1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 - ARM Ltd 4 * Author: Marc Zyngier <marc.zyngier@arm.com> 5 */ 6 7 #include <linux/arm-smccc.h> 8 #include <linux/preempt.h> 9 #include <linux/kvm_host.h> 10 #include <linux/uaccess.h> 11 #include <linux/wait.h> 12 13 #include <asm/cputype.h> 14 #include <asm/kvm_emulate.h> 15 16 #include <kvm/arm_psci.h> 17 #include <kvm/arm_hypercalls.h> 18 19 /* 20 * This is an implementation of the Power State Coordination Interface 21 * as described in ARM document number ARM DEN 0022A. 22 */ 23 24 #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) 25 26 static unsigned long psci_affinity_mask(unsigned long affinity_level) 27 { 28 if (affinity_level <= 3) 29 return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); 30 31 return 0; 32 } 33 34 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) 35 { 36 /* 37 * NOTE: For simplicity, we make VCPU suspend emulation to be 38 * same-as WFI (Wait-for-interrupt) emulation. 39 * 40 * This means for KVM the wakeup events are interrupts and 41 * this is consistent with intended use of StateID as described 42 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). 43 * 44 * Further, we also treat power-down request to be same as 45 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 46 * specification (ARM DEN 0022A). This means all suspend states 47 * for KVM will preserve the register state. 48 */ 49 kvm_vcpu_wfi(vcpu); 50 51 return PSCI_RET_SUCCESS; 52 } 53 54 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu) 55 { 56 vcpu->arch.power_off = true; 57 kvm_make_request(KVM_REQ_SLEEP, vcpu); 58 kvm_vcpu_kick(vcpu); 59 } 60 61 static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu, 62 unsigned long affinity) 63 { 64 return !(affinity & ~MPIDR_HWID_BITMASK); 65 } 66 67 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) 68 { 69 struct vcpu_reset_state *reset_state; 70 struct kvm *kvm = source_vcpu->kvm; 71 struct kvm_vcpu *vcpu = NULL; 72 unsigned long cpu_id; 73 74 cpu_id = smccc_get_arg1(source_vcpu); 75 if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) 76 return PSCI_RET_INVALID_PARAMS; 77 78 vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); 79 80 /* 81 * Make sure the caller requested a valid CPU and that the CPU is 82 * turned off. 83 */ 84 if (!vcpu) 85 return PSCI_RET_INVALID_PARAMS; 86 if (!vcpu->arch.power_off) { 87 if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) 88 return PSCI_RET_ALREADY_ON; 89 else 90 return PSCI_RET_INVALID_PARAMS; 91 } 92 93 reset_state = &vcpu->arch.reset_state; 94 95 reset_state->pc = smccc_get_arg2(source_vcpu); 96 97 /* Propagate caller endianness */ 98 reset_state->be = kvm_vcpu_is_be(source_vcpu); 99 100 /* 101 * NOTE: We always update r0 (or x0) because for PSCI v0.1 102 * the general purpose registers are undefined upon CPU_ON. 103 */ 104 reset_state->r0 = smccc_get_arg3(source_vcpu); 105 106 WRITE_ONCE(reset_state->reset, true); 107 kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); 108 109 /* 110 * Make sure the reset request is observed if the change to 111 * power_off is observed. 112 */ 113 smp_wmb(); 114 115 vcpu->arch.power_off = false; 116 kvm_vcpu_wake_up(vcpu); 117 118 return PSCI_RET_SUCCESS; 119 } 120 121 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) 122 { 123 int matching_cpus = 0; 124 unsigned long i, mpidr; 125 unsigned long target_affinity; 126 unsigned long target_affinity_mask; 127 unsigned long lowest_affinity_level; 128 struct kvm *kvm = vcpu->kvm; 129 struct kvm_vcpu *tmp; 130 131 target_affinity = smccc_get_arg1(vcpu); 132 lowest_affinity_level = smccc_get_arg2(vcpu); 133 134 if (!kvm_psci_valid_affinity(vcpu, target_affinity)) 135 return PSCI_RET_INVALID_PARAMS; 136 137 /* Determine target affinity mask */ 138 target_affinity_mask = psci_affinity_mask(lowest_affinity_level); 139 if (!target_affinity_mask) 140 return PSCI_RET_INVALID_PARAMS; 141 142 /* Ignore other bits of target affinity */ 143 target_affinity &= target_affinity_mask; 144 145 /* 146 * If one or more VCPU matching target affinity are running 147 * then ON else OFF 148 */ 149 kvm_for_each_vcpu(i, tmp, kvm) { 150 mpidr = kvm_vcpu_get_mpidr_aff(tmp); 151 if ((mpidr & target_affinity_mask) == target_affinity) { 152 matching_cpus++; 153 if (!tmp->arch.power_off) 154 return PSCI_0_2_AFFINITY_LEVEL_ON; 155 } 156 } 157 158 if (!matching_cpus) 159 return PSCI_RET_INVALID_PARAMS; 160 161 return PSCI_0_2_AFFINITY_LEVEL_OFF; 162 } 163 164 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) 165 { 166 unsigned long i; 167 struct kvm_vcpu *tmp; 168 169 /* 170 * The KVM ABI specifies that a system event exit may call KVM_RUN 171 * again and may perform shutdown/reboot at a later time that when the 172 * actual request is made. Since we are implementing PSCI and a 173 * caller of PSCI reboot and shutdown expects that the system shuts 174 * down or reboots immediately, let's make sure that VCPUs are not run 175 * after this call is handled and before the VCPUs have been 176 * re-initialized. 177 */ 178 kvm_for_each_vcpu(i, tmp, vcpu->kvm) 179 tmp->arch.power_off = true; 180 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); 181 182 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); 183 vcpu->run->system_event.type = type; 184 vcpu->run->system_event.flags = flags; 185 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 186 } 187 188 static void kvm_psci_system_off(struct kvm_vcpu *vcpu) 189 { 190 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); 191 } 192 193 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) 194 { 195 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); 196 } 197 198 static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) 199 { 200 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 201 KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); 202 } 203 204 static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) 205 { 206 int i; 207 208 /* 209 * Zero the input registers' upper 32 bits. They will be fully 210 * zeroed on exit, so we're fine changing them in place. 211 */ 212 for (i = 1; i < 4; i++) 213 vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); 214 } 215 216 static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) 217 { 218 /* 219 * Prevent 32 bit guests from calling 64 bit PSCI functions. 220 */ 221 if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu)) 222 return PSCI_RET_NOT_SUPPORTED; 223 224 return 0; 225 } 226 227 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) 228 { 229 struct kvm *kvm = vcpu->kvm; 230 u32 psci_fn = smccc_get_function(vcpu); 231 unsigned long val; 232 int ret = 1; 233 234 switch (psci_fn) { 235 case PSCI_0_2_FN_PSCI_VERSION: 236 /* 237 * Bits[31:16] = Major Version = 0 238 * Bits[15:0] = Minor Version = 2 239 */ 240 val = KVM_ARM_PSCI_0_2; 241 break; 242 case PSCI_0_2_FN_CPU_SUSPEND: 243 case PSCI_0_2_FN64_CPU_SUSPEND: 244 val = kvm_psci_vcpu_suspend(vcpu); 245 break; 246 case PSCI_0_2_FN_CPU_OFF: 247 kvm_psci_vcpu_off(vcpu); 248 val = PSCI_RET_SUCCESS; 249 break; 250 case PSCI_0_2_FN_CPU_ON: 251 kvm_psci_narrow_to_32bit(vcpu); 252 fallthrough; 253 case PSCI_0_2_FN64_CPU_ON: 254 mutex_lock(&kvm->lock); 255 val = kvm_psci_vcpu_on(vcpu); 256 mutex_unlock(&kvm->lock); 257 break; 258 case PSCI_0_2_FN_AFFINITY_INFO: 259 kvm_psci_narrow_to_32bit(vcpu); 260 fallthrough; 261 case PSCI_0_2_FN64_AFFINITY_INFO: 262 val = kvm_psci_vcpu_affinity_info(vcpu); 263 break; 264 case PSCI_0_2_FN_MIGRATE_INFO_TYPE: 265 /* 266 * Trusted OS is MP hence does not require migration 267 * or 268 * Trusted OS is not present 269 */ 270 val = PSCI_0_2_TOS_MP; 271 break; 272 case PSCI_0_2_FN_SYSTEM_OFF: 273 kvm_psci_system_off(vcpu); 274 /* 275 * We shouldn't be going back to guest VCPU after 276 * receiving SYSTEM_OFF request. 277 * 278 * If user space accidentally/deliberately resumes 279 * guest VCPU after SYSTEM_OFF request then guest 280 * VCPU should see internal failure from PSCI return 281 * value. To achieve this, we preload r0 (or x0) with 282 * PSCI return value INTERNAL_FAILURE. 283 */ 284 val = PSCI_RET_INTERNAL_FAILURE; 285 ret = 0; 286 break; 287 case PSCI_0_2_FN_SYSTEM_RESET: 288 kvm_psci_system_reset(vcpu); 289 /* 290 * Same reason as SYSTEM_OFF for preloading r0 (or x0) 291 * with PSCI return value INTERNAL_FAILURE. 292 */ 293 val = PSCI_RET_INTERNAL_FAILURE; 294 ret = 0; 295 break; 296 default: 297 val = PSCI_RET_NOT_SUPPORTED; 298 break; 299 } 300 301 smccc_set_retval(vcpu, val, 0, 0, 0); 302 return ret; 303 } 304 305 static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) 306 { 307 u32 psci_fn = smccc_get_function(vcpu); 308 u32 arg; 309 unsigned long val; 310 int ret = 1; 311 312 switch(psci_fn) { 313 case PSCI_0_2_FN_PSCI_VERSION: 314 val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; 315 break; 316 case PSCI_1_0_FN_PSCI_FEATURES: 317 arg = smccc_get_arg1(vcpu); 318 val = kvm_psci_check_allowed_function(vcpu, arg); 319 if (val) 320 break; 321 322 switch(arg) { 323 case PSCI_0_2_FN_PSCI_VERSION: 324 case PSCI_0_2_FN_CPU_SUSPEND: 325 case PSCI_0_2_FN64_CPU_SUSPEND: 326 case PSCI_0_2_FN_CPU_OFF: 327 case PSCI_0_2_FN_CPU_ON: 328 case PSCI_0_2_FN64_CPU_ON: 329 case PSCI_0_2_FN_AFFINITY_INFO: 330 case PSCI_0_2_FN64_AFFINITY_INFO: 331 case PSCI_0_2_FN_MIGRATE_INFO_TYPE: 332 case PSCI_0_2_FN_SYSTEM_OFF: 333 case PSCI_0_2_FN_SYSTEM_RESET: 334 case PSCI_1_0_FN_PSCI_FEATURES: 335 case ARM_SMCCC_VERSION_FUNC_ID: 336 val = 0; 337 break; 338 case PSCI_1_1_FN_SYSTEM_RESET2: 339 case PSCI_1_1_FN64_SYSTEM_RESET2: 340 if (minor >= 1) { 341 val = 0; 342 break; 343 } 344 fallthrough; 345 default: 346 val = PSCI_RET_NOT_SUPPORTED; 347 break; 348 } 349 break; 350 case PSCI_1_1_FN_SYSTEM_RESET2: 351 kvm_psci_narrow_to_32bit(vcpu); 352 fallthrough; 353 case PSCI_1_1_FN64_SYSTEM_RESET2: 354 if (minor >= 1) { 355 arg = smccc_get_arg1(vcpu); 356 357 if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET || 358 arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) { 359 kvm_psci_system_reset2(vcpu); 360 vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE); 361 return 0; 362 } 363 364 val = PSCI_RET_INVALID_PARAMS; 365 break; 366 } 367 fallthrough; 368 default: 369 return kvm_psci_0_2_call(vcpu); 370 } 371 372 smccc_set_retval(vcpu, val, 0, 0, 0); 373 return ret; 374 } 375 376 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) 377 { 378 struct kvm *kvm = vcpu->kvm; 379 u32 psci_fn = smccc_get_function(vcpu); 380 unsigned long val; 381 382 switch (psci_fn) { 383 case KVM_PSCI_FN_CPU_OFF: 384 kvm_psci_vcpu_off(vcpu); 385 val = PSCI_RET_SUCCESS; 386 break; 387 case KVM_PSCI_FN_CPU_ON: 388 mutex_lock(&kvm->lock); 389 val = kvm_psci_vcpu_on(vcpu); 390 mutex_unlock(&kvm->lock); 391 break; 392 default: 393 val = PSCI_RET_NOT_SUPPORTED; 394 break; 395 } 396 397 smccc_set_retval(vcpu, val, 0, 0, 0); 398 return 1; 399 } 400 401 /** 402 * kvm_psci_call - handle PSCI call if r0 value is in range 403 * @vcpu: Pointer to the VCPU struct 404 * 405 * Handle PSCI calls from guests through traps from HVC instructions. 406 * The calling convention is similar to SMC calls to the secure world 407 * where the function number is placed in r0. 408 * 409 * This function returns: > 0 (success), 0 (success but exit to user 410 * space), and < 0 (errors) 411 * 412 * Errors: 413 * -EINVAL: Unrecognized PSCI function 414 */ 415 int kvm_psci_call(struct kvm_vcpu *vcpu) 416 { 417 u32 psci_fn = smccc_get_function(vcpu); 418 unsigned long val; 419 420 val = kvm_psci_check_allowed_function(vcpu, psci_fn); 421 if (val) { 422 smccc_set_retval(vcpu, val, 0, 0, 0); 423 return 1; 424 } 425 426 switch (kvm_psci_version(vcpu)) { 427 case KVM_ARM_PSCI_1_1: 428 return kvm_psci_1_x_call(vcpu, 1); 429 case KVM_ARM_PSCI_1_0: 430 return kvm_psci_1_x_call(vcpu, 0); 431 case KVM_ARM_PSCI_0_2: 432 return kvm_psci_0_2_call(vcpu); 433 case KVM_ARM_PSCI_0_1: 434 return kvm_psci_0_1_call(vcpu); 435 default: 436 return -EINVAL; 437 } 438 } 439 440 int kvm_arm_get_fw_num_regs(struct kvm_vcpu *vcpu) 441 { 442 return 4; /* PSCI version and three workaround registers */ 443 } 444 445 int kvm_arm_copy_fw_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) 446 { 447 if (put_user(KVM_REG_ARM_PSCI_VERSION, uindices++)) 448 return -EFAULT; 449 450 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1, uindices++)) 451 return -EFAULT; 452 453 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2, uindices++)) 454 return -EFAULT; 455 456 if (put_user(KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3, uindices++)) 457 return -EFAULT; 458 459 return 0; 460 } 461 462 #define KVM_REG_FEATURE_LEVEL_WIDTH 4 463 #define KVM_REG_FEATURE_LEVEL_MASK (BIT(KVM_REG_FEATURE_LEVEL_WIDTH) - 1) 464 465 /* 466 * Convert the workaround level into an easy-to-compare number, where higher 467 * values mean better protection. 468 */ 469 static int get_kernel_wa_level(u64 regid) 470 { 471 switch (regid) { 472 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 473 switch (arm64_get_spectre_v2_state()) { 474 case SPECTRE_VULNERABLE: 475 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; 476 case SPECTRE_MITIGATED: 477 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_AVAIL; 478 case SPECTRE_UNAFFECTED: 479 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_REQUIRED; 480 } 481 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1_NOT_AVAIL; 482 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 483 switch (arm64_get_spectre_v4_state()) { 484 case SPECTRE_MITIGATED: 485 /* 486 * As for the hypercall discovery, we pretend we 487 * don't have any FW mitigation if SSBS is there at 488 * all times. 489 */ 490 if (cpus_have_final_cap(ARM64_SSBS)) 491 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 492 fallthrough; 493 case SPECTRE_UNAFFECTED: 494 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; 495 case SPECTRE_VULNERABLE: 496 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 497 } 498 break; 499 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 500 switch (arm64_get_spectre_bhb_state()) { 501 case SPECTRE_VULNERABLE: 502 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; 503 case SPECTRE_MITIGATED: 504 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_AVAIL; 505 case SPECTRE_UNAFFECTED: 506 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_REQUIRED; 507 } 508 return KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3_NOT_AVAIL; 509 } 510 511 return -EINVAL; 512 } 513 514 int kvm_arm_get_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 515 { 516 void __user *uaddr = (void __user *)(long)reg->addr; 517 u64 val; 518 519 switch (reg->id) { 520 case KVM_REG_ARM_PSCI_VERSION: 521 val = kvm_psci_version(vcpu); 522 break; 523 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 524 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 525 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 526 val = get_kernel_wa_level(reg->id) & KVM_REG_FEATURE_LEVEL_MASK; 527 break; 528 default: 529 return -ENOENT; 530 } 531 532 if (copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id))) 533 return -EFAULT; 534 535 return 0; 536 } 537 538 int kvm_arm_set_fw_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) 539 { 540 void __user *uaddr = (void __user *)(long)reg->addr; 541 u64 val; 542 int wa_level; 543 544 if (copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id))) 545 return -EFAULT; 546 547 switch (reg->id) { 548 case KVM_REG_ARM_PSCI_VERSION: 549 { 550 bool wants_02; 551 552 wants_02 = test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features); 553 554 switch (val) { 555 case KVM_ARM_PSCI_0_1: 556 if (wants_02) 557 return -EINVAL; 558 vcpu->kvm->arch.psci_version = val; 559 return 0; 560 case KVM_ARM_PSCI_0_2: 561 case KVM_ARM_PSCI_1_0: 562 case KVM_ARM_PSCI_1_1: 563 if (!wants_02) 564 return -EINVAL; 565 vcpu->kvm->arch.psci_version = val; 566 return 0; 567 } 568 break; 569 } 570 571 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1: 572 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3: 573 if (val & ~KVM_REG_FEATURE_LEVEL_MASK) 574 return -EINVAL; 575 576 if (get_kernel_wa_level(reg->id) < val) 577 return -EINVAL; 578 579 return 0; 580 581 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2: 582 if (val & ~(KVM_REG_FEATURE_LEVEL_MASK | 583 KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED)) 584 return -EINVAL; 585 586 /* The enabled bit must not be set unless the level is AVAIL. */ 587 if ((val & KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_ENABLED) && 588 (val & KVM_REG_FEATURE_LEVEL_MASK) != KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL) 589 return -EINVAL; 590 591 /* 592 * Map all the possible incoming states to the only two we 593 * really want to deal with. 594 */ 595 switch (val & KVM_REG_FEATURE_LEVEL_MASK) { 596 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL: 597 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_UNKNOWN: 598 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_AVAIL; 599 break; 600 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_AVAIL: 601 case KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED: 602 wa_level = KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2_NOT_REQUIRED; 603 break; 604 default: 605 return -EINVAL; 606 } 607 608 /* 609 * We can deal with NOT_AVAIL on NOT_REQUIRED, but not the 610 * other way around. 611 */ 612 if (get_kernel_wa_level(reg->id) < wa_level) 613 return -EINVAL; 614 615 return 0; 616 default: 617 return -ENOENT; 618 } 619 620 return -EINVAL; 621 } 622