xref: /linux/arch/arm64/kvm/reset.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012,2013 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  *
6  * Derived from arch/arm/kvm/reset.c
7  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 
20 #include <kvm/arm_arch_timer.h>
21 
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_coproc.h>
29 #include <asm/kvm_emulate.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/virt.h>
32 
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 kvm_ipa_limit;
35 
36 /*
37  * ARMv8 Reset Values
38  */
39 #define VCPU_RESET_PSTATE_EL1	(PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
40 				 PSR_F_BIT | PSR_D_BIT)
41 
42 #define VCPU_RESET_PSTATE_SVC	(PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
43 				 PSR_AA32_I_BIT | PSR_AA32_F_BIT)
44 
45 static bool system_has_full_ptr_auth(void)
46 {
47 	return system_supports_address_auth() && system_supports_generic_auth();
48 }
49 
50 /**
51  * kvm_arch_vm_ioctl_check_extension
52  *
53  * We currently assume that the number of HW registers is uniform
54  * across all CPUs (see cpuinfo_sanity_check).
55  */
56 int kvm_arch_vm_ioctl_check_extension(struct kvm *kvm, long ext)
57 {
58 	int r;
59 
60 	switch (ext) {
61 	case KVM_CAP_ARM_EL1_32BIT:
62 		r = cpus_have_const_cap(ARM64_HAS_32BIT_EL1);
63 		break;
64 	case KVM_CAP_GUEST_DEBUG_HW_BPS:
65 		r = get_num_brps();
66 		break;
67 	case KVM_CAP_GUEST_DEBUG_HW_WPS:
68 		r = get_num_wrps();
69 		break;
70 	case KVM_CAP_ARM_PMU_V3:
71 		r = kvm_arm_support_pmu_v3();
72 		break;
73 	case KVM_CAP_ARM_INJECT_SERROR_ESR:
74 		r = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
75 		break;
76 	case KVM_CAP_SET_GUEST_DEBUG:
77 	case KVM_CAP_VCPU_ATTRIBUTES:
78 		r = 1;
79 		break;
80 	case KVM_CAP_ARM_VM_IPA_SIZE:
81 		r = kvm_ipa_limit;
82 		break;
83 	case KVM_CAP_ARM_SVE:
84 		r = system_supports_sve();
85 		break;
86 	case KVM_CAP_ARM_PTRAUTH_ADDRESS:
87 	case KVM_CAP_ARM_PTRAUTH_GENERIC:
88 		r = system_has_full_ptr_auth();
89 		break;
90 	default:
91 		r = 0;
92 	}
93 
94 	return r;
95 }
96 
97 unsigned int kvm_sve_max_vl;
98 
99 int kvm_arm_init_sve(void)
100 {
101 	if (system_supports_sve()) {
102 		kvm_sve_max_vl = sve_max_virtualisable_vl;
103 
104 		/*
105 		 * The get_sve_reg()/set_sve_reg() ioctl interface will need
106 		 * to be extended with multiple register slice support in
107 		 * order to support vector lengths greater than
108 		 * SVE_VL_ARCH_MAX:
109 		 */
110 		if (WARN_ON(kvm_sve_max_vl > SVE_VL_ARCH_MAX))
111 			kvm_sve_max_vl = SVE_VL_ARCH_MAX;
112 
113 		/*
114 		 * Don't even try to make use of vector lengths that
115 		 * aren't available on all CPUs, for now:
116 		 */
117 		if (kvm_sve_max_vl < sve_max_vl)
118 			pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
119 				kvm_sve_max_vl);
120 	}
121 
122 	return 0;
123 }
124 
125 static int kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
126 {
127 	if (!system_supports_sve())
128 		return -EINVAL;
129 
130 	/* Verify that KVM startup enforced this when SVE was detected: */
131 	if (WARN_ON(!has_vhe()))
132 		return -EINVAL;
133 
134 	vcpu->arch.sve_max_vl = kvm_sve_max_vl;
135 
136 	/*
137 	 * Userspace can still customize the vector lengths by writing
138 	 * KVM_REG_ARM64_SVE_VLS.  Allocation is deferred until
139 	 * kvm_arm_vcpu_finalize(), which freezes the configuration.
140 	 */
141 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_SVE;
142 
143 	return 0;
144 }
145 
146 /*
147  * Finalize vcpu's maximum SVE vector length, allocating
148  * vcpu->arch.sve_state as necessary.
149  */
150 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
151 {
152 	void *buf;
153 	unsigned int vl;
154 
155 	vl = vcpu->arch.sve_max_vl;
156 
157 	/*
158 	 * Responsibility for these properties is shared between
159 	 * kvm_arm_init_arch_resources(), kvm_vcpu_enable_sve() and
160 	 * set_sve_vls().  Double-check here just to be sure:
161 	 */
162 	if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl ||
163 		    vl > SVE_VL_ARCH_MAX))
164 		return -EIO;
165 
166 	buf = kzalloc(SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl)), GFP_KERNEL);
167 	if (!buf)
168 		return -ENOMEM;
169 
170 	vcpu->arch.sve_state = buf;
171 	vcpu->arch.flags |= KVM_ARM64_VCPU_SVE_FINALIZED;
172 	return 0;
173 }
174 
175 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
176 {
177 	switch (feature) {
178 	case KVM_ARM_VCPU_SVE:
179 		if (!vcpu_has_sve(vcpu))
180 			return -EINVAL;
181 
182 		if (kvm_arm_vcpu_sve_finalized(vcpu))
183 			return -EPERM;
184 
185 		return kvm_vcpu_finalize_sve(vcpu);
186 	}
187 
188 	return -EINVAL;
189 }
190 
191 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
192 {
193 	if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
194 		return false;
195 
196 	return true;
197 }
198 
199 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
200 {
201 	kfree(vcpu->arch.sve_state);
202 }
203 
204 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
205 {
206 	if (vcpu_has_sve(vcpu))
207 		memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
208 }
209 
210 static int kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
211 {
212 	/*
213 	 * For now make sure that both address/generic pointer authentication
214 	 * features are requested by the userspace together and the system
215 	 * supports these capabilities.
216 	 */
217 	if (!test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
218 	    !test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features) ||
219 	    !system_has_full_ptr_auth())
220 		return -EINVAL;
221 
222 	vcpu->arch.flags |= KVM_ARM64_GUEST_HAS_PTRAUTH;
223 	return 0;
224 }
225 
226 /**
227  * kvm_reset_vcpu - sets core registers and sys_regs to reset value
228  * @vcpu: The VCPU pointer
229  *
230  * This function finds the right table above and sets the registers on
231  * the virtual CPU struct to their architecturally defined reset
232  * values, except for registers whose reset is deferred until
233  * kvm_arm_vcpu_finalize().
234  *
235  * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
236  * ioctl or as part of handling a request issued by another VCPU in the PSCI
237  * handling code.  In the first case, the VCPU will not be loaded, and in the
238  * second case the VCPU will be loaded.  Because this function operates purely
239  * on the memory-backed values of system registers, we want to do a full put if
240  * we were loaded (handling a request) and load the values back at the end of
241  * the function.  Otherwise we leave the state alone.  In both cases, we
242  * disable preemption around the vcpu reset as we would otherwise race with
243  * preempt notifiers which also call put/load.
244  */
245 int kvm_reset_vcpu(struct kvm_vcpu *vcpu)
246 {
247 	int ret;
248 	bool loaded;
249 	u32 pstate;
250 
251 	/* Reset PMU outside of the non-preemptible section */
252 	kvm_pmu_vcpu_reset(vcpu);
253 
254 	preempt_disable();
255 	loaded = (vcpu->cpu != -1);
256 	if (loaded)
257 		kvm_arch_vcpu_put(vcpu);
258 
259 	if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
260 		if (test_bit(KVM_ARM_VCPU_SVE, vcpu->arch.features)) {
261 			ret = kvm_vcpu_enable_sve(vcpu);
262 			if (ret)
263 				goto out;
264 		}
265 	} else {
266 		kvm_vcpu_reset_sve(vcpu);
267 	}
268 
269 	if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, vcpu->arch.features) ||
270 	    test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, vcpu->arch.features)) {
271 		if (kvm_vcpu_enable_ptrauth(vcpu)) {
272 			ret = -EINVAL;
273 			goto out;
274 		}
275 	}
276 
277 	switch (vcpu->arch.target) {
278 	default:
279 		if (test_bit(KVM_ARM_VCPU_EL1_32BIT, vcpu->arch.features)) {
280 			if (!cpus_have_const_cap(ARM64_HAS_32BIT_EL1)) {
281 				ret = -EINVAL;
282 				goto out;
283 			}
284 			pstate = VCPU_RESET_PSTATE_SVC;
285 		} else {
286 			pstate = VCPU_RESET_PSTATE_EL1;
287 		}
288 
289 		break;
290 	}
291 
292 	/* Reset core registers */
293 	memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
294 	vcpu_gp_regs(vcpu)->pstate = pstate;
295 
296 	/* Reset system registers */
297 	kvm_reset_sys_regs(vcpu);
298 
299 	/*
300 	 * Additional reset state handling that PSCI may have imposed on us.
301 	 * Must be done after all the sys_reg reset.
302 	 */
303 	if (vcpu->arch.reset_state.reset) {
304 		unsigned long target_pc = vcpu->arch.reset_state.pc;
305 
306 		/* Gracefully handle Thumb2 entry point */
307 		if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
308 			target_pc &= ~1UL;
309 			vcpu_set_thumb(vcpu);
310 		}
311 
312 		/* Propagate caller endianness */
313 		if (vcpu->arch.reset_state.be)
314 			kvm_vcpu_set_be(vcpu);
315 
316 		*vcpu_pc(vcpu) = target_pc;
317 		vcpu_set_reg(vcpu, 0, vcpu->arch.reset_state.r0);
318 
319 		vcpu->arch.reset_state.reset = false;
320 	}
321 
322 	/* Default workaround setup is enabled (if supported) */
323 	if (kvm_arm_have_ssbd() == KVM_SSBD_KERNEL)
324 		vcpu->arch.workaround_flags |= VCPU_WORKAROUND_2_FLAG;
325 
326 	/* Reset timer */
327 	ret = kvm_timer_vcpu_reset(vcpu);
328 out:
329 	if (loaded)
330 		kvm_arch_vcpu_load(vcpu, smp_processor_id());
331 	preempt_enable();
332 	return ret;
333 }
334 
335 u32 get_kvm_ipa_limit(void)
336 {
337 	return kvm_ipa_limit;
338 }
339 
340 int kvm_set_ipa_limit(void)
341 {
342 	unsigned int ipa_max, pa_max, va_max, parange, tgran_2;
343 	u64 mmfr0;
344 
345 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
346 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
347 				ID_AA64MMFR0_PARANGE_SHIFT);
348 
349 	/*
350 	 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
351 	 * Stage-2. If not, things will stop very quickly.
352 	 */
353 	switch (PAGE_SIZE) {
354 	default:
355 	case SZ_4K:
356 		tgran_2 = ID_AA64MMFR0_TGRAN4_2_SHIFT;
357 		break;
358 	case SZ_16K:
359 		tgran_2 = ID_AA64MMFR0_TGRAN16_2_SHIFT;
360 		break;
361 	case SZ_64K:
362 		tgran_2 = ID_AA64MMFR0_TGRAN64_2_SHIFT;
363 		break;
364 	}
365 
366 	switch (cpuid_feature_extract_unsigned_field(mmfr0, tgran_2)) {
367 	default:
368 	case 1:
369 		kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
370 		return -EINVAL;
371 	case 0:
372 		kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
373 		break;
374 	case 2:
375 		kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
376 		break;
377 	}
378 
379 	pa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
380 
381 	/* Clamp the IPA limit to the PA size supported by the kernel */
382 	ipa_max = (pa_max > PHYS_MASK_SHIFT) ? PHYS_MASK_SHIFT : pa_max;
383 	/*
384 	 * Since our stage2 table is dependent on the stage1 page table code,
385 	 * we must always honor the following condition:
386 	 *
387 	 *  Number of levels in Stage1 >= Number of levels in Stage2.
388 	 *
389 	 * So clamp the ipa limit further down to limit the number of levels.
390 	 * Since we can concatenate upto 16 tables at entry level, we could
391 	 * go upto 4bits above the maximum VA addressable with the current
392 	 * number of levels.
393 	 */
394 	va_max = PGDIR_SHIFT + PAGE_SHIFT - 3;
395 	va_max += 4;
396 
397 	if (va_max < ipa_max)
398 		ipa_max = va_max;
399 
400 	/*
401 	 * If the final limit is lower than the real physical address
402 	 * limit of the CPUs, report the reason.
403 	 */
404 	if (ipa_max < pa_max)
405 		pr_info("kvm: Limiting the IPA size due to kernel %s Address limit\n",
406 			(va_max < pa_max) ? "Virtual" : "Physical");
407 
408 	WARN(ipa_max < KVM_PHYS_SHIFT,
409 	     "KVM IPA limit (%d bit) is smaller than default size\n", ipa_max);
410 	kvm_ipa_limit = ipa_max;
411 	kvm_info("IPA Size Limit: %dbits\n", kvm_ipa_limit);
412 
413 	return 0;
414 }
415 
416 /*
417  * Configure the VTCR_EL2 for this VM. The VTCR value is common
418  * across all the physical CPUs on the system. We use system wide
419  * sanitised values to fill in different fields, except for Hardware
420  * Management of Access Flags. HA Flag is set unconditionally on
421  * all CPUs, as it is safe to run with or without the feature and
422  * the bit is RES0 on CPUs that don't support it.
423  */
424 int kvm_arm_setup_stage2(struct kvm *kvm, unsigned long type)
425 {
426 	u64 vtcr = VTCR_EL2_FLAGS, mmfr0;
427 	u32 parange, phys_shift;
428 	u8 lvls;
429 
430 	if (type & ~KVM_VM_TYPE_ARM_IPA_SIZE_MASK)
431 		return -EINVAL;
432 
433 	phys_shift = KVM_VM_TYPE_ARM_IPA_SIZE(type);
434 	if (phys_shift) {
435 		if (phys_shift > kvm_ipa_limit ||
436 		    phys_shift < 32)
437 			return -EINVAL;
438 	} else {
439 		phys_shift = KVM_PHYS_SHIFT;
440 	}
441 
442 	mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
443 	parange = cpuid_feature_extract_unsigned_field(mmfr0,
444 				ID_AA64MMFR0_PARANGE_SHIFT);
445 	if (parange > ID_AA64MMFR0_PARANGE_MAX)
446 		parange = ID_AA64MMFR0_PARANGE_MAX;
447 	vtcr |= parange << VTCR_EL2_PS_SHIFT;
448 
449 	vtcr |= VTCR_EL2_T0SZ(phys_shift);
450 	/*
451 	 * Use a minimum 2 level page table to prevent splitting
452 	 * host PMD huge pages at stage2.
453 	 */
454 	lvls = stage2_pgtable_levels(phys_shift);
455 	if (lvls < 2)
456 		lvls = 2;
457 	vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
458 
459 	/*
460 	 * Enable the Hardware Access Flag management, unconditionally
461 	 * on all CPUs. The features is RES0 on CPUs without the support
462 	 * and must be ignored by the CPUs.
463 	 */
464 	vtcr |= VTCR_EL2_HA;
465 
466 	/* Set the vmid bits */
467 	vtcr |= (kvm_get_vmid_bits() == 16) ?
468 		VTCR_EL2_VS_16BIT :
469 		VTCR_EL2_VS_8BIT;
470 	kvm->arch.vtcr = vtcr;
471 	return 0;
472 }
473