xref: /linux/arch/arm64/kvm/psci.c (revision e0c1b8f9eba88173b30ba42eb492fd20582cf376)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 - ARM Ltd
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/arm-smccc.h>
8 #include <linux/preempt.h>
9 #include <linux/kvm_host.h>
10 #include <linux/uaccess.h>
11 #include <linux/wait.h>
12 
13 #include <asm/cputype.h>
14 #include <asm/kvm_emulate.h>
15 
16 #include <kvm/arm_psci.h>
17 #include <kvm/arm_hypercalls.h>
18 
19 /*
20  * This is an implementation of the Power State Coordination Interface
21  * as described in ARM document number ARM DEN 0022A.
22  */
23 
24 #define AFFINITY_MASK(level)	~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
25 
26 static unsigned long psci_affinity_mask(unsigned long affinity_level)
27 {
28 	if (affinity_level <= 3)
29 		return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
30 
31 	return 0;
32 }
33 
34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
35 {
36 	/*
37 	 * NOTE: For simplicity, we make VCPU suspend emulation to be
38 	 * same-as WFI (Wait-for-interrupt) emulation.
39 	 *
40 	 * This means for KVM the wakeup events are interrupts and
41 	 * this is consistent with intended use of StateID as described
42 	 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
43 	 *
44 	 * Further, we also treat power-down request to be same as
45 	 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
46 	 * specification (ARM DEN 0022A). This means all suspend states
47 	 * for KVM will preserve the register state.
48 	 */
49 	kvm_vcpu_wfi(vcpu);
50 
51 	return PSCI_RET_SUCCESS;
52 }
53 
54 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
55 {
56 	vcpu->arch.power_off = true;
57 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
58 	kvm_vcpu_kick(vcpu);
59 }
60 
61 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu,
62 					   unsigned long affinity)
63 {
64 	return !(affinity & ~MPIDR_HWID_BITMASK);
65 }
66 
67 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
68 {
69 	struct vcpu_reset_state *reset_state;
70 	struct kvm *kvm = source_vcpu->kvm;
71 	struct kvm_vcpu *vcpu = NULL;
72 	unsigned long cpu_id;
73 
74 	cpu_id = smccc_get_arg1(source_vcpu);
75 	if (!kvm_psci_valid_affinity(source_vcpu, cpu_id))
76 		return PSCI_RET_INVALID_PARAMS;
77 
78 	vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id);
79 
80 	/*
81 	 * Make sure the caller requested a valid CPU and that the CPU is
82 	 * turned off.
83 	 */
84 	if (!vcpu)
85 		return PSCI_RET_INVALID_PARAMS;
86 	if (!vcpu->arch.power_off) {
87 		if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
88 			return PSCI_RET_ALREADY_ON;
89 		else
90 			return PSCI_RET_INVALID_PARAMS;
91 	}
92 
93 	reset_state = &vcpu->arch.reset_state;
94 
95 	reset_state->pc = smccc_get_arg2(source_vcpu);
96 
97 	/* Propagate caller endianness */
98 	reset_state->be = kvm_vcpu_is_be(source_vcpu);
99 
100 	/*
101 	 * NOTE: We always update r0 (or x0) because for PSCI v0.1
102 	 * the general purpose registers are undefined upon CPU_ON.
103 	 */
104 	reset_state->r0 = smccc_get_arg3(source_vcpu);
105 
106 	WRITE_ONCE(reset_state->reset, true);
107 	kvm_make_request(KVM_REQ_VCPU_RESET, vcpu);
108 
109 	/*
110 	 * Make sure the reset request is observed if the change to
111 	 * power_off is observed.
112 	 */
113 	smp_wmb();
114 
115 	vcpu->arch.power_off = false;
116 	kvm_vcpu_wake_up(vcpu);
117 
118 	return PSCI_RET_SUCCESS;
119 }
120 
121 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
122 {
123 	int matching_cpus = 0;
124 	unsigned long i, mpidr;
125 	unsigned long target_affinity;
126 	unsigned long target_affinity_mask;
127 	unsigned long lowest_affinity_level;
128 	struct kvm *kvm = vcpu->kvm;
129 	struct kvm_vcpu *tmp;
130 
131 	target_affinity = smccc_get_arg1(vcpu);
132 	lowest_affinity_level = smccc_get_arg2(vcpu);
133 
134 	if (!kvm_psci_valid_affinity(vcpu, target_affinity))
135 		return PSCI_RET_INVALID_PARAMS;
136 
137 	/* Determine target affinity mask */
138 	target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
139 	if (!target_affinity_mask)
140 		return PSCI_RET_INVALID_PARAMS;
141 
142 	/* Ignore other bits of target affinity */
143 	target_affinity &= target_affinity_mask;
144 
145 	/*
146 	 * If one or more VCPU matching target affinity are running
147 	 * then ON else OFF
148 	 */
149 	kvm_for_each_vcpu(i, tmp, kvm) {
150 		mpidr = kvm_vcpu_get_mpidr_aff(tmp);
151 		if ((mpidr & target_affinity_mask) == target_affinity) {
152 			matching_cpus++;
153 			if (!tmp->arch.power_off)
154 				return PSCI_0_2_AFFINITY_LEVEL_ON;
155 		}
156 	}
157 
158 	if (!matching_cpus)
159 		return PSCI_RET_INVALID_PARAMS;
160 
161 	return PSCI_0_2_AFFINITY_LEVEL_OFF;
162 }
163 
164 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags)
165 {
166 	unsigned long i;
167 	struct kvm_vcpu *tmp;
168 
169 	/*
170 	 * The KVM ABI specifies that a system event exit may call KVM_RUN
171 	 * again and may perform shutdown/reboot at a later time that when the
172 	 * actual request is made.  Since we are implementing PSCI and a
173 	 * caller of PSCI reboot and shutdown expects that the system shuts
174 	 * down or reboots immediately, let's make sure that VCPUs are not run
175 	 * after this call is handled and before the VCPUs have been
176 	 * re-initialized.
177 	 */
178 	kvm_for_each_vcpu(i, tmp, vcpu->kvm)
179 		tmp->arch.power_off = true;
180 	kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP);
181 
182 	memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
183 	vcpu->run->system_event.type = type;
184 	vcpu->run->system_event.flags = flags;
185 	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
186 }
187 
188 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
189 {
190 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0);
191 }
192 
193 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
194 {
195 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0);
196 }
197 
198 static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu)
199 {
200 	kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET,
201 				 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2);
202 }
203 
204 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu)
205 {
206 	int i;
207 
208 	/*
209 	 * Zero the input registers' upper 32 bits. They will be fully
210 	 * zeroed on exit, so we're fine changing them in place.
211 	 */
212 	for (i = 1; i < 4; i++)
213 		vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i)));
214 }
215 
216 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn)
217 {
218 	/*
219 	 * Prevent 32 bit guests from calling 64 bit PSCI functions.
220 	 */
221 	if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu))
222 		return PSCI_RET_NOT_SUPPORTED;
223 
224 	return 0;
225 }
226 
227 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
228 {
229 	struct kvm *kvm = vcpu->kvm;
230 	u32 psci_fn = smccc_get_function(vcpu);
231 	unsigned long val;
232 	int ret = 1;
233 
234 	switch (psci_fn) {
235 	case PSCI_0_2_FN_PSCI_VERSION:
236 		/*
237 		 * Bits[31:16] = Major Version = 0
238 		 * Bits[15:0] = Minor Version = 2
239 		 */
240 		val = KVM_ARM_PSCI_0_2;
241 		break;
242 	case PSCI_0_2_FN_CPU_SUSPEND:
243 	case PSCI_0_2_FN64_CPU_SUSPEND:
244 		val = kvm_psci_vcpu_suspend(vcpu);
245 		break;
246 	case PSCI_0_2_FN_CPU_OFF:
247 		kvm_psci_vcpu_off(vcpu);
248 		val = PSCI_RET_SUCCESS;
249 		break;
250 	case PSCI_0_2_FN_CPU_ON:
251 		kvm_psci_narrow_to_32bit(vcpu);
252 		fallthrough;
253 	case PSCI_0_2_FN64_CPU_ON:
254 		mutex_lock(&kvm->lock);
255 		val = kvm_psci_vcpu_on(vcpu);
256 		mutex_unlock(&kvm->lock);
257 		break;
258 	case PSCI_0_2_FN_AFFINITY_INFO:
259 		kvm_psci_narrow_to_32bit(vcpu);
260 		fallthrough;
261 	case PSCI_0_2_FN64_AFFINITY_INFO:
262 		val = kvm_psci_vcpu_affinity_info(vcpu);
263 		break;
264 	case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
265 		/*
266 		 * Trusted OS is MP hence does not require migration
267 	         * or
268 		 * Trusted OS is not present
269 		 */
270 		val = PSCI_0_2_TOS_MP;
271 		break;
272 	case PSCI_0_2_FN_SYSTEM_OFF:
273 		kvm_psci_system_off(vcpu);
274 		/*
275 		 * We shouldn't be going back to guest VCPU after
276 		 * receiving SYSTEM_OFF request.
277 		 *
278 		 * If user space accidentally/deliberately resumes
279 		 * guest VCPU after SYSTEM_OFF request then guest
280 		 * VCPU should see internal failure from PSCI return
281 		 * value. To achieve this, we preload r0 (or x0) with
282 		 * PSCI return value INTERNAL_FAILURE.
283 		 */
284 		val = PSCI_RET_INTERNAL_FAILURE;
285 		ret = 0;
286 		break;
287 	case PSCI_0_2_FN_SYSTEM_RESET:
288 		kvm_psci_system_reset(vcpu);
289 		/*
290 		 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
291 		 * with PSCI return value INTERNAL_FAILURE.
292 		 */
293 		val = PSCI_RET_INTERNAL_FAILURE;
294 		ret = 0;
295 		break;
296 	default:
297 		val = PSCI_RET_NOT_SUPPORTED;
298 		break;
299 	}
300 
301 	smccc_set_retval(vcpu, val, 0, 0, 0);
302 	return ret;
303 }
304 
305 static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor)
306 {
307 	u32 psci_fn = smccc_get_function(vcpu);
308 	u32 arg;
309 	unsigned long val;
310 	int ret = 1;
311 
312 	switch(psci_fn) {
313 	case PSCI_0_2_FN_PSCI_VERSION:
314 		val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1;
315 		break;
316 	case PSCI_1_0_FN_PSCI_FEATURES:
317 		arg = smccc_get_arg1(vcpu);
318 		val = kvm_psci_check_allowed_function(vcpu, arg);
319 		if (val)
320 			break;
321 
322 		switch(arg) {
323 		case PSCI_0_2_FN_PSCI_VERSION:
324 		case PSCI_0_2_FN_CPU_SUSPEND:
325 		case PSCI_0_2_FN64_CPU_SUSPEND:
326 		case PSCI_0_2_FN_CPU_OFF:
327 		case PSCI_0_2_FN_CPU_ON:
328 		case PSCI_0_2_FN64_CPU_ON:
329 		case PSCI_0_2_FN_AFFINITY_INFO:
330 		case PSCI_0_2_FN64_AFFINITY_INFO:
331 		case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
332 		case PSCI_0_2_FN_SYSTEM_OFF:
333 		case PSCI_0_2_FN_SYSTEM_RESET:
334 		case PSCI_1_0_FN_PSCI_FEATURES:
335 		case ARM_SMCCC_VERSION_FUNC_ID:
336 			val = 0;
337 			break;
338 		case PSCI_1_1_FN_SYSTEM_RESET2:
339 		case PSCI_1_1_FN64_SYSTEM_RESET2:
340 			if (minor >= 1) {
341 				val = 0;
342 				break;
343 			}
344 			fallthrough;
345 		default:
346 			val = PSCI_RET_NOT_SUPPORTED;
347 			break;
348 		}
349 		break;
350 	case PSCI_1_1_FN_SYSTEM_RESET2:
351 		kvm_psci_narrow_to_32bit(vcpu);
352 		fallthrough;
353 	case PSCI_1_1_FN64_SYSTEM_RESET2:
354 		if (minor >= 1) {
355 			arg = smccc_get_arg1(vcpu);
356 
357 			if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET ||
358 			    arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) {
359 				kvm_psci_system_reset2(vcpu);
360 				vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE);
361 				return 0;
362 			}
363 
364 			val = PSCI_RET_INVALID_PARAMS;
365 			break;
366 		}
367 		fallthrough;
368 	default:
369 		return kvm_psci_0_2_call(vcpu);
370 	}
371 
372 	smccc_set_retval(vcpu, val, 0, 0, 0);
373 	return ret;
374 }
375 
376 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
377 {
378 	struct kvm *kvm = vcpu->kvm;
379 	u32 psci_fn = smccc_get_function(vcpu);
380 	unsigned long val;
381 
382 	switch (psci_fn) {
383 	case KVM_PSCI_FN_CPU_OFF:
384 		kvm_psci_vcpu_off(vcpu);
385 		val = PSCI_RET_SUCCESS;
386 		break;
387 	case KVM_PSCI_FN_CPU_ON:
388 		mutex_lock(&kvm->lock);
389 		val = kvm_psci_vcpu_on(vcpu);
390 		mutex_unlock(&kvm->lock);
391 		break;
392 	default:
393 		val = PSCI_RET_NOT_SUPPORTED;
394 		break;
395 	}
396 
397 	smccc_set_retval(vcpu, val, 0, 0, 0);
398 	return 1;
399 }
400 
401 /**
402  * kvm_psci_call - handle PSCI call if r0 value is in range
403  * @vcpu: Pointer to the VCPU struct
404  *
405  * Handle PSCI calls from guests through traps from HVC instructions.
406  * The calling convention is similar to SMC calls to the secure world
407  * where the function number is placed in r0.
408  *
409  * This function returns: > 0 (success), 0 (success but exit to user
410  * space), and < 0 (errors)
411  *
412  * Errors:
413  * -EINVAL: Unrecognized PSCI function
414  */
415 int kvm_psci_call(struct kvm_vcpu *vcpu)
416 {
417 	u32 psci_fn = smccc_get_function(vcpu);
418 	unsigned long val;
419 
420 	val = kvm_psci_check_allowed_function(vcpu, psci_fn);
421 	if (val) {
422 		smccc_set_retval(vcpu, val, 0, 0, 0);
423 		return 1;
424 	}
425 
426 	switch (kvm_psci_version(vcpu)) {
427 	case KVM_ARM_PSCI_1_1:
428 		return kvm_psci_1_x_call(vcpu, 1);
429 	case KVM_ARM_PSCI_1_0:
430 		return kvm_psci_1_x_call(vcpu, 0);
431 	case KVM_ARM_PSCI_0_2:
432 		return kvm_psci_0_2_call(vcpu);
433 	case KVM_ARM_PSCI_0_1:
434 		return kvm_psci_0_1_call(vcpu);
435 	default:
436 		return -EINVAL;
437 	}
438 }
439 
440 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu)
441 {
442 	return 4;		/* PSCI version and three workaround registers */
443 }
444 
445 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
446 {
447 	if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++))
448 		return -EFAULT;
449 
450 	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++))
451 		return -EFAULT;
452 
453 	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++))
454 		return -EFAULT;
455 
456 	if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, uindices++))
457 		return -EFAULT;
458 
459 	return 0;
460 }
461 
462 #define KVM_REG_FEATURE_LEVEL_WIDTH	4
463 #define KVM_REG_FEATURE_LEVEL_MASK	(BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1)
464 
465 /*
466  * Convert the workaround level into an easy-to-compare number, where higher
467  * values mean better protection.
468  */
469 static int get_kernel_wa_level(u64 regid)
470 {
471 	switch (regid) {
472 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
473 		switch (arm64_get_spectre_v2_state()) {
474 		case SPECTRE_VULNERABLE:
475 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
476 		case SPECTRE_MITIGATED:
477 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL;
478 		case SPECTRE_UNAFFECTED:
479 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED;
480 		}
481 		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL;
482 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
483 		switch (arm64_get_spectre_v4_state()) {
484 		case SPECTRE_MITIGATED:
485 			/*
486 			 * As for the hypercall discovery, we pretend we
487 			 * don't have any FW mitigation if SSBS is there at
488 			 * all times.
489 			 */
490 			if (cpus_have_final_cap(ARM64_SSBS))
491 				return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
492 			fallthrough;
493 		case SPECTRE_UNAFFECTED:
494 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
495 		case SPECTRE_VULNERABLE:
496 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
497 		}
498 		break;
499 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
500 		switch (arm64_get_spectre_bhb_state()) {
501 		case SPECTRE_VULNERABLE:
502 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
503 		case SPECTRE_MITIGATED:
504 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL;
505 		case SPECTRE_UNAFFECTED:
506 			return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED;
507 		}
508 		return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL;
509 	}
510 
511 	return -EINVAL;
512 }
513 
514 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
515 {
516 	void __user *uaddr = (void __user *)(long)reg->addr;
517 	u64 val;
518 
519 	switch (reg->id) {
520 	case KVM_REG_ARM_PSCI_VERSION:
521 		val = kvm_psci_version(vcpu);
522 		break;
523 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
524 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
525 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
526 		val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK;
527 		break;
528 	default:
529 		return -ENOENT;
530 	}
531 
532 	if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)))
533 		return -EFAULT;
534 
535 	return 0;
536 }
537 
538 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
539 {
540 	void __user *uaddr = (void __user *)(long)reg->addr;
541 	u64 val;
542 	int wa_level;
543 
544 	if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id)))
545 		return -EFAULT;
546 
547 	switch (reg->id) {
548 	case KVM_REG_ARM_PSCI_VERSION:
549 	{
550 		bool wants_02;
551 
552 		wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features);
553 
554 		switch (val) {
555 		case KVM_ARM_PSCI_0_1:
556 			if (wants_02)
557 				return -EINVAL;
558 			vcpu->kvm->arch.psci_version = val;
559 			return 0;
560 		case KVM_ARM_PSCI_0_2:
561 		case KVM_ARM_PSCI_1_0:
562 		case KVM_ARM_PSCI_1_1:
563 			if (!wants_02)
564 				return -EINVAL;
565 			vcpu->kvm->arch.psci_version = val;
566 			return 0;
567 		}
568 		break;
569 	}
570 
571 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1:
572 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3:
573 		if (val & ~KVM_REG_FEATURE_LEVEL_MASK)
574 			return -EINVAL;
575 
576 		if (get_kernel_wa_level(reg->id) < val)
577 			return -EINVAL;
578 
579 		return 0;
580 
581 	case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2:
582 		if (val & ~(KVM_REG_FEATURE_LEVEL_MASK |
583 			    KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED))
584 			return -EINVAL;
585 
586 		/* The enabled bit must not be set unless the level is AVAIL. */
587 		if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) &&
588 		    (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL)
589 			return -EINVAL;
590 
591 		/*
592 		 * Map all the possible incoming states to the only two we
593 		 * really want to deal with.
594 		 */
595 		switch (val & KVM_REG_FEATURE_LEVEL_MASK) {
596 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL:
597 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN:
598 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL;
599 			break;
600 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL:
601 		case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED:
602 			wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED;
603 			break;
604 		default:
605 			return -EINVAL;
606 		}
607 
608 		/*
609 		 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the
610 		 * other way around.
611 		 */
612 		if (get_kernel_wa_level(reg->id) < wa_level)
613 			return -EINVAL;
614 
615 		return 0;
616 	default:
617 		return -ENOENT;
618 	}
619 
620 	return -EINVAL;
621 }
622