct kvm_regs default_regs_reset = {
40 	.regs.pstate = (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT |
41 			PSR_F_BIT | PSR_D_BIT),
42 };
43 
44 static const struct kvm_regs default_regs_reset32 = {
45 	.regs.pstate = (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT |
46 			PSR_AA32_I_BIT | PSR_AA32_F_BIT),
47 };
48 
49 static bool cpu_has_32bit_el1(void)
50 {
51 	u64 pfr0;
52 
53 	pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
54 	return !!(pfr0 & 0x20);
55 }
56 
57 /**
58  * kvm_arch_vm_ioctl_check_extension
59  *
60  * We currently assume that the number of HW registers is uniform
61  * across all CPUs (see cpuinfo_sanity_check).
62  */
63 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
64 {
65 	int r;
66 
67 	switch (ext) {
68 	case KVM_CAP_ARM_EL1_32BIT:
69 		r = cpu_has_32bit_el1();
70 		break;
71 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
72 		r = get_num_brps();
73 		break;
74 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
75 		r = get_num_wrps();
76 		break;
77 	case KVM_CAP_ARM_PMU_V3:
78 		r = kvm_arm_support_pmu_v3();
79 		break;
80 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
81 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
82 		break;
83 	case KVM_CAP_SET_GUEST_DEBUG:
84 	case KVM_CAP_VCPU_ATTRIBUTES:
85 		r = 1;
86 		break;
87 	case KVM_CAP_ARM_VM_IPA_SIZE:
88 		r = kvm_ipa_limit;
89 		break;
90 	case KVM_CAP_ARM_SVE:
91 		r = system_supports_sve();
92 		break;
93 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
94 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
95 		r = has_vhe() && system_supports_address_auth() &&
96 				 system_supports_generic_auth();
97 		break;
98 	default:
99 		r = 0;
100 	}
101 
102 	return r;
103 }
104 
105 unsigned int kvm_sve_max_vl;
106 
107 int kvm_arm_init_sve(void)
108 {
109 	if (system_supports_sve()) {
110 		kvm_sve_max_vl = sve_max_virtualisable_vl;
111 
112 		/*
113 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
114 		 * to be extended with multiple register slice support in
115 		 * order to support vector lengths greater than
116 		 * SVE_VL_ARCH_MAX:
117 		 */
118 		if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
119 			kvm_sve_max_vl = SVE_VL_ARCH_MAX;
120 
121 		/*
122 		 * Don't even try to make use of vector lengths that
123 		 * aren't available on all CPUs, for now:
124 		 */
125 		if (kvm_sve_max_vl < sve_max_vl)
126 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
127 				kvm_sve_max_vl);
128 	}
129 
130 	return 0;
131 }
132 
133 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
134 {
135 	if (!system_supports_sve())
136 		return -EINVAL;
137 
138 	/* Verify that KVM startup enforced this when SVE was detected: */
139 	if (WARN_ON(!has_vhe()))
140 		return -EINVAL;
141 
142 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
143 
144 	/*
145 	 * Userspace can still customize the vector lengths by writing
146 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
147 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
148 	 */
149 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
150 
151 	return 0;
152 }
153 
154 /*
155  * Finalize vcpu's maximum SVE vector length, allocating
156  * vcpu->arch.sve_state as necessary.
157  */
158 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
159 {
160 	void *buf;
161 	unsigned int vl;
162 
163 	vl = vcpu->arch.sve_max_vl;
164 
165 	/*
166 	 * Resposibility for these properties is shared between
167 	 * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
168 	 * set_sve_vls().  Double-check here just to be sure:
169 	 */
170 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
171 		    vl > SVE_VL_ARCH_MAX))
172 		return -EIO;
173 
174 	buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
175 	if (!buf)
176 		return -ENOMEM;
177 
178 	vcpu->arch.sve_state = buf;
179 	vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
180 	return 0;
181 }
182 
183 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
184 {
185 	switch (feature) {
186 	case KVM_ARM_VCPU_SVE:
187 		if (!vcpu_has_sve(vcpu))
188 			return -EINVAL;
189 
190 		if (kvm_arm_vcpu_sve_finalized(vcpu))
191 			return -EPERM;
192 
193 		return kvm_vcpu_finalize_sve(vcpu);
194 	}
195 
196 	return -EINVAL;
197 }
198 
199 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
200 {
201 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
202 		return false;
203 
204 	return true;
205 }
206 
207 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
208 {
209 	kfree(vcpu->arch.sve_state);
210 }
211 
212 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
213 {
214 	if (vcpu_has_sve(vcpu))
215 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
216 }
217 
218 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
219 {
220 	/* Support ptrauth only if the system supports these capabilities. */
221 	if (!has_vhe())
222 		return -EINVAL;
223 
224 	if (!system_supports_address_auth() ||
225 	    !system_supports_generic_auth())
226 		return -EINVAL;
227 	/*
228 	 * For now make sure that both address/generic pointer authentication
229 	 * features are requested by the userspace together.
230 	 */
231 	if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
232 	    !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features))
233 		return -EINVAL;
234 
235 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
236 	return 0;
237 }
238 
239 /**
240  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
241  * @vcpu: The VCPU pointer
242  *
243  * This function finds the right table above and sets the registers on
244  * the virtual CPU struct to their architecturally defined reset
245  * values, except for registers whose reset is deferred until
246  * kvm_arm_vcpu_finalize().
247  *
248  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
249  * ioctl or as part of handling a request issued by another VCPU in the PSCI
250  * handling code.  In the first case, the VCPU will not be loaded, and in the
251  * second case the VCPU will be loaded.  Because this function operates purely
252  * on the memory-backed valus of system registers, we want to do a full put if
253  * we were loaded (handling a request) and load the values back at the end of
254  * the function.  Otherwise we leave the state alone.  In both cases, we
255  * disable preemption around the vcpu reset as we would otherwise race with
256  * preempt notifiers which also call put/load.
257  */
258 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
259 {
260 	const struct kvm_regs *cpu_reset;
261 	int ret = -EINVAL;
262 	bool loaded;
263 
264 	/* Reset PMU outside of the non-preemptible section */
265 	kvm_pmu_vcpu_reset(vcpu);
266 
267 	preempt_disable();
268 	loaded = (vcpu->cpu != -1);
269 	if (loaded)
270 		kvm_arch_vcpu_put(vcpu);
271 
272 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
273 		if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
274 			ret = kvm_vcpu_enable_sve(vcpu);
275 			if (ret)
276 				goto out;
277 		}
278 	} else {
279 		kvm_vcpu_reset_sve(vcpu);
280 	}
281 
282 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
283 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
284 		if (kvm_vcpu_enable_ptrauth(vcpu))
285 			goto out;
286 	}
287 
288 	switch (vcpu->arch.target) {
289 	default:
290 		if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
291 			if (!cpu_has_32bit_el1())
292 				goto out;
293 			cpu_reset = &default_regs_reset32;
294 		} else {
295 			cpu_reset = &default_regs_reset;
296 		}
297 
298 		break;
299 	}
300 
301 	/* Reset core registers */
302 	memcpy(vcpu_gp_regs(vcpu), cpu_reset, sizeof(*cpu_reset));
303 
304 	/* Reset system registers */
305 	kvm_reset_sys_regs(vcpu);
306 
307 	/*
308 	 * Additional reset state handling that PSCI may have imposed on us.
309 	 * Must be done after all the sys_reg reset.
310 	 */
311 	if (vcpu->arch.reset_state.reset) {
312 		unsigned long target_pc = vcpu->arch.reset_state.pc;
313 
314 		/* Gracefully handle Thumb2 entry point */
315 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
316 			target_pc &= ~1UL;
317 			vcpu_set_thumb(vcpu);
318 		}
319 
320 		/* Propagate caller endianness */
321 		if (vcpu->arch.reset_state.be)
322 			kvm_vcpu_set_be(vcpu);
323 
324 		*vcpu_pc(vcpu) = target_pc;
325 		vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
326 
327 		vcpu->arch.reset_state.reset = false;
328 	}
329 
330 	/* Default workaround setup is enabled (if supported) */
331 	if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
332 		vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
333 
334 	/* Reset timer */
335 	ret = kvm_timer_vcpu_reset(vcpu);
336 out:
337 	if (loaded)
338 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
339 	preempt_enable();
340 	return ret;
341 }
342 
343 void kvm_set_ipa_limit(void)
344 {
345 	unsigned int ipa_max, pa_max, va_max, parange;
346 
347 	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 0x7;
348 	pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
349 
350 	/* Clamp the IPA limit to the PA size supported by the kernel */
351 	ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
352 	/*
353 	 * Since our stage2 table is dependent on the stage1 page table code,
354 	 * we must always honor the following condition:
355 	 *
356 	 *  Number of levels in Stage1 >= Number of levels in Stage2.
357 	 *
358 	 * So clamp the ipa limit further down to limit the number of levels.
359 	 * Since we can concatenate upto 16 tables at entry level, we could
360 	 * go upto 4bits above the maximum VA addressible with the current
361 	 * number of levels.
362 	 */
363 	va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
364 	va_max += 4;
365 
366 	if (va_max < ipa_max)
367 		ipa_max = va_max;
368 
369 	/*
370 	 * If the final limit is lower than the real physical address
371 	 * limit of the CPUs, report the reason.
372 	 */
373 	if (ipa_max < pa_max)
374 		pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
375 			(va_max < pa_max) ? "Virtual" : "Physical");
376 
377 	WARN(ipa_max < KVM_PHYS_SHIFT,
378 	     "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
379 	kvm_ipa_limit = ipa_max;
380 	kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
381 }
382 
383 /*
384  * Configure the VTCR_EL2 for this VM. The VTCR value is common
385  * across all the physical CPUs on the system. We use system wide
386  * sanitised values to fill in different fields, except for Hardware
387  * Management of Access Flags. HA Flag is set unconditionally on
388  * all CPUs, as it is safe to run with or without the feature and
389  * the bit is RES0 on CPUs that don't support it.
390  */
391 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
392 {
393 	u64 vtcr = VTCR_EL2_FLAGS;
394 	u32 parange, phys_shift;
395 	u8 lvls;
396 
397 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
398 		return -EINVAL;
399 
400 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
401 	if (phys_shift) {
402 		if (phys_shift > kvm_ipa_limit ||
403 		    phys_shift < 32)
404 			return -EINVAL;
405 	} else {
406 		phys_shift = KVM_PHYS_SHIFT;
407 	}
408 
409 	parange = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1) & 7;
410 	if (parange > ID_AA64MMFR0_PARANGE_MAX)
411 		parange = ID_AA64MMFR0_PARANGE_MAX;
412 	vtcr |= parange << VTCR_EL2_PS_SHIFT;
413 
414 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
415 	/*
416 	 * Use a minimum 2 level page table to prevent splitting
417 	 * host PMD huge pages at stage2.
418 	 */
419 	lvls = stage2_pgtable_levels(phys_shift);
420 	if (lvls < 2)
421 		lvls = 2;
422 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
423 
424 	/*
425 	 * Enable the Hardware Access Flag management, unconditionally
426 	 * on all CPUs. The features is RES0 on CPUs without the support
427 	 * and must be ignored by the CPUs.
428 	 */
429 	vtcr |= VTCR_EL2_HA;
430 
431 	/* Set the vmid bits */
432 	vtcr |= (kvm_get_vmid_bits() == 16) ?
433 		VTCR_EL2_VS_16BIT :
434 		VTCR_EL2_VS_8BIT;
435 	kvm->arch.vtcr = vtcr;
436 	return 0;
437 }
438